
Visualizing Resource Usage 
During Initialization of 

Embedded Systems

Matthew Klahn, Senior Software Engineer
Moosa Muhammad, Software Engineer

Motorola, Inc., Mobile Devices Sector

CELF Embedded Linux Conference,  April 12th, 2006
1



Purpose

• Time from power-on to “usable system” is 
a critical user satisfaction component for 
consumer electronic devices

• Quantitative analysis of system initialization 
is useful for many tasks (i.e. analyzing kernel 
initialization w/ printk-times patch)

• Qualitative analysis is “fuzzier”, but still 
useful
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Why Visual Presentation of Resource 
Usage Data?

• User space initialization is somewhat 
complicated - straight numeric analysis 
could be difficult, without a full 
understanding of boot process

• All time spent from creation of init task to 
“usable system” will be considered the user 
space portion of system boot for this talk
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bootchart is Born
• bootchart tool written by Ziga Mahkovec in answer to the 

challenge on the Fedora mailing lists in November, 2004 by 
Owen Taylor:

• “The challenge is to create a single poster showing graphically what is going on 
during the boot, what is the utilization of resources, how the current boot differs 
from the ideal world of 100% disk and CPU utilization, and thus, where are the 
opportunities for optimization."

• Allows system architects to see where system resources are 
being utilized, and where opportunities for optimization are 
available

• Linux distros such as Knoppix use bootchart to reduce boot 
time significantly through iterative improvements, starting with 
“low hanging fruit”, and re-examination of their boot process 
(e.g. pre-loading pages from CD-ROM all at once)
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bootchart Design
• Replaces init w/ data collection shell script

• Reads resource usage data from /proc filesystem

• Writes (well, copies) data to files in /tmp/
bootchart.XXXXXX tempdir

• Data collection stops when trigger application is found 
to be running -- that is system is usable (e.g. gdm, xdm, 
X server, getty, etc.)

• Image creation done in separate step, after all data 
collection is completed by parser-renderer application
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Awesome!

Let’s try this on our embedded target system 
and see where it’s spending all its time!
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Not so good, eh?

• Using bootchart increased system boot 
time by at least order-of-magnitude

• What worked on a 1.5 GHz CPU w/ lots ‘o 
RAM & a fast HD doesn’t work so well on 
embedded system w/ limited resources 
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Causes of Performance Problems

• Using shell commands cause each action to require a fork()/
exec()

• When using commands like cat to copy files, each read() or 
write() requires a corresponding open() & following close()

• “polls” process list to find exit trigger event (uses pidof, 
which reads from /proc)

• These problems get much worse as:

• # of processes increase (/proc/<pid> dirs are read)

• sampling rate increases

Though the data collection tasks are “simple”, a 
shell script is an inappropriate choice for 

implementation of data collector
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How to Solve These 
Performance Problems?
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Problems Solutions

1) fork()/exec() for 
each sample?

Do all data collection
in a single process

2) File I/O overhead
too high?

open() files once,
read/write many times.

3) Exit trigger event
search too costly? Use deterministic trigger.

4) Poor performance
scalability?

Minimize impact of reading
/proc files & directory.
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embootchart Design 
Principles, 1

• Meant to be an open source tool: tight and 
simple design & code

• Reuse the bootchart parser-renderer

• Less code to write/maintain

• Performance not an issue, so why bother?

• This application is quite well done!

• Adds a restriction: embootchart must now be 
data compatible w/ bootchart (no format 
changes of output data files)
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embootchart Design 
Principles, 2

• Performance is absolutely critical to reduce 
skewing the results

• Because embedded systems should 
generally have shorter boot times, may 
need to increase sampling rate

• bootchart default: 5 samples/sec.

• embootchart default: 20 samples/sec.
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How to Achieve Higher Performance

• Single compiled, multi-threaded application

• Tasks divided one-per-thread

• Input & output files open()’d one time, read() & write 
multiple times

• Output files use open(..., O_WRONLY | O_APPEND)

• Input files use open(..., O_RDONLY) and lseek(fd, 0, 
SEEK_SET) to refresh data before sampling (/proc files!)

• Use asynchronous notification to stop data collection: 
signal from init script or modified application (e.g. gdm)
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C++?!

• Because the data collector is easy to separate into 
discrete tasks, OO seemed a logical design choice

• Reasonably high performance & small code size 
(~350 LoC, 77kb binary, dynamically linked)

• libstdc++ functionality for file I/O, string 
manipulation, etc. reduces LoC I need to write/
maintain, and is higher performance than hand-
written code while shielding complexity

• Simplest way to get there from here
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C++ Class Diagram
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17



embootchart Data Acquisition Sequence

• embootchart launched

• Run pre-initialization executable/script (optional)

• fork(): run “real” init (i.e. /sbin/init) in parent process 
(pid 1), child process goes on to do data collection

• Start & initialize data collector threads & let them 
collect data; main thread waits for exit signal

• When exit signal (SIGSTOP) is rec’d, stop all data 
collector threads

• Run post-processing executable/script (optional)

• embootchart exits
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Pre-init script

• Mount tmpfs for temp r/w of data output 
files

• Mount /proc fs for data acquisition

• Pre-init hardware setup (console setup, 
device symlinking, etc.)

• May replace a script already run on system 
(e.g. linuxrc)

Responsible for special set-up for data collection, 
not normally done for system boot
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Post-processing script

• tar & gzip datafiles, which is how parser-
renderer expects them to be

• Set up networking or NFS filesystem for 
data export

• Any cleanup of data files, etc. after export, if 
your system is going to continue to run

Responsible for packaging data & setting up 
resources for data export from target system
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embootchart Customization
• Modify Makefile to customize gross functionality

• Whether to collect disk usage statistics (2.6.x kernels or 
higher)

• Whether to run pre-init script

• Whether to run post-init script

• Modify Config.hh file to fine-tune parameters at compile 
time

• Sampling rate (default: 20 samples/sec.)

• Filepath to “real” init process

• Filepaths to pre-init and post-processing scripts

• Location of rw filesystem to output data files
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Contrived Example: Mainstone 
Reference Platform

• 200 MHz Intel XScale (PXA270, iwmmxt_le) CPU

• 16-bit memory bus

• 32 entry text & data TLB caches

• 64 MB RAM

• 32 MB Tyax Flash (NOR)

• Based on MontaVista 3.1 CEE Linux distribution (glibc 2.3.2, gcc-3.2)

• Linux 2.6.10 kernel (upgrade over MVLCEE 3.1)

• busybox 1.00-rc3

• QTopia 2.2.0 free edition, PDA edition (http://
www.trolltech.com/products/qtopia/index.html)
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Warning!
I said “contrived” on the previous 
slide because this is not a real-
world target system. Due to the 
simplicity of its purpose (i.e. show 
some bootcharts!), there are not as 
many low-hanging fruit as I would 
like for demonstration purposes.
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What Next?

• Reduce need for external script/executable for 
pre-init & post-processing stages by writing 
common tasks (e.g. mounting filesystems) as C+
+ modules

• Extend data collection to cover memory usage

• Attempt to identify further performance 
improvements in existing code (e.g. remove the 
user of /proc all together?!)
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Great! 
Where do I get it?

• Process started to open-source this project 
& distribute to CELF & RotW

• When approved, embootchart will be 
released under GPL (most likely)

• Will publicize on CELF mailing list

• This should happen fairly quickly (weeks, 
not months)
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