
Visualizing Resource Usage 
During Initialization of 

Embedded Systems

Matthew Klahn, Senior Software Engineer
Moosa Muhammad, Software Engineer

Motorola, Inc., Mobile Devices Sector

CELF Embedded Linux Conference,  April 12th, 2006
1



Purpose

• Time from power-on to “usable system” is 
a critical user satisfaction component for 
consumer electronic devices

• Quantitative analysis of system initialization 
is useful for many tasks (i.e. analyzing kernel 
initialization w/ printk-times patch)

• Qualitative analysis is “fuzzier”, but still 
useful

CELF Embedded Linux Conference,  April 12th, 2006
2



Why Visual Presentation of Resource 
Usage Data?

• User space initialization is somewhat 
complicated - straight numeric analysis 
could be difficult, without a full 
understanding of boot process

• All time spent from creation of init task to 
“usable system” will be considered the user 
space portion of system boot for this talk

CELF Embedded Linux Conference,  April 12th, 2006
3



bootchart is Born
• bootchart tool written by Ziga Mahkovec in answer to the 

challenge on the Fedora mailing lists in November, 2004 by 
Owen Taylor:

• “The challenge is to create a single poster showing graphically what is going on 
during the boot, what is the utilization of resources, how the current boot differs 
from the ideal world of 100% disk and CPU utilization, and thus, where are the 
opportunities for optimization."

• Allows system architects to see where system resources are 
being utilized, and where opportunities for optimization are 
available

• Linux distros such as Knoppix use bootchart to reduce boot 
time significantly through iterative improvements, starting with 
“low hanging fruit”, and re-examination of their boot process 
(e.g. pre-loading pages from CD-ROM all at once)

CELF Embedded Linux Conference,  April 12th, 2006
4



bootchart Design
• Replaces init w/ data collection shell script

• Reads resource usage data from /proc filesystem

• Writes (well, copies) data to files in /tmp/
bootchart.XXXXXX tempdir

• Data collection stops when trigger application is found 
to be running -- that is system is usable (e.g. gdm, xdm, 
X server, getty, etc.)

• Image creation done in separate step, after all data 
collection is completed by parser-renderer application

CELF Embedded Linux Conference,  April 12th, 2006
5



6



7



Awesome!

Let’s try this on our embedded target system 
and see where it’s spending all its time!

CELF Embedded Linux Conference,  April 12th, 2006
8



9



Not so good, eh?

• Using bootchart increased system boot 
time by at least order-of-magnitude

• What worked on a 1.5 GHz CPU w/ lots ‘o 
RAM & a fast HD doesn’t work so well on 
embedded system w/ limited resources 

CELF Embedded Linux Conference,  April 12th, 2006
10



Causes of Performance Problems

• Using shell commands cause each action to require a fork()/
exec()

• When using commands like cat to copy files, each read() or 
write() requires a corresponding open() & following close()

• “polls” process list to find exit trigger event (uses pidof, 
which reads from /proc)

• These problems get much worse as:

• # of processes increase (/proc/<pid> dirs are read)

• sampling rate increases

Though the data collection tasks are “simple”, a 
shell script is an inappropriate choice for 

implementation of data collector

CELF Embedded Linux Conference,  April 12th, 2006
11



How to Solve These 
Performance Problems?

CELF Embedded Linux Conference,  April 12th, 2006

Problems Solutions

1) fork()/exec() for 
each sample?

Do all data collection
in a single process

2) File I/O overhead
too high?

open() files once,
read/write many times.

3) Exit trigger event
search too costly? Use deterministic trigger.

4) Poor performance
scalability?

Minimize impact of reading
/proc files & directory.

12



embootchart Design 
Principles, 1

• Meant to be an open source tool: tight and 
simple design & code

• Reuse the bootchart parser-renderer

• Less code to write/maintain

• Performance not an issue, so why bother?

• This application is quite well done!

• Adds a restriction: embootchart must now be 
data compatible w/ bootchart (no format 
changes of output data files)

CELF Embedded Linux Conference,  April 12th, 2006
13



embootchart Design 
Principles, 2

• Performance is absolutely critical to reduce 
skewing the results

• Because embedded systems should 
generally have shorter boot times, may 
need to increase sampling rate

• bootchart default: 5 samples/sec.

• embootchart default: 20 samples/sec.

CELF Embedded Linux Conference,  April 12th, 2006
14



How to Achieve Higher Performance

• Single compiled, multi-threaded application

• Tasks divided one-per-thread

• Input & output files open()’d one time, read() & write 
multiple times

• Output files use open(..., O_WRONLY | O_APPEND)

• Input files use open(..., O_RDONLY) and lseek(fd, 0, 
SEEK_SET) to refresh data before sampling (/proc files!)

• Use asynchronous notification to stop data collection: 
signal from init script or modified application (e.g. gdm)

CELF Embedded Linux Conference,  April 12th, 2006
15



C++?!

• Because the data collector is easy to separate into 
discrete tasks, OO seemed a logical design choice

• Reasonably high performance & small code size 
(~350 LoC, 77kb binary, dynamically linked)

• libstdc++ functionality for file I/O, string 
manipulation, etc. reduces LoC I need to write/
maintain, and is higher performance than hand-
written code while shielding complexity

• Simplest way to get there from here

CELF Embedded Linux Conference,  April 12th, 2006
16



C++ Class Diagram

Collector

PidCollector

Worker

Header

Jiffies

main()
1 1

1

n

1

1

1

1 n

1

1

System-wide info: 
CPU type, 

hostname, kernel 
version, etc.

Singleton

Main thread:
main() of executable

Timestamp info:
Calc’d from # of 

jiffies consumed by 
system since boot

Singleton

Thread abstraction:
1 Collector per 

output file

Per-process data 
collector:

Specialization of 
Collector, reads

/proc/<pid>/stat files

Input file reader:
Opens one /proc file & 
uses lseek() to refresh 

contents, then reads out 
data

17



embootchart Data Acquisition Sequence

• embootchart launched

• Run pre-initialization executable/script (optional)

• fork(): run “real” init (i.e. /sbin/init) in parent process 
(pid 1), child process goes on to do data collection

• Start & initialize data collector threads & let them 
collect data; main thread waits for exit signal

• When exit signal (SIGSTOP) is rec’d, stop all data 
collector threads

• Run post-processing executable/script (optional)

• embootchart exits

CELF Embedded Linux Conference,  April 12th, 2006
18



Pre-init script

• Mount tmpfs for temp r/w of data output 
files

• Mount /proc fs for data acquisition

• Pre-init hardware setup (console setup, 
device symlinking, etc.)

• May replace a script already run on system 
(e.g. linuxrc)

Responsible for special set-up for data collection, 
not normally done for system boot

CELF Embedded Linux Conference,  April 12th, 2006
19



Post-processing script

• tar & gzip datafiles, which is how parser-
renderer expects them to be

• Set up networking or NFS filesystem for 
data export

• Any cleanup of data files, etc. after export, if 
your system is going to continue to run

Responsible for packaging data & setting up 
resources for data export from target system

CELF Embedded Linux Conference,  April 12th, 2006
20



embootchart Customization
• Modify Makefile to customize gross functionality

• Whether to collect disk usage statistics (2.6.x kernels or 
higher)

• Whether to run pre-init script

• Whether to run post-init script

• Modify Config.hh file to fine-tune parameters at compile 
time

• Sampling rate (default: 20 samples/sec.)

• Filepath to “real” init process

• Filepaths to pre-init and post-processing scripts

• Location of rw filesystem to output data files

CELF Embedded Linux Conference,  April 12th, 2006
21



Contrived Example: Mainstone 
Reference Platform

• 200 MHz Intel XScale (PXA270, iwmmxt_le) CPU

• 16-bit memory bus

• 32 entry text & data TLB caches

• 64 MB RAM

• 32 MB Tyax Flash (NOR)

• Based on MontaVista 3.1 CEE Linux distribution (glibc 2.3.2, gcc-3.2)

• Linux 2.6.10 kernel (upgrade over MVLCEE 3.1)

• busybox 1.00-rc3

• QTopia 2.2.0 free edition, PDA edition (http://
www.trolltech.com/products/qtopia/index.html)

CELF Embedded Linux Conference,  April 12th, 2006
22

http://www.trolltech.com/products/qtopia/index.html
http://www.trolltech.com/products/qtopia/index.html
http://www.trolltech.com/products/qtopia/index.html
http://www.trolltech.com/products/qtopia/index.html


Warning!
I said “contrived” on the previous 
slide because this is not a real-
world target system. Due to the 
simplicity of its purpose (i.e. show 
some bootcharts!), there are not as 
many low-hanging fruit as I would 
like for demonstration purposes.

CELF Embedded Linux Conference,  April 12th, 2006
23



24



25



26



What Next?

• Reduce need for external script/executable for 
pre-init & post-processing stages by writing 
common tasks (e.g. mounting filesystems) as C+
+ modules

• Extend data collection to cover memory usage

• Attempt to identify further performance 
improvements in existing code (e.g. remove the 
user of /proc all together?!)

CELF Embedded Linux Conference,  April 12th, 2006
27



Great! 
Where do I get it?

• Process started to open-source this project 
& distribute to CELF & RotW

• When approved, embootchart will be 
released under GPL (most likely)

• Will publicize on CELF mailing list

• This should happen fairly quickly (weeks, 
not months)

CELF Embedded Linux Conference,  April 12th, 2006
28



Copyright, © 2006 by Matthew Klahn, Motorola, Inc.

29


