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Who am I?
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Agenda

§ Yocto-based distributions: platforms and products

§ Continuous Integration and Continuous Delivery 101

§ Source Code Management

§ Tools and practices for Platform and Product distributions

§ Build and Automatic testing Infrastructure

§ DevOps for CI/CD



4

§ Platforms
– Combined from BitBake, OE-Core and additional layers

– Poky-style, with generic features for multiple devices
– https://github.com/ostroproject/ostro-os

§ Products
– Derivative distribution from Platform distribution

– Small subset of device-specific settings and functionality. 
Example: Intel Joule™

– https://github.com/ostroproject/ostro-os-xt

Yocto-based distributions for Platform and Product
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Continuous Integration and Continuous Delivery

Continuous Integration

§ For every single change: build, automatically test, measure, visualize status

§ Fix “broken” state as soon as possible.

2-Stage Continuous Integration

§ Verify change(s) in sandbox before merging.

§ Prevent “broken” state in your official branches

Continuous Delivery

§ Make your releases “rolling”: ship software to your users in short iterations

§ Make sure your “pipeline” has all steps that software needs to pass before shipment

Maximize throughput of good changes, minimize breakages of main code line



6

Source Code Management

Collaborative source code hosting solution is a must for effective CI/CD setup

§ There are multiple options for public and private Git repositories
– Cloud services and providers: GitHub, BitBucket
– Self hosted/managed: GitLab, Gerrit, …

§ Key “must have” features
– Personal sandboxes for developers
– Allow developers to easily collaborate
– Change state tracking
– Integration with external systems
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Source Code Management: “Fork me on GitHub”

GitHub – de-facto standard in open source community nowadays

§ Unlimited personal public repositories

§ Reviews & Statuses

§ APIs for integration with CI/CD

§ Authentication and Access controls
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CI/CD for Platform Distributions: source code

Separate between your development and integration

§ Layers
– Development happening here

§ Release Repository
– Used only to integrate changes from layers
– The Release of your software platform



Release Repository
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§ The repository is constructed using 
combo-layer tool
– combo-layer configuration files are the only 

content specific to release repository

– CD is controlling promotion of changes 
from Layers to Release repository

– Quality and schedule gates



CI/CD for Layers
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Provides service for layer maintainers and 
contributors

§ Build every pull request on top of latest state of 
release repository and test on real hardware

§ Build branch and merge head changes

§ Provide feedback via GitHub commit status

§ Watch for ”magic comments” by maintainers
– This allows them to trigger builds using GitHub UI

§ Security measures for PRs from “unknown” 
developers



CI/CD for Release repository
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Release repository for official builds.

§ Build on each merge to release branches
– Builds are automatically tested on real hardware

– Builds can be ”promoted” between stages of CD

§ Pull Requests
– Upstream Monitor creates or updates PR on every 

change of monitored branches in upstream layer 
repositories

– Maintainers might override upstream monitor PRs in 
special cases

– PRs from individual developers to release 
repository are ignored, except very special cases



Pull Requests to Release repository
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When PRs to release repository are needed ?

§ Introducing new layer to release repository
– Update combo-layer.conf

– Layer repository content would be imported on next 
upstream-monitor run

§ Test builds for complex changes:
– Changes across multiple layers that require 

orchestration

– Tooling bug fixes are required
– Bitbake
– Classes from OE-core



CI/CD Engine: Jenkins
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Open Source project with established and 
active community

§ Newcomers friendly

§ Extensible

§ Scriptable

§ DevOps friendly
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CI/CD Implementation

For Platform Repository CI/CD is implemented in a “classical” way

§ Set of “freestyle” jobs to be triggered on events from GitHub
– Orchestrator jobs, per layer or for release repository

– layer_branch
– layer_pull-request

– Shared Build jobs and Test jobs
– build_machine
– test_hardware

§ Post-processing jobs:
– publishing, promotion, maintenance



Let’s use newer technologies
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§ CD Pipeline can be shipped with code

§ Easy scripting

§ Support for multi-branch projects

§ Easy parallel execution

§ Persistent tasks during builds

§ Integration with Docker

Jenkins 2.0: Pipelines as Code



Pipeline as Code
Inside Product Repository

18

Fine-grained control of process and 
resources inside your repository

§ Jenkinsfile

§ Scripts for building and testing

§ Build and test targets
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CI/CD for Product Distribution

Few other different technologies

§ Reproducible environment
– Docker as build backend
– Same default build targets for local and automated builds

§ Using Git submodules instead of combo-layer approach
– Distro configuration inheritance from base distribution
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combo-layer

§ Pros
– Self-contained repository
– Easy to try any change in any place of 

repository
– Easy to track individual upstream change

§ Cons
– Complexity of importing upstream repositories 

with non-linear Git history
– Git history is polluted with upstream commit 

messages
– Reviews might be time consuming, if there are 

many changes 

Git submodules
§ Pros

– Content from upstream repositories 
protected from accidental changes

– Easier to maintain
– Clean Git history, only product related 

changes are visible

§ Cons
– Dependency on upstream source hosting
– Inability to quickly try changes for upstream 

components inside product builds
– Harder to review upstream changes

SCM: Git Submodules or combo-layer
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§ Frontend part
– Web Site

– Download server

– Jenkins Master

§ Isolated network for builders and testing
– Coordinator

– Network Storage

– Builders

– Automatic testing workers

CI/CD Infrastructure: Architecture



23

DevOps for CI/CD

Maintain code of CI/CD pipeline same way as you develop your software

§ Use Ansible to deploy host OS and configuration for services
– Jenkins slave provisioning, Downloads, Network Storage, Docker installation
– https://github.com/ostroproject/ostroproject-ci-ansible

§ Jenkins Job DSL provisioning
– https://github.com/ostroproject/ostroproject-ci

§ Configure Jenkins to deploy build scripts to slave automatically
– Production and Staging branches
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First and practically the only job configured 
manually in Jenkins.

And even this potentially can be done via 
Ansible.

§ Simple pointer to git repository and branch with 
Groovy Job DSL script
– Verifies that all needed plugins are present

– Creates all other jobs

§ To update your whole set of job in Jenkins, just 
push update into your CI repository

DevOps: Jenkins initial seed



DevOps: Jenkins Job DSL
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Dynamically manage set of tasks for CI/CD

§ Information from combo-layer configuration is used 
to pre-populate jobs
– All layers and release repositories

– Upstream Monitor

§ Different seed jobs can handle multiple maintenance 
branches with different subsets of layers
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Reliable, Scalable and easy to 
Replicate framework to flash and 
execute test cases on physical HW

§ Supports
– PC-like devices, Edison, BeagleBone, 

MinnowBoard, Galileo, Joule

§ Low cost:
– Off-shelf components, <100$ BOM

§ External test suite controls actual test 
execution

– ELC 2015

Automatic Testing: https://github.com/01org/AFT
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Miscellanea

§ Keep buildhistory
– Know what is in the build exactly: buildhistory-extra
– Maintaining buildhistory for parallel builds

§ Maintain S[shared]STATE
– Local, over network, for PRs

§ PRserver for parallel builds

§ Performance and disk operations

§ Benefits of using bmap-tools
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Links

§ Reference:
– Platform: https://github.com/ostroproject/ostro-os
– Product: https://github.com/ostroproject/ostro-os-xt
– CI/CD settings and scripts: https://github.com/ostroproject/ostroproject-ci
– Ansible playbooks: https://github.com/ostroproject/ostroproject-ci-ansible

§ Combo-Layer: https://wiki.yoctoproject.org/wiki/Combo-layer

§ Jenkins Pipeline: https://jenkins.io/solutions/pipeline/
§ Bmap-tools: https://github.com/01org/bmap-tools
§ Automatic Flashing/Testing:

– https://github.com/01org/AFT
– https://github.com/ostroproject/meta-iotqa
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Basic principles of CI and CD



Continuous Integration principles

Basic principles of CI
• Maintain code in version control repository
• Automate the build
• Make the build automatically tested
• Frequent integration to baseline
• Every commit to baseline should be built and 

tested
• Keep the build fast
• Make it easy to get the latest deliverables
• Anyone can see results of each build

Source: Continuous Integration: Improving Software Quality and 
Reducing Risk. ISBN: 978-0-321-33638-5



Two-stage Continuous Integration principles
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GitHub’s pull request review mechanism can benefit 
with implementation of two-stage CI practices

• Every change committed to temporary place
• CI system perform build and test cycle
• When build and test results are good, change is 

merged to baseline

Source: Continuous Integration: Improving Software Quality and 
Reducing Risk. ISBN: 978-0-321-33638-5



Continuous Delivery principles
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Continuous Delivery practices allows us to improve 
product quality and produce predictable and reliable 
software releases often
• Set of validations through which a piece of software 

must pass on its way to release
• Tight integration with automated acceptance testing 

(BAT)
• Easy deployments to test environments
• Valuable software releases in short cycles
• Software reliably can be released at any time
• Fast way to produce bugfixes
• Any code commit may be released to customers at 

any point
• Feature toggles are useful for code which is not yet 

ready for use by end users
Source: Continuous Delivery: Reliable Software Releases through 
Build, Test, and Deployment Automation. ISBN: 978-0-321-60191-9




