(mtel) |
experience
what's inside”

Creating Continuous Delivery
for Yocto-based loT Distribution

Alexander Kanevskiy
OpenloT Summit Europe

2016-10-12

Who am |?
Alexander.Kanevskiy@Intel.com

Agenda

Yocto-based distributions: platforms and products

Continuous Integration and Continuous Delivery 101

Source Code Management

Tools and practices for Platform and Product distributions

Build and Automatic testing Infrastructure

DevOps for CI/CD

Yocto-based distributions for Platform and Product

= Platforms
[
— Combined from BitBake, OE-Core and additional layers

— Poky-style, with generic features for multiple devices

— https://github.com/ostroproject/ostro-os P R O j E C T

= Products
— Derivative distribution from Platform distribution

— Small subset of device-specific settings and functionality.
Example: Intel Joule™
— https://qgithub.com/ostroproject/ostro-os-xt

Continuous Integration and Continuous Delivery

Continuous Integration

» For every single change: build, automatically test, measure, visualize status
= Fix “broken” state as soon as possible.

2-Stage Continuous Integration

= Verify change(s) in sandbox before merging.

= Prevent “broken” state in your official branches

Continuous Delivery

= Make your releases “rolling”: ship software to your users in short iterations

= Make sure your “pipeline” has all steps that software needs to pass before shipment

Maximize throughput of good changes, minimize breakages of main code line

Source Code Management

Collaborative source code hosting solution is a must for effective CI/CD setup

= There are multiple options for public and private Git repositories

— Cloud services and providers: GitHub, BitBucket
— Self hosted/managed: GitLab, Gerrit, ...

= Key “must have” features
— Personal sandboxes for developers
— Allow developers to easily collaborate

— Change state tracking

— Integration with external systems

Source Code Management: “Fork me on GitHub” s

GitHub — de-facto standard in open source community nowadays
= Unlimited personal public repositories

» Reviews & Statuses

= APIs for integration with CI/CD

= Authentication and Access controls

Continuous Delivery for
Platform Distributions

CI/CD for Platform Distributions: source code

Separate between your development and integration
= Layers
— Development happening here

» Release Repository

— Used only to integrate changes from layers

— The Release of your software platform

Release Repository

» The repository is constructed using
combo-layer tool

combo-layer configuration files are the only
content specific to release repository

CD is controlling promotion of changes
from Layers to Release repository

Quality and schedule gates

[DEFAULT]
= False

[bitbake]
= git://git.openembedded.org/bitbake
= bitbake
= conf/combo-layerhook-generic.sh
= master
= 4bcf77589312d9936340d8c308006c2fc9baf67c

[openembedded-core]
= git://git.openembedded.org/openembedded-core

= .templateconf
README
= conf/combo-layerhook-openembedded-core. sh
= master
= cdaafc3729700778d95afc2413553d7b41c1317b

[meta—intel]
= git://git.yoctoproject.org/meta-intel
= meta-intel
= conf/combo-layerhook-generic.sh
= master
= 7cceac0lele@a5745600403d9b334babb76dc8ce

[meta-ostrol
= git@github.com:ostroproject/meta-ostro.git

= .gitignore
= conf/combo-layerhook-generic. sh
= master
= eca9b627a3fee2d15812c17a79a1418481094ad6

[meta-iotqal
= git@github.com:ostroproject/meta-iotqa.git
= meta-iotqga
= conf/combo-layerhook-generic.sh
= master
= 28618a57054583eeb290b78c48d2f8dd45675fb9

CI/CD for Layers

Provides service for layer maintainers and
contributors

= Build every pull request on top of latest state of
release repository and test on real hardware

= Build branch and merge head changes
» Provide feedback via GitHub commit status

= Watch for "magic comments” by maintainers
— This allows them to trigger builds using GitHub Ul

= Security measures for PRs from “unknown”
developers

Review
' pull request
Developer

Maintainers

CI/CD for Release repository

Release repository for official builds.

= Build on each merge to release branches
— Builds are automatically tested on real hardware

— Builds can be "promoted” between stages of CD

= Pull Requests

— Upstream Monitor creates or updates PR on every
change of monitored branches in upstream layer
repositories

— Maintainers might override upstream monitor PRs in
special cases

— PRs from individual developers to release
repository are ignored, except very special cases

Upstream Monitor

—

1111

1

pull request

Release
Repo

intel“‘ l 12

Pull Requests to Release repository

When PRs to release repository are needed ?

» |ntroducing new layer to release repository
— Update combo-layer.conf

— Layer repository content would be imported on next
upstream-monitor run

= Test builds for complex changes:

— Changes across multiple layers that require
orchestration

— Tooling bug fixes are required
— Bitbake

— Classes from OE-core

patches

Forked pull request

EEENS
Repo

baseline

Release
Repo

Cl/CD Engine: Jenkins

Open Source project with established and
active community

= Newcomers friendly
= Extensible

= Scriptable

» DevOps friendly

CIl/CD Implementation

For Platform Repository CI/CD is implemented in a “classical” way

= Set of “freestyle” jobs to be triggered on events from GitHub

— Orchestrator jobs, per layer or for release repository
— layer_branch
— layer_pull-request

— Shared Build jobs and Test jobs

— build_machine
— test hardware

= Post-processing jobs:

— publishing, promotion, maintenance

Continuous Delivery for
Product Distributions

Let’'s use newer technologies

Jenkins 2.0: Pipelines as Code

= CD Pipeline can be shipped with code = Easy parallel execution
= Easy scripting = Persistent tasks during builds
= Support for multi-branch projects = Integration with Docker
Stage View
1min 24s 28s 184ms 10s 3h 46min 5min 15s 25min 57s

f
4120

octer cngim 1min 42s 29s 376ms 14s

11:48 -

almost complete

[onos NEEE © 26ms 258 65ms 65 4h5min 3min11s 20min 21s
16:27

i@l 17

def target_machine = "intel-corei7-64"
def test_devices ["joule", "minnowboardmax" 1]
def build_os = "opensuse-42.1"

. . def current_project = "${env.JOB_NAME}".tokenize("_ ") [0]
I pe I n e aS O e def image_name = "${current_project}_build:${env.BUILD_TAG}"
node('docker') {

I n S i d e P r. O d u Ct R e p O S i t O ry : ws (;\évg;lés?g(l:gg:ﬂ;lsg:;:;gz;?{env.EXECUTOR_NUMBER}") {

deleteDir()

stage 'Checkout own content'

1 H 4 checkout poll: false, scm: scm
Fine-grained control of process and N L e T
. . . dir('build') {
resources inside your repository | deletedir()
stage 'Build docker image'
. . sh "docker build -t ${image_name} ${build_args} docker/${build_os}"
u Jenk|n8f|le def docker_image = docker.image(image_name)
docker_image. inside(run_args) {
stage 'Bitbake Build'

= Scripts for building and testing : sh “docker/butld-project.sh”
7 :ﬁaggocﬁgi}gugggiﬁizig?ect .sh"

= Build and test targets ' ;

testinfo_data = readFile "${target_machine}.testinfo.csv"

def test_runs = [:]
(int i-0; i < test_devices.size(); i++) {
def test_device - test_devices[il
test_runs["test_${test_device}"] = {
node('ostro-tester') {
writeFile file: 'tester-exec.sh', text: tester_script
writeFile file: 'testinfo.csv', text: testinfo_data
sh 'env & chmod a+x tester-exec.sh && ./tester-exec.sh'
}
}
stage "Parallel test run"
parallel test_runs

CI/CD for Product Distribution

Few other different technologies

= Reproducible environment
— Docker as build backend

— Same default build targets for local and automated builds

» Using Git submodules instead of combo-layer approach

— Distro configuration inheritance from base distribution

SCM: Git Submodules or combo-layer

combo-layer Git submodules
= Pros * Pros
— Self-contained repository — Content from upstream repositories
— Easy to try any change in any place of protected from accidental changes

repository — Easier to maintain

— Easy to track individual upstream change — Clean Git history, only product related

» Cons changes are visible

— Complexity of importing upstream repositories = Cons

with non-linear Git history _
— Dependency on upstream source hosting
— Git history is polluted with upstream commit . _
messages — Inability to quickly try changes for upstream

: . . . components inside product builds
— Reviews might be time consuming, if there are

many changes — Harder to review upstream changes

i@l 20

Continuous Delivery Infrastructure

CI/CD Infrastructure: Architecture

Internet

» Frontend part

External datacenter

- WebSite | am = —
— Download server , i ; ‘
_ JenklnS Master Website Downloads Jenkins GitHub
= |solated network for builders and testing [rcmiaoene
— Coordinator S .
— Network Storage . .] i . -
— Builders o e g || g e
=
— Automatic testing workers . D] g‘IEI'g E‘IETE g'El'g

DevOps for CI/CD

Maintain code of CI/CD pipeline same way as you develop your software

= Use Ansible to deploy host OS and configuration for services
— Jenkins slave provisioning, Downloads, Network Storage, Docker installation

— https://github.com/ostroproject/ostroproject-ci-ansible

= Jenkins Job DSL provisioning

— https://github.com/ostroproject/ostroproject-ci

= Configure Jenkins to deploy build scripts to slave automatically

— Production and Staging branches

DevOps: Jenkins initial seed

First and practically the only job configured
manually in Jenkins.

And even this potentially can be done via
Ansible.

= Simple pointer to git repository and branch with
Groovy Job DSL script
— Verifies that all needed plugins are present

— Creates all other jobs

= To update your whole set of job in Jenkins, just
push update into your Cl repository

freeStyleJob('ci_seed_initial") - {
scm- { B
git {
remote {
github(github_org+"/ostroproject-ci", -protocol-"https")
credentials(credentials_github_https)

}

branches(ostro_ci_server)

}

triggers {
githubPush()
scm(scm_poll)

steps {
dsl {
external('job-config/initial_seed.groovy')
removeAction('DISABLE")

Generated Items:

* ci deploy scripts

* ci seed job toplevel

e ci seed job build

e ci seed job test

* ci cleanup coordinator

e ci cleanup master

* ci cleanup worker

e ci maintain download swupd links
e ci_maintain_coordinator swupd links
e ci seed job upstream monitor

o ci deploy download theme

* ci deploy documentation

* code isafw reports

e ci seed mirror layers

e ci seed job ostro-os-xt

DevOps: Jenkins Job DSL

Dynamically manage set of tasks for CI/CD

= Information from combo-layer configuration is used
to pre-populate jobs
— All layers and release repositories
— Upstream Monitor

= Different seed jobs can handle multiple maintenance
branches with different subsets of layers

IL_T_I_V Seed job: ci_seed initial

(i Generated Items:

meta-ostro pull-requests
meta-ostro master

meta-ostro-fixes pull-requests
meta-ostro-fixes master
meta-ostro-bsp pull-requests
meta-ostro-bsp master
meta-intel-iot-security pull-requests

meta-intel-iot-security master
meta-appfw pull-requests

meta-appfw master
meta-intel-iot-middleware pull-requests
meta-intel-iot-middleware master
meta-iotga pull-requests

meta-iotga master
meta-iot-web pull-requests

meta-iot-web master
meta-security-isafw _pull-requests
meta-security-isafw _master

meta-soletta pull-requests
meta-soletta master

ostro-os pull-requests
ostro-os master
tester-re-test-existing-build

i@l 25

Other tools

Automatic Testing: https://github.com/0O1org/AFT

7

User-input emulation |
ing usB
i pevboard (ex: M::v)uLijwMax) OSZTBSIESE
emulator .
= S U p pO rtS SW Image NFS Local Network

Reliable, Scalable and easy to
Replicate framework to flash and
execute test cases on physical HW

— PC-like devices, Edison, BeagleBone,
MinnowBoard, Galileo, Joule

| 2. Minnow Power Supply

. USB-controlled power

= Low cost:
— Off-shelf components, <100$ BOM

cutter.

. OpenSUSE Thumb drive
. D Card (target media)
. Arduino UNO R3

. USB to Serial port

= External test suite controls actual test
execution

Control interface for UNO
. Programming toggle for UNO
USB port.

Ftharnat nart

— ELC 2015

Miscellanea

Keep buildhistory
— Know what is in the build exactly: buildhistory-extra

— Maintaining buildhistory for parallel builds
Maintain S[shared]STATE

— Local, over network, for PRs

PRserver for parallel builds

Performance and disk operations

Benefits of using bmap-tools

Questions?

Links

Reference:
— Platform: https://github.com/ostroproject/ostro-os
— Product: https://github.com/ostroproject/ostro-os-xt
— CI/CD settings and scripts: https://github.com/ostroproject/ostroproject-ci
— Ansible playbooks: https://github.com/ostroproject/ostroproject-ci-ansible

Combo-Layer: https://wiki.yoctoproject.org/wiki/Combo-layer

Jenkins Pipeline: https://jenkins.io/solutions/pipeline/

Bmap-tools: https://github.com/01org/bmap-tools

Automatic Flashing/Testing:
— https://qgithub.com/01org/AFT
— https://github.com/ostroproject/meta-iotqa

Thank you!

(l N te,l ®experience

what's inside”

Appendix

Basic principles of Cl and CD

Continuous Integration principles

Basic principles of Cl

Maintain code in version control repository
Automate the build

Make the build automatically tested
Frequent integration to baseline

Every commit to baseline should be built and
tested

Keep the build fast
Make it easy to get the latest deliverables
Anyone can see results of each build

/ Q
y Feedback
Mechanism
Developer Generate

Commit Changes

g Commit Changes —> Poll

Build Script

Developer
Compile Source Code,
Commit Changes Subversion Cl Server Integrate Database,
Version Control Integration Build Run Tests,
Repository Machine Run Inspections,
Deploy Software
Developer

Source: Continuous Integration: Improving Software Quality and
Reducing Risk. ISBN: 978-0-321-33638-5

intel) |

Two-stage Continuous Integration principles

GitHub’s pull request review mechanism can benefit
with implementation of two-stage CI practices

« Every change committed to temporary place
» Cl system perform build and test cycle

* When build and test results are good, change is
merged to baseline

/ Feedback
/ Mechanism
/ Generat
/
/
ﬁ Commit on O — .
G— Commit Changes —>1 Two-Phase | _ Success| ful Poll — | Build Script
Commit Integration p—
Developer Build

Compile Source Code,

Version Control Cl Server Integrate Database,

Commit Changes

» Repository Integration Build Run Tests,
L Machine Run Inspections,
G Run Integration Build in Queue Deploy Software

Developer

Source: Continuous Integration: Improving Software Quality and
Reducing Risk. ISBN: 978-0-321-33638-5

Continuous Delivery principles

Continuous Delivery practices allows us to improve
product quality and produce predictable and reliable |""‘“‘f"‘“
software releases often '

« Set of validations through which a piece of software
must pass on its way to release

« Tight integration with automated acceptance testing
(BAT)

« Easy deployments to test environments

« Valuable software releases in short cycles

« Software reliably can be released at any time

» Fast way to produce bugfixes

* Any code commit may be released to customers at
any point

« Feature toggles are useful for code which is not yet
ready for use by end users

tests acceptance tests tests

Source: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. ISBN: 978-0-321-60191-9

P J

(e |

