
Alexander Kanevskiy

OpenIoT Summit Europe

2016-10-12



Alexander.Kanevskiy@Intel.com

2

Who am I?



3

Agenda

§ Yocto-based distributions: platforms and products

§ Continuous Integration and Continuous Delivery 101

§ Source Code Management

§ Tools and practices for Platform and Product distributions

§ Build and Automatic testing Infrastructure

§ DevOps for CI/CD



4

§ Platforms
– Combined from BitBake, OE-Core and additional layers

– Poky-style, with generic features for multiple devices
– https://github.com/ostroproject/ostro-os

§ Products
– Derivative distribution from Platform distribution

– Small subset of device-specific settings and functionality. 
Example: Intel Joule™

– https://github.com/ostroproject/ostro-os-xt

Yocto-based distributions for Platform and Product



5

Continuous Integration and Continuous Delivery

Continuous Integration

§ For every single change: build, automatically test, measure, visualize status

§ Fix “broken” state as soon as possible.

2-Stage Continuous Integration

§ Verify change(s) in sandbox before merging.

§ Prevent “broken” state in your official branches

Continuous Delivery

§ Make your releases “rolling”: ship software to your users in short iterations

§ Make sure your “pipeline” has all steps that software needs to pass before shipment

Maximize throughput of good changes, minimize breakages of main code line



6

Source Code Management

Collaborative source code hosting solution is a must for effective CI/CD setup

§ There are multiple options for public and private Git repositories
– Cloud services and providers: GitHub, BitBucket
– Self hosted/managed: GitLab, Gerrit, …

§ Key “must have” features
– Personal sandboxes for developers
– Allow developers to easily collaborate
– Change state tracking
– Integration with external systems



7

Source Code Management: “Fork me on GitHub”

GitHub – de-facto standard in open source community nowadays

§ Unlimited personal public repositories

§ Reviews & Statuses

§ APIs for integration with CI/CD

§ Authentication and Access controls



8



9

CI/CD for Platform Distributions: source code

Separate between your development and integration

§ Layers
– Development happening here

§ Release Repository
– Used only to integrate changes from layers
– The Release of your software platform



Release Repository

10

§ The repository is constructed using 
combo-layer tool
– combo-layer configuration files are the only 

content specific to release repository

– CD is controlling promotion of changes 
from Layers to Release repository

– Quality and schedule gates



CI/CD for Layers

11

Provides service for layer maintainers and 
contributors

§ Build every pull request on top of latest state of 
release repository and test on real hardware

§ Build branch and merge head changes

§ Provide feedback via GitHub commit status

§ Watch for ”magic comments” by maintainers
– This allows them to trigger builds using GitHub UI

§ Security measures for PRs from “unknown” 
developers



CI/CD for Release repository

12

Release repository for official builds.

§ Build on each merge to release branches
– Builds are automatically tested on real hardware

– Builds can be ”promoted” between stages of CD

§ Pull Requests
– Upstream Monitor creates or updates PR on every 

change of monitored branches in upstream layer 
repositories

– Maintainers might override upstream monitor PRs in 
special cases

– PRs from individual developers to release 
repository are ignored, except very special cases



Pull Requests to Release repository

13

When PRs to release repository are needed ?

§ Introducing new layer to release repository
– Update combo-layer.conf

– Layer repository content would be imported on next 
upstream-monitor run

§ Test builds for complex changes:
– Changes across multiple layers that require 

orchestration

– Tooling bug fixes are required
– Bitbake
– Classes from OE-core



CI/CD Engine: Jenkins

14

Open Source project with established and 
active community

§ Newcomers friendly

§ Extensible

§ Scriptable

§ DevOps friendly



15

CI/CD Implementation

For Platform Repository CI/CD is implemented in a “classical” way

§ Set of “freestyle” jobs to be triggered on events from GitHub
– Orchestrator jobs, per layer or for release repository

– layer_branch
– layer_pull-request

– Shared Build jobs and Test jobs
– build_machine
– test_hardware

§ Post-processing jobs:
– publishing, promotion, maintenance



Let’s use newer technologies

16



17

§ CD Pipeline can be shipped with code

§ Easy scripting

§ Support for multi-branch projects

§ Easy parallel execution

§ Persistent tasks during builds

§ Integration with Docker

Jenkins 2.0: Pipelines as Code



Pipeline as Code
Inside Product Repository

18

Fine-grained control of process and 
resources inside your repository

§ Jenkinsfile

§ Scripts for building and testing

§ Build and test targets



19

CI/CD for Product Distribution

Few other different technologies

§ Reproducible environment
– Docker as build backend
– Same default build targets for local and automated builds

§ Using Git submodules instead of combo-layer approach
– Distro configuration inheritance from base distribution



20

combo-layer

§ Pros
– Self-contained repository
– Easy to try any change in any place of 

repository
– Easy to track individual upstream change

§ Cons
– Complexity of importing upstream repositories 

with non-linear Git history
– Git history is polluted with upstream commit 

messages
– Reviews might be time consuming, if there are 

many changes 

Git submodules
§ Pros

– Content from upstream repositories 
protected from accidental changes

– Easier to maintain
– Clean Git history, only product related 

changes are visible

§ Cons
– Dependency on upstream source hosting
– Inability to quickly try changes for upstream 

components inside product builds
– Harder to review upstream changes

SCM: Git Submodules or combo-layer



21



22

§ Frontend part
– Web Site

– Download server

– Jenkins Master

§ Isolated network for builders and testing
– Coordinator

– Network Storage

– Builders

– Automatic testing workers

CI/CD Infrastructure: Architecture



23

DevOps for CI/CD

Maintain code of CI/CD pipeline same way as you develop your software

§ Use Ansible to deploy host OS and configuration for services
– Jenkins slave provisioning, Downloads, Network Storage, Docker installation
– https://github.com/ostroproject/ostroproject-ci-ansible

§ Jenkins Job DSL provisioning
– https://github.com/ostroproject/ostroproject-ci

§ Configure Jenkins to deploy build scripts to slave automatically
– Production and Staging branches



24

First and practically the only job configured 
manually in Jenkins.

And even this potentially can be done via 
Ansible.

§ Simple pointer to git repository and branch with 
Groovy Job DSL script
– Verifies that all needed plugins are present

– Creates all other jobs

§ To update your whole set of job in Jenkins, just 
push update into your CI repository

DevOps: Jenkins initial seed



DevOps: Jenkins Job DSL

25

Dynamically manage set of tasks for CI/CD

§ Information from combo-layer configuration is used 
to pre-populate jobs
– All layers and release repositories

– Upstream Monitor

§ Different seed jobs can handle multiple maintenance 
branches with different subsets of layers



26



27

Reliable, Scalable and easy to 
Replicate framework to flash and 
execute test cases on physical HW

§ Supports
– PC-like devices, Edison, BeagleBone, 

MinnowBoard, Galileo, Joule

§ Low cost:
– Off-shelf components, <100$ BOM

§ External test suite controls actual test 
execution

– ELC 2015

Automatic Testing: https://github.com/01org/AFT



28

Miscellanea

§ Keep buildhistory
– Know what is in the build exactly: buildhistory-extra
– Maintaining buildhistory for parallel builds

§ Maintain S[shared]STATE
– Local, over network, for PRs

§ PRserver for parallel builds

§ Performance and disk operations

§ Benefits of using bmap-tools



29



30

Links

§ Reference:
– Platform: https://github.com/ostroproject/ostro-os
– Product: https://github.com/ostroproject/ostro-os-xt
– CI/CD settings and scripts: https://github.com/ostroproject/ostroproject-ci
– Ansible playbooks: https://github.com/ostroproject/ostroproject-ci-ansible

§ Combo-Layer: https://wiki.yoctoproject.org/wiki/Combo-layer

§ Jenkins Pipeline: https://jenkins.io/solutions/pipeline/
§ Bmap-tools: https://github.com/01org/bmap-tools
§ Automatic Flashing/Testing:

– https://github.com/01org/AFT
– https://github.com/ostroproject/meta-iotqa



31





Basic principles of CI and CD



Continuous Integration principles

Basic principles of CI
• Maintain code in version control repository
• Automate the build
• Make the build automatically tested
• Frequent integration to baseline
• Every commit to baseline should be built and 

tested
• Keep the build fast
• Make it easy to get the latest deliverables
• Anyone can see results of each build

Source: Continuous Integration: Improving Software Quality and 
Reducing Risk. ISBN: 978-0-321-33638-5



Two-stage Continuous Integration principles

35

GitHub’s pull request review mechanism can benefit 
with implementation of two-stage CI practices

• Every change committed to temporary place
• CI system perform build and test cycle
• When build and test results are good, change is 

merged to baseline

Source: Continuous Integration: Improving Software Quality and 
Reducing Risk. ISBN: 978-0-321-33638-5



Continuous Delivery principles

36

Continuous Delivery practices allows us to improve 
product quality and produce predictable and reliable 
software releases often
• Set of validations through which a piece of software 

must pass on its way to release
• Tight integration with automated acceptance testing 

(BAT)
• Easy deployments to test environments
• Valuable software releases in short cycles
• Software reliably can be released at any time
• Fast way to produce bugfixes
• Any code commit may be released to customers at 

any point
• Feature toggles are useful for code which is not yet 

ready for use by end users
Source: Continuous Delivery: Reliable Software Releases through 
Build, Test, and Deployment Automation. ISBN: 978-0-321-60191-9




