
Efficient and Practical Capturing of
Crash Data on Embedded Systems

John Ogness

Linutronix GmbH

2023-06-30

© 2023 by Linutronix GmbH John Ogness 1

background

What are core dumps?

$ man 5 core

core(5) File Formats Manual core(5)

NAME
core - core dump file

DESCRIPTION
The default action of certain signals is to cause a process
to terminate and produce a core dump file, a file containing
an image of the process's memory at the time of termination.
This image can be used in a debugger (e.g., gdb(1)) to
inspect the state of the program at the time that it
terminated. A list of the signals which cause a process to
dump core can be found in signal(7).

Core files utilize the ELF file format to organize the various
elements of the process image.

© 2023 by Linutronix GmbH John Ogness 2

background

Core Dumps

advantages

functionality provided by the kernel
all process data available (registers, stacks, heap, ...)
post-mortem debugging
offline debugging

disadvantages

large storage requirements
debugging tools required for analysis
no information about other processes

© 2023 by Linutronix GmbH John Ogness 3

background

Core Dumps

advantages

functionality provided by the kernel
all process data available (registers, stacks, heap, ...)
post-mortem debugging
offline debugging

disadvantages

large storage requirements
debugging tools required for analysis
no information about other processes

© 2023 by Linutronix GmbH John Ogness 3

overview

The minicoredumper Project

Primary Goals

minimal core dumps
custom core dumps
state snapshots

Main Components

minicoredumper
libminicoredumper
live dumps

© 2023 by Linutronix GmbH John Ogness 4

overview

The minicoredumper Project

Primary Goals

minimal core dumps
custom core dumps
state snapshots

Main Components

minicoredumper
libminicoredumper
live dumps

© 2023 by Linutronix GmbH John Ogness 4

minicoredumper

What is the minicoredumper?

userspace application to extend the Linux core dump facility
configuration files to specify desired data
per-application configuration files
in-memory compression features
few dependencies
no kernel patches required

© 2023 by Linutronix GmbH John Ogness 5

minicoredumper

How is this possible from userspace?

$ man 5 core
[...]

Naming of core dump files
By default, a core dump file is named core, but the
/proc/sys/kernel/core_pattern file (since Linux 2.6 and
2.4.21) can be set to define a template that is used to name
core dump files. The template can contain % specifiers
which are substituted by the following values when a core
file is created:

[...]

Piping core dumps to a program
Since Linux 2.6.19, Linux supports an alternate syntax for
the /proc/sys/kernel/core_pattern file. If the first
character of this file is a pipe symbol (|), then the
remainder of the line is interpreted as the command-line for
a user-space program (or script) that is to be executed.

© 2023 by Linutronix GmbH John Ogness 6

minicoredumper

/proc/sys/kernel/core_pattern
Inform the kernel to use the minicoredumper for core dumps.

$ echo '|/usr/sbin/minicoredumper %P %u %g %s %t %h %e' \
| sudo tee /proc/sys/kernel/core_pattern

$ echo 0x7fffffff | sudo tee /proc/sys/kernel/core_pipe_limit

$ man 5 core
[...]

%P PID of dumped process, as seen in the initial PID
namespace (since Linux 3.12).

%u Numeric real UID of dumped process.
%g Numeric real GID of dumped process.
%s Number of signal causing dump.
%t Time of dump, expressed as seconds since the Epoch,

1970-01-01 00:00:00 +0000 (UTC).
%h Hostname (same as nodename returned by uname(2)).
%e The process or thread's comm value, which typically

is the same as the executable filename (without path
prefix, and truncated to a maximum of 15
characters), but may have been modified to be
something different; see the discussion of
/proc/pid/comm and /proc/pid/task/tid/comm in
proc(5).

© 2023 by Linutronix GmbH John Ogness 7

minicoredumper

Configuration

configuration file

JSON format
specifies dump path
specifies matching rules for ”recepts” (application-specific
dump configurations)

recept file

JSON format
general features (stacks, threads, ...)
specific memory mappings
specific symbols
compression options

© 2023 by Linutronix GmbH John Ogness 8

minicoredumper

Configuration

configuration file

JSON format
specifies dump path
specifies matching rules for ”recepts” (application-specific
dump configurations)

recept file

JSON format
general features (stacks, threads, ...)
specific memory mappings
specific symbols
compression options

© 2023 by Linutronix GmbH John Ogness 8

minicoredumper

minicoredumper.cfg.json
Configuration file example:

{
"base_dir": "/var/crash/minicoredumper",
"watch": [

{
"exe": "*/realpath_example_app",
"recept": "/etc/minicoredumper/example.recept.json"

},
{

"comm": "example_app",
"recept": "/etc/minicoredumper/example.recept.json"

},
{

"exe": "/usr/bin/*"
},
{

"recept": "/etc/minicoredumper/generic.recept.json"
}

]
}

© 2023 by Linutronix GmbH John Ogness 9

minicoredumper

example.recept.json
{

"stacks": {
"dump_stacks": true,
"first_thread_only": true,
"max_stack_size": 16384

},
"maps": {

"dump_by_name": [
"[vdso]"

]
},
"buffers": [

{
"symname": "my_allocated_struct_ptr",
"follow_ptr": true,
"data_len": 42

}
],
"compression": {

"compressor": "xz",
"extension": "xz",
"in_tar": true

},
"write_proc_info": true

}

© 2023 by Linutronix GmbH John Ogness 10

minicoredumper

How It Works

identify process data

ELF header from stdin (virtual memory allocations, symbols,
shared objects, relocation, debug objects, ...)
/proc/N/maps (memory maps)
/proc/N/stat (stack pointers)
/proc/N/auxv (auxiliary vector)
/proc/N/mem (memory access)

dump process data

write core as sparse file
append custom ELF section note
in-memory compression (with tar format support)

© 2023 by Linutronix GmbH John Ogness 11

minicoredumper

Simulate Core Dump

$ kill -s SEGV `pidof firefox-esr`

© 2023 by Linutronix GmbH John Ogness 12

minicoredumper

Core Size Comparisons

default = default Linux core dump facility settings
minicore/* = default minicoredumper settings
minicore/1 = minicore/* changed to only first thread

type file size disk usage core.tar.xz

default 448,820 KB 170,788 KB 17,676 KB

minicore/* 447,930 KB 2,328 KB 108 KB

minicore/1 446,630 KB 1,364 KB 72 KB

The full backtrace of the crashed thread is available in all
variations.

© 2023 by Linutronix GmbH John Ogness 13

minicoredumper

Custom ELF Section Note

The custom ELF section note contains a list of ranges within the
core file that are valid dump data.

$ eu-readelf -a core
[...]

Section Headers:
[Nr] Name Type Addr Off Size
[0] NULL 00000000 00000000 00000000
[1] .shstrtab STRTAB 00000000 1b56e6fc 00000030
[2] .debug PROGBITS 00000000 000183e0 1b554c20
[3] .note.minicoredumper.dumplist NOTE 00000000 1b56d000 000016fc

[...]

Note section [3] '.note.minicoredumper.dumplist' of 5884 bytes
at offset 0x1b56d000:

Owner Data size Type
minicoredumper 5856 <unknown>: 80

© 2023 by Linutronix GmbH John Ogness 14

minicoredumper

Dependencies

With few dependencies, the minicoredumper can be added to
existing systems with a relatively low storage cost.

$ LD_TRACE_LOADED_OBJECTS=1 /usr/sbin/minicoredumper \
| grep = | cut -d ' ' -f 1

libelf.so.1
libjson-c.so.5
libthread_db.so.1
libc.so.6
libz.so.1

© 2023 by Linutronix GmbH John Ogness 15

minicoredumper

Summary

The minicoredumper application itself is a very useful tool for
providing powerful post-mortem debugging capabilities for an
embedded system.

low storage overhead
no runtime overhead
simple configuration
useful crash data
very small dumps (even most EEPROM’s would suffice!)

But wait! There’s more...

© 2023 by Linutronix GmbH John Ogness 16

minicoredumper

Summary

The minicoredumper application itself is a very useful tool for
providing powerful post-mortem debugging capabilities for an
embedded system.

low storage overhead
no runtime overhead
simple configuration
useful crash data
very small dumps (even most EEPROM’s would suffice!)

But wait! There’s more...

© 2023 by Linutronix GmbH John Ogness 16

libminicoredumper

What is libminicoredumper?

userspace library that allows applications to register
specific data for dumping
data can be dumped in-core and/or in external files
data can be text-formatted and placed in external files
data can be unregistered for dumping during runtime
few dependencies

Why is this interesting?

minimize dumped application data
dump internal application data
external dump files (text and binary) can provide insight
into the problem without the need of a debugger

© 2023 by Linutronix GmbH John Ogness 17

libminicoredumper

What is libminicoredumper?

userspace library that allows applications to register
specific data for dumping
data can be dumped in-core and/or in external files
data can be text-formatted and placed in external files
data can be unregistered for dumping during runtime
few dependencies

Why is this interesting?

minimize dumped application data
dump internal application data
external dump files (text and binary) can provide insight
into the problem without the need of a debugger

© 2023 by Linutronix GmbH John Ogness 17

libminicoredumper

How It Works

libminicoredumper exports two special symbols
• mcd_dump_data_version (data format version number)
• mcd_dump_data_head (linked list of dump registrations)

when an application crashes, the minicoredumper looks for
these symbols
if the symbols are found, the minicoredumper can identify
what and how the extra registered data is to be dumped

$ objdump -T /usr/lib/libminicoredumper.so.2.0.1 \
| grep '\sDO\s'

00004098 g DO .data 00000004 Base mcd_dump_data_version
000040c0 g DO .bss 00000008 Base mcd_dump_data_head

© 2023 by Linutronix GmbH John Ogness 18

libminicoredumper

API

int mcd_dump_data_register_bin(const char *ident,
unsigned long dump_scope,
mcd_dump_data_t *save_ptr,
void *data_ptr, size_t data_size,
enum mcd_dump_data_flags flags);

int mcd_dump_data_register_text(const char *ident,
unsigned long dump_scope,
mcd_dump_data_t *save_ptr,
const char *fmt, ...);

int mcd_vdump_data_register_text(const char *ident,
unsigned long dump_scope,
mcd_dump_data_t *save_ptr,
const char *fmt, va_list ap);

int mcd_dump_data_unregister(mcd_dump_data_t dd);

© 2023 by Linutronix GmbH John Ogness 19

libminicoredumper

Example Application (mycrasher)

int main(void)
{

mcd_dump_data_t d[3];
char *x = NULL;
char *s;
int *i;

s = strdup("my string");
i = malloc(sizeof(*i));
*i = 42;

mcd_dump_data_register_bin(NULL, 1024, &d[0], s, strlen(s) + 1,
MCD_DATA_PTR_DIRECT | MCD_LENGTH_DIRECT);

mcd_dump_data_register_bin("i.bin", 1024, &d[1], i, sizeof(*i),
MCD_DATA_PTR_DIRECT | MCD_LENGTH_DIRECT);

mcd_dump_data_register_text("out.txt", 1024, &d[2],
"s=\"%s\" *i=%d\n", s, i);

x = 0; / BOOM! */

© 2023 by Linutronix GmbH John Ogness 20

libminicoredumper

Example Application Debugging

$./mycrasher
Segmentation fault (core dumped)

$ sudo mv /.../mycrasher.20230624.184537+0200.42669 .

$ sudo chown -R `id -u` mycrasher.20230624.184537+0200.42669

$ cd mycrasher.20230624.184537+0200.42669

$ find . -type f | sort
./core.tar.xz
./dumps/42669/i.bin
./dumps/42669/out.txt
./symbol.map

The symbol.map file contains the core file information for all the
external binary dumps.

$ cat dumps/42669/out.txt
s="my string" *i=42

© 2023 by Linutronix GmbH John Ogness 21

libminicoredumper

Example Application Debugging (cont)

$ tar -xJSf core.tar.xz

$ gdb ../mycrasher core
[...]
Core was generated by `./mycrasher'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x000055b908f00259 in main () at mycrasher.c:25
25 *x = 0; /* BOOM! */
(gdb) print s
$1 = 0x55b90a60b2a0 "my string"
(gdb) print i
$2 = (int *) 0x55b90a60b2c0
(gdb) print *i
$3 = 0

Unlike for s, the data pointed to by i is not available in the core
file because it was stored externally in i.bin.

© 2023 by Linutronix GmbH John Ogness 22

libminicoredumper

Example Application Debugging (cont)

Using the coreinject tool, external binary dumps can be inserted
into the core files.

$ coreinject core symbol.map dumps/42669/i.bin
injected: i.bin, 4 bytes, direct

$ gdb ../mycrasher core
[...]
Core was generated by `./mycrasher'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x000055b908f00259 in main () at mycrasher.c:25
25 *x = 0; /* BOOM! */
(gdb) print s
$1 = 0x55b90a60b2a0 "my string"
(gdb) print i
$2 = (int *) 0x55b90a60b2c0
(gdb) print *i
$3 = 42

© 2023 by Linutronix GmbH John Ogness 23

libminicoredumper

Dependencies

With few dependencies, the libminicoredumper can be added to
custom applications with a relatively low storage cost.

$ objdump -x /usr/lib/libminicoredumper.so.2.0.1 \
| grep NEEDED

NEEDED libc.so.6

© 2023 by Linutronix GmbH John Ogness 24

libminicoredumper

Summary

The libminicoredumper allows applications to provide very
fine-tuned data dumps at a minimal cost.

low storage overhead
no runtime overhead, but be aware
registration/unregistration invokes memory allocations,
locking, list searching
simple API
precise data specification
runtime dump registration changes supported

But wait! There’s more...

© 2023 by Linutronix GmbH John Ogness 25

libminicoredumper

Summary

The libminicoredumper allows applications to provide very
fine-tuned data dumps at a minimal cost.

low storage overhead
no runtime overhead, but be aware
registration/unregistration invokes memory allocations,
locking, list searching
simple API
precise data specification
runtime dump registration changes supported

But wait! There’s more...

© 2023 by Linutronix GmbH John Ogness 25

live dumps

What are live dumps?

dump registered data for running applications
dumps can be triggered on crash
dumps can be triggered manually
few dependencies

Why is this interesting?

allows pseudo state snapshots

© 2023 by Linutronix GmbH John Ogness 26

live dumps

What are live dumps?

dump registered data for running applications
dumps can be triggered on crash
dumps can be triggered manually
few dependencies

Why is this interesting?

allows pseudo state snapshots

© 2023 by Linutronix GmbH John Ogness 26

live dumps

How It Works

minicoredumper_regd

creates UNIX local domain datagram socket with abstract
address
socket receives credentials to identify sender PID
maintains a list of PID’s in shared memory of applications
with registered dumps

$ ss -l | grep minicoredumper
u_dgr UNCONN 0 0 @minicoredumper.42850 262696 * 0
u_dgr UNCONN 0 0 @minicoredumper 262695 * 0

$ ls -l /dev/shm/minicoredumper.shm
-rw------- 1 mcd mcd 56 Jun 24 19:09 /dev/shm/minicoredumper.shm

© 2023 by Linutronix GmbH John Ogness 27

live dumps

How It Works (cont)

libminicoredumper

registers itself with minicoredumper_regd via UNIX local
domain socket on first data dump registration
unregisters itself from minicoredumper_regd via UNIX local
domain socket on last data dump unregistration

© 2023 by Linutronix GmbH John Ogness 28

live dumps

How It Works (cont)

minicoredumper (an application crashed)

read PID list from shared memory
for each thread associated with each PID, attach and freeze
the task using PTRACE_SEIZE and PTRACE_INTERRUPT, respectively
for each PID, dump the registered data (via /proc/N/mem)
for each thread associated with each PID, detach from the
task using PTRACE_DETACH
perform the dumps for the crashing application

© 2023 by Linutronix GmbH John Ogness 29

live dumps

Dependencies

With few dependencies, the minicoredumper_regd can be
added to existing systems with a relatively low storage cost.

$ LD_TRACE_LOADED_OBJECTS=1 /usr/sbin/minicoredumper_regd \
| grep = | cut -d ' ' -f 1

libc.so.6

© 2023 by Linutronix GmbH John Ogness 30

live dumps

Pseudo State Snapshots

latencies between dumps vary greatly depending on
hardware, system load, application, number of registered
applications, ...
expect latencies from 2ms to 30ms between crash event
and the first dump
expect latencies from 30us to 4ms between all successive
dumps

© 2023 by Linutronix GmbH John Ogness 31

live dumps

Summary

Live dumps can be useful for capturing a pseudo state snapshot
of various related applications if any one should crash or by
manually triggering it using the minicoredumper_trigger tool.

low storage overhead
dumps data for multiple applications, but be aware of
latencies between dumps
no runtime overhead, but be aware of application freezing
during dumps

© 2023 by Linutronix GmbH John Ogness 32

status

Project Status

current release version 2.0.6 (presented here)
packages available for Debian, OpenEmbedded, gentoo
proof-of-concept for gdb dump list support
TODO: implement modern tar format
TODO: implement pax format
TODO: implement post-processing scripting

© 2023 by Linutronix GmbH John Ogness 33

Questions / Comments

Thank you for your attention!

https://linutronix.de/minicoredumper

<john.ogness@linutronix.de>

© 2023 by Linutronix GmbH John Ogness 34

	minicoredumper
	background
	overview
	minicoredumper
	libminicoredumper
	live dumps
	status
	

