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Agenda

● Introduction to audio latency

● Choosing a board for our project

● Audio using a vanilla kernel

● Audio using a real-time kernel

● JACK on our embedded device

● Conclusion
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Who am I?

● Software engineer at Adeneo Embedded 
(Bellevue, WA)
● Linux, Android
● Main activities:

– Firmware development (BSP adaptation, driver 
development, system integration)

– Training delivery

● Guitar player (at home)
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Context and objectives

● Case study
● Using a generic embedded device, see how we can 

create a Linux system 
● Does not necessarily apply to all types of devices
● Not an in-depth study of real-time systems

● Focus on software integration
● Not an exhaustive review of all software solutions
● We want to use open source components
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A typical audio chain

D
A

C
A

D
C CPU / DSP

● Digital processing made with a DSP or a 
general-purpose CPU

● CPUs used in embedded devices generally 
have sufficient power to do the audio 
processing in software
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Typical audio chain on Linux

Application

ApplicationServer (e.g. JACK, PulseAudio)

alsa-lib

ALSA kernel driver

Capture buffer Output buffer

Hardware

  DMA

read(), write(), poll(), select(), mmap()...

INT
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Audio Latency

● Delay between an action and its effect, e.g.
● Pressing a key → Hearing a note
● Record input → Processed output

● Causes
● Physical: 3ft away from loudspeakers ~ 3ms latency
● Hardware: conversion can cause delays 

(magnitude: 40/Fs)
● Software: various levels of buffering
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Audio Latency

● Consequences on applications:
● Music: critical issue
● Communications: larger latencies can be tolerated 

but still have to be limited (Android specifies 
continuous output latency < 45 ms, continuous 
input latency < 50 ms)

● Audio/Video playback: larger latencies can be 
tolerated as long as synchronization is maintained
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Measuring audio latency

● Measuring total latency (including hardware):
● Use an oscilloscope or a soundcard
● Can measure the difference between 2 

measurements to assess software changes

● Measuring software latency
● ALSA: use latency test in alsa-lib (can automatically 

figure out the optimal latency through trial and error)
● JACK: jdelay, qjacklam
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Buffering

● ALSA uses periods: blocks of audio samples

● Size and number is configurable on runtime by applications

● At the end of each period, an interrupt is generated.

→ Shorter periods: more interrupts

→ Shorter periods + less periods: lower latency

p1 p4p3p2

INT

Application fills output buffer Samples sent to device
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Reducing audio latency

● Buffering creates latency

→ Solution: Reduce buffering

● Reducing buffer size

→ Interrupts are generated more frequently

→ The system has less time to process the 
buffers: risk of over/underrun

→ The system must be designed to schedule 
the different tasks on time
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Tuning the latency

● alsa-lib provides “latency”
● Test tool used for measuring latency between 

capture and playback
● Audio latency is measured from driver (difference 

when playback and capture was started)
● Can choose a real-time priority (we changed the 

code to make it configurable at runtime)

http://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2latency_8c-example.html
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Tuning the latency
● Trial and error:

● Start with a low latency value
● Load the system (CPU, IO stress, your 

application...)
● If XRUN or bad sound quality → Increase the 

latency (periods number and size)

● “latency” can do it for you automatically:

> latency ­m [minimum latency in 
frames] ­M [maximum latency in frames] 
­r [sample rate] ­S [priority] ­p
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Loading the system
● Ideally:

● Realistic load (i.e. your end applications)
● Worst-case scenario

● Our experiment:
● Stress tests from the Linux Test Projet (LTP)

– CPU stress
– Memory allocation

● Generate IO interrupts copying from block devices
● cyclictest

https://rt.wiki.kernel.org/index.php/Cyclictest
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Choosing a board for our project
● Deciding factors:

● Pick a board that is supported in the latest mainline 
kernel with real-time patches (2.6.33)

● Tested real-time features (Open Source Automation 
Development Lab)

● Pick a board that was available at the time
● Power and features did not matter (except for audio)

● Other boards could have been chosen (e.g. 
BeagleBoard)
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Our project: Hardware

● Zoom™ AM3517 EVM Development Kit (AM3517 EVM)

● ARM™ Cortex™-A8 600 MHz

→ Powerful, but real-time issues still have to be taken into account

● Ethernet, USB, SD, NAND, Wireless, CAN, LCD, Video capture...

→ Many ways to generate software interrupts

● Audio in/out (obviously!)
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Our project: Software
● Bootloader

● U-Boot (Built by Arago)

● Kernel
● 2.6.33
● Patched to 2.6.33.7
● Patched to 2.6.33.7.2-rt30 (RT version)

● Root filesystem
● Built by Arago
● Customized recipe (arago-console-image.bb + JACK)
● Test applications: alsa-lib tests, LTP, rt-tests

http://arago-project.org/wiki/index.php/Main_Page
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Our project: Software challenges

● Support for the AM3517 EVM in mainline 2.6.33 
is somewhat minimal (this has changed a lot)

● Ported some of the board code/drivers from TI's 
PSP (2.6.32): audio, SD/MMC

● Still, not many drivers are supported on our test 
system (not exactly a real-life example)

http://lxr.linux.no/#linux+v2.6.33/arch/arm/mach-omap2/board-am3517evm.c
http://lxr.linux.no/#linux+v2.6.38/arch/arm/mach-omap2/board-am3517evm.c
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Experiment #1: Vanilla kernel

● Vanilla kernel: no RT patches
● Kernel configuration (see files/kernel/am3517_std_defconfig)

CONFIG_PREEMPT_DESKTOP=y
CONFIG_PREEMPT=y

(other preemption schemes not investigated)
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Experiment #1: First observation
● The priority of latency has to be set to real-time 

otherwise, it over/underruns for low latency values 
(under 1024 samples @ 44.1 kHz)

● Even using a non-RT kernel, once the application 
priority is increased, it runs fine when competing with 
other “stress” processes (can be different in the real 
world)

● cyclictest also exhibits this behavior

→ Use sched_setscheduler() or chrt and set your 
audio thread priority to SCHED_RR or 
SCHED_FIFO

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_getscheduler.2.html
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Experiment #1: CPU usage vs latency

● Measured with no load:

> ./latency -m 64 -M 64 -r 44100 -p -S 60

→ Low-latencies can generate a large CPU load!

Latency (samples) Latency (@ 44.1kHz) CPU Load (%)

64 1.5 ms 65%

128 2.90 ms 3%

1024 23 ms < 1%

8192 185 ms < 1%
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Experiment #1: Loading the system

● Creating CPU load:
● LTP CPU stress test

→ Competition between processes (preemptible)

● Creating IRQ pressure:
● Transfers from SD Card

● Result: Works fine with 1.5ms latencies

→ Vanilla + SCHED_FIFO did the trick
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Why use a real-time kernel?

● Tuning the application priority and audio buffering 
requirements can be sufficient for “soft real-time” 
audio systems – where occasional errors do not 
cause unacceptable audio quality consequences

BUT:
● There is still a lot of non-preemptible code in the 

vanilla kernel
● Interrupt handlers, tasklets...
● Regions protected by spinlocks (depending on the number 

of processors on your system)
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CONFIG PREEMPT RT Patch

● Using the CONFIG PREEMPT RT Patch gives 
you:
● Almost full-preemption
● Threaded interrupts: ability to prioritize interrupts 

like processes → your application can have a 
higher priority than hardware interrupts

→ Lower risk of over/underruns

https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
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Making the system real-time

● Apply the CONFIG PREEMPT RT Patch on 
vanilla kernels.
● Latest available version: patch-2.6.33.7.2-rt30
● Also set the configuration

● Difficult task on non-mainline/recent kernels
● Making non-mainline boards compatible can be 

difficult (check locks and interrupt management in 
drivers and platform code, make sure that the 
timers are appropriate)

● Cannot apply the patch on proprietary drivers
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Checking the real-time behavior

● Check that the patch has been correctly applied:
● Running “ps” on the device will show that IRQs are 

threaded
● Use cyclictest to check the scheduling latency under load

→ The non-RT kernel fails right away under high IRQ 
pressure

→ Latencies remain bounded with RT
● Use ftrace to see advanced information (see kernel 

documentation for usage) – changes the timing behavior of 
the system!

https://rt.wiki.kernel.org/index.php/Ftrace
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Tuning the real-time system
● Set the priority of IRQs and processes 

(decreasing priority):
● (High-resolution) Timers (especially since we are 

using a tickless system!)
● Audio (e.g. DMA on our platform)
● Your audio process
● Other interrupts
● Other processes

● More information (FFADO project) 

http://subversion.ffado.org/wiki/IrqPriorities
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Tuning audio parameters (RT edition)

● Same process as the non-RT experiment: trial and error

● Use the results provided by cyclictest to adjust the latency, e.g.

● Does not solve the problem of using shared hardware resources 
(e.g. DMA, busses...)

→ Requires careful platform and driver design

root@am3517-evm:~# cyclictest -t5 -n -p 60
policy: fifo: loadavg: 10.89 9.99 6.83 12/76 1342
T: 0 ( 1338) P:60 I:1000 C:  42699 Min:     21 Act:   36 Avg:   37 Max:      96
T: 1 ( 1339) P:59 I:1500 C:  28463 Min:     25 Act:   41 Avg:   37 Max:     135
T: 2 ( 1340) P:58 I:2000 C:  21344 Min:     25 Act:   37 Avg:   39 Max:     111
T: 3 ( 1341) 41 Avg:   39 Max:     111    22 Act:   54 Avg:   38 Max:      91 
T: 3 ( 1341) P:57 I:2500 C:  17140 Min:     22 Act:   41 Avg:   38 Max:      91 
T: 4 ( 1342) P:56 I:3000 C:  14283 Min:     25 Act:   27 Avg:   38 Max:      86
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Experiment #2: RT Audio

● Dirty trick: Added udelay(1000) in the USB 
interrupt handler!

→ Simulate IRQ pressure since the kernel for 
our board did not support ethernet, display...

→ Not a perfect example

● Result: Works flawlessly with 1ms latency
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Improving the experiment

● Run typical applications (UI, gstreamer, 
LADSPA...)

● More stress on the interrupts: Network, Display, 
Video Capture...
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High-end audio applications: JACK

● System for handling real-time, low latency audio (and MIDI)

● Cross-platform: GNU/Linux, Solaris, FreeBSD, OS X and 
Windows

● Server/client model

● Connectivity:
● Different applications can access an audio device
● Audio applications can share data between each other
● Support for distributing audio processing across a network, both 

fast & reliable LANs as well as slower, less reliable WANs.

● Designed for professional audio work
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JACK: latency and real-time
● JACK does not add latency

● An RT kernel is needed only if:
● You want to run JACK with very low latency settings that 

require real-time performance that can only be achieved 
with an RT kernel

● Your hardware configuration triggers poor latency 
behaviour which might be improved with an RT kernel 

● Most users do not need an RT kernel in order to use 
JACK, and most will be happy using settings that are 
effective without an RT kernel

http://jackaudio.org/realtime_vs_realtime_kernel
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JACK on our platform

● Built using OpenEmbedded (added the recipe 
to our image)

● Used straight out of the box

● Set priorities:
● Make jackd have SCHED_FIFO priority (like your 

audio application seen before)
● More information: FFADO wiki

http://subversion.ffado.org/wiki/IrqPriorities
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Experiment #3: JACK on our platform
root@am3517­evm:~#jackd ­R ­P 60 ­d alsa ­i 2 ­r 44100 ­o 2 ­ ­p 64 ­n 6 &

root@am3517­evm:~# jackd 0.118.0                                                

Copyright 2001­2009 Paul Davis, Stephane Letz, Jack O'Quinn, Torben Hohn and ot.

jackd comes with ABSOLUTELY NO WARRANTY                                         

This is free software, and you are welcome to redistribute it                   

under certain conditions; see the file COPYING for details                      

                                                                                

JACK compiled with System V SHM support.                                        

loading driver ..                                                               

apparent rate = 44100                                                           

creating alsa driver ... hw:0|hw:0|64|3|44100|2|2|nomon|swmeter|­|32bit         

control device hw:0                                                             

configuring for 44100Hz, period = 64 frames (1.5 ms), buffer = 6 periods        

ALSA: final selected sample format for capture: 16bit little­endian             

ALSA: use 3 periods for capture                                                 

ALSA: final selected sample format for playback: 16bit little­endian            

ALSA: use 3 periods for playback                                                

                                                                                

root@am3517­evm:~# jack_simple_client                                           

engine sample rate: 44100  
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Experiment #3: JACK on our platform

● JACK works fine on our platform with
< 10 ms latency

(Note: simplest possible test, so this is a best-
case value)
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Using multi-core systems

● Embedded systems can have multi-core architectures:
● Several CPUs
● Mixed CPU/DSP

● The audio processing can be assigned to a particular 
core

● Example: TI Audio SoC example (Mixed DSP and ARM 
core)

● Shared hardware resources is still important (bus 
contention, DMA access...)

http://processors.wiki.ti.com/index.php/Audio_Soc_example
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Conclusion

● Trade-offs:
● CPU/power consumption
● Latency
● Design complexity

● Tune your priorities/audio parameters first and 
load your system
● Procedure similar to desktop environments (well 

documented)
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Conclusion

● Adding real-time support:
● Not necessarily trivial or required
● Depends on the implementation
● Non-RT kernel can be surprisingly adequate for 

“soft real-time” audio 
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Questions?
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Appendix: Files
● The files used for this experiment should be 

attached with the presentation
● Just run or have a look at the different scripts
● Run (in order):

● oe_prepare.sh: installs prerequisites for 
Arago/OpenEmbedded (some other changes might 
be needed)

● oe_download.sh: downloads and installs custom 
recipes for OE

● oe_build.sh: builds OE
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Appendix: Files

● Run (continued):
● uboot_build.sh: builds U-Boot (sources pulled from 

OE)
● kernel_download.sh: downloads the kernel sources 

and applies relevant patches for our experiments
● kernel_build.sh: builds the RT and non-RT kernel
● apps_build.sh: builds extra test applications out of 

the OE tree
● sd_flash.sh: flashes the bootloader + kernel + rootfs 

on an SD Card
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Appendix: References
● Real-Time Linux wiki: Lots of information about 

the RT patch and testing procedures
● The JACK Audio Connection Kit: General 

presentation. Also covers audio topics on Linux
● FFADO wiki: How to tune audio parameters
● ALSA wiki: General documentation and ALSA 

samples
● JACK: Developer documentation, tuning...
● AM3517 EVM: Board specification and tools

https://rt.wiki.kernel.org/index.php/Main_Page
http://lac.linuxaudio.org/2003/zkm/slides/paul_davis-jack/
http://subversion.ffado.org/wiki
http://alsa.opensrc.org/Main_Page
http://jackaudio.org/
http://www.logicpd.com/products/development-kits/zoom-am3517-evm-development-kit
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