

1Remi Lorriaux - ELC 2011

Real-time Audio on Embedded Linux

April, 2011

Remi Lorriaux
Adeneo Embedded

Embedded Linux Conference 2011

2Remi Lorriaux - ELC 2011

Agenda

● Introduction to audio latency

● Choosing a board for our project

● Audio using a vanilla kernel

● Audio using a real-time kernel

● JACK on our embedded device

● Conclusion

3Remi Lorriaux - ELC 2011

Who am I?

● Software engineer at Adeneo Embedded
(Bellevue, WA)
● Linux, Android
● Main activities:

– Firmware development (BSP adaptation, driver
development, system integration)

– Training delivery

● Guitar player (at home)

4Remi Lorriaux - ELC 2011

Context and objectives

● Case study
● Using a generic embedded device, see how we can

create a Linux system
● Does not necessarily apply to all types of devices
● Not an in-depth study of real-time systems

● Focus on software integration
● Not an exhaustive review of all software solutions
● We want to use open source components

5Remi Lorriaux - ELC 2011

A typical audio chain

D
A

C
A

D
C CPU / DSP

● Digital processing made with a DSP or a
general-purpose CPU

● CPUs used in embedded devices generally
have sufficient power to do the audio
processing in software

6Remi Lorriaux - ELC 2011

Typical audio chain on Linux

Application

ApplicationServer (e.g. JACK, PulseAudio)

alsa-lib

ALSA kernel driver

Capture buffer Output buffer

Hardware

 DMA

read(), write(), poll(), select(), mmap()...

INT

7Remi Lorriaux - ELC 2011

Audio Latency

● Delay between an action and its effect, e.g.
● Pressing a key → Hearing a note
● Record input → Processed output

● Causes
● Physical: 3ft away from loudspeakers ~ 3ms latency
● Hardware: conversion can cause delays

(magnitude: 40/Fs)
● Software: various levels of buffering

8Remi Lorriaux - ELC 2011

Audio Latency

● Consequences on applications:
● Music: critical issue
● Communications: larger latencies can be tolerated

but still have to be limited (Android specifies
continuous output latency < 45 ms, continuous
input latency < 50 ms)

● Audio/Video playback: larger latencies can be
tolerated as long as synchronization is maintained

9Remi Lorriaux - ELC 2011

Measuring audio latency

● Measuring total latency (including hardware):
● Use an oscilloscope or a soundcard
● Can measure the difference between 2

measurements to assess software changes

● Measuring software latency
● ALSA: use latency test in alsa-lib (can automatically

figure out the optimal latency through trial and error)
● JACK: jdelay, qjacklam

10Remi Lorriaux - ELC 2011

Buffering

● ALSA uses periods: blocks of audio samples

● Size and number is configurable on runtime by applications

● At the end of each period, an interrupt is generated.

→ Shorter periods: more interrupts

→ Shorter periods + less periods: lower latency

p1 p4p3p2

INT

Application fills output buffer Samples sent to device

11Remi Lorriaux - ELC 2011

Reducing audio latency

● Buffering creates latency

→ Solution: Reduce buffering

● Reducing buffer size

→ Interrupts are generated more frequently

→ The system has less time to process the
buffers: risk of over/underrun

→ The system must be designed to schedule
the different tasks on time

12Remi Lorriaux - ELC 2011

Tuning the latency

● alsa-lib provides “latency”
● Test tool used for measuring latency between

capture and playback
● Audio latency is measured from driver (difference

when playback and capture was started)
● Can choose a real-time priority (we changed the

code to make it configurable at runtime)

http://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2latency_8c-example.html

13Remi Lorriaux - ELC 2011

Tuning the latency
● Trial and error:

● Start with a low latency value
● Load the system (CPU, IO stress, your

application...)
● If XRUN or bad sound quality → Increase the

latency (periods number and size)

● “latency” can do it for you automatically:

> latency ­m [minimum latency in
frames] ­M [maximum latency in frames]
­r [sample rate] ­S [priority] ­p

14Remi Lorriaux - ELC 2011

Loading the system
● Ideally:

● Realistic load (i.e. your end applications)
● Worst-case scenario

● Our experiment:
● Stress tests from the Linux Test Projet (LTP)

– CPU stress
– Memory allocation

● Generate IO interrupts copying from block devices
● cyclictest

https://rt.wiki.kernel.org/index.php/Cyclictest

15Remi Lorriaux - ELC 2011

Choosing a board for our project
● Deciding factors:

● Pick a board that is supported in the latest mainline
kernel with real-time patches (2.6.33)

● Tested real-time features (Open Source Automation
Development Lab)

● Pick a board that was available at the time
● Power and features did not matter (except for audio)

● Other boards could have been chosen (e.g.
BeagleBoard)

16Remi Lorriaux - ELC 2011

Our project: Hardware

● Zoom™ AM3517 EVM Development Kit (AM3517 EVM)

● ARM™ Cortex™-A8 600 MHz

→ Powerful, but real-time issues still have to be taken into account

● Ethernet, USB, SD, NAND, Wireless, CAN, LCD, Video capture...

→ Many ways to generate software interrupts

● Audio in/out (obviously!)

17Remi Lorriaux - ELC 2011

Our project: Software
● Bootloader

● U-Boot (Built by Arago)

● Kernel
● 2.6.33
● Patched to 2.6.33.7
● Patched to 2.6.33.7.2-rt30 (RT version)

● Root filesystem
● Built by Arago
● Customized recipe (arago-console-image.bb + JACK)
● Test applications: alsa-lib tests, LTP, rt-tests

http://arago-project.org/wiki/index.php/Main_Page

18Remi Lorriaux - ELC 2011

Our project: Software challenges

● Support for the AM3517 EVM in mainline 2.6.33
is somewhat minimal (this has changed a lot)

● Ported some of the board code/drivers from TI's
PSP (2.6.32): audio, SD/MMC

● Still, not many drivers are supported on our test
system (not exactly a real-life example)

http://lxr.linux.no/#linux+v2.6.33/arch/arm/mach-omap2/board-am3517evm.c
http://lxr.linux.no/#linux+v2.6.38/arch/arm/mach-omap2/board-am3517evm.c

19Remi Lorriaux - ELC 2011

Experiment #1: Vanilla kernel

● Vanilla kernel: no RT patches
● Kernel configuration (see files/kernel/am3517_std_defconfig)

CONFIG_PREEMPT_DESKTOP=y
CONFIG_PREEMPT=y

(other preemption schemes not investigated)

20Remi Lorriaux - ELC 2011

Experiment #1: First observation
● The priority of latency has to be set to real-time

otherwise, it over/underruns for low latency values
(under 1024 samples @ 44.1 kHz)

● Even using a non-RT kernel, once the application
priority is increased, it runs fine when competing with
other “stress” processes (can be different in the real
world)

● cyclictest also exhibits this behavior

→ Use sched_setscheduler() or chrt and set your
audio thread priority to SCHED_RR or
SCHED_FIFO

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_getscheduler.2.html

21Remi Lorriaux - ELC 2011

Experiment #1: CPU usage vs latency

● Measured with no load:

> ./latency -m 64 -M 64 -r 44100 -p -S 60

→ Low-latencies can generate a large CPU load!

Latency (samples) Latency (@ 44.1kHz) CPU Load (%)

64 1.5 ms 65%

128 2.90 ms 3%

1024 23 ms < 1%

8192 185 ms < 1%

22Remi Lorriaux - ELC 2011

Experiment #1: Loading the system

● Creating CPU load:
● LTP CPU stress test

→ Competition between processes (preemptible)

● Creating IRQ pressure:
● Transfers from SD Card

● Result: Works fine with 1.5ms latencies

→ Vanilla + SCHED_FIFO did the trick

23Remi Lorriaux - ELC 2011

Why use a real-time kernel?

● Tuning the application priority and audio buffering
requirements can be sufficient for “soft real-time”
audio systems – where occasional errors do not
cause unacceptable audio quality consequences

BUT:
● There is still a lot of non-preemptible code in the

vanilla kernel
● Interrupt handlers, tasklets...
● Regions protected by spinlocks (depending on the number

of processors on your system)

24Remi Lorriaux - ELC 2011

CONFIG PREEMPT RT Patch

● Using the CONFIG PREEMPT RT Patch gives
you:
● Almost full-preemption
● Threaded interrupts: ability to prioritize interrupts

like processes → your application can have a
higher priority than hardware interrupts

→ Lower risk of over/underruns

https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch

25Remi Lorriaux - ELC 2011

Making the system real-time

● Apply the CONFIG PREEMPT RT Patch on
vanilla kernels.
● Latest available version: patch-2.6.33.7.2-rt30
● Also set the configuration

● Difficult task on non-mainline/recent kernels
● Making non-mainline boards compatible can be

difficult (check locks and interrupt management in
drivers and platform code, make sure that the
timers are appropriate)

● Cannot apply the patch on proprietary drivers

26Remi Lorriaux - ELC 2011

Checking the real-time behavior

● Check that the patch has been correctly applied:
● Running “ps” on the device will show that IRQs are

threaded
● Use cyclictest to check the scheduling latency under load

→ The non-RT kernel fails right away under high IRQ
pressure

→ Latencies remain bounded with RT
● Use ftrace to see advanced information (see kernel

documentation for usage) – changes the timing behavior of
the system!

https://rt.wiki.kernel.org/index.php/Ftrace

27Remi Lorriaux - ELC 2011

Tuning the real-time system
● Set the priority of IRQs and processes

(decreasing priority):
● (High-resolution) Timers (especially since we are

using a tickless system!)
● Audio (e.g. DMA on our platform)
● Your audio process
● Other interrupts
● Other processes

● More information (FFADO project)

http://subversion.ffado.org/wiki/IrqPriorities

28Remi Lorriaux - ELC 2011

Tuning audio parameters (RT edition)

● Same process as the non-RT experiment: trial and error

● Use the results provided by cyclictest to adjust the latency, e.g.

● Does not solve the problem of using shared hardware resources
(e.g. DMA, busses...)

→ Requires careful platform and driver design

root@am3517-evm:~# cyclictest -t5 -n -p 60
policy: fifo: loadavg: 10.89 9.99 6.83 12/76 1342
T: 0 (1338) P:60 I:1000 C: 42699 Min: 21 Act: 36 Avg: 37 Max: 96
T: 1 (1339) P:59 I:1500 C: 28463 Min: 25 Act: 41 Avg: 37 Max: 135
T: 2 (1340) P:58 I:2000 C: 21344 Min: 25 Act: 37 Avg: 39 Max: 111
T: 3 (1341) 41 Avg: 39 Max: 111 22 Act: 54 Avg: 38 Max: 91
T: 3 (1341) P:57 I:2500 C: 17140 Min: 22 Act: 41 Avg: 38 Max: 91
T: 4 (1342) P:56 I:3000 C: 14283 Min: 25 Act: 27 Avg: 38 Max: 86

29Remi Lorriaux - ELC 2011

Experiment #2: RT Audio

● Dirty trick: Added udelay(1000) in the USB
interrupt handler!

→ Simulate IRQ pressure since the kernel for
our board did not support ethernet, display...

→ Not a perfect example

● Result: Works flawlessly with 1ms latency

30Remi Lorriaux - ELC 2011

Improving the experiment

● Run typical applications (UI, gstreamer,
LADSPA...)

● More stress on the interrupts: Network, Display,
Video Capture...

31Remi Lorriaux - ELC 2011

High-end audio applications: JACK

● System for handling real-time, low latency audio (and MIDI)

● Cross-platform: GNU/Linux, Solaris, FreeBSD, OS X and
Windows

● Server/client model

● Connectivity:
● Different applications can access an audio device
● Audio applications can share data between each other
● Support for distributing audio processing across a network, both

fast & reliable LANs as well as slower, less reliable WANs.

● Designed for professional audio work

32Remi Lorriaux - ELC 2011

JACK: latency and real-time
● JACK does not add latency

● An RT kernel is needed only if:
● You want to run JACK with very low latency settings that

require real-time performance that can only be achieved
with an RT kernel

● Your hardware configuration triggers poor latency
behaviour which might be improved with an RT kernel

● Most users do not need an RT kernel in order to use
JACK, and most will be happy using settings that are
effective without an RT kernel

http://jackaudio.org/realtime_vs_realtime_kernel

33Remi Lorriaux - ELC 2011

JACK on our platform

● Built using OpenEmbedded (added the recipe
to our image)

● Used straight out of the box

● Set priorities:
● Make jackd have SCHED_FIFO priority (like your

audio application seen before)
● More information: FFADO wiki

http://subversion.ffado.org/wiki/IrqPriorities

34Remi Lorriaux - ELC 2011

Experiment #3: JACK on our platform
root@am3517­evm:~#jackd ­R ­P 60 ­d alsa ­i 2 ­r 44100 ­o 2 ­ ­p 64 ­n 6 &

root@am3517­evm:~# jackd 0.118.0

Copyright 2001­2009 Paul Davis, Stephane Letz, Jack O'Quinn, Torben Hohn and ot.

jackd comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it

under certain conditions; see the file COPYING for details

JACK compiled with System V SHM support.

loading driver ..

apparent rate = 44100

creating alsa driver ... hw:0|hw:0|64|3|44100|2|2|nomon|swmeter|­|32bit

control device hw:0

configuring for 44100Hz, period = 64 frames (1.5 ms), buffer = 6 periods

ALSA: final selected sample format for capture: 16bit little­endian

ALSA: use 3 periods for capture

ALSA: final selected sample format for playback: 16bit little­endian

ALSA: use 3 periods for playback

root@am3517­evm:~# jack_simple_client

engine sample rate: 44100

35Remi Lorriaux - ELC 2011

Experiment #3: JACK on our platform

● JACK works fine on our platform with
< 10 ms latency

(Note: simplest possible test, so this is a best-
case value)

36Remi Lorriaux - ELC 2011

Using multi-core systems

● Embedded systems can have multi-core architectures:
● Several CPUs
● Mixed CPU/DSP

● The audio processing can be assigned to a particular
core

● Example: TI Audio SoC example (Mixed DSP and ARM
core)

● Shared hardware resources is still important (bus
contention, DMA access...)

http://processors.wiki.ti.com/index.php/Audio_Soc_example

37Remi Lorriaux - ELC 2011

Conclusion

● Trade-offs:
● CPU/power consumption
● Latency
● Design complexity

● Tune your priorities/audio parameters first and
load your system
● Procedure similar to desktop environments (well

documented)

38Remi Lorriaux - ELC 2011

Conclusion

● Adding real-time support:
● Not necessarily trivial or required
● Depends on the implementation
● Non-RT kernel can be surprisingly adequate for

“soft real-time” audio

39Remi Lorriaux - ELC 2011

Questions?

40Remi Lorriaux - ELC 2011

Appendix: Files
● The files used for this experiment should be

attached with the presentation
● Just run or have a look at the different scripts
● Run (in order):

● oe_prepare.sh: installs prerequisites for
Arago/OpenEmbedded (some other changes might
be needed)

● oe_download.sh: downloads and installs custom
recipes for OE

● oe_build.sh: builds OE

41Remi Lorriaux - ELC 2011

Appendix: Files

● Run (continued):
● uboot_build.sh: builds U-Boot (sources pulled from

OE)
● kernel_download.sh: downloads the kernel sources

and applies relevant patches for our experiments
● kernel_build.sh: builds the RT and non-RT kernel
● apps_build.sh: builds extra test applications out of

the OE tree
● sd_flash.sh: flashes the bootloader + kernel + rootfs

on an SD Card

42Remi Lorriaux - ELC 2011

Appendix: References
● Real-Time Linux wiki: Lots of information about

the RT patch and testing procedures
● The JACK Audio Connection Kit: General

presentation. Also covers audio topics on Linux
● FFADO wiki: How to tune audio parameters
● ALSA wiki: General documentation and ALSA

samples
● JACK: Developer documentation, tuning...
● AM3517 EVM: Board specification and tools

https://rt.wiki.kernel.org/index.php/Main_Page
http://lac.linuxaudio.org/2003/zkm/slides/paul_davis-jack/
http://subversion.ffado.org/wiki
http://alsa.opensrc.org/Main_Page
http://jackaudio.org/
http://www.logicpd.com/products/development-kits/zoom-am3517-evm-development-kit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

