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Background

m Real-time tasks and general-purpose tasks running on
the same system

= Real-time task
The task that must finish a specific processing within fixed time

m Real-time tasks should be able to use resources
anytime within strict time constraints

= Partition any resources and assign them to real-time tasks

m Cgroups (Control Groups) can control several
resources for groups of tasks

= Cgroups can partition several resources for real-time tasks
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What are Cgroups?

m Control Groups provide a mechanism for
aggregating/partitioning sets of tasks, and all their
future children, into hierarchical groups with
specialized behavior.
(Documentation/cgroups/cgroups.txt)
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How to use Cgroups

m Enable Cgroups in the kernel config file

CONFIG CGROUPS=y
CONFIG CGROUP FREEZER=y
CONFIG CGROUP DEVICE=y
CONFIG CPUSETS=y
CONFIG PROC PID CPUSET=y
CONFIG CGROUP SCHED=y
CONFIG BLK CGROUP=y

m Mount the Cgroups filesystem

# mount -t cgroup cgroup /cgroup
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How to use Cgroups

= How to make a group

# mkdir /cgroup/ [GroupName]

m How to assign atask to a group

= Tasks are not only processes but also threads
= You have to set cpuset.cpus and cpuset.mems before moving tasks

# echo 0 > /cgroup/[GroupName]/cpuset.cpus
# echo 0 > /cgroup/[GroupName]/cpuset.mems
# echo [TID] > /cgroup/[GroupName]/tasks
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Subsystems

m Cgroups have many subsystems

= Subsystems control several resources which can be used by tasks in
groups

The number of physical CPU cores
CPU execution time

Physical memory limit

Block devices I/0 bandwidth

m How to enable a subsystem

= [f you don’t add “-o [subsystem]”, all supported subsystems are
enabled

# mount -t cgroup -o [subsytem] cgroup /cgroup
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Subsystems

m What kind of subsystems are there?

® cpuset, cpu, cpuacct, memory, devices, blkio, net_cls, freezer,
perf_event

Functions

System

Layers (Device) Processing Networking

cpuacct
Logical devices cpu net_cls

freezer
_ memory |1

cpuset

Physical

perf_event

m How to check supported subsytems on your machine
# cat /proc/cgroups

TOSHIBA 1

Leading Innovation >>>



Subsystem: cpuset

m Assign physical CPU cores and memory node (e.g. on
NUMA architecture) to a group

= Embedded systems usually don’t have more than 1 memory node

m Useful parameters
® cpuset.cpus
Set of CPU cores that can be accessed by a group of tasks
® cpuset.cpu_exclusive
A flag indicating if other groups can share the CPU core
m Example
= “foo-group” uses CPUO, CPU1 and CPU2 exclusively

# echo 0-2 > /cgroup/foo-group/cpuset.cpus
# echo 1 > /cgroup/foo-group/cpuset.cpu exclusive
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Subsystem: cpu

m Schedule CPU access for a group by 2 schedulers

= CFS scheduler
Share CPU runtime between groups depending on a priority
= RT scheduler
Assign fixed runtime to real-time tasks in a group
m Useful parameters
= cpu.rt_period_us
Interval for reallocating CPU runtime for a group
® Ccpu.rt_runtime_us
CPU runtime for a group in the period
m Example
= Real-time tasks in “foo-group” run 0.95 sec in a period of 1 sec

# echo 1000000 > /cgroup/foo-group/cpu.rt period us
# echo 950000 > /cgroup/foo-group/cpu.rt runtime us
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Subsystem: cpuacct

m Create a CPU resource usage report for each cgroups

automatically

m Useful parameters
® cpuacct.usage
CPU runtime used by all tasks in a group
® cpuacct.stat
Divided cpuacct.usage between user and system
® cpuacct.usage_ percpu
Divided cpuacct.usage per CPU

m Example
= Show CPU runtime of “foo-group”

# cat /cgroup/foo-group/cpuacct.usage
13428211
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Subsystem: memory

m Report memory usage and set physical memory limit
for groups

m Useful parameters
= memory.limit_in_bytes
Set the maximum value of physical memory for a group
= memory.oom_control
Flag of enable/disable oom-killer and notice
= memory.stat
Report of memory statistics

m Example

= Limit physical memory that can be used by “foo-group” to 100MB and
disable oom-killer

# echo 104857600 > /cgroup/foo-group/memory.limit in byte
# echo 1 > /cgroup/foo-group/memory.oom control
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Subsystem: devices

m Limit access to device nodes from groups of tasks

m Useful parameters
= devices.allow
Set accessible devices from a group
= devices.deny
Set non-accessible devices from a group
= devices.list
Show accessible devices from a group

m Example
m Show devices.list

# cat /cgroup/foo-group/devices.list
a *:* rwm
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Subsystem: blkio

m Control accesses to block devices from a group

m There are 2 access control policies
= Share I/O bandwidth between groups
Set block I/O access ratio for each groups
= |/O throttling
Set the limit for the number of 1/O operation on a device node
m Useful parameters
= blkio.weight
Set block I/O access ratio for each groups from 100 to 1000
m Example

= The block I/0O bandwidth of “foo-group” is 10 times larger than “bar-
group”

# echo 1000 > /cgroup/foo-group/blkio.weight
# echo 100 > /cgroup/bar-group/blkio.weight
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Subsystem: net_cls, freezer, perf_event

m net_cls

= Tag network packets sent by groups

Linux traffic controler (tc) can identify and assign a priority thanks
to tagging by net_cls

m tc can reserve network bandwidth
m freezer

= Pause and resume all tasks in a group
= Example: Freeze “foo-group”

# echo FROZEN > /cgroup/foo-group/freezer.state

m perf_event

= Enable monitoring using the “perf” tool

CPU cycles time, Executed instructions, Cache misses,
Branch prediction misses, Page faults, Context switches, etc...
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Reserving Physical Memory Space

m Detall
m Reserve physical memory space to run a real-time task

m Needed subsystem
® memory

Physical
- memory area
for Real-Time

Real-Time Group

Real-Time Task

The limit of
— DhySical memory area
for general task group

General-Purpose
Task Group

GP Task

GP Task

GP Task

Physical memory
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Monitoring Groups

m Detail
= Monitor some groups of general-purpose tasks and real-time tasks

m Needed subsystems
= freezer, cpuacct, memory, perf_event

freezer
cpuacct
memory
perf_event
General-Purpose Q g
Task Group
GP Task Real-Time Group

GP Task

Real-Time Task

GP Task
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Power saving

m Detail

= When we detect, through cpuacct.usage, that the load of a CPU is
not high, limit the number of physical CPUs using cpuset.cpus to
achieve power saving

m Needed subsystems
® Cpuacct, cpuset

Real-Time Group Real-Time Group

Real-Time Task Real-Time Task
Real-Time Task Real-Time Task

= Zz
CPUO CPU1 CPUO CPU1

TOSHIBA -

Leading Innovation >>>




Reserving Block Device 1/O Bandwidth

m Detail

= Assign needed I/O bandwidth to real-time tasks

= Defend response time of real-time tasks against overloaded 1/O
requests by general-tasks [see evaluation]

m Needed subsystem
= blkio

General-Purpose Task Group

GP Task GP Task Real-Time Task

N\ 2P
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Exclusive Possession of Physical CPU Core

m Detail

= Real-Time tasks use several physical CPU exclusively using
cpuset.cpus and cpuset.cpu_exclusive to achieve short response
time [see evaluation]

m Needed subsystem
cpuset

General-Purpose Real-Time Task
Task Group Group

Real-Time Task

GP Task

GP Task

GT Task
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Evaluation Environment

Machine HP Compaqg 8200 Elite

CPU Intel Core 17-2600 3.40GHz x 4
Memory 4GB

Kernel v3.0.39-rt59

Clock source HPET

# echo hpet >
/sys/device/system/clocksource/clocksourcel/curren
t clocksource

Disable power saving function of CPU cores
= idle=poll (at boot parameter)

Mount cpuset and blkio subsystems only

= Avoid overheads from other subsystems
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How to Evaluate

m Run cyclictest

m 4 conditions with 4 loads
= 1,000,000 times

m What is cyclictest?

= Run a real-time task that wakes up with a periodic time interval
= Log response times, called “Latency”, of the real-time task

Event Event Event Event
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Conditions

®m Nocgroups
m Cgroups isn’t used
= 1 real-time tasks run with some general-purpose tasks

No Cgroups

Real-Time Task
GP Task GP Task

GP Task
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Conditions

m cpuset

m General-purpose tasks run in a general-purpose task group on 3
physical CPU core used exclusively

= 1 real-time task runs in a real-time task group on 1 physical CPU
core used exclusively

General-Purpose Task Group Real-Time Task

Group
GP Task GP Task
Real-Time Task
GP Task GP Task
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Conditions
m blkio

= General-purpose tasks run in a general-purpose task group

= 1 real-time task runs in a real-time task group with 10 times larger
bandwidth than a general-purpose task group

General-Purpose Task Group

GP Task GP Task Real-Time Task

N\ 2P
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Conditions

m cpuset + blkio
= Both of cpuset and blkio
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Block Device

/B

General-Purpose Task Group

GP Task GP Task
GP Task GP Task

Real-Time Task
Group

Real-Time Task

CPUO CPU1 CPU2

CPU3
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Loads
m NOLOAD

= No any loads

m CPU-LOAD

m Set CPU usage rate to 100%
Running 4 busy loop threads

m SCHED-LOAD

= Generate many context switches
Running 270 busy loop threads that sleep 1us during each loop
CPU usage rate is 100%

m |[O-LOAD

= Generate many disk 1/0O requests

Running 50 busy loop threads that open a file, write 4KB data to it,
synchronize it and sleep lus during each loop

Average 47-50 kernel threads wait for I/O request
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Leading Innovation >>>



NOLOAD
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NOLOAD
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NOLOAD Max
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CPU-LOAD
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CPU-LOAD Average
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CPU-LOAD Max
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SCHED-LOAD
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SCHED-LOAD Average

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

o ||

e |
% % cpuset+blkio (12us)
C
< 70
n
8 60
F= nocgroups (18us)
+- 50 group
o
= 40 blkio (18us)
b —
c
s 30
o
o 20
10
O | | | | | I

0 10 20 30 40 50 60 70 80 90 100
SCHED-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

40




SCHED-LOAD Max
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|O-LOAD
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|O-LOAD Average
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|O-LOAD Max
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Discussion

m cpuset
= Advantages
Contributed to shorten average response time with SCHED-LOAD
Contributed to shorten max response time with 10-LOAD
= Disadvantage
Max response time with SCHED-LOAD is longer than nocgroups

m blkio

= There are no advantages
= Disadvantage
Max response time with NOLOAD is longer than nocgroups

m cpuset + blkio

= Advantages are same as cpuset
= There are no disadvantages
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Conclusions

m Cgroups can supply a mechanism of resource
partitioning
= Real-time tasks can use partitioned resources and achieve many
advantage against general-purpose tasks

= cpuset and blkio subsystems contributes to shorten response time for
a real-time task

m We want to partition more resources for real-time tasks

= Not only short response time but also management, control and
protection

= Do you have other ideas and use cases for partitioning of real-time
tasks?
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