
Copyright 2013, Toshiba Corporation.

Real-Time Task Partitioning using Cgroups

Akihiro SUZUKI

Advanced Software Technology Group

Corporate Software Engineering Center

TOSHIBA CORPORATION

2013/06/07

2

Self-Introduction

 Name

 Akihiro SUZUKI

 Company

 TOSHIBA

 Corporate Software Engineering Center

 Job

 Embedded systems using Linux

3

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

4

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

5

Background

 Real-time tasks and general-purpose tasks running on

the same system

 Real-time task

 The task that must finish a specific processing within fixed time

 Real-time tasks should be able to use resources

anytime within strict time constraints

 Partition any resources and assign them to real-time tasks

 Cgroups (Control Groups) can control several

resources for groups of tasks

 Cgroups can partition several resources for real-time tasks

6

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

7

What are Cgroups?

 Control Groups provide a mechanism for

aggregating/partitioning sets of tasks, and all their

future children, into hierarchical groups with

specialized behavior.

(Documentation/cgroups/cgroups.txt)

8

How to use Cgroups

 Enable Cgroups in the kernel config file

 Mount the Cgroups filesystem

CONFIG_CGROUPS=y

CONFIG_CGROUP_FREEZER=y

CONFIG_CGROUP_DEVICE=y

CONFIG_CPUSETS=y

CONFIG_PROC_PID_CPUSET=y

CONFIG_CGROUP_SCHED=y

CONFIG_BLK_CGROUP=y

…

mount –t cgroup cgroup /cgroup

9

How to use Cgroups

 How to make a group

 How to assign a task to a group

 Tasks are not only processes but also threads

 You have to set cpuset.cpus and cpuset.mems before moving tasks

echo 0 > /cgroup/[GroupName]/cpuset.cpus

echo 0 > /cgroup/[GroupName]/cpuset.mems

echo [TID] > /cgroup/[GroupName]/tasks

mkdir /cgroup/[GroupName]

10

Subsystems

 Cgroups have many subsystems

 Subsystems control several resources which can be used by tasks in

groups

 The number of physical CPU cores

 CPU execution time

 Physical memory limit

 Block devices I/O bandwidth

 …

 How to enable a subsystem

 If you don’t add “-o [subsystem]”, all supported subsystems are

enabled

mount –t cgroup -o [subsytem] cgroup /cgroup

11

Subsystems

 What kind of subsystems are there?

 cpuset, cpu, cpuacct, memory, devices, blkio, net_cls, freezer,

perf_event

 How to check supported subsytems on your machine

Logical

Physical

Processing Memory Storage Networking
System

(Device)

Functions

Layers

devices

cpuacct

cpu

freezer

cpuset

memory

blkio net_cls

perf_event

cat /proc/cgroups

12

Subsystem: cpuset

 Assign physical CPU cores and memory node (e.g. on

NUMA architecture) to a group

 Embedded systems usually don’t have more than 1 memory node

 Useful parameters

 cpuset.cpus

 Set of CPU cores that can be accessed by a group of tasks

 cpuset.cpu_exclusive

 A flag indicating if other groups can share the CPU core

 Example

 “foo-group” uses CPU0, CPU1 and CPU2 exclusively

echo 0-2 > /cgroup/foo-group/cpuset.cpus

echo 1 > /cgroup/foo-group/cpuset.cpu_exclusive

13

Subsystem: cpu

 Schedule CPU access for a group by 2 schedulers

 CFS scheduler

 Share CPU runtime between groups depending on a priority

 RT scheduler

 Assign fixed runtime to real-time tasks in a group

 Useful parameters

 cpu.rt_period_us

 Interval for reallocating CPU runtime for a group

 cpu.rt_runtime_us

 CPU runtime for a group in the period

 Example

 Real-time tasks in “foo-group” run 0.95 sec in a period of 1 sec

echo 1000000 > /cgroup/foo-group/cpu.rt_period_us

echo 950000 > /cgroup/foo-group/cpu.rt_runtime_us

14

Subsystem: cpuacct

 Create a CPU resource usage report for each cgroups

automatically

 Useful parameters

 cpuacct.usage

 CPU runtime used by all tasks in a group

 cpuacct.stat

 Divided cpuacct.usage between user and system

 cpuacct.usage_percpu

 Divided cpuacct.usage per CPU

 Example

 Show CPU runtime of “foo-group”

cat /cgroup/foo-group/cpuacct.usage

13428211

15

Subsystem: memory

 Report memory usage and set physical memory limit

for groups

 Useful parameters

 memory.limit_in_bytes

 Set the maximum value of physical memory for a group

 memory.oom_control

 Flag of enable/disable oom-killer and notice

 memory.stat

 Report of memory statistics

 Example

 Limit physical memory that can be used by “foo-group” to 100MB and

disable oom-killer

echo 104857600 > /cgroup/foo-group/memory.limit_in_byte

echo 1 > /cgroup/foo-group/memory.oom_control

16

Subsystem: devices

 Limit access to device nodes from groups of tasks

 Useful parameters

 devices.allow

 Set accessible devices from a group

 devices.deny

 Set non-accessible devices from a group

 devices.list

 Show accessible devices from a group

 Example

 Show devices.list

cat /cgroup/foo-group/devices.list

a *:* rwm

17

Subsystem: blkio

 Control accesses to block devices from a group

 There are 2 access control policies

 Share I/O bandwidth between groups

 Set block I/O access ratio for each groups

 I/O throttling

 Set the limit for the number of I/O operation on a device node

 Useful parameters

 blkio.weight

 Set block I/O access ratio for each groups from 100 to 1000

 Example

 The block I/O bandwidth of “foo-group” is 10 times larger than “bar-

group”

echo 1000 > /cgroup/foo-group/blkio.weight

echo 100 > /cgroup/bar-group/blkio.weight

18

Subsystem: net_cls, freezer, perf_event

 net_cls

 Tag network packets sent by groups

 Linux traffic controler (tc) can identify and assign a priority thanks

to tagging by net_cls

 tc can reserve network bandwidth

 freezer

 Pause and resume all tasks in a group

 Example: Freeze “foo-group”

 perf_event

 Enable monitoring using the “perf” tool

 CPU cycles time, Executed instructions, Cache misses,

Branch prediction misses, Page faults, Context switches, etc…

echo FROZEN > /cgroup/foo-group/freezer.state

19

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

20

Reserving Physical Memory Space

 Detail

 Reserve physical memory space to run a real-time task

 Needed subsystem

 memory

Real-Time Group

Real-Time Task

General-Purpose

Task Group

GP Task

GP Task

Physical memory

Physical

memory area

for GP task

group

The limit of

physical memory area

for general task group

Physical

memory area

for Real-Time

group

GP Task

21

Monitoring Groups

 Detail

 Monitor some groups of general-purpose tasks and real-time tasks

 Needed subsystems

 freezer, cpuacct, memory, perf_event

freezer

cpuacct

memory

perf_event

Real-Time Group

Real-Time Task

General-Purpose

Task Group

GP Task

GP Task

GP Task

22

Power saving

 Detail

 When we detect, through cpuacct.usage, that the load of a CPU is

not high, limit the number of physical CPUs using cpuset.cpus to

achieve power saving

 Needed subsystems

 cpuacct, cpuset

CPU0 CPU1 CPU0 CPU1

Real-Time Group

Real-Time Task

Real-Time Task

Real-Time Task

Real-Time Group

Real-Time Task

Real-Time Task

Real-Time Task

23

Reserving Block Device I/O Bandwidth

 Detail

 Assign needed I/O bandwidth to real-time tasks

 Defend response time of real-time tasks against overloaded I/O

requests by general-tasks [see evaluation]

 Needed subsystem

 blkio

Real-Time Group

Real-Time Task

General-Purpose Task Group

GP Task

GP Task GP Task

Block Device

GP Task

24

Exclusive Possession of Physical CPU Core

 Detail

 Real-Time tasks use several physical CPU exclusively using

cpuset.cpus and cpuset.cpu_exclusive to achieve short response

time [see evaluation]

 Needed subsystem

 cpuset

General-Purpose

Task Group
Real-Time Task

Group

Real-Time Task

GT Task

GP Task

GP Task

CPU0 CPU1

25

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

26

Evaluation Environment

 Machine HP Compaq 8200 Elite

 CPU Intel Core i7-2600 3.40GHz x 4

 Memory 4GB

 Kernel v3.0.39-rt59

 Clock source HPET

 Disable power saving function of CPU cores

 idle=poll (at boot parameter)

 Mount cpuset and blkio subsystems only

 Avoid overheads from other subsystems

echo hpet >

/sys/device/system/clocksource/clocksource0/curren

t_clocksource

27

How to Evaluate

 Run cyclictest

 4 conditions with 4 loads

 1,000,000 times

 What is cyclictest?

 Run a real-time task that wakes up with a periodic time interval

 Log response times, called “Latency”, of the real-time task

Runtime Runtime Runtime

Event Event Event Event

Latency

28

Conditions

 nocgroups

 Cgroups isn’t used

 1 real-time tasks run with some general-purpose tasks

No Cgroups

Real-Time Task
GP Task

CPU0 CPU1 CPU2 CPU3

GP Task

GP Task

GP Task

29

Conditions

 cpuset

 General-purpose tasks run in a general-purpose task group on 3

physical CPU core used exclusively

 1 real-time task runs in a real-time task group on 1 physical CPU

core used exclusively

General-Purpose Task Group

GP Task

CPU0 CPU1 CPU2 CPU3

GP Task

GP Task

GP Task

Real-Time Task

Group

Real-Time Task

30

Conditions

 blkio

 General-purpose tasks run in a general-purpose task group

 1 real-time task runs in a real-time task group with 10 times larger

bandwidth than a general-purpose task group

Real-Time Group

Real-Time Task

General-Purpose Task Group

GP Task

GP Task GP Task

Block Device

GP Task

31

Conditions

 cpuset + blkio

 Both of cpuset and blkio

General-Purpose Task Group

GP Task

CPU0 CPU1 CPU2 CPU3

GP Task

GP Task

GP Task

Real-Time Task

Group

Real-Time Task

Block Device

32

Loads

 NOLOAD

 No any loads

 CPU-LOAD

 Set CPU usage rate to 100%

 Running 4 busy loop threads

 SCHED-LOAD

 Generate many context switches

 Running 270 busy loop threads that sleep 1us during each loop

 CPU usage rate is 100%

 IO-LOAD

 Generate many disk I/O requests

 Running 50 busy loop threads that open a file, write 4KB data to it,

synchronize it and sleep 1us during each loop

 Average 47-50 kernel threads wait for I/O request

33

NOLOAD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]NOLOAD

nocgroups cpuset blkio cpuset+blkio

34

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]NOLOAD

nocgroups cpuset blkio cpuset+blkio

NOLOAD Average

nocgroups (12us)

cpuset (12us)

blkio (12us)

cpuset+blkio (12us)

35

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]NOLOAD

nocgroups cpuset blkio cpuset+blkio

NOLOAD Max

nocgroups (24us)

cpuset (19us)

cpuset+blkio (21us)

blkio (35us)

36

CPU-LOAD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]CPU-LOAD

nocgroups cpuset blkio cpuset+blkio

37

CPU-LOAD Average

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]CPU-LOAD

nocgroups cpuset blkio cpuset+blkio

nocgroups (11us)

cpuset (11us)

blkio (11us)

cpuset+blkio (11us)

38

CPU-LOAD Max

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]CPU-LOAD

nocgroups cpuset blkio cpuset+blkio

nocgroups (21us)

cpuset (22us)

blkio (23us)

cpuset+blkio (20us)

39

SCHED-LOAD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]SCHED-LOAD

nocgroups cpuset blkio cpuset+blkio

40

SCHED-LOAD Average

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]SCHED-LOAD

nocgroups cpuset blkio cpuset+blkio

cpuset (12us)

cpuset+blkio (12us)

nocgroups (18us)

blkio (18us)

41

SCHED-LOAD Max

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]SCHED-LOAD

nocgroups cpuset blkio cpuset+blkio

nocgroups (29us)

blkio (30us)

cpuset+blkio (31us)

cpuset (42us)

42

IO-LOAD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]IO-LOAD

nocgroups cpuset blkio cpuset+blkio

43

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]IO-LOAD

nocgroups cpuset blkio cpuset+blkio

IO-LOAD Average

nocgroups (11us)

cpuset+blkio (10us)

cpuset (11us)

blkio (12us)

44

IO-LOAD Max

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o

u
n

t
[1

0
th

o
u

sa
n

d
s]

Latency [microseconds]IO-LOAD

nocgroups cpuset blkio cpuset+blkio

cpuset+blkio (32us)

cpuset (34us)

nocgroups (66us)

blkio (70us)

45

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

46

Discussion

 cpuset

 Advantages

 Contributed to shorten average response time with SCHED-LOAD

 Contributed to shorten max response time with IO-LOAD

 Disadvantage

 Max response time with SCHED-LOAD is longer than nocgroups

 blkio

 There are no advantages

 Disadvantage

 Max response time with NOLOAD is longer than nocgroups

 cpuset + blkio

 Advantages are same as cpuset

 There are no disadvantages

47

Contents

 Background

 Introduction to Cgroups

 Use cases

 Evaluation

 Discussion

 Conclusions

48

Conclusions

 Cgroups can supply a mechanism of resource

partitioning

 Real-time tasks can use partitioned resources and achieve many

advantage against general-purpose tasks

 cpuset and blkio subsystems contributes to shorten response time for

a real-time task

 We want to partition more resources for real-time tasks

 Not only short response time but also management, control and

protection

 Do you have other ideas and use cases for partitioning of real-time

tasks?

49

References

 Resource Management Guide - Red Hat Customer Portal

 https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/

