TOSHIBA

Leading Innovation >>>

Real-Time Task Partitioning using Cgroups

Akihiro SUZUKI

Advanced Software Technology Group
Corporate Software Engineering Center
TOSHIBA CORPORATION

2013/06/07

Copyright 2013, Toshiba Corporation.

Self-Introduction

m Name
m Akihiro SUZUKI

m Company
= TOSHIBA
Corporate Software Engineering Center

m Job
= Embedded systems using Linux

TOSHIBA

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

Background

m Real-time tasks and general-purpose tasks running on
the same system

= Real-time task
The task that must finish a specific processing within fixed time

m Real-time tasks should be able to use resources
anytime within strict time constraints

= Partition any resources and assign them to real-time tasks

m Cgroups (Control Groups) can control several
resources for groups of tasks

= Cgroups can partition several resources for real-time tasks

TOSHIBA 5

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

What are Cgroups?

m Control Groups provide a mechanism for
aggregating/partitioning sets of tasks, and all their
future children, into hierarchical groups with
specialized behavior.
(Documentation/cgroups/cgroups.txt)

TOSHIBA

Leading Innovation >>>

How to use Cgroups

m Enable Cgroups in the kernel config file

CONFIG CGROUPS=y
CONFIG CGROUP FREEZER=y
CONFIG CGROUP DEVICE=y
CONFIG CPUSETS=y
CONFIG PROC PID CPUSET=y
CONFIG CGROUP SCHED=y
CONFIG BLK CGROUP=y

m Mount the Cgroups filesystem

mount -t cgroup cgroup /cgroup

TOSHIBA

Leading Innovation >>>

How to use Cgroups

= How to make a group

mkdir /cgroup/ [GroupName]

m How to assign atask to a group

= Tasks are not only processes but also threads
= You have to set cpuset.cpus and cpuset.mems before moving tasks

echo 0 > /cgroup/[GroupName]/cpuset.cpus
echo 0 > /cgroup/[GroupName]/cpuset.mems
echo [TID] > /cgroup/[GroupName]/tasks

TOSHIBA o

Leading Innovation >>>

Subsystems

m Cgroups have many subsystems

= Subsystems control several resources which can be used by tasks in
groups

The number of physical CPU cores
CPU execution time

Physical memory limit

Block devices I/0 bandwidth

m How to enable a subsystem

= [f you don’t add “-o [subsystem]”, all supported subsystems are
enabled

mount -t cgroup -o [subsytem] cgroup /cgroup

TOSHIBA

- . 10
Leading Innovation >>>

Subsystems

m What kind of subsystems are there?

® cpuset, cpu, cpuacct, memory, devices, blkio, net_cls, freezer,
perf_event

Functions

System

Layers (Device) Processing Networking

cpuacct
Logical devices cpu net_cls

freezer
_ memory |1

cpuset

Physical

perf_event

m How to check supported subsytems on your machine
cat /proc/cgroups

TOSHIBA 1

Leading Innovation >>>

Subsystem: cpuset

m Assign physical CPU cores and memory node (e.g. on
NUMA architecture) to a group

= Embedded systems usually don’t have more than 1 memory node

m Useful parameters
® cpuset.cpus
Set of CPU cores that can be accessed by a group of tasks
® cpuset.cpu_exclusive
A flag indicating if other groups can share the CPU core
m Example
= “foo-group” uses CPUO, CPU1 and CPU2 exclusively

echo 0-2 > /cgroup/foo-group/cpuset.cpus
echo 1 > /cgroup/foo-group/cpuset.cpu exclusive

TOSHIBA "

Leading Innovation >>>

Subsystem: cpu

m Schedule CPU access for a group by 2 schedulers

= CFS scheduler
Share CPU runtime between groups depending on a priority
= RT scheduler
Assign fixed runtime to real-time tasks in a group
m Useful parameters
= cpu.rt_period_us
Interval for reallocating CPU runtime for a group
® Ccpu.rt_runtime_us
CPU runtime for a group in the period
m Example
= Real-time tasks in “foo-group” run 0.95 sec in a period of 1 sec

echo 1000000 > /cgroup/foo-group/cpu.rt period us
echo 950000 > /cgroup/foo-group/cpu.rt runtime us

TOSHIBA

Leading Innovation >>>

Subsystem: cpuacct

m Create a CPU resource usage report for each cgroups

automatically

m Useful parameters
® cpuacct.usage
CPU runtime used by all tasks in a group
® cpuacct.stat
Divided cpuacct.usage between user and system
® cpuacct.usage_ percpu
Divided cpuacct.usage per CPU

m Example
= Show CPU runtime of “foo-group”

cat /cgroup/foo-group/cpuacct.usage
13428211

TOSHIBA

Leading Innovation >>>

14

Subsystem: memory

m Report memory usage and set physical memory limit
for groups

m Useful parameters
= memory.limit_in_bytes
Set the maximum value of physical memory for a group
= memory.oom_control
Flag of enable/disable oom-killer and notice
= memory.stat
Report of memory statistics

m Example

= Limit physical memory that can be used by “foo-group” to 100MB and
disable oom-killer

echo 104857600 > /cgroup/foo-group/memory.limit in byte
echo 1 > /cgroup/foo-group/memory.oom control

TOSHIBA 5

Leading Innovation >>>

Subsystem: devices

m Limit access to device nodes from groups of tasks

m Useful parameters
= devices.allow
Set accessible devices from a group
= devices.deny
Set non-accessible devices from a group
= devices.list
Show accessible devices from a group

m Example
m Show devices.list

cat /cgroup/foo-group/devices.list
a *:* rwm

TOSHIBA

Leading Innovation >>>

16

Subsystem: blkio

m Control accesses to block devices from a group

m There are 2 access control policies
= Share I/O bandwidth between groups
Set block I/O access ratio for each groups
= |/O throttling
Set the limit for the number of 1/O operation on a device node
m Useful parameters
= blkio.weight
Set block I/O access ratio for each groups from 100 to 1000
m Example

= The block I/0O bandwidth of “foo-group” is 10 times larger than “bar-
group”

echo 1000 > /cgroup/foo-group/blkio.weight
echo 100 > /cgroup/bar-group/blkio.weight

TOSHIBA 17

Leading Innovation >>>

Subsystem: net_cls, freezer, perf_event

m net_cls

= Tag network packets sent by groups

Linux traffic controler (tc) can identify and assign a priority thanks
to tagging by net_cls

m tc can reserve network bandwidth
m freezer

= Pause and resume all tasks in a group
= Example: Freeze “foo-group”

echo FROZEN > /cgroup/foo-group/freezer.state

m perf_event

= Enable monitoring using the “perf” tool

CPU cycles time, Executed instructions, Cache misses,
Branch prediction misses, Page faults, Context switches, etc...

TOSHIBA 18

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

19

Reserving Physical Memory Space

m Detall
m Reserve physical memory space to run a real-time task

m Needed subsystem
® memory

Physical
- memory area
for Real-Time

Real-Time Group

Real-Time Task

The limit of
— DhySical memory area
for general task group

General-Purpose
Task Group

GP Task

GP Task

GP Task

Physical memory

TOSHIBA

Leading Innovation >>>

Monitoring Groups

m Detail
= Monitor some groups of general-purpose tasks and real-time tasks

m Needed subsystems
= freezer, cpuacct, memory, perf_event

freezer
cpuacct
memory
perf_event
General-Purpose Q g
Task Group
GP Task Real-Time Group

GP Task

Real-Time Task

GP Task

TOSHIBA o1

Leading Innovation >>>

Power saving

m Detail

= When we detect, through cpuacct.usage, that the load of a CPU is
not high, limit the number of physical CPUs using cpuset.cpus to
achieve power saving

m Needed subsystems
® Cpuacct, cpuset

Real-Time Group Real-Time Group

Real-Time Task Real-Time Task
Real-Time Task Real-Time Task

= Zz
CPUO CPU1 CPUO CPU1

TOSHIBA -

Leading Innovation >>>

Reserving Block Device 1/O Bandwidth

m Detail

= Assign needed I/O bandwidth to real-time tasks

= Defend response time of real-time tasks against overloaded 1/O
requests by general-tasks [see evaluation]

m Needed subsystem
= blkio

General-Purpose Task Group

GP Task GP Task Real-Time Task

N\ 2P

TOSHIBA .

Leading Innovation >>>

Exclusive Possession of Physical CPU Core

m Detail

= Real-Time tasks use several physical CPU exclusively using
cpuset.cpus and cpuset.cpu_exclusive to achieve short response
time [see evaluation]

m Needed subsystem
cpuset

General-Purpose Real-Time Task
Task Group Group

Real-Time Task

GP Task

GP Task

GT Task

TOSHIBA 24

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

25

Evaluation Environment

Machine HP Compaqg 8200 Elite

CPU Intel Core 17-2600 3.40GHz x 4
Memory 4GB

Kernel v3.0.39-rt59

Clock source HPET

echo hpet >
/sys/device/system/clocksource/clocksourcel/curren
t clocksource

Disable power saving function of CPU cores
= idle=poll (at boot parameter)

Mount cpuset and blkio subsystems only

= Avoid overheads from other subsystems

TOSHIBA

Leading Innovation >>>

26

How to Evaluate

m Run cyclictest

m 4 conditions with 4 loads
= 1,000,000 times

m What is cyclictest?

= Run a real-time task that wakes up with a periodic time interval
= Log response times, called “Latency”, of the real-time task

Event Event Event Event

TOSHIBA

Leading Innovation >>>

27

Conditions

®m Nocgroups
m Cgroups isn’t used
= 1 real-time tasks run with some general-purpose tasks

No Cgroups

Real-Time Task
GP Task GP Task

GP Task

TOSHIBA -

Leading Innovation >>>

Conditions

m cpuset

m General-purpose tasks run in a general-purpose task group on 3
physical CPU core used exclusively

= 1 real-time task runs in a real-time task group on 1 physical CPU
core used exclusively

General-Purpose Task Group Real-Time Task

Group
GP Task GP Task
Real-Time Task
GP Task GP Task

TOSHIBA

Leading Innovation >>>

Conditions
m blkio

= General-purpose tasks run in a general-purpose task group

= 1 real-time task runs in a real-time task group with 10 times larger
bandwidth than a general-purpose task group

General-Purpose Task Group

GP Task GP Task Real-Time Task

N\ 2P

TOSHIBA

Leading Innovation >>>

Conditions

m cpuset + blkio
= Both of cpuset and blkio

TOSHIBA

Leading Innovation >>>

Block Device

/B

General-Purpose Task Group

GP Task GP Task
GP Task GP Task

Real-Time Task
Group

Real-Time Task

CPUO CPU1 CPU2

CPU3

31

Loads
m NOLOAD

= No any loads

m CPU-LOAD

m Set CPU usage rate to 100%
Running 4 busy loop threads

m SCHED-LOAD

= Generate many context switches
Running 270 busy loop threads that sleep 1us during each loop
CPU usage rate is 100%

m |[O-LOAD

= Generate many disk 1/0O requests

Running 50 busy loop threads that open a file, write 4KB data to it,
synchronize it and sleep lus during each loop

Average 47-50 kernel threads wait for I/O request
TOSHIBA -

Leading Innovation >>>

NOLOAD

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

90

80

70

60

50

30

Count [10 thousands]

20

10
O—JLQ“'A' ' ' ' ' ' '

0 10 20 30 40 50 60 70 80 90 100
NOLOAD Latency [microseconds]

N
o

————
e b

TOSHIBA 2

Leading Innovation >>>

NOLOAD

Average

—--nocgroups -=cpuset - blkio ==cpuset+blkio

100

90

nocgroups (12us)

80

—EEED

70

60

—EZET

50

cpuset+blkio (12us)

N
o

30

Count [10 thousands]

20

0
NOLOAD

10
O—JLQ“'A' : : : :

20 30 40 50 60 70 80
Latency [microseconds]

90

100

TOSHIBA

Leading Innovation >>>

34

NOLOAD Max

—--nocgroups -=cpuset - blkio ==cpuset+blkio

100 |
o
' 80 cpuset+blkio (21us)
=
c(g 70
8 60 nocgroups (24us)
S 50
o
= 40
<
S 30
@)
S o —EIET
10
0 —-J—me I | | | | | |

0 10 20 30 40 50 60 70 80 90 100
NOLOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

35

CPU-LOAD

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

90

80

70 ¢

60

50

N
o

30

Count [10 thousands]

20

10

O | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
CPU-LOAD Latency [microseconds]

TOSHIBA 26

Leading Innovation >>>

CPU-LOAD Average

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

mm—— nocgroups (11us
90 groups (11us)

80

70

60 .

50

N
o

30

Count [10 thousands]

20

10

O | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
CPU-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

37

CPU-LOAD Max

—--nocgroups -=cpuset - blkio ==cpuset+blkio

cpuset+blkio (20us)

90 | .

nocgroups (21us)
70

Count [10 thousands]

N
o

W
o

N
o

(BN
o

O | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
CPU-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

38

SCHED-LOAD

—--nocgroups -=cpuset - blkio ==cpuset+blkio

100

90

80

70

60

50

N
o

30

Count [10 thousands]

20

10

0

0 10
SCHED-LOAD

20 30 40 50 60 70 80
Latency [microseconds]

90

100

TOSHIBA

Leading Innovation >>>

39

SCHED-LOAD Average

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

o ||

e |
% % cpuset+blkio (12us)
C
< 70
n
8 60
F= nocgroups (18us)
+- 50 group
o
= 40 blkio (18us)
b —
c
s 30
o
o 20
10
O | | | | | I

0 10 20 30 40 50 60 70 80 90 100
SCHED-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

40

SCHED-LOAD Max

—--nocgroups -=cpuset - blkio ==cpuset+blkio

100
90 nocgroups (29us)
—

g "
S 70 blkio (30us) ==
©
g 60
2 .
+ 50 : b
o
= 40
c
8 30 s cpuset (42us)
o 20

10

O | | | | | |

0 10 20 30 40 50 60 70 80 90 100
SCHED-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

41

|O-LOAD

—--nocgroups -=cpuset - blkio ==cpuset+blkio
100

90

80

70

60

50

N
o

30

Count [10 thousands]

20

10

O | | | |
0 10 20 30 40 50 60 70 80 90 100
10-LOAD Latency [microseconds]

TOSHIBA 42

Leading Innovation >>>

|O-LOAD Average

—--nocgroups -=cpuset - blkio ==cpuset+blkio

100
90 cpuset+blkio (10us)
2 . nocgroups (11us)
(qe)
wn
2
+ 50
S B oo (1205)
= 40
=
5 30
o
O 20
10
0 | | | I

0 10 20 30 40 50 60 70 80 90 100
10-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

43

|O-LOAD Max

—--nocgroups -=cpuset - blkio ==cpuset+blkio

90 cpuset+blkio (32us)
80

100
70
cpuset (34us) -]

Count [10 thousands]

R s))
40
.
20
10

0 10 20 30 40 50 60 70 80 90 100
10-LOAD Latency [microseconds]

TOSHIBA

Leading Innovation >>>

44

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

45

Discussion

m cpuset
= Advantages
Contributed to shorten average response time with SCHED-LOAD
Contributed to shorten max response time with 10-LOAD
= Disadvantage
Max response time with SCHED-LOAD is longer than nocgroups

m blkio

= There are no advantages
= Disadvantage
Max response time with NOLOAD is longer than nocgroups

m cpuset + blkio

= Advantages are same as cpuset
= There are no disadvantages

TOSHIBA 46

Leading Innovation >>>

Contents

Background
Introduction to Cgroups
Use cases

Evaluation

Discussion

m Conclusions

TOSHIBA

Leading Innovation >>>

47

Conclusions

m Cgroups can supply a mechanism of resource
partitioning
= Real-time tasks can use partitioned resources and achieve many
advantage against general-purpose tasks

= cpuset and blkio subsystems contributes to shorten response time for
a real-time task

m We want to partition more resources for real-time tasks

= Not only short response time but also management, control and
protection

= Do you have other ideas and use cases for partitioning of real-time
tasks?

TOSHIBA 48

Leading Innovation >>>

References

m Resource Management Guide - Red Hat Customer Portal

m https://access.redhat.com/site/documentation/en-
US/Red Hat Enterprise Linux/6/html/Resource Management Guide/

TOSHIBA 49

Leading Innovation >>>

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/

