2005.01.26

SZWG Meeting at Plenary Meeting

Hiro Suyama

M)
o CELIITHA FOrUn

CE Linux Forum Member Confidential 1

Observation from Profiling 44’%,;

Q.
2, Z
o : %
Mobile 10%
Applcation Tnternet 5% | 17%0
Multimedia | 2%
L7 Mobile TEPh
/7 N\
—/ AOIMFontsToolkit | 17%
Middlewsare S 4 7%
\ Idultimedia 2% R4
N\

S~ o _ Internet _ 1% 7T

-

> Command/glibc 26530
ElernelTlzerland Diriver module A% | 37

L

——— Kernel size is relatively small issue from this table, however, looking at

the absolute number of 1M+ byte is still problem.
Rootfs looks bigger fat

Middleware is another big fat (outside the scope of SZWG)

ﬂ:’ CE Linux Forum Member Confidential 2

e

-’

L

Result Summary

TI/OMAP
Narre of Method ROM (kernel) Rakilkernell | ROM (rootFS) | RAM (root FS) | Bootup Time | Exec Speed
SizelB) | Ratio |Size(kB} Ratio |SizelkBi| Ratio |SizelkB)| FRatio actual | Fatio Jactual| Ratio
Typical Boot a5y 100.0 1251 | 1000 | 2556 (1000 [1000 2521 [100.0 A [1000
Kernel XIP 1150 | 2065 207 16.5 SRR | 1000 o] P P&
initrd Elals 101.4 1265 | 1011 1189 | 465 2556 M M
cramfs 551 589 1272 |10 .7 1380 | 4.0 o] 2813 | G497 P&
fffg2 280 1059 1326 (1060 | 1816 | 583 0] 4831 1916 MA
KMC/5HA4
Narme of Method ROM Ckarnell Ramikarnel) | ROM (rootFS) | RAM (root FS) | Bootup Time | Exec Speed
SizelkB! | Ratio |SizetKB)| Ratio |SizekB!| Ratio |Size(KB!| Ratio actual | Ratio |actual|l Ratio
Typical Boot 687 100.0 1502 | 1000 | 2640 (1000 0] 1000 SEEY (1000 | 383 | 1000
Kernel ®IP 1367 11990 277 15.4 2640 | 1000 0] G677 | 696 0.6 14.6
initrd G758 a8.7 1454 9848 1276 48.3 2640 108858 (11468 | 37.3 274
cramfs G697 1015 1564 | 1035 1472 | 5618 0] 979 (1.0 | 408 | 1057
ffs? 740 1077 1606 10658 1600 | 606 0 10350 (1080 | 356 930
Renesas/5H4
Narme of Method ROM Ckerneld Rabikerneld | ROM (rootFS? | RAM troot FS) | Bootup Time | Exec Speed
SizelB) | Patio |SizefkB} Ratio |SizelkB)| Ratio |Size(kB)| FRatio actual | Fatio |actuall Ratio
Typical Boot G54 100.0 1425 1000 | 2644 (1000 [1000 39585 (1000 | 578 | 1000
Kernel XIP 1317 201 .4 245 17.2 2644 | 1000] 2082 | 521 a6.8 f.3.0
initrd G633 101.4 1446 | 101 .5 1276 | 48.3 2644 4643 [116.2 [487 | 6.0
cramfs 545 a8.8 1443 |101.3 1507 | 570 [A 270 [1002
L= GO0 1065 1496 (1060 | 1644 | /2.2 0] GOAS (18159 | 360 | /38
NEC /VR55004 SOC
e o Mt RO Ckerneld Ratikernell | ROM (rootFS) | RAM (root FS) | Bootup Time | Exec Speed
SizelkB) | Patio |SizefkB} Ratio |SizetkE)| Ratio |Size(kB)| FRatio actual | Fatio |actuall Ratio
Typical Boot a0y 100.0 1637 | 1000 | 3548 [1000 [1000 3454 (1000 | 575 | 1000
Kernel XIP 1438 | 1782 2 16.6 a548 | 1000 [2470 | T07F 434 | 581
CompressFSlnitrd] 816 1011 1664 1010 | 1249 | 352 3548 a8l [2M11.2 [BER2 | 1d1.2
cramfs 705 99.0 1653 |10 | 1536 | 43.3 [3484 (1000 | 623 | 108.3
fffe2 244 1046 118 1049 1726 | 486 0] 5024 [1667 [BEE | 066

Activity past 6 months

Data Measurement on 2.6 Kernel
Measure 2.6 Kernel data to compare the trend
(zlmage, Kernel XIP,initrd, cramfs, jffs2) x
(K-ROM, K-RAM, Rtfs-ROM, Rtfs-RAM,boot, exec speed)
Linux Tiny
Prioritize patches for embedded platform
Static RAM/ROM reduction
Dynamic RAM reduction
Port those patches to several embedded platform
Renesas SH4 board
Toshiba TX49(MIPS) board
Application XIP
cramfs with linear option patch released
Squashfs
Partial data captured
glibc
Experience shared on optimization, glibc vs uClibc

ﬁ CE Linux Forum Member Confidential

e

Data Measurement on 2.6 Kernel

-2.4 Vs 2.6 -

Kernel ROM size

become about 25% bigger Bootup time

become worse

/P\enesas SHA4 Platform \[\ N

ROM (kdmel\ | Ramld el | ROM (ootFs) | RAM (oot FS) EIDDtup,T‘}me\ Exec Jpeed
Mame of Method F— : : : : , : , : :
Elze{KB}y Flatn:u‘ SIEE{KE}Y Hatn:u‘ SizeKB)| Ratio |SizetkB) Ratio | actual Ratn:u\ actual IRatn:u
Typical Boot 654 J1o00)] 1425 J1o00)| 2644 [1000 0 1000 | 3985 [J1ooo Y 578 [J1o00
Kernel XIP 1317 J1000 || 245 f1o000 || 2644 | 1000 0 2082 1000 | 369 (1000
initrd g63 01000 ¥ 1446 1000 § 1276 [1000 | 2644 3643 (1000 | 497 J1000
cramfs §45 N 1000 | 1443|1000 § 1507 (1000 0 MA 57.9 11000
iffa? ao0 1000 | 1496 | 1000 | 1644 [1000 0 g0E5 | 1000 | 369 1000
Typical Boot26) | 831 1271 | 1614|l113.3 | 2644 [1000 | © 4327 | 1083 171.4]11235
kernel ¥IP(26) | 1689 {1282 | 164 | 66.9 | 2644 [100.0 | © 2247 | 1075 |385 |104.3
initrd(2.6) 832 1255) 1628 11126)| 1314 [103.0 | 2644 7503 | 1616 |59.6 1119.9
cramfal2 62 819 11270 1598 {1107) 1507 [100.0 | © 4311 71.4 [[123.3
iffs2(2 5 64 l1252]) 1684 M1126]] 1644 (1000 | O 6366 11045 J| 56 |h51.8

2.4 | 2420 U

2.6 | 267

Kernel RAM size _
become about 10% bigger Execution Speed

ﬁ CE Linux Forum iviemper Confidential imprOVEd

S

Linux Tiny Scope

Trial #1 Reduce Static RAM/ROM

Stepl
Develop the "script" which automate the process

of 1) apply and build linux tiny patch individually

2) Capture static RAM/ROM size and create record
Step2

Create individual config . Actually apply, build and
capture the data. Determine "top n" patches —

Step3
Port "top n" patches onto embedded platform and

measure the size effect. Also measure side effect
such as bootup time, execution speed.

Trial #2 Reduce Dynamic RAM - '

Try replace memory allocator from SLAB to
SLOB on the embedded platform.

CE Linux Forum Member Confidential 6

L=

Linux Tiny Status

Step 1 and 2 completed !!
Executive Summary

2.6.10-tiny1.patch

ratio(total{M) |

Patch Name Effect Note
tiny-cflags 273K 9.7% x86 depend
Kill-printk 187K [6.0%

Removal ex-POSIX and POSIX 53K 1.7%

timer group patch

No-bug group patch 37K 1.2%

Tiny-VT 33K | 1.05%

Raw Data
Marne of the patch text data bes| totaldec{vi[totalih totalihex filename | ratiottext) | ratiotdatal | ratioftotal

timy—cflags patch 1985951 aao0s1| o 2846002 ObAda? |wmlinux 875 1000 91 3
kill-printk patch 2104407 ao7od0] o 2931 447 2 chaf? wrrilifiLe 53 2 oG 2 940
kodk—oa patch 2187716 507678] O 3085395 OFIHAS wrrilifiL 96 5 1055 g 2
it pet oh 2055304 a55321] 0 10715 0F773h |wmlinux 99 5 99 5 99 7
futex—gueues.patch 2258786 isyer=ley] 114737 2fH61 yimlinux 100.0 985 585
con_buf patch 2058785 asa463| 0 3115248 2FRBFO winlinLi 1000 99 A 99 5
bh walt_gueLe heads.pa 2258786 asa463| 0 3115249 2FaEF winlinLx 1000 9% A 9% 5
namei—inlines patch 2055330 aao10s| o 115435 oas wrmlinLx 95 5 1000 | _8a8
bve o AEee 5. patnk, 0050705 856575 0 211576 0 FR(=F TeLI A000] oof | / o9

S R CCELIIC o

CE Linux Foﬁ}m\Me{nber Confidentia—"

~_/

Linux Tiny Status

Step 3 partially been tried !!
Potential room for contribution been found.

data on embedded platform (SH4)

Marme of the patch| text data bes total |Uni ratiottext) |ratinldata) ratiu:u{l::ssﬂragbﬁ(e@%ra/tiﬁéggi
Original size 2430265 5158532 50368 30401465 505 100 1000 100.0 Y 1000 :
kill—pri 2121813 B15881a| 72980 2714285 28.0 a7.a 1001 a0 7 EB_SQ 550 >
CEill—printhk. mtch@b 2123713 518460] 89344 2731617 515 a7.4 J/ 89 5 085 898 1.2

-

Good Result !!

Modification done for
console operation (by Mitsubishi)

and improved the performance Oops !!

Note:
bigger number = higher performance

ﬁ CE Linux Forum Member Confidential 8

Trial #1 Save Static ROM/RAM usage

Step 3
Which patches to port ?

Kill-printk
POSIX related group patch

No-bug group patch
Tiny-VT J

Which Platform ?
Who to port ?

Trial #2 Save Dynamic RAM allocation

Which patches to port ?

Replace SLAB to SLOB
How Can we measure the result ?

Which tool to be used ?
Which application to be used ?

Which Platform ?
Who to port ?

wW CE Linux Forum Member Confidential

e

> High Priority Candidate

GLIBC

(1) Replace GLIBC with uClibC

Could achieve 897K size reduction

Had Problem with 3" parties binary

Motorola’s soluiton

1) Rebuild each component — Request 3" Party vendors to rebuild

2) Modify uClibc to be API compatible with glibc ,including adding a versioning
system and structure modification.

3) Write a light weight “translation” or “pass through version of glibc that satisfies
the requirements of each executable are met, but that calls the uClibc library to
perform the necessary work.

1) is not feasible solution as we may not be able to get 3rd party to agree to build all the
binaries and resolve issues. Its an expensive solution.

2) We have limited resource/time to put our efforts in adding api's And making uClibc compatible.

3) this is what we have been playing with.. we set a goal of building some user apps with a
lightweight version of glibc and tried to port some ulibc functionality. Again we do not have
resource/time at this time to test them thoroughly and make it more generic... its more of a hack
right now.

de CE Linux Forum Member Confidential 10

e

Ideas on small-library compatibility with glibc, from an expert

http://tree.celinuxforum.org/CelfPubWiki/SubsetLibcSpecification

> Possible Solution:

> 1) Rebuild each component.Request 3rdpart vendors to rebuild.

> 2) Modify uClibcto be API compatible with glibc, including adding a versioning system and structure

> modification.

> 3) Write a lightweight "translation™ or "pass-through” version of glibc that satisfies the requirements of each executable
> are met, but that calls the uClibclibrary to perform the necessary work.

| strongly recommend #1. Recompiling applications with uClibc is almost always very easy to do for applications
that already compile with glibc.

If the vendor is not technically capable of doing the needed work, I have a consulting company that would be happy to
Provide assistance to 3rd vendors and to Motorola. :-)

> As | understood, uClibc - from API point of view - is very
> close to glibc. Which part can be incompatible ?

uClibc and glibc have nearly identical APIs. With a very few
exceptions, almost any program that will compile with glibc
will also compile with uClibc.

http://www.uclibc.org/cgi-bin/cvsweb/uClibc/docs/Glibc_vs_uClibc_Differences.txt?view=auto

W CE Linux Forum Member Confidential 11

Ideas on small-library compatibility with glibc, from an expert

http://tree.celinuxforum.org/CelfPubWiki/SubsetLibcSpecification

> |s there a way to make uClibc fully compatible with glibc ?

In my opinion, uClibc _is_ compatible with glibc. But it is compatible at the source code (API) level. Most code

can be easily recompiled vs the latest uClibc. What you are really asking about is binary, or ABI compatibility.

The largest issues preventing uClibc from having an ABI that is 100% binary compatible with glibc are the following

things.

1) Naming. uClibc's shared library loader, C library, and even start up functions are named differently from their
glibc counterparts.

2) uClibc sometimes uses different opaque data types than glibc.

3) uClibc directly uses the linux kernel's arch specific data structures, such as 'stuct stat', while glibc almost
always translates kernel data structures into separate user space data structures. This causes uClibc to be
somewhat more tightly coupled with a particular kernel major version (2.2.x, 2.4.x, 2.6.x) than glibc. When
changing from 2.4.x to 2.6.x, it is advisable to recompile uClibc.

4) uClibc's stdio code is completely different from glibc's. This causes significant ABI differences for functions that
are possible pthread cancellation points, for functions that are allowed to be macros by SuSv3. Additionally, uClibc
allows BUFSIZ to be set to values different from that used by glibc. Some stdio functions, such as fcloseall() and
__fpending() can behave differently than their glibc counterparts. Other stdio functions, such as fscanf() behave
differently in cases where glibc does not comply with SuSv3.

5) /etc/timezone and the whole zoneinfo directory tree are not supported by uClibc. uClibc uses /etc/TZ, set per the value
of the TZ env variable, per SuSv3.

6) Symbol versioning. All glibc symbols have specific symbol versioning applied, so glibc does not have an ‘fopen' symbol,
but rather has a ‘fopen@GLIBC_2.0' symbol. In some cases, such as with 'sys_siglist', glibc has a number of

implementations of the same symbol (sys_siglist@GLIBC_2.0, sys_siglist@GLIBC_2.1, and
sys_siglist@@GLIBC_2.3.3) in order to maintain ABI compatibility with earlier versions of glibc.

doubtless there are other reasons why uClibc's ABI does not and will not easily match the glibc ABI.

CE Linux Forum Member Confidential 12

R

Can We, as SZWG recommend uClibc as preferable
Solution for CE devices and encourage 3" party vender to
switch to uClibc ?

im CE Linux Forum Member Confidential

13

GLIBC

(2) Optimize glibc(or uClibc)
Could achievelOO0K size reduction
Had the following problem

- Requires rerun of the tool on each version of software release.

- Dynamic loading off apps may be a problem.

This solution would be okay for closed system.
Would be good idea to define optimized lib based

on product profile.
SZWG may collabrate with MPPWG to define

optimized lib for mobile phone.

mW CE Linux Forum Member Confidential

14

Application XIP

Status The patch of cramfs with linear option is available.
Nice to have measurement on size and side effect.

Squashfs

Status Some experience shared. The number look attractive.

Nice to have measurement on size and side effect.

Motorola’s case 2.55M(cramfs) = 2.27M(Squashfs) 11%
Sony’s case 57% reduction compared with ext2(?)

mW CE Linux Forum Member Confidential

15

o W=

CE Linux Forum Member Confidential

16

o W=

CE Linux Forum Member Confidential

17

