
CE Linux Forum Member Confidential 1

2005.01.26

SZWG Meeting at Plenary Meeting

Hiro Suyama

CE Linux Forum Member Confidential 2

Kernel size is relatively small issue from this table, however, looking at
the absolute number of 1M+ byte is still problem.
Rootfs looks bigger fat
Middleware is another big fat (outside the scope of SZWG)

Observation from Profiling Refresh
Memory

CE Linux Forum Member Confidential 3

Result Summary
zImage vs Kernel XIP, initrd vs cramfs vs jffs2

Refresh
Memory

CE Linux Forum Member Confidential 4

Activity past 6 months
Data Measurement on 2.6 Kernel

Measure 2.6 Kernel data to compare the trend
(zImage, Kernel XIP,initrd, cramfs, jffs2) x

(K-ROM, K-RAM, Rtfs-ROM, Rtfs-RAM,boot, exec speed)
Linux Tiny

Prioritize patches for embedded platform
Static RAM/ROM reduction
Dynamic RAM reduction

Port those patches to several embedded platform
Renesas SH4 board
Toshiba TX49(MIPS) board

Application XIP
cramfs with linear option patch released

Squashfs
Partial data captured

glibc
Experience shared on optimization, glibc vs uClibc

CE Linux Forum Member Confidential 5

Data Measurement on 2.6 Kernel
- 2.4 vs 2.6 -

Kernel ROM size
become about 25% bigger

Kernel RAM size
become about 10% bigger

Bootup time
become worse

Execution Speed
improved

2.4
2.6

Renesas SH4 Platform

2.4.20

2.6.7

CE Linux Forum Member Confidential 6

Linux Tiny Scope
Trial #1 Reduce Static RAM/ROM

Step1
Develop the "script" which automate the process
of 1) apply and build linux tiny patch individually
2) Capture static RAM/ROM size and create record
Step2
Create individual config . Actually apply, build and
capture the data. Determine "top n" patches

Step3
Port "top n" patches onto embedded platform and
measure the size effect. Also measure side effect
such as bootup time, execution speed.

Trial #2 Reduce Dynamic RAM

Try replace memory allocator from SLAB to
SLOB on the embedded platform.

CE Linux Forum Member Confidential 7

Linux Tiny Status
Step 1 and 2 completed !!

2.6.10-tiny1.patchExecutive Summary

Patch Name Effect Note
tiny-cflags 273K 9.7% x86 depend
kill-printk 187K

53K

No-bug group patch 37K 1.2%
Tiny-VT 33K 1.05%

6.0%
Removal ex-POSIX and POSIX
timer group patch

1.7%

Raw Data

CE Linux Forum Member Confidential 8

Linux Tiny Status
Step 3 partially been tried !!
Potential room for contribution been found.

data on embedded platform (SH4)

Good Result !!

Oops !!
Note:
bigger number = higher performance

Modification done for
console operation (by Mitsubishi)
and improved the performance

CE Linux Forum Member Confidential 9

Trial #1 Save Static ROM/RAM usage
Step 3

kill-printk
POSIX related group patch
No-bug group patch
Tiny-VT

Which Platform ?
Who to port ?

Which patches to port ?

Trial #2

High Priority Candidate

Save Dynamic RAM allocation

Replace SLAB to SLOB
Which patches to port ?

Which Platform ?
Who to port ?

How Can we measure the result ?
Which tool to be used ?
Which application to be used ?

CE Linux Forum Member Confidential 10

GLIBC

(1) Replace GLIBC with uClibC
Could achieve 897K size reduction
Had Problem with 3rd parties binary
Motorola’s soluiton
1) Rebuild each component – Request 3rd Party vendors to rebuild
2) Modify uClibc to be API compatible with glibc ,including adding a versioning

system and structure modification.
3) Write a light weight “translation” or “pass through version of glibc that satisfies

the requirements of each executable are met, but that calls the uClibc library to
perform the necessary work.

1) is not feasible solution as we may not be able to get 3rd party to agree to build all the
binaries and resolve issues. Its an expensive solution.

2) We have limited resource/time to put our efforts in adding api's And making uClibc compatible.
3) this is what we have been playing with.. we set a goal of building some user apps with a

lightweight version of glibc and tried to port some ulibc functionality. Again we do not have
resource/time at this time to test them thoroughly and make it more generic... its more of a hack
right now.

CE Linux Forum Member Confidential 11

Ideas on small-library compatibility with glibc, from an expert
http://tree.celinuxforum.org/CelfPubWiki/SubsetLibcSpecification

> Possible Solution:
> 1) Rebuild each component.Request 3rdpart vendors to rebuild.
> 2) Modify uClibcto be API compatible with glibc, including adding a versioning system and structure
> modification.
> 3) Write a lightweight "translation" or "pass-through" version of glibc that satisfies the requirements of each executable
> are met, but that calls the uClibclibrary to perform the necessary work.

I strongly recommend #1. Recompiling applications with uClibc is almost always very easy to do for applications
that already compile with glibc.
If the vendor is not technically capable of doing the needed work, I have a consulting company that would be happy to
Provide assistance to 3rd vendors and to Motorola. :-)

> As I understood, uClibc - from API point of view - is very
> close to glibc. Which part can be incompatible ?

uClibc and glibc have nearly identical APIs. With a very few
exceptions, almost any program that will compile with glibc
will also compile with uClibc.

http://www.uclibc.org/cgi-bin/cvsweb/uClibc/docs/Glibc_vs_uClibc_Differences.txt?view=auto

CE Linux Forum Member Confidential 12

Ideas on small-library compatibility with glibc, from an expert
http://tree.celinuxforum.org/CelfPubWiki/SubsetLibcSpecification

> Is there a way to make uClibc fully compatible with glibc ?

In my opinion, uClibc _is_ compatible with glibc. But it is compatible at the source code (API) level. Most code
can be easily recompiled vs the latest uClibc. What you are really asking about is binary, or ABI compatibility.
The largest issues preventing uClibc from having an ABI that is 100% binary compatible with glibc are the following
things.
1) Naming. uClibc's shared library loader, C library, and even start up functions are named differently from their

glibc counterparts.
2) uClibc sometimes uses different opaque data types than glibc.
3) uClibc directly uses the linux kernel's arch specific data structures, such as 'stuct stat', while glibc almost

always translates kernel data structures into separate user space data structures. This causes uClibc to be
somewhat more tightly coupled with a particular kernel major version (2.2.x, 2.4.x, 2.6.x) than glibc. When
changing from 2.4.x to 2.6.x, it is advisable to recompile uClibc.

4) uClibc's stdio code is completely different from glibc's. This causes significant ABI differences for functions that
are possible pthread cancellation points, for functions that are allowed to be macros by SuSv3. Additionally, uClibc
allows BUFSIZ to be set to values different from that used by glibc. Some stdio functions, such as fcloseall() and
__fpending() can behave differently than their glibc counterparts. Other stdio functions, such as fscanf() behave
differently in cases where glibc does not comply with SuSv3.

5) /etc/timezone and the whole zoneinfo directory tree are not supported by uClibc. uClibc uses /etc/TZ, set per the value
of the TZ env variable, per SuSv3.

6) Symbol versioning. All glibc symbols have specific symbol versioning applied, so glibc does not have an 'fopen' symbol,
but rather has a 'fopen@GLIBC_2.0' symbol. In some cases, such as with 'sys_siglist', glibc has a number of
implementations of the same symbol (sys_siglist@GLIBC_2.0, sys_siglist@GLIBC_2.1, and
sys_siglist@@GLIBC_2.3.3) in order to maintain ABI compatibility with earlier versions of glibc.

doubtless there are other reasons why uClibc's ABI does not and will not easily match the glibc ABI.

CE Linux Forum Member Confidential 13

Can We, as SZWG recommend uClibc as preferable
Solution for CE devices and encourage 3rd party vender to
switch to uClibc ?

CE Linux Forum Member Confidential 14

GLIBC

(2) Optimize glibc(or uClibc)
Could achieve100K size reduction
Had the following problem
- Requires rerun of the tool on each version of software release.

- Dynamic loading off apps may be a problem.

This solution would be okay for closed system.
Would be good idea to define optimized lib based
on product profile.
SZWG may collabrate with MPPWG to define
optimized lib for mobile phone.

CE Linux Forum Member Confidential 15

Application XIP

Status The patch of cramfs with linear option is available.
Nice to have measurement on size and side effect.

Squashfs

Status Some experience shared. The number look attractive.
Nice to have measurement on size and side effect.

Motorola’s case 2.55M(cramfs) 2.27M(Squashfs) 11%
Sony’s case 57% reduction compared with ext2(?)

CE Linux Forum Member Confidential 16

CE Linux Forum Member Confidential 17

