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What is LKST
• LKST

– Event Tracer Tracing Kernel State Transition for Linux Kernel
• Process Management, Interrupt, Exceptions, System Calls, Memory 

Management, Networking, IPC, Locks, Timer, Oops, etc.

– Helps Us to do System Failure Analysis and Performance Analysis
– One of the Results of Collaborative Work of IBM, Fujitsu, NEC and 

Hitachi
– Currently Maintained by Hitachi
– Originally Implemented on IA-32 PC Server
– SH-4 Port, MIPS Port and ARM Port Available for Embedded 

Systems
– Available at http://sourceforge.net/projects/lkst
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Features
• Hooks in Kernel Source Code to Trap Kernel Event

– Default Hook Set to Call Out Kernel to LKST Module (Event Handler)
– Place Hooks in Arbitrary Kernel Locations
– Low Overhead Hook Mechanism by using Kernel Hooks

• Activate/Deactivate Every Hook without Kernel Rebuild
– Pick up Just Essential Kernel Event for System Analysis

• Event Handler to Write Kernel State in Buffer (Event Buffer)
– Pick up Just Essential Kernel State Information

• Various Type of Data Structure and Control for Event Buffer
– Keep Just Important Information in Small Event Buffer

• Everything is Customizable On-the-Fly
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LKST Structure
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Hook Point
• Kernel Location Corresponding to Event (State Transition)

– Insert Hook in the Kernel Source Code to Trap each Event
– Event Takes Place when Kernel Execution Reaches Hook Point
– Call Out of Kernel to Event Handler to Generate LKST Message

Kernel Execution Thread
static int functionA()
{
unsigned int flags;

If ( 1 ) {
LKST_HOOK(EVENT_1,arg1,arg2,...);

}

spin_lock_irqsave(&lockA, flags);
...

void handler_B(arg1,arg2,...)
{

lkst_evhandlerprim_entry_log(..
.);
}

Event Handler

Branch

Hook Point
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Event Handler
• Function Called with Event Trapped

– Calling Event Handler with PID and 4 Additional Args
– System Defined Event Handler

• DEFAULT (ID=1)
• Nothing (ID=255)

– User Defined Event Hander (Extended Event Handler)
• Implemented and Installed Like Kernel Modules
• Adding Extended Event Handler Like Device Driver

“context_switch”, 00,  0001300,  10584453412, 214325555, ”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PID

Arg1 Arg2

Event TimeStamp(sec, nanosec)CPU
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MaskSet
• Connecting Event With Event Handler

– System Defined MaskSet
• RDEFAULT: Primary Events Trapped Call Default Event Handler
• RALL: All Events Trapped Call Default Event Handler
• RNOTHING: No Event Trapped

– User Defined MaskSet
• LKST Utility Command

Event
MaskSet

LKST_HOOK(EVENT_1...); void handler_A(...)

void handler_B(...)

void handler_C(...)

maskset A
EVENT_1⇒handler_B
EVENT_2⇒handler_A
EVENT_3⇒handler_C
EVENT_4⇒Nothing    

・
・
・

Event Handler

Link Event with Handler

maskset B
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Event Buffer
• Consists of Fixed Size of Mem Blocks Linked Together

– Create and Adding a Block to Linked List On-the-Fly
– Event Handler Writes Message to Event Buffer like Ring Buffer
– LKST Utilities Reads data from Event Buffer like FIFO

• Event Buffer per CPU
FIFO

未使用バッファ Write

Read

FIFO

Free Buffers
Write

Read
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Ring Buffer

FIFO

未使用バッファ Write

Read

FIFO

未使用バッファ Write

Read

FIFO

Free Buffers
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Data Structure of Event Buffer
Event Buffer0

Event Buffer1

Event Buffer2

(C) Ring Structure
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Event Buffer0

Event Buffer1

Event Buffer2
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• Hardware Configuration
– 8 CPU PC Server

• Pentium III Xeon 700MHz (L2: 1MB) x 8
• Memory: 4GB

LKST Overhead (Kernel Build)
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LKST Overhead (WebStone)
• Hardware Configuration

• 8 CPU PC Server
• 16 Client PCs (Pentium III 700MHz / 768MB RAM)
• Gigabit Ethernet

(測定環境：OSDLジャパン提供)
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ProcessTrace: Outline
• Visualizing State Transition of a Process

– State of Process: Running, Ready, Block
– Picking up Events, “PROCESS_CONTEXTSWITH” and 

“PROCESS_WAKEUP” to See State Transition

Ready

Running

BlockWakeUp

Context 
Switch

Sleep
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ProcessTrace： Implementation
• Pick up Process State Transition

– Create MaskSet to Pick Up the Events
• “PROCESS_CONTEXTSWITH”
• “PROCESS_WAKEUP”

– Read Trace Data from Event Buffer

↓

• Trace Process State Transition
– Convert of Address of “task_struct” to PID
– Trace State Transition of the Process

↓

• Plot Trace Data of Process State Transition

Ready

Running

Block
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ProcessTrace: Creation of MaskSet
• Event and Args of Event Handler

• PROCESS_CONTEXTSWITCH (Event ID=1)
– Arg1： Address of task_struct of the Previous Process
– Arg2： Address of task_struct of the Target Process
– Arg3： State of the Previous Process after the Context Switch

• PROCESS_WAKEUP (Event ID=2)
– Arg1： Address of task_struct of the Target Process

Create Null MaskSet
Connect EventID=1 with default Handler

Switch to the new MaskSet

$ lkstm read -m 0 | lkstm write -m 3
$ lkstm config -m 3　 1　 1
$ lkstm config -m 3 　2 　1
$ lkstm set -m 3

Event ID Handler ID

RNOTHING

Connect EventID=2 with default Handler
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ProcessTrace: TraceData
• lkstbuf Command

– Read the TraceData from Event Buffer
$ lkstbuf read –f trace.log

– Print in CSV Format
$ lkstbuf print -r -C -S -V -f trace.log > trace.csv

LKST Format

CSV　Sec Resolution

“context_switch”, 00,  0001300,  10584453412, 214325555, ”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PID

Arg1 Arg2

Event TimeStamp(sec, nanosec)CPU

trace.csv
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ProcessTrace: PID and Task_Struct
• Conversion Table of address of “Task_Struct” to PID

– From Trace Data of “PROCESS_CONTEXTSWITCH”

“context_switch”,00,0001300,  10584453412,214325555,”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PIDArg1 PID and Task_Struct of the Process

trace.db

trace.csv

$ grep context trace.csv | cut -d, -f3,7 | sort | uniq > trace.db

00000000,0xc0422000
00000001,0xdc85c000
00000002,0xdd864000
00000007,0xdf46e000
・
・
・
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ProcessTrace: State Transition
• State Transition

– running　
a) Target Process of Context Switch

– Arg2 of PROCESS_CONTEXTSWITCH
– block

b) Previous Process of Context Switch
– Arg1 of PROCESS_CONTEXTSWITCH
– Arg3 is not “TASK_RUNNING”

– ready　
c) Previous Process of Context Switch

– Arg1 of PROCESS_CONTEXTSWITCH
– Arg3 is “TASK_RUNNING”

d) Process Waked up
– Arg1 of PROCESS_WAKEUP

Ready

Running

Block

b

a
d

c
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ProcessTrace: Visualization

• Execution of Emacs
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Collaboration of LTT and LKST
• Formally

– Too hard to make kernel trace tools, like LTT (Linux Trace 
Toolkit) and LKST, incorporated in Linux kernel

• Good News
– LTT patches were accepted to Andrew Morton’s -mm kernel 

tree.
• Useful LKST Features for Kernel Debugging

– Flexible Insertion of Hooks in Arbitrary Kernel Location
– Event Buffer to Keep Essential Trace in Restricted Memory
– Everything is Customizable On-the-Fly

• MUST be Small Patches
– Small Set of Hooks and Dynamic Kernel Probe Like “kprobe”

and “GILK”
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