
January 25, 2005 CE Linux Forum Members
Confidential

1

LKST: Linux Kernel State Tracer

Renesas, Hitachi, Lineo

January 25, 2005 CE Linux Forum Members
Confidential

2

What is LKST
• LKST

– Event Tracer Tracing Kernel State Transition for Linux Kernel
• Process Management, Interrupt, Exceptions, System Calls, Memory

Management, Networking, IPC, Locks, Timer, Oops, etc.

– Helps Us to do System Failure Analysis and Performance Analysis
– One of the Results of Collaborative Work of IBM, Fujitsu, NEC and

Hitachi
– Currently Maintained by Hitachi
– Originally Implemented on IA-32 PC Server
– SH-4 Port, MIPS Port and ARM Port Available for Embedded

Systems
– Available at http://sourceforge.net/projects/lkst

January 25, 2005 CE Linux Forum Members
Confidential

3

Features
• Hooks in Kernel Source Code to Trap Kernel Event

– Default Hook Set to Call Out Kernel to LKST Module (Event Handler)
– Place Hooks in Arbitrary Kernel Locations
– Low Overhead Hook Mechanism by using Kernel Hooks

• Activate/Deactivate Every Hook without Kernel Rebuild
– Pick up Just Essential Kernel Event for System Analysis

• Event Handler to Write Kernel State in Buffer (Event Buffer)
– Pick up Just Essential Kernel State Information

• Various Type of Data Structure and Control for Event Buffer
– Keep Just Important Information in Small Event Buffer

• Everything is Customizable On-the-Fly

January 25, 2005 CE Linux Forum Members
Confidential

4

LKST Structure

Task
Switch Lock Interrupt

Disk
（File System）

Linux Kernel

Event
Handler

LKST

System
Call I/O

File Out

・・・

Mask Set

Event
Handler

Event
Handler

Message

HOOK Point

Crash Dump
Tools（LKCD）

System Failure
Data Capture

Event Buffer

Call Out of Kernel to LKST

Link Event with Handler

Event Logging Area

Events

January 25, 2005 CE Linux Forum Members
Confidential

5

Hook Point
• Kernel Location Corresponding to Event (State Transition)

– Insert Hook in the Kernel Source Code to Trap each Event
– Event Takes Place when Kernel Execution Reaches Hook Point
– Call Out of Kernel to Event Handler to Generate LKST Message

Kernel Execution Thread
static int functionA()
{
unsigned int flags;

If (1) {
LKST_HOOK(EVENT_1,arg1,arg2,...);

}

spin_lock_irqsave(&lockA, flags);
...

void handler_B(arg1,arg2,...)
{

lkst_evhandlerprim_entry_log(..
.);
}

Event Handler

Branch

Hook Point

January 25, 2005 CE Linux Forum Members
Confidential

6

Event Handler
• Function Called with Event Trapped

– Calling Event Handler with PID and 4 Additional Args
– System Defined Event Handler

• DEFAULT (ID=1)
• Nothing (ID=255)

– User Defined Event Hander (Extended Event Handler)
• Implemented and Installed Like Kernel Modules
• Adding Extended Event Handler Like Device Driver

“context_switch”, 00, 0001300, 10584453412, 214325555, ”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PID

Arg1 Arg2

Event TimeStamp(sec, nanosec)CPU

January 25, 2005 CE Linux Forum Members
Confidential

7

MaskSet
• Connecting Event With Event Handler

– System Defined MaskSet
• RDEFAULT: Primary Events Trapped Call Default Event Handler
• RALL: All Events Trapped Call Default Event Handler
• RNOTHING: No Event Trapped

– User Defined MaskSet
• LKST Utility Command

Event
MaskSet

LKST_HOOK(EVENT_1...); void handler_A(...)

void handler_B(...)

void handler_C(...)

maskset A
EVENT_1⇒handler_B
EVENT_2⇒handler_A
EVENT_3⇒handler_C
EVENT_4⇒Nothing

・
・
・

Event Handler

Link Event with Handler

maskset B

January 25, 2005 CE Linux Forum Members
Confidential

8

Event Buffer
• Consists of Fixed Size of Mem Blocks Linked Together

– Create and Adding a Block to Linked List On-the-Fly
– Event Handler Writes Message to Event Buffer like Ring Buffer
– LKST Utilities Reads data from Event Buffer like FIFO

• Event Buffer per CPU
FIFO

未使用バッファ Write

Read

FIFO

Free Buffers
Write

Read

CPU0

CPU１

Ring Buffer

FIFO

未使用バッファ Write

Read

FIFO

未使用バッファ Write

Read

FIFO

Free Buffers
Write

Read

CPU0

CPU１

Ring Buffer

January 25, 2005 CE Linux Forum Members
Confidential

9

Data Structure of Event Buffer
Event Buffer0

Event Buffer1

Event Buffer2

(C) Ring Structure

Event Buffer0

Event Buffer1

Event Buffer2

(A) No Structure

Event Buffer0

Event Buffer1

Event Buffer2

(B) List Structure

Event Buffer0 Event Buffer1

Even Buffer2

(E) Tree Structure

Event Buffer0

Event Buffer1

Event Buffer2

(D) Partial Ring Structure

January 25, 2005 CE Linux Forum Members
Confidential

10

• Hardware Configuration
– 8 CPU PC Server

• Pentium III Xeon 700MHz (L2: 1MB) x 8
• Memory: 4GB

LKST Overhead (Kernel Build)

Elapsed Time (sec)

(測定環境：OSDLジャパン提供)

Overhead (%) pure
no module

RNOTHING
RDEFAULT

RALL

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

2CPU 4CPU 8CPU

0

50

100

150

200

250

300

2CPU 4CPU 8CPU

January 25, 2005 CE Linux Forum Members
Confidential

11

LKST Overhead (WebStone)
• Hardware Configuration

• 8 CPU PC Server
• 16 Client PCs (Pentium III 700MHz / 768MB RAM)
• Gigabit Ethernet

(測定環境：OSDLジャパン提供)

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 12 16 -4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 4 8 12 16

Throughput (Mbps) Overhead (%)

of Clients
of Clients

pure
no module

RNOTHING
RDEFAULT

RALL

January 25, 2005 CE Linux Forum Members
Confidential

12

ProcessTrace: Outline
• Visualizing State Transition of a Process

– State of Process: Running, Ready, Block
– Picking up Events, “PROCESS_CONTEXTSWITH” and

“PROCESS_WAKEUP” to See State Transition

Ready

Running

BlockWakeUp

Context
Switch

Sleep

January 25, 2005 CE Linux Forum Members
Confidential

13

ProcessTrace： Implementation
• Pick up Process State Transition

– Create MaskSet to Pick Up the Events
• “PROCESS_CONTEXTSWITH”
• “PROCESS_WAKEUP”

– Read Trace Data from Event Buffer

↓

• Trace Process State Transition
– Convert of Address of “task_struct” to PID
– Trace State Transition of the Process

↓

• Plot Trace Data of Process State Transition

Ready

Running

Block

January 25, 2005 CE Linux Forum Members
Confidential

14

ProcessTrace: Creation of MaskSet
• Event and Args of Event Handler

• PROCESS_CONTEXTSWITCH (Event ID=1)
– Arg1： Address of task_struct of the Previous Process
– Arg2： Address of task_struct of the Target Process
– Arg3： State of the Previous Process after the Context Switch

• PROCESS_WAKEUP (Event ID=2)
– Arg1： Address of task_struct of the Target Process

Create Null MaskSet
Connect EventID=1 with default Handler

Switch to the new MaskSet

$ lkstm read -m 0 | lkstm write -m 3
$ lkstm config -m 3　 1　 1
$ lkstm config -m 3 　2 　1
$ lkstm set -m 3

Event ID Handler ID

RNOTHING

Connect EventID=2 with default Handler

January 25, 2005 CE Linux Forum Members
Confidential

15

ProcessTrace: TraceData
• lkstbuf Command

– Read the TraceData from Event Buffer
$ lkstbuf read –f trace.log

– Print in CSV Format
$ lkstbuf print -r -C -S -V -f trace.log > trace.csv

LKST Format

CSV　Sec Resolution

“context_switch”, 00, 0001300, 10584453412, 214325555, ”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PID

Arg1 Arg2

Event TimeStamp(sec, nanosec)CPU

trace.csv

January 25, 2005 CE Linux Forum Members
Confidential

16

ProcessTrace: PID and Task_Struct
• Conversion Table of address of “Task_Struct” to PID

– From Trace Data of “PROCESS_CONTEXTSWITCH”

“context_switch”,00,0001300, 10584453412,214325555,”pointer to task struct(prev)”,

0xda42800,0x00000000,”pointer to task struct(next)”, 0xda42400,0x00000000, ...

PIDArg1 PID and Task_Struct of the Process

trace.db

trace.csv

$ grep context trace.csv | cut -d, -f3,7 | sort | uniq > trace.db

00000000,0xc0422000
00000001,0xdc85c000
00000002,0xdd864000
00000007,0xdf46e000
・
・
・

January 25, 2005 CE Linux Forum Members
Confidential

17

ProcessTrace: State Transition
• State Transition

– running　
a) Target Process of Context Switch

– Arg2 of PROCESS_CONTEXTSWITCH
– block

b) Previous Process of Context Switch
– Arg1 of PROCESS_CONTEXTSWITCH
– Arg3 is not “TASK_RUNNING”

– ready　
c) Previous Process of Context Switch

– Arg1 of PROCESS_CONTEXTSWITCH
– Arg3 is “TASK_RUNNING”

d) Process Waked up
– Arg1 of PROCESS_WAKEUP

Ready

Running

Block

b

a
d

c

January 25, 2005 CE Linux Forum Members
Confidential

18

ProcessTrace: Visualization

• Execution of Emacs

January 25, 2005 CE Linux Forum Members
Confidential

19

Collaboration of LTT and LKST
• Formally

– Too hard to make kernel trace tools, like LTT (Linux Trace
Toolkit) and LKST, incorporated in Linux kernel

• Good News
– LTT patches were accepted to Andrew Morton’s -mm kernel

tree.
• Useful LKST Features for Kernel Debugging

– Flexible Insertion of Hooks in Arbitrary Kernel Location
– Event Buffer to Keep Essential Trace in Restricted Memory
– Everything is Customizable On-the-Fly

• MUST be Small Patches
– Small Set of Hooks and Dynamic Kernel Probe Like “kprobe”

and “GILK”

	LKST: Linux Kernel State Tracer
	What is LKST
	Features
	LKST Structure
	Hook Point
	Event Handler
	MaskSet
	Event Buffer
	Data Structure of Event Buffer
	LKST Overhead (Kernel Build)
	LKST Overhead (WebStone)
	ProcessTrace: Outline
	ProcessTrace： Implementation
	ProcessTrace: Creation of MaskSet
	ProcessTrace: TraceData
	ProcessTrace: PID and Task_Struct
	ProcessTrace: State Transition
	ProcessTrace: Visualization
	Collaboration of LTT and LKST

