
Presented by

Date

Rethinking the core OS in
2015

Bernhard "Bero" Rosenkränzer

Embedded Linux Conference
Europe, 2015

Are alternatives to gcc, libstdc++
and glibc viable yet? (And how do I

use them?)

The traditional approach

Building a Linux system traditionally
meant starting with building a core
consisting of binutils, gcc and glibc
(sometimes uClibc).

This is still a very viable approach,
but now there are other options...

Binutils

Parts of binutils are still needed - in
particular, a linker. (The traditional
BFD ld can be replaced with gold,
also part of binutils).

lld and mclinker are making some
progress, but are not quite there yet.

Binutils

gas is sometimes needed because
clang’s integrated as doesn’t support
legacy constructs in common use (e.
g. pre-unified syntax on ARM)

Binutils

Tools like nm need to get more
complex: They should now deal with
3 types of input:
● regular object files
● LLVM bytecode (clang -flto)
● gcc interim code (gcc -flto)

#!/bin/sh
REAL_NM=binutils-nm
PARENT="`readlink /proc/$PPID/exe`"
WRAPPED=false
If /proc isn't mounted, let's do the least evil thing we can
if [-z "$PARENT"]; then
 WRAPPED=true
elif echo $PARENT |grep -qE -- '-nm$'; then
 # If we're being called by gcc-nm or llvm-nm, we're already
 # wrapped (and need to make sure we don't call ourselves recursively)
 WRAPPED=true
elif echo $PARENT |grep -qE -- 'qemu'; then
 # Fun... We're running inside qemu binfmt_misc emulation,
 # so we have to determine our parent the evil and less
 # reliable way...
 if grep -qP -- '-nm\x00' /proc/$PPID/cmdline; then
 WRAPPED=true
 fi
fi

If we're being called by gcc-nm or llvm-nm, we're
already wrapped...
if ! $WRAPPED; then
 for i in "$@"; do
 ["`echo $i |cut -b1`" = "-"] && continue
 if echo $i |grep -qE '\.(o|a)$' && [-e $i]; then
 if LC_ALL=C gcc-nm $i 2>&1 |grep -q "File format not
recognized"; then
 which llvm-nm &>/dev/null && REAL_NM=llvm-nm
 break
 fi
 fi
 done
 if ["$REAL_NM" = "binutils-nm"] && which gcc-nm &>/dev/null; then
 REAL_NM=gcc-nm
 fi
fi
exec $REAL_NM "$@"

gcc

gcc can, for the most part, be
replaced with clang these days.

OpenMandriva switched to clang as
its primary compiler last year.
OpenMandriva 3 (soon to be
released) is almost fully built with
clang 3.7.

gcc

The transition was unproblematic,
most packages that failed failed due
to bad code or use of nonstandard
gcc extensions.

We force some packages to build with
CC=gcc CXX=g++.

gcc

We still need to build gcc even if we
don’t want to use it as a compiler
though: We need libgcc, libgcc_s,
libatomic and friends (and potentially
libstdc++)

gcc

clang’s __GNUC__ macro definitions are too
conservative, claiming to be gcc 4.2.1, causing
code that checks __GNUC__ to leave out
optimizations (sometimes, it will even fail to build
because of assumptions about lack of standards
compliance in what seems to be an old version of
gcc)

Patching it to say 4.9 produces better code.
(real fix is to check for features instead of compiler
versions - but let’s be realistic…)

Things to avoid for compatibility

● Nested functions
● Variable length arrays in structs
● Variable length arrays of non-POD types
● Empty structs
● Array subscripts of type “char” (value

[‘0’]=0;)
● Reserved words (“_Nullable” defined by

both clang and Qt)

Things to avoid for compatibility

● Undefined internal functions and variables --
even if they aren’t used:

static void a();

void b() {

 if (0)

 a();

}

Things to avoid for compatibility

● gcc 5.x’s changed libstdc++ ABI
https://llvm.org/bugs/show_bug.cgi?id=23529

○ clang doesn’t implement gcc’s __attribute__
((abi_tag)), needed by gcc 5.x’s libstdc++ built in
new ABI mode

○ build gcc with --with-default-libstdcxx-abi=gcc4-
compatible

for now if both compilers need to coexist (and
you want libstdc++ instead of libc++)

https://llvm.org/bugs/show_bug.cgi?id=23529
https://llvm.org/bugs/show_bug.cgi?id=23529

Things to avoid for compatibility

● C89-isms and C++98-isms, e.g. changed
meaning of “extern inline”

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}
size of a pointer - not quite 30

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

always true -- address of an array. This
should have been a[i]

clang vs. gcc?

Both compilers are good. Performance of
compiled code is similar.

clang:
● tends to be faster at compiling
● is easier to work on (more readable code)
● error messages tend to be more readable
● has an edge in targeting GPUs

clang vs. gcc?

gcc:
● has been around longer - has had more

time to learn about special cases and how
to optimize them

● currently better at OpenMP
● supports more targets (most targets

supported only by gcc are obsolete-ish
though)

clang vs. gcc?

It’s generally a good idea to try compiling your
code with both compilers - either one may
catch a bug the other didn’t see.

glibc

musl is at a point where using it as
the sole system libc is viable (if you
don’t care about binary compatibility
with other distributions).

glibc

clang currently doesn’t support musl,
but that’s fixable. Patches at
https://abf.io/openmandriva/llvm

Patches are needed mostly to change
the path to the dynamic linker.

gcc trunk supports musl.

https://abf.io/openmandriva/llvm
https://abf.io/openmandriva/llvm

glibc

Android’s Bionic is becoming a viable
alternative as well - while it started its
life as a small but not very optimized
libc that does only what Android
needs, it is highly optimized
(especially for ARM) and nearly
complete these days.
Still lacks SysV shared memory.

Things to do for compatibility

● Make sure to #include the headers
the code needs instead of cutting
corners and e.g. omitting
#include <string.h>
because your favorite libc’s stdlib.h
happens to #include <string.h> and
you’re #including that

Things to do for compatibility

● Avoid using deprecated APIs - they
tend to be the lowest priority for
new libcs

● Don’t assume _GNU_SOURCE,
_BSD_SOURCE and friends
default to what you’re used to

● Don’t assume __linux__ and
__GLIBC__ are the same thing

Things to do for compatibility

● Some locale-aware variants of libc
routines (isalnum_l etc.) may not
exist (yet?).

libc comparison

glibc:
● most standards compliant
● supports most targets
● binary compatibility with a wide

range of systems

libc comparison

musl:
● small memory footprint
● fast
● complete enough for most uses
● doesn’t carry around a lot of cruft

(which is both a good and a bad
thing)

libc comparison

bionic:
● small memory footprint
● fast
● designed for Android’s needs, you

may need to add some functions
from another libc

libc comparison

uclibc:
● small memory footprint
● highly customizable build system

allows stripping out unneeded bits
● last official release in 2012 (may

want to check uclibc-ng)
● supports many older CPU targets,

but not aarch64

libstdc++

LLVM’s libc++ is generally ready to
replace libstdc++ where binary
compatibility is not a concern.

libstdc++

Unfortunately, binary compatibility is a
concern for many uses -- and while
libstdc++ and libc++ can coexist,
problems start showing up with other
libraries (Qt linked to libc++, binary-
only application uses Qt and links to
libstdc++ → crash)

Things to do for compatibility

● Code to the C++11, or better yet,
C++14 and C++1z standards.
libc++’s support for older standards
is limited.

● Don’t assume STL headers include
other headers just because
libstdc++ does.

libstdc++

libc++ is often the better choice if
binary compatibility is not a concern --
roughly 50% space saved, full C++14
support.

Android is doing the right thing by
switching to libc++ (from STLport)

libstdc++

libc++ is tested almost exclusively
with clang - worth considering when
picking the compiler or STL
implementation

crosscompiling

Switching to an LLVM/clang based
toolchain is interesting for
crosscompiling - a regular clang
already has crosscompiling support
built in, no need to build a fresh
compiler for every new target

crosscompiling

--sysroot in clang needs work: Still
sees host system headers.
Wrapper scripts can be used to work
around this.

crosscompiling
Lopts="-L$SYSROOT/usr/lib -L$SYSROOT/lib"
Warnings like "argument unused during compilation"
can break configure scripts
for i in "$@"; do
 if ["$i" = "-E" -o "$i" = "-c"]; then
 Lopts=""
 break
 fi
done
exec clang -target $TARGET \
 --sysroot=$SYSROOT -nostdinc \
 -isysroot $SYSROOT \
 -isystem $SYSROOT/usr/include \
 $Lopts \
 -ccc-gcc-name $TARGET-gcc "$@"

crosscompiling

Automated toolchain and core system
bootstrapping being worked on:
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-
musl.sh

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh

crosscompiling

The idea: pass a target triplet, get a
ready to use root filesystem that is
ready to compile other code (e.g.
applications with bogus Makefiles that
aren’t ready for crosscompiling)

crosscompiling

But of course… compiling on target
devices may be slow, so can we
crosscompile some more?

reusing existing packages

Fortunately, well done rpm packages
have been using macros for invoking
autoconf-generated scripts and
cmake for a while...
(%configure, %cmake)

reusing existing packages

… so making packages ready for
crosscompiling is often just a matter of
making %configure and %cmake do the
right thing:
● Add --host=... --target=... to

%configure
● Add -DCMAKE_TOOLCHAIN_FILE=... -

DCMAKE_CROSS_COMPILING:BOOL=ON to
%cmake

Questions? Comments?

bero@linaro.org

