Linaro
p

Rethinking the core OS in
2015

Are alternatives to gcc, libstdc++

rrrrrrrrrrrrrrrrrrrrrrrrrr

use them?)

Embedded Linux Conference

The traditional approach

Building a Linux system traditionally
P meant starting with building a core
- consisting of binutils, gcc and glibc
- (sometimes uClibc).

This is still a very viable approach,

' but now there are other options...
» ‘Llnaro

) BFD Id can be replaced with gold,
@ A also part of binutils).

lld and mclinker are making some

progress, but are not quite there yet.
' ‘Llnaro

Binutils

gas is sometimes needed because
p clang’s integrated as doesn't support
¥ legacy constructs in common use (e.

1

. 4 g. pre-unified syntax on ARM)

Linaro
r

Binutils

Tools like nm need to get more

g complex: They should now deal with
S 3 types of input:

regular object files
LLVM bytecode (clang -flto)
gcc interim code (gcc -flto)

Linaro
r

#!/bin/sh

REAL NM=binutils-nm

PARENT=""readlink /proc/$PPID/exe "

WRAPPED=false

If /proc isn't mounted, let's do the least evil thing we can

if [-z "SPARENT"]; then
WRAPPED=true
elif echo $PARENT |grep -gE -- '-nm$'; then

If we're being called by gcc-nm or llvm-nm, we're already
wrapped (and need to make sure we don't call ourselves recursively)
WRAPPED=true
elif echo SPARENT |grep -gE -- 'gemu'; then
Fun... We're running inside gemu binfmt misc emulation,
so we have to determine our parent the evil and less
reliable way...
if grep -gP -- '-nm\x00' /proc/$PPID/cmdline; then
WRAPPED=true
fi
fi

Linaro

If we're being called by gcc-nm or llvm-nm, we're

already wrapped...

if ! SWRAPPED; then
for i in "s$@"; do
[""echo $1 |cut -bl'" = "-"] && continue
if echo $i |grep -gE '\.(ola)$' && [-e $i]; then
if LC ALL=C gcc-nm $i 2>&l1 |grep -g "File format not
recognized"; then
which llvm-nm &>/dev/null && REAL NM=llvm-nm
break
fi
fi
done
if ["SREAL NM" = "binutils-nm"] && which gcc-nm &>/dev/null;

REAL NM=gcc-nm
fi
fi
exec SREAL NM "s@"

then

Linaro

| OpenMandriva switched to clang as
% its primary compiler last year.
@ OpenMandriva 3 (soon to be
™ released) is almost fully built with
| clang 3.7.

Linaro
.

gcc

The transition was unproblematic,
P most packages that failed failed due
<5 P to bad code or use of nonstandard

Y gcc extensions.

PSS Ve force some packages to build with
P CC=gcc CXX=g++.

Linaro
r

We still need to build gcc even if we
=% don’t want to use it as a compiler

4 ,' though: We need libgcc, libgcc_s,

| libatomic and friends (and potentially
- libstdc++)

Linaro
.

gcc

clang’s _ GNUC__ macro definitions are too
conservative, claiming to be gcc 4.2.1, causing

- code that checks GNUC __ to leave out
optimizations (sometimes, it will even fail to build
. because of assumptions about lack of standards

&= compliance in what seems to be an old version of
=" gco)

Patching it to say 4.9 produces better code.
(real fix is to check for features instead of compilgfiro
versions - but let’s be realistic...) :

Things to avoid for compatibility

Nested functions

Variable length arrays in structs
Variable length arrays of non-POD types
Empty structs

Array subscripts of type “char” (value
[*071=0;)

e Reserved words (* Nullable” defined by
both clang and Qt)

Linaro
r

Things to avoid for compatibility

® Undefined internal functions and variables --
even if they aren’t used:

static void a{() ;
vold b () {
1t (0)

a();
’ Linaro

Things to avoid for compatibility

e gcc 5.x’s changed libstdc++ ABI
https://llvm.org/bugs/show_bug.cgi?id=23529

o clang doesn’t implement gcc’s __ attribute
((abi_tag)), needed by gcc 5.x’s libstdc++ built in
new ABI mode

O build gcc with —--with-default-libstdcxx-abi=gcc4d-

compatible

for now if both compilers need to coexist (and
you want libstdc++ instead of libc++) 'iLinaro

https://llvm.org/bugs/show_bug.cgi?id=23529
https://llvm.org/bugs/show_bug.cgi?id=23529

Things to avoid for compatibility

® (C89-isms and C++98-isms, e.g. changed
meaning of “extern inline’

Linaro

Interesting bugs found by clang

vold something (char n[30]) {

1f (!memcmp (buffer, n, sizeof(n))) {

Linaro

Interesting bugs found by clang

vold something (char n[30]) {

if (!memcmp (buffer, n,) {

size of a pointer - not quite 30

Linaro

Interesting bugs found by clang

unsigned char al[X];
for (1nt 1=0; 1<X; 1++)
b = a ? tagCpet++ : tagSce+t++;

Linaro

Interesting bugs found by clang

unsigned char al[X];
for (int 1=0; 1<X; 1++)
b =tange++ : tagScet++;

always true -- address of an array. This
should have been a][i]

Linaro

clang vs. gcc?

Both compilers are good. Performance of
compiled code is similar.

clang:
| o tends to be faster at compiling
IS easier to work on (more readable code)
error messages tend to be more readable
has an edge in targeting GPUs

Linaro
r

clang vs. gcc?

gcc:
has been around longer - has had more
time to learn about special cases and how
to optimize them
currently better at OpenMP
supports more targets (most targets
supported only by gcc are obsolete-ish
though)

Linaro
r

clang vs. gcc?

It's generally a good idea to try compiling your
= code with both compilers - either one may
. catch a bug the other didn’t see.

Linaro

glibc

musl is at a point where using it as
¥ the sole system libc is viable (if you
don’t care about binary Compatibility

Linaro
r

glibc

clang currently doesn’t support musil,
~* but that's fixable. Patches at
https://abf.io/openmandriva/llvm

Patches are needed mostly to change
72 the path to the dynamic linker.

Linaro
.

‘¥ gcce trunk supports musl.

https://abf.io/openmandriva/llvm
https://abf.io/openmandriva/llvm

glibc

Android’s Bionic is becoming a viable

@ alternative as well - while it started its

| life as a small but not very optimized

y libc that does only what Android

" needs, it is highly optimized
(especially for ARM) and nearly

- complete these days.

| Still lacks SysV shared memory. =%

< Things to do for compatibility

Make sure to #include the headers
the code needs instead of cutting
corners and e.g. omitting

#include <string.h>

because your favorite libc’s stdlib.h
happens to #include <string.h> and

you're #including that ,
'._ILlnaro

Things to do for compatibility

Avoid using deprecated APIs - they

tend to be the lowest priority for

new libcs

Don’'t assume GNU_ SOURCE,
_BSD SOURCE and friends

default to what you're used to

Don’'t assume _ linux__ and

__GLIBC__ are the same thing#"2

Things to do for compatibility

Some locale-aware variants of libc
routines (isalnum_| etc.) may not
exist (yet?).

Linaro

libc comparison

glibc:
most standards compliant
supports most targets
binary compatibility with a wide
range of systems

Linaro
r

libc comparison

musil:
small memory footprint
fast
complete enough for most uses
doesn’t carry around a lot of cruft
(which is both a good and a bad
thing)

Linaro
r

libc comparison

bionic:
small memory footprint
fast
designed for Android’s needs, you
may need to add some functions
from another libc

Linaro
r

libc comparison

uclibc:
small memory footprint
highly customizable build system
allows stripping out unneeded bits
last official release in 2012 (may
want to check uclibc-ng)
supports many older CPU targets,
but not aarch64 gritale

libstdc++

LLVM's libc++ is generally ready to
¥ replace libstdc++ where binary
compatibility is not a concern.

Linaro

libstdc++

| Unfortunately, binary compatibility is a
’ 4;,.4:? ¥ concern for many uses -- and while
Iibstdc++ and libc++ can coexist,
problems start showing up with other
© libraries (Qt linked to libc++, binary-
only application uses Qt and links to

PN |ibstdc++ — crash) §
_ '._Ilnaro

Things to do for compatibility

Code to the C++11, or better yet,
C++14 and C++1z standards.
libc++'s support for older standards
IS limited.

Don’'t assume STL headers include
other headers just because

libstdc++ does. ,
‘Llnaro

P 4 support.

- switching to libc++ (from STLport)

Linaro
r

libstdc++

libc++ Is tested almost exclusively
=% with clang - worth considering when
picking the compiler or STL

PL 4 implementation

Linaro
r

¥ crosscompiling - a regular clang
PL 4 already has crosscompiling support
% built in, no need to build a fresh

73 compiler for every new target

Linaro
r

crosscompiling

--sysroot in clang needs work: Still
¥ sees host system headers.
Wrapper scripts can be used to work

Linaro
r

crosscompiling

Lopts="-LS$SYSROOT/usr/lib -LS$SSYSROOT/lib"

Warnings like "argument unused during compilation"
can break configure scripts

for 1 in "$@"; do

if ["Si" = "-E" -0 "S$i" = "-c¢"]; then
Lopts=""
break
fi
done

exec clang -target S$STARGET \
--sysroot=$SYSROOT -nostdinc \
-isysroot $SYSROOT \
-isystem S$SYSROOT/usr/include \
SLopts \
-ccc-gcc-name $TARGET-gcc "$@"

Linaro

crosscompiling

Automated toolchain and core system
¥ bootstrapping being worked on:

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-

Linaro

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh

crosscompiling

The idea: pass a target triplet, get a
Y ready to use root filesystem that is

@ ready to compile other code (e.g.

“ appllcatlons with bogus Makefiles that
P aren’t ready for crosscompiling)

Linaro
.

crosscompiling

But of course... compiling on target
% devices may be slow, so can we
crosscompile some more?

Linaro

reusing existing packages

Fortunately, well done rpm packages

P have been using macros for invoking

autoconf-generated scripts and

L | cmake for a while...
- (%configure, %cmake)

Linaro
r

reusing existing packages

. S0 making packages ready for
crosscompiling is often just a matter of
’ making %configure and %cmake do the

Add ——host— -—-target=... 1o
%configure
Add -DCMAKE TOOLCHAIN FILE=... -

DCMAKE CROSS COMPILING:BOOL=O¥tO
T o Inaro
%cmake i

Questions? Comments?

Linaro
’IIIII

bero@linaro.org

