
Getting a Time of Flight Camera Working in Linux,

the Full Story from Kernel to User Space

Bogdan Togorean

Analog Devices Inc.

#lfelc @twitterhandle

#ossummit #lfelc

Agenda

• About me

• Time of Flight (ToF)

• Analog Devices 3D ToF

• User Space SDK

• ADI ToF special considerations

• Linux Kernel Driver – implementation details

• ADI ToF SDK – implementation details

• Supported Platforms Peculiarities
– Qualcomm® APQ8016e (Dragonboard 410C)

– Raspberry Pi

– NXP I.MX8M Mini (Variscite DART-MX8M-Mini)

– Nvidia Jetson Nano

– Nvidia Xavier AGX

– Rockchip RK3399pro

#osseu

About me

• Embedded Software Engineer at Analog Devices since 2019

• Member of ADI Systems Development Group (SDG)

• Developer of drivers for ADI parts:

– Audio codecs (ALSA)

– ToF sensor driver (V4L2)

– HDMI Video transmitters (DRM)

– High speed converters (IIO)

• Focus on open source products

• Previous experience in automotive embedded software

#lfelc

Time Of Flight

• 3D Time of Flight is an industry term used to describe a type of scanner less
(aka ‘Flash’) LIDAR (Light Detection and Ranging) used for depth sensing

• Used for short ranges typically < 10m from the source

• How Does It Work?
– It uses light, continuous or pulsed to illuminate objects within a field of view

– Light hits the objects and is reflected onto a sensor

– The time it takes for the light to reflect off the objects and return to the source is
measured

– Using the known value for the speed of light the distance of the object from the
source is determined

– This information can then be used to create a depth or distance map of the
scene in 3D

Time of Flight (ToF) calculation

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒

2
where: speed of light = 3.0 x 108 m/s
Example:
t= 20ns

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
3.0 x108m/s ∗ 20ns

2
= 3.0 meters

#lfelc

3D ToF Development Kit

• 3D ToF Development Platform AD-96TOF1-EBZ

• Based on ADI’s ADDI9036 ToF processor

• Output: Depth & IR images @ 640 x 480 pixels (VGA),
30fps

• Distance sensing range: 20cm up to 6m

• Measurement accuracy: typical < 2% of the measured
distance

• Connectivity: 96Boards compatible connector, 15 pin
FPC connector (PI, Nvidia)

• Supported platforms:

– 96Boards: DragonBoard410c, Thor96

– Raspberry Pi 3 & 4

– Nvidia: Jetson Nano, Xavier AGX, Xavier NX

#osseu

User Space SDK

• Open source SDK

• Runs both on PCs and embedded systems

• Support for multiple OSs

– Linux, Windows, (Mac OS)

• Multiple connectivity options

– MIPI, USB, Ethernet

• Wrappers for popular software frameworks &
languages

– C++, OpenCV, Python, Open3D

– MATLAB, Robot OS

• Supported development platforms

– Dragonboard 410c, Thor96

– Raspberry Pi 3,4

– Nvidia Jetson Nano, Xavier AGX, Xavier NX

– Rockchip RK3399pro

#osseu

ADI ToF special considerations (1/3)

• Output data type: MIPI RAW12 format LSB first

• This type requires unpacking
– Performed by ISP on Raspberry Pi, Nvidia Jetson Nano,

Nvidia Xavier AGX and NXP I.MX8

– Implemented in SDK for Dragonboard, RK3399

W0[11:4] W1[11:4] W1[3:0] W0[3:0] W2[11:4] W3[11:4] W3[3:0] W2[3:0]

LSBs

BYTE 0 BYTE 1 BYTE 2 BYTE 4 BYTE 5 BYTE 6

LSBs

W638[11:4] W639[11:4] W1[3:0] W0[3:0]

BYTE 957 BYTE 958 BYTE 959

…..

#osseu

ADI ToF special considerations (2/3)

• 3 possible MIPI output modes:

FS

VC = DEPTH
DEPTH DATA

LINE = 1

DEPTH DATA

LINE = 2

DEPTH DATA

LINE = 3

DEPTH DATA

LINE = 480

FE

VC = DEPTH

FS

VC = IR
IR DATA

LINE = 1

IR DATA

LINE = 2

IR DATA

LINE = 3

IR DATA

LINE = 480

FE

VC = IR

…

…

DEPTH only

IR only

DEPTH & IR

……
FS

VC = IR

IR DATA

LINE = 1
IR DATA

LINE = 480

FE

VC = IR
FS

VC = DEPTH

DEPTH DATA

LINE = 1
DEPTH DATA

LINE = 480

FE

VC = DEPTH

#osseu

ADI ToF special considerations (3/3)

• Multiple operating ranges:

– near (25 – 80 cm)

– medium (30 cm – 3 m)

– far (3 – 6 m)

• To each operating range correspond its own program instructions block (Firmware)

+ module specific data (Calibration)

• ADDI9036 chip has only volatile memory

• Calibration data is module specific written in production phase

• Some camera module implementations store FW + Calibration in EEPROM, others

only Calibration

• Calibration data is stored in EEPROM using IEE754 floating point format

#osseu

Linux Kernel Driver – implementation details (1/6)

• Sensor driver integrated in V4L2 Framework

• Located in /drivers/media/i2c/addi9036.c

• OV5640 Camera Driver as starting point

• Register v4l2-subdev with a source pad

• Expose standard & custom IOCTLs

• 2 major versions until final form

#osseu

Linux Kernel Driver – implementation details (2/6)

• Initial version – handy for Camera/SDK development

• No clock handling (controlled by loading FW)

• Relied on old v4l2_subdev_core_ops->s_power()

• Custom controls for FW & calibration loading from Userspace

• This was not acceptable for upstreaming

static const struct v4l2_ctrl_config addi9036_ctrl_chip_config = {
.ops = &addi9036_ctrl_ops,
.id = V4L2_CID_AD_DEV_SET_CHIP_CONFIG_QUERY,
.name = "chip_config",
.type = V4L2_CTRL_TYPE_U16,
.def = 0xFF,
.min = 0x00,
.max = 0xFFFF,
.step = 1,
.dims = { 2048 },
.elem_size = 2

};

#osseu

Linux Kernel Driver – implementation details (3/6)

SDK ADDI9036
Driver

EEPROM
Driver

Open ImShow

Req Calibration

Req FW Data

Return Calibration

Return FW Data

Call
VIDIOC_S_EXT_CTRLS(V4L2_CID_AD_DEV_SET_CHIP_CONFIG)

Set Range

Call VIDIOC_STREAMON

Return Data

#osseu

Linux Kernel Driver – implementation details (4/6)

• Version two of driver moved FW loading from SDK to
driver

• Added handling of optional reset GPIO using GPIO
consumer framework

• Implement runtime PM for handling sensor power state

• Get FW and calibration from rootfs using Linux Firmware
Framework

• Implement custom Integer type IOCTL for selecting
operating range

• Chip is programmed at stream_on with corresponding
FW based on selected operating range

#osseu

Linux Kernel Driver – implementation details (5/6)

SDK ADDI9036
Driver

Linux
Firmware

API

Open ImShow

Req FW Block

Return FW Block

Call
VIDIOC_S_EXT_CTRLS(V4L2_CID_ADDI9036_OPERATING_MODE)

Set Range

Call VIDIOC_STREAMON

Return Data

probe

Parse FW

Write FW through I2C

#osseu

addi9036-fw.bin

Linux Kernel Driver – implementation details (6/6)

A D D I 9 0 3 6 X X X X

MAGIC[8]

le32 mode_id

header

X X X X X X X X X X X X

le32 modes_nr

le32 size_bytes le16 data le16 data

…

X X X X X X X X X X X X

le16 data le16 data le16 data le16 data le16 data le16 data

mode_block

#osseu

ADI ToF SDK – implementation details (1/4)

• SDK changed in parallel with the two main
versions of the driver

• Scripts for easy compilation and dependencies
installation

• Raw data processing (unpacking, reordering,
shifting)

• Access and acquire data from temperature
sensors installed on camera module

• Examples for frame acquisition, remote frame
acquisition and display of data using OpenCV

• Some advanced image processing examples like
detection of hand signs to play Rock, Paper and
Scissors

• Tools for EEPROM read / write and performing
calibration

#osseu

ADI ToF SDK – implementation details (2/4)

• Unpacking required for Dragonboard and is implemented in SDK

• The frame is read from the device as an array of uint8_t

• Every 3 uint8_t can produce 2 uint16_t that have only 12 bits in
use.

W0[11:4] W1[11:4]

BYTE 0 BYTE 1 BYTE 2

• Performed for both DEPTH and IR frames on each sample

• Implemented with loop unroll and making use of ARM NEON has

no major load impact on CPU.

uint16_t pix1 uint16_t pix2

W0[3:0]W1[3:0]

#osseu

ADI ToF SDK – implementation details (3/4)

• For platforms where IR and DEPTH frames come concatenated

on same buffer a deinterleaving operation of data is required.

• Makes sense only if both DEPTH and IR streams are enabled

……
FS

VC = IR

IR DATA

LINE = 1
IR DATA

LINE = 480

FE

VC = IR

FS

VC = DEPTH
DEPTH DATA

LINE = 480

FE

VC = DEPTH

DEPTH buffer IR buffer

DEPTH DATA

LINE = 1

…
.

…
.

#ossummit #lfelc

ADI ToF SDK – implementation details (4/4)

• Select local/remote context

• Select Range

• Live run or playback of prerecorded data

• Compute distance of center point

#osseu

Supported Platforms Peculiarities – Dragonboard 410C

• First platform supported

• Does not perform unpacking in ISP

• DEPTH and IR streams should be set on same VC. This means that will

end up in same buffer and deinterleaving must be performed.

• Video pipeline should be configured using media-ctl

• The CAMSS video capture device does not take over and export the

connected sensor IOCTLs

#osseu

Supported Platforms Peculiarities – Raspberry PI

• Use of bcm2835-unicam.c

• Capable of performing RAW12 unpacking in ISP

• DEPTH and IR configured on same VC

• Video pipeline configuration is not explicitly

required

• Unicam driver add controls from the subdevice

#osseu

Supported Platforms Peculiarities - NXP I.MX8M Mini

• Use of mx6s_capture.c

• RAW12 format supported by HW but not
implemented in driver

• Support unpacking in ISP

• I.MX8M Mini does not support Virtual
Channels

• Discard frames if both DEPTH and IR streams
are enabled

• v4l2_device_register_subdev_nodes was not
called at complete notifier callback

#osseu

Supported Platforms Peculiarities - Nvidia Jetson Nano

• Perform unpacking of RAW12 to uint16

• Does not support Virtual Channels

• Can be captured only IR or DEPTH but
not both in the same time

• Video pipeline is configured
automatically based on DT bindings

• Driver required adaptations for
integration in NVIDIA Camera Common
framework

#osseu

Supported Platforms Peculiarities - Nvidia Xavier AGX

• Same driver as on Jetson can be used

• Support Virtual Channels

• An individual /dev/video device is created for
each VC

• SDK should handle this specific case and
open two video devices.

• Two instances of addi9036 driver are
instantiated but one is dummy

• Subdev IOCTLs should be accessed through
/dev/v4l-subdev

#osseu

Supported Platforms Peculiarities – Rockchip RK3399pro

• Custom v4l driver stack

• Drivers located in separate folder
– kernel/drivers/media/i2c/soc_camera/rockchip

• A customized driver was created to handle
– specific calls for ioctl handling

– setting the image format

– initializing the driver

• Custom devicetree including additional information
such as camera name, camera FoV, image size
and orientation

• Does not perform unpacking in ISP

#osseu

Thank you for your attention

• Questions? Comments?

• Bogdan Togorean – bogdan.togorean@analog.com

