
IoT TLS: Why It Is Hard
David Brown



What is IoT
“The internet of things, or IoT, is a system of 
interrelated computing devices, mechanical and 
digital machines, objects, animals or people that are 
provided with unique identifiers (UIDs) and the 
ability to transfer data over a network without 
requiring human-to-human or human-to-computer 
interaction.”

— TechTarget

https://internetofthingsagenda.techtarget.com/definition/unique-identifier-UID
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT












5 Worst Examples
● The Mirai Botnet
● The Hackable Cardiac Devices from St. Jude
● The Owlet WiFi Baby Heart Monitor Vulnerabilities
● The TRENDnet Webcam Hack
● The Jeep Hack



“IoT Security is not Interesting”

— James Mickens
Harvard University,
Associate Professor,
Authority on All Things



“TLS is the only good thing we have”

— James Mickens
Harvard University,
Associate Professor,
Authority on All Things



Raspberry Pi
● Memory: GBs
● Flash: GBs
● CPU: GHz





Tiny devices
● Memory: 10s KB
● Flash: 100s KB
● CPU: 10s MHz



Middle Devices
● Memory: 100s Kb
● Flash: 1Mb
● CPU: 10-100 MHz



How Does TLS?







TLS Handshake

Client Hello
Client Random
Cipher Suites

Server Hello
Server Random

Cipher Suite

Server Cert

Server Key Exchange

Server Hello Done
Client Key Exchange

Change Cipher

Encrypted Handshake
Change Cipher

Encrypted Handshake



Handshake Requirements
● Ciphersuite agreement
● Verification of certificate, not optional

“TLS done incorrectly is worse than not using it at all. At least with no 
TLS you know that the communication is insecure.” — hallway talk at 
ICMC18



Implementation Requirements
● Memory
● Time
● Randomness



Traditional TLS API

open socket

set bio

tls_handshake

tx

rx

application
tls_read
tls_write

Init library
ctr_drbg

ssl

ssl_config

x509_crt

entropy

ctr/entropy

setup config

set hostname



Improving Layering
● Stream abstraction

○ Common in higher level languages
○ Same API for TLS and non-TLS

● Put under Socket API
○ Not really done in Linux (really, not done in Linux)
○ Keeps same API
○ The layering is wrong, though



Zephyr’s Approach
● Second approach
● Already offloading support, including one that has TLS
● Abstractions are “scary”



API Mismatch
Socket API

connect
send

receive
…

tls read

return

available wait for …

would-block

tls write

return

available wait for …

would-block

Network receive 
wakes all waiters



Where are we now?
● Video of a demo?
● Zephyr network API changes
● JWT, time, MQTT


