
1

The 5 Success Factors to deploy Yocto
for “Production Grade” Embedded/IoT

Devices

Adrien Leravat – Senior Software Architect

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

2

Software Partner
Design, Build and Run Edge to Cloud Platforms

19 years in embedded and IoT software

5 offices in US, Germany, UK and France

IoT Services by Avnet Company

Cloud Partners Tech Partners

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

3

Production grade?

“Works”

Photos by Yung Chang and Heeren Darji on Unsplash

Works!

vs

https://unsplash.com/@yungnoma?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@heerenaway?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cables-mess?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

4

The 5 success factors
Production-ready IoT device

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

5

The 5 success factors
Production-ready IoT device

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

6

The 5 key factors
Production-ready IoT device

• Checklist for these 5 area

• Look for checkboxes

• Some are “Nice to have”

• Aims to provide a 360 view, to be
adapted on a case-by-case basis

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

1. Easy to Maintain

Devices should be…

Photo by Markus Spiske on Unsplash

https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/tractor-kid?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

8

EASY TO MAINTAIN

❑ Provide dev. environment

• Git, python, repo, …

• Container and companion scripts

• Prefer prebuilt container image
• Stable environment and package versions

❑ Document the main dev. workflow

• Essential to newcomers and to share knowledge
within the team

• Tough learning curve otherwise 📈

• Crunch time = no time for doc but help wanted!

❑ Shrink build times

• Share downloads and sstate (NFS, SSHFS, …)
• site.conf:
DOWNLOAD_DIR =
SSTATE_DIR =
SSTATE_MIRRORS =

• Ask for a beefier machine 😇

❑ Provide an SDK for app. devs

• So much faster to build… and less troubles

• QEMU for prototyping

• Alternatively: build apps as package for quick
deployment

Plus a couple of other best practices in
the last part…

Easy to work with

9

EASY TO MAINTAIN

❑ Version your OS and pin everything

• Version code, layers, and configuration
• repo, git submodules, …

• Pin meta-layers tags or commit

• Tag your OS

• Update “os-release”
• Version, type of build, …

❑ Automate Yocto builds

• Nightlies: relatively easy, cache downloads and
sstate

• Automate from cloud, build on premise
• GitLab runners, Azure DevOps self-hosted agents

• Pull request validation: highly valuable
• Trigger build from another repo, override package or layer

• SRCREV_pn-$PACKAGE_NAME =

❑ (Nice to have) Archive release build
environment

• Yocto: Reproducible Builds affiliated ✔️

• Your setup 1 year from now: likely KO ☹️
• Main culprit: external tools

• Archive source, tools, environment
• Downloads

• VM or prebuilt image

• Annotate your release with its build environment

• Keep the build manifest: layers & packages version
hash

Versioned, reproducible builds

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

2. Secure

Devices should be…

Photo by Julia Kamm on Unsplash

https://unsplash.com/@julchen?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/1h8TCfV5wdM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

11

SECURE

❑Minimize attack surface

• Define prod and prod-secure images

• No dev/debug tools, or unnecessary packages
• Image from scratch, core-image-minimal

• Disable recommended packages

• No root login, proper users, firewall

• Disable serial, JTAG, USB (or exceptions)

• Secure protocols, meta-security

❑ Use Secure boot

• BootROM, SSB, U-Boot, Kernel/initramfs/dtb

• Rootfs if readonly
• dm-verity

• Use key hashes, 1-2 backup secure boot keys, and
support revocation with efuses

• … And test it!

❑ Provide a secure secret store

• TPM, Secure Element, TrustZone-based

• Device keys, credentials, secrets

❑ (Nice to have) Encrypt disks, prevent
writes

• Encrypt partitions, LUKS, dm-crypt, and secret store

• Read-only filesystem (SquashFS), or mounted read-
only

OS Security features

12

SECURE

❑ Apps: Least privilege principle

• MAC: SELinux, AppArmor

• Containers, AWS Greengrass, Azure IoT Edge

❑Monitor and address vulnerabilities

• INHERIT += “cve-check”

• Shows unpatched vulnerabilities, based on the
package version

• Time consuming
• meta-timesys provides a few tools

• Commercial maintenance solutions available (including
Witekio)

• No package = no exploit

❑ (Nice to have) Run confidential code in
secure environment

• TrustZone, OP-TEE

❑ (Nice to have) Consider standards and
regulations

• Likely to become more important

• Europe: ETSI EN 303 645

• US: NIST 8259A

Other features

13

SECURE

❑ Automate on-device identity provisioning

• Unique x.509 certificates

• Signed from an intermediate certificate, or pre-provisioned on-
chip in a secure element (e.g. TO136)

❑ Automate device provisioning in the cloud

• Azure DPS, AWS

• Option A. Authorize an intermediate cert

• Option B. Pre-provisioned secure elements (done for you)
• Done during chip manufacturing, from a secure software factory (TO136)

• Option C. Automate and secure

❑ Support rolling device certs, and updating root CAs

• Software update or otherwise, and test carefully

• Root CAs too!

Device identity

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

3. Fast and reliable

Devices should be…

Photo by SpaceX on Unsplash

https://unsplash.com/@spacex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/rocket?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

15

FAST & RELIABLE

Optimize only as required, measure and profile

❑ Fast (enough) Boot time

• Start from a minimal image

• Compile for size, link statically, strip binaries, use to musl or uCLibc

• Postpone drivers and services

• Btrfs, squashfs

• … or just dump a small logo/animation from the U-Boot!

❑ Fast (enough) & Responsive UX

• Compile for speed

• Leverage cores, CPU instructions, priority

• 2D, 3D, and video hardware acceleration

• Crypto hardware acceleration

• Accelerated libs: GUI, AI inference, …

Boot and runtime

16

FAST & RELIABLE

Yocto and test automation

• Based on AutoBuilder2, helper, and Buildbot
• Not necessarily a good fit for you

❑ Automate on-device tests

• Ptest, ptest-runner
• DISTRO_FEATURES:append = " ptest"

EXTRA_IMAGE_FEATURES += "ptest-pkgs“

• LTP (Linux Test Project)
• IMAGE_INSTALL:append = " ltp“

• And device-specific tests

• Automate with Labgrid, Pluma, Fuego,
Lava, Buildbot, KernelCI

• Integrate with GitLab runners

❑ (Nice to have) Automate tagging and
deployment

• Manual release “trigger”, automated release

• More consistent, less errors

• Can tag, archive build environment, …

• Push to your OTA update backend and/or package
host

Automated tests, staging, deployment

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

4.1 Visible
(Observable)

Devices should be…

Photo by Justin Lane on Unsplash

https://unsplash.com/@jlane56?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/led-lights?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

18

VISIBLE (OBSERVABLE)
Device state and issues

❑ Expose device state

• Device twins (Azure), device shadow (AWS)
• JSON with a device and cloud section

• Think of helpful states to share
• Battery, Boot slot, storage health, secure boot on/off

• Periodically store in a file or twin directly

• Status monitoring: AWS IoT Core API

❑ Send logs and usage info

• journald, syslog

• Connectors: syslog-ng (meta-oe), Filebeats

• Send to ELK, Azure/AWS IoT, Monitor, LogWatch

• Essential for SREs and Security teams (SIEM)

• Bonus: Google Analytics for marketing KPI and
usage

❑ (Nice to have) Provide Ops and BI
dashboard

• Essential for larger fleets

• From device status, logs, messages

• Thingsboard, IoT Connect, AWS IoT Device
Manager, AWS IoT SiteWise, (Azure) Power BI

❑ (Nice to have) Support (future) big
data scenarios

• Build at least beginning of the data pipeline up
to storage

• Best if you can deploy software at the edge,
to reduce volume, process, generate insights

• Tools: the usual MQTT/AMQT, AWS & Azure IoT
• AWS IoT Analytics & AWS QuickSight

• Your standard data and AI tools and services

19

VISIBLE (OBSERVABLE)

❑ Ensure OS licenses compliance

• Save manifest of all license, and ship in the binary
• COPY_LIC_MANIFEST = "1"

• COPY_LIC_DIRS = "1"

• LICENSE_CREATE_PACKAGE = "1"

• Archive source
• INHERIT += "archiver"
ARCHIVER_MODE[src] = "original" # OR
ARCHIVER_MODE[src] = "patched"
ARCHIVER_MODE[diff] = "1"

• Some references:
• Yocto's manual regarding compliance

• OpenChain ISO 5230, Open Compliance Program

• FOSSology license tracker

• Various commercial tools

Open-source licenses

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

4.2 Controllable

Devices should be…

Photo by Adam Lukomski on Unsplash

https://unsplash.com/@anilinverse?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/robot?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

21

CONTROLLABLE

❑ Support OS updates

• OSTree, RAUC, Mender, swupdate
• And their respective meta layers

• Avoid non-atomic update like apt

• Kernel, packages, ...

• Sign your updates, look for delta updates

❑ (Nice to have) Support Application
updates

• Different frequency, more flexibility & less bandwidth

• RAUC, Mender, OSTree, or managed deployment
• Azure IoT Edge, AWS Greengrass, ...

❑ Provide OTA update online dashboards

• Hawkbit, Mender, ThingsBoard, Full Metal Update

❑ Provide a fallback mechanism

• What happens the OS, or update mechanism is KO?

• Recovery initramfs, A/B, golden/base image

• Or a combination of those

• Test and re-test

Over-the-air updates

22

CONTROLLABLE

❑ Support remote device configuration

• Device twins… again!

• Cloud “desired” configuration, stored in same JSON
• Desired network config, logging mode, CPU throttling (hot device), …

• Received whenever connected, and persistent

❑ (Nice to have) Support arbitrary operations

• Provide a quick flexible way to support any operation
• Specific repair job, test or experiment new features

• Running jobs and applications from container
• Azure IoT Edge, AWS IoT jobs, AWS IoT Greengrass

• Custom mechanism

Remote operations

23

CONTROLLABLE

❑ Provide remote manual access

• Is it acceptable to ship the device back?

• Remote: Reverse SSH, OpenVPN/IPsec/wireguard,
ngrok

• Local: GUI, secured USB drive script, …

• Enabled on demand, for a limited duration
• Update firewall rules, authorized devices, ...

• or reboot in maintenance mode

• After a secure call from your cloud platform and/or
physical interaction

❑ (Nice to have) Support remote
troubleshooting & debugging

• Include production loggers/tracers: LTTng

• Generate and save debug symbols
• IMAGE_GEN_DEBUGFS = "1"

• Install or run 'gdb-server' on-demand

Manual control and debugging

|
W

 I
 T

 E
 K

 I
O

|

 W
 e

h

 e
 l

p

h
 i

g
 h

t

e
c

h

m
 a

 k
 e

 r
 s

b

 u
 i

l d

g
 r

 e
 a

 t

s
o

 f
t

w
 a

 r
e

5. Reusable &
Future proof

Devices should be…

Photo by Ravin Rau on Unsplash

https://unsplash.com/@ravinrau?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/boots-flowers?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

25

REUSABLE & FUTURE PROOF

❑ Limit “hacky” customizations

• Limit bbappends, and extensive patching

❑ Prefer flexible and reusable config

• Separate layers to allow reuse
• Hardware, software, platform-specific features

• WIC: custom wks and partitions
• More tools to interact, customize and introspect

• Device tree includes and overloads

• Yocto LTS

❑ Prepare by upgrading Yocto

• Once you know which is the ideal Yocto version

• Otherwise very hard to reuse meta/recipes/classes
across different Yocto versions

❑ (Nice to have) Contribute layers, recipes,
classes

• Generic layers, recipes, classes
• Chances are others need it, and will help maintain them

• Submit it to https://layers.openembedded.org/

• Yocto features & issues
• create-pull-request, send-pull-request

• bugzilla.yoctoproject.org

Yocto and reusing OS-level work

26

REUSABLE & FUTURE PROOF

❑ Abstract device & OS specificities

• App software architecture

• Rely on standard file location and mechanics

• Makes development easier

❑ Ensure application(s) modularity

• Core logic, connectivity, UI, GUI, storage

• At a component level minimum:
• Source components, plugins, or services

• Future: headless, gateway, split in 2 devices

❑(Nice to have) Self-contained
application

• Avoid dependencies, conflicts

• Containers, snapd/flatpak, self-contained binaries
(Golang, Rust, …)

• Easier to reuse, but larger

❑Use standard tools and protocols

• Prefer what the industry uses (most of the time)
• Conferences, blogs, Yocto mailing list, Gartner, …

• yocto@lists.yoctoproject.org

• When applicable, prefer standards for interop.
• Matter, BLE profiles, …

Application-level

mailto:yocto@lists.yoctoproject.org

27

THE 5 SUCCESS FACTORS TO A PRODUCTION-READY DEVICE
Summary

Use as a checklist before release

• The sooner the better!

• What would you add to this checklist?

The most important success factor: you

• Likely not all in your job description

• Internally: review, ask, and suggest features

• Learning opportunity, improve product readiness

28

Witekio USA
3150 Richards Rd Suite 210

Bellevue, WA, 98005, USA

Phone : + 1 425-749- 4335

Adrien Leravat
Senior Software Architect

aleravat@witekio.com

Sid Nagendran
US Business Development Mgr.

sid@witekio.com

Chat with us,
at our physical and virtual
booth

www.witekio.com

