
LKM Preresolver
A Lightweight Prelinker for Linux Kernel Modules

Embedded Linux Conference – Europe 2010

Carmelo Amoroso

Software Design Manager

carmelo.amoroso@st.com

Rosario Contarino
contarino.rosario@gmail.com

STMicroelectronics
www.stlinux.com

2

Agenda

 Fast boot & modules

 pros & cons

 Symbols resolution

 State of art

 Preresolver

 Overview

 Basics

 Implementation

 Pros & Cons

 Examples & Benchmarks

 Next steps

Speed-up boot time

 Kernel bootup time is a hot topic

 for embedded systems

 for laptop and netbooks

 and for desktop system as well

 Modular kernels is becoming an valuable option

 There are pros and cons

 Trade-off between boot-time and runtime

optimizations

3

Using modules

 Modules allow to boot with a thin kernel

 Thinner kernels are faster to boot

 Fit better on small boot flash device

 Defer initialization of some device drivers

 Move such drivers to be “modules”

 Beneficial for many drivers which are not needed to

boot the system

 Ethernet (PHY reset) can take some time

 USB initialization is very slow

 SATA HDDs can take a lot of time

 Recall, all driver initialization will take some time.

4

Using modules (cont’d)

 Moving to a module has impacts anyway

 It will require some time for module loading for

 memory allocation, copying from user space

 symbols resolution

 Trade-off between boot-time and run-time!

 In summary

 For best boot-time, modularize many device drivers

 For best run-time, use no (few) modules

 We will focus on optimizing modules loading

 In particular the symbol resolution process

5

Symbols resolution: state of art

 Symbol resolution process is an avoidable step

 It is time consuming, never optimised

 Until last year almost nobody took care of it !!!

 At ELC-E 2009 a new strategy was proposed

 Using hash table for speeding-up symbol resolution

 Based on SysV hash table used in C runtime library

 With further optimisations to pre-compute hash values

 Implemented in STLinux kernel (git.stlinux.com)

 Unfortunately not up-streamed up to now !!!

6

Symbols resolution: state of art

 Another solution was developed @ ST again

 Based on GNU hash table

 No changes required into the Kernel Symbol Table

 Added optional Bloom Filtering

 Coming soon in STLinux kernel

 Hopefully it will be up-streamed soon

 Another solution was proposed by A. Jenkins

 Based on a binary search in the kernel symbol tables

 Proposed on the LKML in Oct / Nov 2009

 Follow http://lkml.org/lkml/2009/11/2/289

7

Preresolver: overview

 LKM Preresolver is another solution to speed-up

module loading

 It is a software tool working at kernel build time

 It is based on the standard concept of prelinking

 The goal is to perform the resolution of the undefined

symbols at build time

 But it does not perform all symbol relocations

 It is fully compatible with any module loader

implementation

 So it is a sort of lightweight prelinker

8

Preresolver: basics

 vmlinux is a statically linked binary

 Kernel symbols addresses are absolute

 They are accessible from the ELF by inspecting the

kernel symbol tables

 Kbuild guarantees that there are no duplicated

exported symbols

9

Preresolver: strategy

 Lookup undefined symbols into the kernel

symbol tables

 Update the LKM by fixing up the symbol table

with the proper values

 Preresolved symbols are marked as SHN_ABS

 Symbols not resolved into the vmlinux are kept

unchanged (SHN_UND)

 Mark the module as preresolved

 By adding an empty ELF section (.preresolved)

10

Preresolver: pros & cons

 Benefits

 Less undefined symbols to be resolved at load time

 In some case, 100% of symbol resolution can be

optimized away!

 When all undefined symbols are exported by the vmlinux

 Module loader can be instructed to perform symbol

lookup in the loaded modules only

 No symbols are expected to be resolved in the kernel symbol

tables

 Drawbacks

 Preresolved modules cannot be used with different

kernels

11

Preresolver: flow

12

<module>.o

<module>.ko <module>.mod.o

<module>.mod.c

preresolver

ld gcc

modpostvmlinux

m
m

a
p

fi
x
u
p

<module>.ko

preresolved

Preresolver: examples (1)

 Examples using a kernel 2.6.32.16 (82 modules)

13

LD vmlinux

... [SNIP] ...

Building modules, stage 2.

MODPOST 82 modules

...[SNIP] ...

CC drivers/ata/libata.mod.o

LD [M] drivers/ata/libata.ko

PRERESV drivers/ata/libata.ko (104/104 *fully* preresolved)

CC drivers/ata/pata_platform.mod.o

LD [M] drivers/ata/pata_platform.ko

PRERESV drivers/ata/pata_platform.ko (11/26 preresolved)

CC drivers/ata/sata_stm.mod.o

LD [M] drivers/ata/sata_stm.ko

PRERESV drivers/ata/sata_stm.ko (20/41 preresolved)

CC drivers/hid/usbhid/usbhid.mod.o

LD [M] drivers/hid/usbhid/usbhid.ko

PRERESV drivers/hid/usbhid/usbhid.ko (59/74 preresolved)

CC drivers/i2c/i2c-core.mod.o

LD [M] drivers/i2c/i2c-core.ko

PRERESV drivers/i2c/i2c-core.ko (47/47 *fully* preresolved)

Preresolver: examples (2)

 Inspecting the usbcore.ko .symtab
readelf –s usbcore.ko | grep UND | grep printk$

725:00000000 0 NOTYPE GLOBAL DEFAULT UND printk

 Inspecting the .symtab after the Preresolver
readelf –s usbcore.ko | grep printk$

727:80192b44 0 NOTYPE GLOBAL DEFAULT ABS printk

 Inspecting the vmlinux symbol table, we have
readelf –s vmlinux| grep \ printk$

14176:80192b44 40 FUNC GLOBAL DEFAULT 2 printk

 The printk is actually resolved with the absolute address

 The symbol type is changed

14

Preresolver: figures (best cases)

15

Undefined

symbols

Undefined

symbols

Module Std Preres Module Std Preres

xfs.ko 242 1 ntfs.ko 95 0

ext4.ko 276 39 jbd2.ko 87 0

nfs.ko 243 44 hostap.ko 88 2

sunrpc.ko 188 0 mmc_core.ko 77 0

jfs.ko 166 0 lockd.ko 104 34

usbcore.ko 163 0 snd.ko 67 1

cifs.ko 152 0 squashfs.ko 61 0

fat.ko 108 0 pegasus.ko 68 9

ide-core.ko 108 0 usbhid.ko 74 15

libata.ko 104 0 usb-storage.ko 75 16

jffs2.ko 110 6 mmc_block.ko 59 7

smbfs.ko 103 0 usbnet.ko 61 10

Preresolver: figures (worst cases)

16

Undefined

symbols

Module Std Preres

sata_stm.ko 41 21

net1080.ko 22 11

pata_platform.ko 26 15

aead.ko 22 13

cdc_ether 17 11

chainiv.ko 18 14

ecb.ko 13 12

arc4.ko 2 2

cdc_subset.ko 6 6

aes_generic.ko 2 2

Preresolver: benchmarks (1)

 Scenario 1: Embedded Set-Top-Boxes

 ST40 cpu (SH-4 based)

 Running STLinux distro w/ kernel 2.6.32.16

 GNU hash loader was used

 160 modules loaded/unloaded sequentially

17

Benchmarks

160 Modules Gain (times)%

No. deps Symbol resolution Module loading

0 -68,53% -0,89%

1 -17,25% -0,47%

> 1 -15,85% -0,45%

Times measured using gettimeofday

Gain is ((new-old)/old)*100

Preresolver: benchmarks (2)

18

Preresolver: benchmarks (3)

 Scenario 2: laptop/desktop systems

 Based on Intel x86_64 cpu

 Running ArchLinux distro w/ kernel 2.6.33.3

 84 modules (default), “modprobed”

19

Times measured using gettimeofday

Gain is ((new-old)/old)*100

Benchmarks

84 Modules Gain (times) %

No. deps Symbol resolution Module loading

0 -98,72% -50,55%

1 -69,08% -48,22%

> 1 -32,08% -30,05%

Preresolver: benchmarks (4)

20

Next steps

 Trying to upstream !!!

 Further optimisations

 Strip down kernel by removing kernel symbol tables

 Works only with preresolved modules

 Acceptable ? In an embedded scenario likely yes

 Direct binding

 Use dependencies information in .modinfo section

 Perform lookup into a subset of modules

 Merge all together (GNU hash, Preresolver,

Direct binding) for fastest module loading

21

Thanks for your attention

22

