LKM Preresolver
A Lightweight Prelinker for Linux Kernel Modules

Embedded Linux Conference — Europe 2010

Carmelo Amoroso

Software Design Manager
carmelo.amoroso@st.com

Rosario Contarino
contarino.rosario@gmail.com

STMicroelectronics
www.stlinux.com

\'l NEIE i




Agenda

Fast boot & modules
pros & cons

Symbols resolution
State of art

Preresolver
Overview
Basics
Implementation
Pros & Cons
Examples & Benchmarks

Next steps

Vi el i




Speed-up boot time IS72

Kernel bootup time is a hot topic
for embedded systems
for laptop and netbooks
and for desktop system as well

Modular kernels is becoming an valuable option
There are pros and cons

Trade-off between boot-time and runtime
optimizations




Using modules IS72

Modules allow to boot with a thin kernel
Thinner kernels are faster to boot
Fit better on small boot flash device

Defer initialization of some device drivers
Move such drivers to be “modules”

Beneficial for many drivers which are not needed to
boot the system

Ethernet (PHY reset) can take some time

USB initialization is very slow

SATA HDDs can take a lot of time

Recall, all driver initialization will take some time.

Vi el 'l




Using modules (cont’d) Kys

Moving to a module has impacts anyway

It will require some time for module loading for
memory allocation, copying from user space
symbols resolution

Trade-off between boot-time and run-time!

In summary
For best boot-time, modularize many device drivers
For best run-time, use no (few) modules

We will focus on optimizing modules loading
In particular the symbol resolution process




Symbols resolution: state of art IS73

Symbol resolution process is an avoidable step
It is time consuming, never optimised

Until last year almost nobody took care of it !!!

At ELC-E 2009 a new strategy was proposed
Using hash table for speeding-up symbol resolution
Based on SysV hash table used in C runtime library
With further optimisations to pre-compute hash values
Implemented in STLinux kernel (git.stlinux.com)
Unfortunately not up-streamed up to now !!!




Symbols resolution: state of art IS73

Another solution was developed @ ST again
Based on GNU hash table
No changes required into the Kernel Symbol Table
Added optional Bloom Filtering
Coming soon in STLinux kernel
Hopefully it will be up-streamed soon

Another solution was proposed by A. Jenkins
Based on a binary search in the kernel symbol tables
Proposed on the LKML in Oct / Nov 2009
Follow http://lkml.org/lkml/2009/11/2/289

Vi el 'l




Preresolver: overview IYI

LKM Preresolver is another solution to speed-up
module loading

It Is a software tool working at kernel build time

It is based on the standard concept of prelinking

The goal is to perform the resolution of the undefined
symbols at build time

But it does not perform all symbol relocations

It is fully compatible with any module loader
Implementation

So it is a sort of lightweight prelinker




Preresolver: basics IYI

vmlinux is a statically linked binary

Kernel symbols addresses are absolute

They are accessible from the ELF by inspecting the
kernel symbol tables

Kbuild guarantees that there are no duplicated
exported symbols




Preresolver: strategy

Lookup undefined symbols into the kernel
symbol tables

Update the LKM by fixing up the symbol table

with the proper values
Preresolved symbols are marked as SHN_ABS

Symbols not resolved into the vmlinux are kept
unchanged (SHN_UND)

Mark the module as preresolved
By adding an empty ELF section (.preresolved)

10



Preresolver: pros & cons Kys

Benefits
Less undefined symbols to be resolved at load time

In some case, 100% of symbol resolution can be
optimized away!

When all undefined symbols are exported by the vmlinux
Module loader can be instructed to perform symbol
lookup in the loaded modules only

No symbols are expected to be resolved in the kernel symbol
tables

Drawbacks

Preresolved modules cannot be used with different
kernels

11



Preresolver: flow

mmap

y
e

<lI

<module>.ko
preresolved

1574

<module>.o @

Vv

<module>.mod.c

<module>.mod.o

12



Preresolver: examples (1)
Examples using a kernel 2.6.32.16 (82 modules)

1574

LD vmlinux
[SNIP]
Building modules, stage 2.
MODPOST 82 modules
. [SNIP]
CC drivers/ata/libata.mod.o
LD [M] drivers/ata/libata.ko
PRERESV drivers/ata/libata.ko (104/104 *fully* preresolved)
CC drivers/ata/pata platform.mod.o
LD [M] drivers/ata/pata platform.ko
PRERESV drivers/ata/pata platform.ko (11/26 preresolved)
CC drivers/ata/sata stm.mod.o
LD [M] drivers/ata/sata stm.ko
PRERESV drivers/ata/sata stm.ko (20/41 preresolved)
CC drivers/hid/usbhid/usbhid.mod.o
LD [M] drivers/hid/usbhid/usbhid.ko
PRERESV drivers/hid/usbhid/usbhid.ko (59/74 preresolved)
CcC drivers/i2c/i2c-core.mod.o
LD [M] drivers/i2c/i2c-core.ko
PRERESV drivers/i2c/i2c-core.ko (47/47 *fully* preresolved)

13



Preresolver: examples (2) Kys
Inspecting the usbcore.ko .symtab

reade -5 1 are.ko | grep UND | grep printles

725 A NOTYPE GLOBAL DEFAU ri k

InspeekTg t ymtab after the Preresolver

readedf —-s T ke . ko | grep printks$

727£80192b4d4 OTYPE GLOBAL DEFAUL Ptk

Inspecting the viglinux symbol table, we have

readelf/~s vml\ grep \ printk$

14176{80192b4d4 40 FUNC GLOBAL DEFAULT 2 printk
o-prrTlK is actually resolved with the absolute address

The symbol type is changed

14



Preresolver: figures (best cases)

Undefined Undefined
symbols symbols

L N P S N TS

xfs.ko 1 ntfs.ko -
extd.ko 276 39 jbd2.ko 87 0
nfs.ko 243 44 hostap.ko 88 2
sunrpc.ko 188 mmc_core.ko 77 -
jfs.ko 166 | 0 lockd.ko 104 34
usbcore.ko 163 snd.ko 67 1
cifs.ko 152 squashfs.ko 61 -
fat.ko 108 pegasus.ko 68 9
ide-core.ko 108 usbhid.ko 74 15
libata.ko 104 usb-storage.ko 75 16
jffs2.ko 110 6 mmc_block.ko 59 7
smbfs.ko 103 usbnet.ko 61 10

\'l DEelE

15



Preresolver: figures (worst cases) Kys

Undefined
symbols

L S N B TN

sata_stm.ko

net1080.ko 22 11
pata_platform.ko 26 15
aead.ko 22 13
cdc_ether 17 11
chainiv.ko 18 14
ecb.ko 13 12
arcd.ko 2

cdc_subset.ko 6

aes_generic.ko

16



4]

Preresolver: benchmarks (1)

Scenario 1: Embedded Set-Top-Boxes
ST40 cpu (SH-4 based)

Running STLinux distro w/ kernel 2.6.32.16

GNU hash loader was used
160 modules loaded/unloaded sequentially

160 Modules Gain (times)%
No. deps Symbol resolution Module loading
0 -68,53% -0,89%
1 -17,25% -0,47%
> 1 -15,85% -0,45%

Times measured using gettimeofday
Gain is ((new-old)/old)*100
V'l

17



Preresolver: benchmarks (2)

1574

time (ms)

80

70

60

50 -

40

30

20 -

10

20

Cumulative Curve (ST40)

Modules resolution times

40 60 80 100

modules

120

140

Standard Kernel
m Preresolver

18



4]

Preresolver: benchmarks (3)

Scenario 2: laptop/desktop systems
Based on Intel x86 64 cpu

Running ArchLinux distro w/ kernel 2.6.33.3
84 modules (default), “modprobed”

84 Modules Gain (times) %
No. deps Symbol resolution Module loading
0 -98,72% -50,55%
1 -69,08% -48,22%
> 1 -32,08% -30,05%

Times measured using gettimeofday
Gain is ((new-old)/old)*100
V'l

19



Preresolver: benchmarks (4)

1574

Cumulative

180
160
140
120 -

100 -

time (ms)

Curve (x36_64)

Modules resolution times

0 10 20 30

40 50

modules

60

70

80

Standard Kernel
m Preresolver

20



Next steps

Trying to upstream !!!

Further optimisations

Strip down kernel by removing kernel symbol tables
Works only with preresolved modules
Acceptable ? In an embedded scenario likely yes

Direct binding
Use dependencies information in .modinfo section
Perform lookup into a subset of modules

Merge all together (GNU hash, Preresolver,
Direct binding) for fastest module loading

21



Thanks for your attention

“

&)




