

Run Your Own 6LoWPAN
Based IoT Network

2016-10-11, Berlin

Stefan Schmidt
stefan@osg.samsung.com
Samsung Open Source Group

Agenda

● Motivation
● Linux-wpan Project
● Wpan-tools
● Hardware and Basic Setup
● Communication with RIOT and Contiki
● Link Layer Security
● Routing: Route-over and Mesh-under

Demo Show Case

● Demonstration at the ELC-E Show Cases
● Linux-wpan on a Raspberry Pi
● RIOT on Particle Photon node
● JerryScript (JS engine) on both,

communicating over 6LoWPAN
● Tetris network game

Motivation

IEEE 802.15.4

● IEEE specifications for Low-Rate Wireless

Personal Area Networks
● Not only low-rate, but also low-power
● Designed for small sensors to run years

on battery with the right duty cycle
● 127 bytes MTU and 250 kbit/s
● PHY and MAC layers used in ZigBee

6LoWPAN

● Physical and MAC layer defined by IEEE 802.15.4

from 2003 onwards

● Series of IETF specifications from 2007 onwards

(RFCs 4944, 6282, etc)

L3 Network Layer

L4 Transport Layer

L1 Physical Layer

L5 Application Layer

L2 Data Link Layer

IP

TCP | UDP | ICMP

Ethernet PHY

Application

Ethernet MAC

IPv6

UDP | ICMPv6

6LoWPAN

IEEE 802.15.4 PHY

Application

IEEE 802.15.4 MAC

The Header Size Problem

● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 bytes
● Reduced by the max. frame header (25 bytes): 102 bytes
● Reduced by highest link-layer security (21 bytes): 81 bytes
● Reduced by standard IPv6 header (40 bytes): 41 bytes
● Reduced by standard UDP header (8 bytes): 33 bytes
● This leaves only 33 bytes for actual payload
● The rest of the space is used by headers (~ 3:1 ratio)

Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)

The Header Size Solution

● IPv6 with link-local and UDP on top
● IPHC with NHC for UDP
● The 48 bytes IPv6 + UDP header could in

the best cases be reduced to 6 bytes
● That allows for a payload of 75 bytes (~ 2:3

ratio)
Frame Header (25) LLSEC (21) 6 Payload (75)

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)

Linux-wpan
● Platforms already running Linux would benefit from

native 802.15.4 and 6LoWPAN subsystems
● 802.15.4 transceivers can easily be added to

existing hardware designs
● Battery powered sensors on the other hand are

more likely to run an OS like RIOT or Contiki
● Example 1: Google OnHub AP which already comes

with, de-activated, 802.15.4 hardware
● Example 2: Ci40 Creator board as home IoT hub

Linux-wpan Project

Linux-wpan Project

● IEEE 802.15.4 and 6LoWPAN support in mainline Linux
● Started in 2008 as linux-zigbee project on

SourceForge
● First steps of mainlining in 2012
● New project name to avoid confusion: linux-wpan
● New maintainer: Alexander Aring, Pengutronix
● Normal kernel development model
● Patches are posted and reviewed on the mailing list

Linux-wpan Community

● Small community: 2 core devs and ~4
additional people for specific drivers

● Linux-wpan mailing list (~94 people)
● #linux-wpan on Freenode (~25 people)
● https://github.com/linux-wpan (no PR model)
● http://wpan.cakelab.org used for wpan-tools

releases

Current Status

● ieee802154 layer with softMAC driver for various

transceivers
● 6LoWPAN with fragmentation and reassembly

(RFC 4944)
● Header compression with IPHC and NHC for UDP

(RFC 6282), shared with BT subsystem
● Link Layer Security
● Testing between Linux, RIOT and Contiki
● Mainline 4.1 onwards recommended

Development Boards
● Ci40 Creator (CA-8210)

● Raspberry Pi with Openlabs shield (AT86RF233)

● ARTIK 5/10 (802.15.4 network soc)

● Various transceivers can be hooked up via SPI

(all drivers have devicetree bindings)

● ATUSB USB dongle

6LoWPAN Fragmentation

● IPv6 requires the link to allow for a MTU of at least 1280

bytes
● This is impossible to handle in the 127 bytes MTU of IEEE

802.15.4
● 6LoWPAN 11 bit fragmentation header allows for 2048

bytes packet size with fragmentation
● But fragmentation can still lead to bad performance in

lossy networks, best to avoid it in the first place

IPv6 Header Compression (IPHC)

● Defining some default values in IPv6 header
– Version == 6, traffic class & flow-label == 0, hop-limit only well-known values (1, 64, 255)
– Remove the payload length (available in 6LoWPAN fragment header or data-link header)

● IPv6 stateless address auto configuration based on L2 address
– Omit the IPv6 prefix (global known by network, link-local defined by compression

(FE80::/64)
– Extended: EUI-64 L2 address use as is
– Short: pseudo 48 bit address based short address: PAN_ID:16 bit zero:SHORT_ADDRESS

Version

Source Address

(128 bit)

Destination Address

(128 bit)

Traffic Class Flow Label (20 bit)

Payload Length (16 bit) Next Header Hop Limit (8 bit)

Source Address

Dispatch

6LoWPAN Header IPHC multi-hop (7 bytes)

Hop LimitLoWPAN_IPHC

Destination Address

Dispatch

6LoWPAN Header IPHC link-local (2 bytes)

LoWPAN_IPHC

Next Header Compression

● NHC IPv6 Extension Header compression (RFC6282)
– Hop-by-Hop, Routing Header, Fragment Header, Destination

Options Header, Mobility Header

● NHC UDP Header compression (RFC6282)
– Compressing ports range to 4 bits
– Allows to omit the UDP checksum for cases where upper layers

handle message integrity checks

● GHC: LZ-77 style compression with byte codes (RFC7400)
– Appending zeroes, back referencing to a static dictionary and copy
– Useful for DTLS or RPL (addresses elided from dictionary)

Wpan-tools

Iwpan
● Netlink interface ideas as well as code borrowed from the

iw utility
● Used to configure PHY and MAC layer parameters
● Including channel, PAN ID, power setting, short address,

frame retries, etc
● Version 0.7 with network namespace support released two

weeks ago
● Packaged by some distributions (Fedora and Debian up to

date, Ubuntu on 0.5, OpenSUSE, Gentoo, Arch, etc missing)

Wpan-ping

● Ping utility on the 802.15.4 layer
● Not a full ICMP ping replacement, but good

enough for some basic testing and measurements

run on server side

$ wpan-ping –-daemon

run on client side

$ wpan-ping –-count 100 –extended –-address

 00:11:22:33:44:55:66:77

Hardware and Basic Setup

Hardware Support

● Mainline drivers for at86rf2xx, mrf24j40, cc2520,

atusb and adf7242
● Pending driver for ca-8210
● Old out of tree driver for Xbee
● Most transceiver easy to hook up to SPI and some GPIOs
● ATUSB available as USB dongle to be used on your

normal workstation (sold out but a new batch is

being produced)

Devicetree Bindings

● Boards need

devicetree support
● All our drivers have

bindings
● Example for the

at86rf233:

&spi {

 status = "okay";

 at86rf233@0 {

 compatible = "atmel,at86rf233";

 spi-max-frequency = <6000000>;

 reg = <0>;

 interrupts = <23 4>;

 interrupt-parent = <&gpio>;

 reset-gpio = <&gpio 24 1>;

 sleep-tpio = <&gpio 25 1>;

 xtal-trim = /bits/ 8 <0x0F>;

 };

};

Virtual Driver

● Fake loopback driver (similar to hwsim of wireless)
● Great for testing
● Support for RIOT and OpenThread to use this when

running as native Linux process
● Will help interop testing between the different

network stacks in an virtual environment

$ modprobe fakelb numlbs=4

$ Configure for Linux, RIOT, OpenThread and monitor

Interface Bringup

● The wpan0 interface shows up automatically
● Setting up the basic parameters:

$ ip link set lowpan0 down

$ ip link set wpan0 down

$ iwpan dev wpan0 set pan_id 0xabcd

$ iwpan phy phy0 set channel 0 26

$ ip link add link wpan0 name lowpan0 type lowpan

$ ip link set wpan0 up

$ ip link set lowpan0 up

Monitoring

Monitoring

● Setting up the interface in promiscuous mode:
$ iwpan dev wpan0 del

$ iwpan phy phy0 interface add monitor%d type monitor

$ iwpan phy phy0 set channel 0 26

$ ip link set monitor0 up

$ wireshark -i monitor0

● No automatic channel hopping (you can change the

channel manually in the background)

Communication with RIOT &
Contiki

RIOT

● “The friendly Operating System for the

Internet of Things” (LGPL)
● Testing against Linux-wpan part of the

release testing process for RIOT
● Active developer discussions and bug

fixing between projects

Contiki

● “The Open Source OS for the Internet of Things”

(BSD)
● Very fragmented project
● Sadly many forks for academic or commercial

purpose which have a hard time to get merged
● Still an important role as IoT OS for tiny devices

Comparison

Feature Linux RIOT Contiki

IEEE 802.15.4: data and ACK frames ✔ ✔ ✔

IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘

IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘

IEEE 802.15.4: link layer security ✔ ✘ ✔

6LoWPAN: frame encapsulation, fragmentation, addressing (RFC 4944) ✔ ✔ ✔

6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔

6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔

6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘

6LoWPAN: neighbour discovery optimizations (RFC 6775) Partial ✔ ✘

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔

Mesh link establishment draft ✘ ✘ ✘

Others

● Mbed OS from ARM: network stack is

closed source so nothing to test against
● Zephyr: network stack from Contiki used

right now but a new one is planned
● OpenThread: Open Source

implementation of the Thread protocol

Link Layer Security

Link Layer Security

● Specified by IEEE 802.15.4
● It defines confidentiality (AES-CTR), integrity (AES

CBC-MAC) and encryption and authentication (AES

CCM) security suites
● Key handling, key exchange, roll over, etc is not defined
● Tested Linux against Linux and Contiki 3.0
● No way to test against RIOT as they have no LLSEC

support right now

LLSEC Linux-wpan

● Needs the llsec branch in wpan-tools for

configuration
● CONFIG_IEEE802154_NL802154_EXPERIMENTAL

$ iwpan dev wpan0 set security 1

$ iwpan dev wpan0 key add 2 $KEY 0 $PANID 3 $EXTADDR

$ iwpan dev wpan0 seclevel add 0xff 2 0

$ iwpan dev wpan0 device add 0 $PANID $SHORTADDR $EXTADDR 0
0

LLSEC Contiki 3.0

● You need the following Contiki build options

configured in your project-conf.h to make use of

LLSEC with network wide key:
#define NETSTACK_CONF_LLSEC noncoresec_driver

#define LLSEC802154_CONF_SECURITY_LEVEL FRAME802154_SECURITY_LEVEL_ENC_MIC_32

#define NONCORESEC_CONF_KEY { \

0x00, 0x01, 0x02, 0x03, \

0x04, 0x05, 0x06, 0x07, \

0x08, 0x09, 0x0A, 0x0B, \

0x0C, 0x0D, 0x0E, 0x0F, \

}

Routing: Mesh-under and
Route-over

Mesh-under
● Allows fast forwarding of packets in a mesh without travelling

the IP stack
● IEEE 802.15.4 does not include mesh routing in the MAC specification
● Thus the mesh implementations sit above the MAC but below the

network layer
● Various (proprietary) implementations
● 6LoWPAN specification has a field for mesh headers
● No support in Linux-wpan for mesh header as of now
● Lost fragments of bigger packets will cause troubles
● Mesh Link Establishment draft at IETF

RPL

● IPv6 Routing Protocol for Low-Power and

Lossy Networks (RFC6550)
● Route over protocol
● Implementations in RIOT and Contiki
● Unstrung as Linux userspace reference
● Bit rotted in-kernel RPL demo patches out

there

Future

Linux-wpan Future
● Implement missing parts of the 802.15.4 specification

● Beacon and MAC command frame support
● Coordinator support in MAC layer and wpan-tools
● Scanning

● Improve existing drivers and add support for new hardware
● Neighbour Discovery Optimizations (RFC 6775), started
● Evaluate running OpenThread on top of linux-wpan
● Configuration interface for various header compression

modules
● Expose information for route-over and mesh-under protocols

Summary

Take away

● Running an IEEE 802.15.4 wireless

network under Linux is not hard
● Tooling and kernel support is already

there
● Border router scenario most likely use

case but nodes or routers also possible

Thank you!

http://www.slideshare.net/SamsungOSG

References

● Pictures
● http://downloads.qi-

hardware.com/people/werner/wpan/web/a
tusb-pcba-small.jpg

● https://creativecommons.org/licenses/by-
sa/3.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

