Ll =

L JLINUX bedded Lin

EOUNDATION > < >4 =iilClicl]

I’|
l
|
I

(“. J

——— = = :

i
|
|

II’ I
M

il
i

e

i

|

= SSIR
'rgn : -7
B Semmnnducmr 1ia BRD Conter

Agenda R Eathdand Lioux

O What is CAN?

Q Application of CAN

U

CAN in Automotive and Aerospace Industry
Linux CAN Subsystem

User space tools

o O O

Examples.

Foundry Design Services (FDS) SW

What is CAN? £ Enbedded Linux

(]

CAN stands for Controller area network. stuffing.
O The idea was initiated by Robert Bosch GmbH in 1983 QO CAN standard defines four different message types.

and first released in 1986. @ CAN Bus supports bit-wise arbitration to control
O CAN is called as multi-master serial and broadcast access to the bus.

Bus.

U

CAN is a message based protocol.

O CAN Provides message filtering so that each node act
only on the interesting messages.

Q Bus supports Non-Return To Zero (NRZ) with bit-
CAN H

CAN L) CAN Bus

I
CAN_ CAN @AY\

Transcelver Node 2 Node n

CAN
Controller
Microcontroller

Foundry Design Services (FDS) SW

CAN Features @EQ&‘Z‘;‘SESE”"“

Broadcast

eliable
"’ CAN ‘|\

Fault Features
Tolerance

Foundry Design Services (FDS) SW

CAN Bus Details @Eﬂ‘#’i‘ﬂiﬁ?ﬁ““"

O CAN BUS Details:
Q 150 11898-2, called high-speed CAN, It is two-wire balanced signaling scheme.

QO 150 11898-3, called low-speed CAN, It is fault tolerant, signal continued even bus wire is shorted or damaged.
Q CAN (ISO 11898-3) speeds up to 125 kbit/s and I1ISO 11898-2 speeds up to 1 Mbit/s on CAN and 5 Mbit/s on CAN-FD.
Q

CAN bus is terminated using a resistor of 120 Ohmes.

~\
Bosch launch CAN i jardized CAN FD is standardized Start of CAN XL .
(hce)SéANa;ro(tOeCZI (l;ét??gg& N (lS(l)S :§;g8?1) - ;aer\fe(l)opment * 100 meters at 500 kblt/S
N > Sel==els © 200 meters at 250 kbit/s
CAN D JCAN FD D CAN XL <
~
1986 - 1993 5 2 2015 2018 * 500 meters at 125 kbit/s
3 -~/ e @ e, o—// @) b) i
1991 2003 2016 6 kilometers at 10 kbit/s)

)L B
eparation of data link [CAN layer for

(CAN 2.0A, CANZ.0B) and physical layer

Source: https://cdn.shopify.com/s/files/1/0579/8032/1980/iles/can-bus-history-timeline-controller-area-network.svg ?v=1633690040

Foundry Design Services (FDS) SW

Medical /1
Equipment '

Aviation

Marine Industrial
Automation ’ Automation
Navigation Elevators

Foundry Design Services (FDS) SW

CAN in Automotive and Aerospace Industry R e dsed L

QO Before CAN was introduced in Automotive Industry, each electronic device was connected to another via point-
to-point wiring.

Q Problem for automotive engineers was linking the ECUs of different devices so that real-time information could
be exchanged. The CAN protocol was designed to address the above problem.

Power

Window

Air

Condition

Dashboard

Active
Suspension

Power Locks

Point to Point connection between devices Air Bags

Foundry Design Services (FDS) SW

CAN in Automotive and Aerospace Industry R e Linu

QO The CAN protocol helps the electronic devices can exchange information with one another over a common
serial bus. It reduced the overall complexity of the system.

Active Power Air
Suspension window Condition

l ____________ J _____ - __________________ Low Speed
Fiigh Speed (CAN HBENjleleEltel CAN "
Endine [Power]
{ 9] { Air Bags] locks

Control

Connectivity between devices using the CAN protocol.

Foundry Design Services (FDS) SW

Linux CAN Subsystem R e Linu

Q In Linux, CAN subsystem is designed in such a
way that the system running Linux is always
an CAN master.

User Space (can-utils)

Kernel Space
Sys Calls

Q There will be an CAN platform driver in the

kernel, which has routines to read and write
onto CAN bus. TCP/UDP/Socket

Subsystem

QO The CAN Platform driver is the medium .
through which the kernel interacts with the CAN Net Driver

device connected to the system.
Driver

MCAN Hardware

Foundry Design Services (FDS) SW 9

Linux CAN Device Node

Embedded Linux
Conference

Q The first step for writing a CAN platform driver is to fill the below structure

m_can0: can@20e8000 {

|

Source: https://elixir.bootlin.com/linux/v5.16. 20/source/Documentation/devicetree/bindings/net/can/bosch,m_can.yaml

Foundry Design Services (FDS) SW

compatible = "bosch,m_can";

reg = <0x020e8000 0x4000>, <0x02298000 0x4000>;

reg-names = "m_can’, ‘'message_ram’;
interrupts = <GIC_SPI 159 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "int0", "int1";
clocks = <&clks IMX6SX_CLK_CANFD>,

<&clks IMX6SX_CLK_CANFD>;
clock-names = "helk", "cclk™
bosch, mram-cfg = <0x0 128 64 64 64 64 32 32>;
can-transceiver {

max-bitrate = <5000000>:

static struct platform_driver
m_can_plat_driver ={
driver ={
.name = KBUILD MODNAME,
.0of match_table =
m_can_of table,
pm =&m_can_pmops,
|3
probe =m_can_plat_probe,
remove = m_can_plat remove,

CAN Bit Timing €3 Eomenncgim

O CAN Bit Timing: Configure the bit segments to achieve the desired baud rate.

O The Nominal bit is logically divided into four groups or segments.
O Synchronization Segment Nominal CAN Bit Time

<
<«

Propagation Segment :—

Q
O Phase Segment 1
Q

v

Sync_Seg Prop_Seg Phase Seg 1 Phase Seg 2

< »

1 Time Quantum %
Q Define Layout of a Bit: tq

Phase Segment 2

O Baud Rate = 1/Nominal Bit Time Layout of a Bit | Sample Point

O Nominal Bit Time = [Sync_Seg + Prop_Seg + Phase_Segl + Phase_Seg2] * tq.
O Tg (time quanta) = (BRP + 1) * (1/PCLK)
O Total number of time quanta = Sync_Seg + Prop_Seg + Phase_Segl + Phase_Seg2

Foundry Design Services (FDS) SW

Bit Timing Register Configuration @EE‘&E?S.ESE”““

O Clock Synchronization: The number of time quanta adjustments required to achieve on chip clock synchronization
are termed as the Synchronization Jump Width, SIW

Q Hard synchronization
QO Resynchronization

Q Bit Timing Register Calculation:

QO clock Pre scaler value(BRP)

QO Number of quanta before the sampling point (Pseg-1)

QO Number of quanta after the sampling point (Pseg-2)

QO Number of quanta in the Synchronization Jump Width (SJW)

Example: Baudrate == 500k and PCLK : 42 Mhz

Number of time quanta’s = 14 tq (time quanta) = (BRP + 1) * 1/PCLK
Pseg-1=Prop Seg +Phase Segl =11 Baud Rate = 42MHz = 42Mhz = 500,000
Pseg-2 = Phase_Seg? =2 (BRP) *total time quanta 6%14
BRP =b
Baud Rate = 500k

Foundry Design Services (FDS) SW 12

Linux CAN Bit Timing Structure @Ez"nﬁiﬂiﬁﬂﬁ““

O Linux CAN Bit Timing Structure Example:

struct can_bittiming {

__u32 bitrate; /* Bit-rate in bits/second */

__u32 sample_point; /* Sample point in one-tenth of a percent */
_u32 tg; [/* Time quanta (TQ) in nanoseconds */

__u32 prop_seg; /* Propagation segment in TQs */

__u32 phase_segl; /* Phase buffer segment 1 in TQs */
__u32 phase_seg2; /* Phase buffer segment 2 in TQs */
_u32 sjw; /¥ Synchronisation jump width in TQs */
_u32 brp; /* Bit-rate prescaler */

Foundry Design Services (FDS) SW

CAN Message Frame % St dsaa Linus

O CAN Messages

QO CAN bus is a broadcast type of bus, means all nodes can ‘hear’ all transmissions.

QO Nodes will pick up all CAN Bus traffic and the CAN hardware provides local filtering onto the interesting messages.
QO The frame said to be Identifier-addressed and there is no explicit address includes in the messages.
Q

There are four different types of message frames on a CAN bus.

The Data Frame The Remote Frame

The Error Frame The Overload Frame

Foundry Design Services (FDS) SW

CAN Message Frame % St dsaa Linus

O CAN Frame:

Q The CAN Data Frame comprises into the following major parts:

Arbitration field Data Field CRC Acknowledgement Slot

A 4

[0 to 8 Bytes]

\ 4

\ 4

[15-bit checksum] [Acknowledgement]
bit

\ 4 \ 4

[CAN 2.0A, an 11-bit Identifier, andJ [CAN 2.0B, a 29-bit Identifier, J

one bit, the RTR bit SRR, IDE and the RTR bit.

Foundry Design Services (FDS) SW

CAN Message Frame €mbedded Linux

Arbitratio ACK
Feld I— et o Teld’ cRCFeld e
field Data Fleld CRC Fleld [Frame = I..” | |
scimmossns ul 1 A A 7\
CRC ACK
4 + CRC / ACK Start of RTR Delimiter Delimiter
g TR Delimiter Dedimiter Faws
rame A Remote Frame (2.0A type)
A CAN 2.0A (“standard CAN") Data Frame.
Error
Delimiter
o Error |<—>|
Arbitration Siot | Flag —
Fleld Contral End of
Field Data Field CRC Field Frame
Identifier ||| tdentifier o
I UI | I Superposition of
: *d g{ :\oe '?‘ CRC f \ ACK Error Flags
,’,‘:,, Dy Sonbw An Error Frame

A CAN 2.0B (“extended CAN”) Data Frame.

Source: https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-
advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

Foundry Design Services (FDS) SW

Linux CAN Frame Structure

&3

€Embedded Linux
Conference

struct can_frame {
canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
union {
__u8len;
__u8 can_dlc; /* deprecated */
} _ attribute_ ((packed)); /* disable padding added in some ABIs */

_ u8 _ pad; /* padding */

_u8 _ res0; /* reserved / padding */

__u8len8 dic; /* optional DLC for 8 byte payload length (9 .. 15)
*/

__u8 data[CAN_MAX DLEN] attribute ((aligned(8)));
%

struct canfd_frame {
canid tcan_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
u8 len; /* frame payload length in byte */

u8 flags; /* additional flags for CAN FD */

u8 _ resO; /* reserved / padding */

_u8 _ resl; /*reserved [padding */
u8 data[CANFD_MAX DLEN] attribute ((aligned(8)));

L

Foundry Design Services (FDS) SW

CAN Error Framework @ggﬂgggggeunux

QO CAN Error: Error handling is built into the CAN protocol is a great impact on the performance of CAN.

QO Every CAN Nodes along a bus detect errors within a message.
Q If an erroris found, the discovering node will transmit an Error frame with Error Flag enabled.
O Nodes detects the error and take appropriate action, i.e. discard the current message.

QO The CAN protocol defines five different ways of detecting errors

s Bit Monitoring

e Acknowledgement Check

mmmm DBit Stuffing

el Frame Check

mmm Cyclic Redundancy Check

Foundry Design Services (FDS) SW

Error Confinement Mechanisms R e dsed L

O A CAN node start its error state in Error Active mode. When
the Error Counters raises above 127, the node will enter into
Error Passive and when the Transmit Error Counter raises
above 255, the node will enter the Bus Off state.

QO When an Error Passive node detects errors will transmit

Passive error Flags. TEC <= 127 and REC <= 127
O When an Error Active node detects errors will transmit Active
error Flags.

TEC > 127 or REC > 127

Error
Passive

Reset TEC > 255

QO A node which enters Bus Off will not Participate in any of the
Communication.

O Most CAN controllers will provide status bits for two states

QO BO: Bus Off Status
= (0=The M_CAN is not Bus Off
= 1=The M_CAN is in Bus Off state

QO EW: Warning Status

= 0 =Both error counters are below the Error Warning limit of 96

= 1 =Atleast one of error counter has reached the Error Warning limi
t of 96

Foundry Design Services (FDS) SW

Linux CAN Error Structures R Sathdind Lious

O Linux CAN error state Structure Examples:

switch (lec_type) {

case LEC_STUFF_ERROR: struct can_device stats {
netdev_dbg(dev, "stuff error\n"); . % =
cf-=data[2] |=CAN_ERR_PROT_STUFF; —UBE bUS_Eerr, "Ilr Bus errors "Ilr
break; __u32 error_warning; /* Changes to error warning state */
case LEC FORM_ERROR: 37 . . x EI"I . o
netdev_dbg{dev, "form error\n"); __u32 error_passive; [anges to error passive state */
cf->data[2] |= CAN_ERR_PROT_FORM; u32 bus off; /¥ Changes to bus off state */
break; T e s . .
case LEC_ACK_ERROR: __u32 arbitration_lost; /* Arbitration lost errors */
netdev_dbg(dev, "ack error\n"}); u32 restarts; /¥ CAN controller re-starts */
cf->data[3] = CAN_ERR_PROT_LOC_ACK; —
break; };
case LEC _BIT1_ERROR: CAN Bus State

netdev_dbg(dev, "bitl error\n");
cf-=data[2] |= CAN_ERR_PROT_BIT1;
break:

case LEC BITO ERROR:
netdev_dbg(dev, "bit0 error\n");
cf-=data[2] |=CAMN_ERR_PROT_BITO;
break:

case LEC_CRC_ERROR:
netdev_dbg(dev, "CRC error\n");
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
break;

default:
break;

v Last error code occur on CAN BUS
Foundry Design Services (FDS) SW

CAN BUS Failures @Eﬂﬁi’i‘iﬁ?ﬁ““"

O Bus Failure Modes:

CAN_H interrupted

CAN_L interrupted

CAN_H shorted to battery voltage

CAN_L shorted to ground

CAN_H shorted to ground

CAN_L shorted to battery voltage

CAN _L shorted to CAN_H wire

CAN_H and CAN_L interrupted at the same location

c 0 0 0 0 0 0 0 ©

Loss of connection to termination network

Foundry Design Services (FDS) SW

User Space Tools P R Ensdeed Linu

O Linux can-utils : can-utils is a command line utility that contains basic tools. CAN dump, can send, Display,
record, generate and replay CAN traffic.

Q To install can-utils in your working space, use the following command
O sudo apt-get install can-utils —y
Q Linux can-utils Commands:

* ip link set canX type can help

* ip link set canX type can bitrate 960000 loopback on
* ip link set canX type can bitrate 1800000 dbitrate 3420000 fd on fd-non-iso on
* ip link set canX up type can bitrate 500000 berr-reporting on one-shot on

* iplink set canX up

e candump canX&

* cansend canX 16A#1122334455667788

* cansend canX 1F334455#1122334455667788

* candump canX

* ip-details link show canX
* ip -details -statistics link show canX

Foundry Design Services (FDS) SW

Linux can-utils Dump P REnsdsed Linu

#ip link set can0 type can help #ip -details -statistics link show can0
Usage: ip link set DEVICE type can 2: can: <NOARP,UP,LOWER_UP,ECHO> mtu 16 gdisc pfifo_fast state UP mode
[bitrate BITRATE [sample-point SAMPLE-POINT]] | default al
[tq TQ prop-seg PROP_SEG phase-segl PHASE-SEG1 DEFAULT group detault glen 10
phase-seg2 PHASE-SEG2 [sjw SJW 1] link/can promiscuity 0

can <LOOPBACK:> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0

[dbitrate BITRATE [dsample—point SAMPLE—PG'NT]] | bitrEtE 952380 SEIT'I|}|E-|}Di nt 0.738

[ditg TQ dprop-seg PROP_SEG dphase-segl PHASE-SEGL

dphase-seg2 PHASE-SEG2 [dsjw SIW] | tq 25 prop-seg 15 phase-segl 15 phase-seg2 11 5jw 1
m_can: tsegl 2..256 tseg2 2..128 sjw 1..128 brp 1..512 brp-inc 1
[loopback { on | off }] m_can: dtsegl 1..32 dtseg2 1..16 dsjw 1..16 dbrp 1..32 dbrp-inc 1

[listen-only { on | off }]

[tripl ling {on | off}] clock 40000000
[c::;_:?z:n{%;n'lgn;r;] 7 re-started bus-errors arbit-lost error-warn error-pass bus-off
[berr-reporting { on | off }] 0 1] 0 0 0 0

[fd{on | off}] RX: bytes packets errors dropped overrun mcast

[fd-non-iso {on | off }]
[presume-ack { on | off }]

g 1 0 0 0 0
TX: bytes packets errors dropped carrier collsns

[restart-ms TIME-MS] 8 1 0 0 0 0
[restart]

#ip link set can0 type can bitrate 960000 loopback on
[318.736629] m_can_platform 25128000.can can0: bitrate error 0.7%
#ip link set canO up
[328.9845922] [MCAN] Message RAM initialised
candump can0&
cansend can0 16A#1122334455667788
canO 16A [8] 112233445566 7788
can0 164A [8] 112233445566 7788

Foundry Design Services (FDS) SW

|
|

A ’
|
=
p>
, \
um } |
!!ll‘l

"Ium '
[

i Lu il g

i
1

|
|
11

b
‘ ’fc |
| fﬂu""-

|
|
|
\

|
J
[
|
l

— — —_—
— e — e ——
— —_———eeee e - - e —
— —_— = -
— B e —

N
< SSIR | |
—=0 Samsung Semiconductor India R&D Center

