
Foundry Design Services (FDS) SW 1

Vivek Yadav

Foundry Design Services (FDS) SW 2

 What is CAN?

 Application of CAN

 CAN in Automotive and Aerospace Industry

 Linux CAN Subsystem

 User space tools

 Examples.

Foundry Design Services (FDS) SW 3

 CAN stands for Controller area network.

 The idea was initiated by Robert Bosch GmbH in 1983
and first released in 1986.

 CAN is called as multi-master serial and broadcast

Bus.

 CAN is a message based protocol.

 CAN Provides message filtering so that each node act
only on the interesting messages.

 Bus supports Non-Return To Zero (NRZ) with bit-

stuffing.

 CAN standard defines four different message types.

 CAN Bus supports bit-wise arbitration to control
access to the bus.

CAN L CAN Bus

CAN
Transceiver

Microcontroller

CAN
Controller

CAN
Node 2

CAN
Node n

CAN H

Foundry Design Services (FDS) SW 4

CAN

Features

Low Cost

Reliable

Flexible

Fast
Multi-

Master

Fault

Tolerance

Broadcast

Foundry Design Services (FDS) SW 5

 CAN BUS Details:

 ISO 11898-2, called high-speed CAN, It is two-wire balanced signaling scheme.

 ISO 11898-3, called low-speed CAN, It is fault tolerant, signal continued even bus wire is shorted or damaged.

 CAN (ISO 11898-3) speeds up to 125 kbit/s and ISO 11898-2 speeds up to 1 Mbit/s on CAN and 5 Mbit/s on CAN-FD.

 CAN bus is terminated using a resistor of 120 Ohms.

Source: https://cdn.shopify.com/s/files/1/0579/8032/1980/files/can-bus-history-timeline-controller-area-network.svg?v=1633690040

Speed

• 100 meters at 500 kbit/s

• 200 meters at 250 kbit/s

Length

• 500 meters at 125 kbit/s

• 6 kilometers at 10 kbit/s

Foundry Design Services (FDS) SW 6

CAN Bus

Application

Automotive

Aviation

Industrial

Automation

Elevators

CAN

Application

Building

Automation

Medical

Equipment

Marine

Automation

Navigation

Foundry Design Services (FDS) SW 7

 Before CAN was introduced in Automotive Industry, each electronic device was connected to another via point-
to-point wiring.

 Problem for automotive engineers was linking the ECUs of different devices so that real-time information could
be exchanged. The CAN protocol was designed to address the above problem.

Point to Point connection between devices

Dashboard

Power

Window

Air

Condition

Power Locks

Air Bags

Active

Suspension

Engine

Control

Foundry Design Services (FDS) SW 8

 The CAN protocol helps the electronic devices can exchange information with one another over a common
serial bus. It reduced the overall complexity of the system.

Connectivity between devices using the CAN protocol.

DashboardCAN CAN

Engine
Control

Power
window

Air
Condition

Power
locksAir Bags

Active
Suspension

High Speed
Low Speed

Foundry Design Services (FDS) SW 9

 In Linux, CAN subsystem is designed in such a
way that the system running Linux is always
an CAN master.

 There will be an CAN platform driver in the
kernel, which has routines to read and write
onto CAN bus.

 The CAN Platform driver is the medium
through which the kernel interacts with the
device connected to the system.

User Space (can-utils)

MCAN Hardware

Sys Calls

TCP/UDP/Socket
Subsystem

CAN Net Driver

Kernel Space

CAN Subsystem

Can DriverPlatform
Driver

Foundry Design Services (FDS) SW 10

 The first step for writing a CAN platform driver is to fill the below structure

Source: https://elixir.bootlin.com/linux/v5.16.20/source/Documentation/devicetree/bindings/net/can/bosch,m_can.yaml

Foundry Design Services (FDS) SW 11

 CAN Bit Timing: Configure the bit segments to achieve the desired baud rate.

 The Nominal bit is logically divided into four groups or segments.

 Synchronization Segment

 Propagation Segment

 Phase Segment 1

 Phase Segment 2

 Define Layout of a Bit:

 Baud Rate = 1/Nominal Bit Time

 Nominal Bit Time = [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] * tq.

 Tq (time quanta) = (BRP + 1) * (1/PCLK)

 Total number of time quanta = Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2

Layout of a Bit Sample Point

1 Time Quantum
tq

Nominal CAN Bit Time

Foundry Design Services (FDS) SW 12

 Clock Synchronization: The number of time quanta adjustments required to achieve on chip clock synchronization

are termed as the Synchronization Jump Width, SJW

 Hard synchronization

 Resynchronization

 Bit Timing Register Calculation:

 clock Pre scaler value(BRP)

 Number of quanta before the sampling point (Pseg-1)

 Number of quanta after the sampling point (Pseg-2)

 Number of quanta in the Synchronization Jump Width (SJW)

Foundry Design Services (FDS) SW 13

 Linux CAN Bit Timing Structure Example:

Foundry Design Services (FDS) SW 14

 CAN Messages

 CAN bus is a broadcast type of bus, means all nodes can ‘hear’ all transmissions.

 Nodes will pick up all CAN Bus traffic and the CAN hardware provides local filtering onto the interesting messages.

 The frame said to be Identifier-addressed and there is no explicit address includes in the messages.

 There are four different types of message frames on a CAN bus.

The Data Frame The Remote Frame

The Error Frame The Overload Frame

Message frames

Foundry Design Services (FDS) SW 15

 CAN Frame:

 The CAN Data Frame comprises into the following major parts:

Arbitration field Data Field CRC Acknowledgement Slot

0 to 8 Bytes

CAN 2.0A, an 11-bit Identifier, and
one bit, the RTR bit

CAN 2.0B, a 29-bit Identifier,
SRR, IDE and the RTR bit.

15-bit checksum Acknowledgement
bit

Foundry Design Services (FDS) SW 16

Source: https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-

advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

Foundry Design Services (FDS) SW 17

Foundry Design Services (FDS) SW 18

 CAN Error: Error handling is built into the CAN protocol is a great impact on the performance of CAN.

 Every CAN Nodes along a bus detect errors within a message.

 If an error is found, the discovering node will transmit an Error frame with Error Flag enabled.

 Nodes detects the error and take appropriate action, i.e. discard the current message.

 The CAN protocol defines five different ways of detecting errors

Bit Monitoring

Acknowledgement Check

Bit Stuffing

Frame Check

Cyclic Redundancy Check

Foundry Design Services (FDS) SW 19

 A CAN node start its error state in Error Active mode. When
the Error Counters raises above 127, the node will enter into
Error Passive and when the Transmit Error Counter raises
above 255, the node will enter the Bus Off state.

 When an Error Passive node detects errors will transmit
Passive error Flags.

 When an Error Active node detects errors will transmit Active
error Flags.

 A node which enters Bus Off will not Participate in any of the
Communication.

 Most CAN controllers will provide status bits for two states

 BO: Bus Off Status

 0 = The M_CAN is not Bus Off

 1 = The M_CAN is in Bus Off state

 EW: Warning Status

 0 = Both error counters are below the Error Warning limit of 96

 1 = At least one of error counter has reached the Error Warning limi

t of 96

Error
Active

Bus Off

Error
Passive

TEC > 127 or REC > 127

TEC <= 127 and REC <= 127

Reset TEC > 255

Foundry Design Services (FDS) SW 20

 Linux CAN error state Structure Examples:

CAN Bus State

Last error code occur on CAN BUS

Foundry Design Services (FDS) SW 21

 Bus Failure Modes:

 CAN_H interrupted

 CAN_L interrupted

 CAN_H shorted to battery voltage

 CAN_L shorted to ground

 CAN_H shorted to ground

 CAN_L shorted to battery voltage

 CAN_L shorted to CAN_H wire

 CAN_H and CAN_L interrupted at the same location

 Loss of connection to termination network

Foundry Design Services (FDS) SW 22

 Linux can-utils : can-utils is a command line utility that contains basic tools. CAN dump, can send, Display,
record, generate and replay CAN traffic.

 To install can-utils in your working space, use the following command

 sudo apt-get install can-utils –y

 Linux can-utils Commands:

Foundry Design Services (FDS) SW 23

Foundry Design Services (FDS) SW 24

Any Questions ?

Foundry Design Services (FDS) SW 25

