
Presented by

Date

Bionic and musl - room for 
cooperation?

Bernhard "Bero" Rosenkränzer 

Android Builders Summit 2015



What are Bionic and musl?

● Bionic and musl are different 
implementations of the C standard 
library - along with glibc, uClibc, 
dietlibc, newlib, klibc and various 
other implementations.



A bit of history

When Android started, no existing libc 
met the requirements: small, BSD 
licensed, runs on Linux kernel -- so 
Bionic was put together based on 
BSD libcs



A bit of history

Today, musl fulfills the same 
requirements -- but there is no need 
to throw away existing Bionic, and 
ABI compatibility is important



Bionic’s structure

Bionic is derived from several BSD 
libcs, and designed for pulling in their 
improvements already:



Bionic’s structure
Source tree:
libc/bionic

bits implemented for Bionic itself
libc/upstream-freebsd

functions from FreeBSD libc
libc/upstream-netbsd

functions from NetBSD libc
libc/upstream-openbsd

functions from OpenBSD libc



Bionic’s structure
libc/upstream-musl

is a fairly obvious addition for merging
musl’s implementations of libc functions



What needs to be done?

● Identify functions that are faster or 
smaller (or otherwise better) in musl

● Copy them to upstream-musl, edit 
Android.mk files

● build, run CTS, benchmark, upstream
● submit functions that are better in 

Bionic to musl -- let’s not be leeches



Handling tradeoffs

● Check if some simplifications done in 
musl (e.g. use ARM VFP vsqrt.f32 
and AArch64 fsqrt assembly 
instruction to implement sqrt()) change 
accuracy/break anything (compared to 
the much more complex and slower 
implementation in Bionic)



Handling tradeoffs

● The effect of such simplifications may be 
similar to -ffast-math - so it may be 
useful to make Bionic use the musl 
implementation if -ffast-math (or -
funsafe-math-optimizations) is 
specified on the compiler command line 
and the traditional implementation if it’s 
not



Current status

● Linaro has analyzed string handling 
functions (strcpy, memcpy, memset, 
…) on ARMv7 and ARMv8.

● So far, nothing for upstream-musl 
(but that’s not a big surprise, we’ve 
submitted optimized asm code for 
those to AOSP before)



Current status

● We expect improvements in musl 
over what’s currently in Bionic in e.g. 
parts of libm

● musl’s threading is interesting, but 
probably hard to fit into Bionic’s pre-
existing implementation - without 
breaking ABIs and assumed 
behaviors...



Questions? Suggestions?


