
Software Bill of Materials and
Supply Chain with the Yocto

Project
Joshua Watt

Embedded Linux Conference
June 23, 2022

Copyright 2022 Joshua Watt, Creative Commons BY-SA 4.0 International License

About Me

● Worked at Garmin since 2009
● Using OpenEmbedded & Yocto Project since 2016
● Member of the OpenEmbedded Technical Steering Committee (TSC)
● Joshua.Watt@garmin.com
● JPEWhacker@gmail.com
● IRC (OFTC or libera): JPEW
● Twitter: @JPEW_dev
● LinkedIn: joshua-watt-dev

mailto:Joshua.Watt@garmin.com
mailto:JPEWhacker@gmail.com
https://twitter.com/JPEW_dev
https://www.linkedin.com/in/joshua-watt-dev

Yocto Project and OpenEmbedded

OpenEmbedded
● Community project
● OpenEmbedded core layer
● Build system (bitbake)

Yocto Project
● Linux Foundation project
● Poky reference distribution
● Runs QA tests
● Manages release schedule
● Provides funding for personnel
● Documentation

Outline

● Software Supply Chain
● OpenEmbedded Build Flow
● Software Bill of Materials
● SPDX Contents
● Reproducible Builds
● Buildtools Tarball

Software Supply Chain

Why is the Software Supply Chain Important?

● What's in my Software?
○ Where did it come from?
○ What version is it?

● Am I complying with Software
Licenses?

● Has it been tampered with?
● Is it vulnerable to exploits?
● Can deliverables be traced back

to their code?
Sérgio Valle Duarte, CC BY 3.0, via Wikimedia Commons

What's really in here?

https://commons.wikimedia.org/wiki/File:BinaryData.jpg
https://creativecommons.org/licenses/by/3.0

OpenEmbedded Build Flow

Build Images from Source Code

Policy

Metadata

Source bitbake Target
Image

Widget

Images

Target
Image

SDK

eSDK

buildtools
QEMU

IPK DEB RPM

Procolotor, CC BY 3.0 via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:MME_UB8830D.jpg
https://creativecommons.org/licenses/by/3.0

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Recipe
Metadata

Source

Recipe
Metadata

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Recipe
Metadata

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages

Recipe
Metadata

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256

Traces the target image back to the code (and metadata)

Software Bill of Materials

"Nutrition Information" for Software

SBoM Facts
1 Serving per Device
Serving Size 1

Ingredients: bash, Linux, u-boot, sshd,
openssl, busybox

CVEs Patched
CVE-2019-18276
CVE-2014-0160

Patches Applied

2

30

An SBoM is a method of describing the
information about a Software Supply Chain
using a standardized encoding that allows for
easy exchange of data

Multiple different SBoM formats may describe
the same Software Supply Chain

What is an SBoM?

Source: NTIA's Framing Software Component Transparency: Establishing a Common Software Bill of Material (SBOM)

https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

Carol's
Compression
Engine v3.1

Bob's Browser
v2.2

Recipe Metadata

Recipes already contain much of the data desired in a SBoM

● Version
● Source code URL
● Licenses
● Build time dependencies
● Run time dependencies
● CVEs patched
● Source Files
● Package Files
● …

All of this information is authoritative (no guessing)

Generating SBoMs

$. oe-init-build-env
$ echo 'INHERIT += "create-spdx"' >> conf/local.conf
$ bitbake core-image-minimal

OpenEmbedded has support for generating SBoMs in SPDX JSON format:

SPDX Generation

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SPDX SPDX

SPDX Archive

SPDX

Yocto SPDX Features

● Declared License
○ With License Text if not a known SPDX

license
● Homepage URL
● Download URL(s)
● CVEs fixed
● CPE
● Summary
● Description
● Source File Listing with Checksums
● Source file SPDX licenses
● Packages
● Package files with Checksums

● Package file GENERATED_FROM (from
debug data)

● Build time dependencies
● Runtime dependencies
● Source code archive for analysis by other

tools (e.g. Fossology)

What can we generate SPDX documents for?

TL; DR - Anything we can build

● "On target" C/C++/Fortran etc. ✅
● "native" build tools & cross compiler ✅
● Linux Kernel ✅
● Target images ✅
● SDKs ✅
● Container Images ✅
● VM Images ✅
● Rust 🚧
● Go 🚧

Configuration Knobs

● SPDX_INCLUDE_SOURCES = "1"
○ Includes patched source files from "S" in Recipe SPDX with a "CONTAINS" relationship
○ Off by default because the SPDX is huge when turned on

● SPDX_ARCHIVE_SOURCES = "1"
○ Creates a tarball of the sources, useful for running against other tools (e.g. fossology)
○ Off by default

● SPDX_ARCHIVE_PACKAGED = "1"
○ Creates a tarball of the packaged output files, useful for running against other tools
○ Off by default

● SPDX_PRETTY = "1"
○ Make output more human readable (master branch only)

Publishing Results on the Internet

● Set:
○ SPDX_SUPPLIER = "Organization: My Company" (1)
○ SPDX_NAMESPACE_PREFIX = " http://my.company.com/spdx/ " (2)
○ SPDX_UUID_NAMESPACE = "my.company.com"

[1]: https://spdx.github.io/spdx-spec/package-information/#75-package-supplier-field
[2]: https://spdx.github.io/spdx-spec/document-creation-information/#65-spdx-document-namespace-field

http://my.company.com/spdx/
https://spdx.github.io/spdx-spec/package-information/#75-package-supplier-field
https://spdx.github.io/spdx-spec/document-creation-information/#65-spdx-document-namespace-field

SPDX Contents

Generated SPDX Files

$ ls -l tmp/deploy/images/qemux86-64/*.spdx.*
core-image-minimal-qemux86-64.spdx.json
core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64.spdx.index.json

Generated SPDX Files

$ ls -l tmp/deploy/images/qemux86-64/*.spdx.*
core-image-minimal-qemux86-64.spdx.json
core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64.spdx.index.json

The SPDX JSON file for the image itself

Generated SPDX Files

$ ls -l tmp/deploy/images/qemux86-64/*.spdx.*
core-image-minimal-qemux86-64.spdx.json
core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64.spdx.index.json

Compressed Tarball containing all of the SPDX documents for the image itself, all
packages that were installed in the image, all recipes that generated those
packages, and the index file.

Generated SPDX Files

$ ls -l tmp/deploy/images/qemux86-64/*.spdx.*
core-image-minimal-qemux86-64.spdx.json
core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64.spdx.index.json

Index file that lists all of the SPDX JSON files in the SPDX archive

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

Image SPDX file (from before)

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

Archive Index file (from before)

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

SPDX file describing packages installed in the image

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

SPDX file describing runtime dependencies of packages installed in the image

SPDX Archive Contents

$ tar -tvf core-image-minimal-qemux86-64.spdx.tar.zst
core-image-minimal-qemux86-64-20220614012543.spdx.json
util-linux-lsblk.spdx.json
runtime-util-linux-lsblk.spdx.json
util-linux-unshare.spdx.json
runtime-util-linux-unshare.spdx.json
recipe-util-linux.spdx.json
...
index.json

SPDX file describing the recipe and source code used to generate packages

SPDX Relationships

Image Index
JSONPackage SPDX

Recipe SPDX

GENERATED_FROM
(recipe)

Recipe SPDX

GENERATED_FROM
(debug source)

BUILD_DEPENDENCY_OF(*)

Package Files
CONTAINS

Source Code
CONTAINS

Runtime SPDX

AMENDS

Package SPDX
RUNTIME_DEPENDENCY_OF(*)

Image SPDX

CONTAINS

OTHER

Future Improvements

● Improve Relationships (in talks with upstream SPDX)
● Pull in SPDX/SBoM from upstream source code (e.g. reuse)
● More SPDX fields
● Include information about how recipes are built (e.g. CFLAGS, etc.)

https://reuse.software/

Reproducible Builds

Why do we need reproducible builds?

● Resist attack
○ What binaries need more scrutiny?

● Compiler Trust
○ Diverse Double-Compilation (David A. Wheeler) requires reproducible builds

● Quality Assurance
○ Rare timing bugs, race conditions, locale dependencies

● Smaller Binary Differences
○ Better delta updates

● Increased Development Speed
○ No need to rebuild if nothing has changed

https://reproducible-builds.org/docs/buy-in/

http://www.dwheeler.com/trusting-trust/
https://reproducible-builds.org/docs/buy-in/

Binary output should associate with recipe hashes

Host Tools Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256

?? ??

??

Reproducibility Testing

● Yocto Autobuilder tests regularly for regressions
● https://www.yoctoproject.org/reproducible-build-results/
● ~11,000 target packages
● 3 Package formats (ipk, deb, rpm)
● Multiple build hosts (Fedora, Ubuntu, CentOS, Debian)

○ Ensures cross-host builds are reproducible!
● Automatic diffoscope HTML output for packages that are not reproducible

https://www.yoctoproject.org/reproducible-build-results/
https://diffoscope.org/

Extending Quality Assurance Test

● The QA test for reproducibility is designed to be easy to extend and run for
testing your own images:

$ cat lib/oeqa/selftest/cases/myreproducible.py
from oeqa.selftest.cases.reproducible import ReproducibleTests

class MyReproTests(ReproducibleTests):
 images = [‘my-image’]

$ oe-selftest -r myreproducible

Buildtools Tarball
"It's SBoMs all the way down"

xkcd.com

https://xkcd.com/license.html

Images

Target
Image

buildtools

Buildtools replaces Host tools

Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256buildtools

Buildtools replaces Host tools

Recipe
Metadata

Source

Native tools &
Cross

Compiler

Recipe
Metadata

Source

Target
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256buildtools

Special Thanks

● Saul Wold (Linux Kernel SPDX Generation)
● Ross Burton (License Work)
● Andres Beltran (SDK Support)
● Richard Purdie (Yocto Project Technical Lead)
● Many others for various fixes & improvements!

Getting Involved

● Libera IRC
○ #yocto
○ #oe

● Weekly technical meeting
○ Every Tuesday at 8:00 AM Pacific Time

● Weekly Bug Triage
○ Every Thursday at 7:30 AM Pacific Time

● Happy Hour
○ Last Wednesday of every Month (Calendar)

● Yocto Project Summit
○ Twice yearly

https://www.yoctoproject.org/public-virtual-meetings/
https://www.yoctoproject.org/public-virtual-meetings/
https://calendar.google.com/calendar/embed?src=gsu6m5g9utl4elkjlct144ihko%40group.calendar.google.com&ctz=America%2FChicago

Questions?

