Using Real-Time Linux
Common pitfalls, tips & tricks

Klaas van Gend,
Senior Solutions Architect,
MontaVista Software, Europe

montavista

Who is Klaas van Gend? montavista

Klaas-the-Geek:

e Started programming age 13

* First encountered Linux 1993

« Software Engineer since 1998
 Lead developer of umtsmon

* Program Committee member for
various open source conferences

& Klaas-the-Sales-Guy:

‘ « Joined MontaVista as FAE (not sales) 2004
« UK/Benelux/Israel territory

» Senior Solutions Architect for Europe

« Awarded FAE of the year 2006

Images do not necessarily depict reality

History of Linux and Real Time montavista

 Fairness

* Preemption in user space

* Fixed Overhead / O(1) Scheduler

* Robert Love’s Preemption in kernel

* Ingo Molnar’s Voluntary preemption

e

Degree of Acceptability

Two types of Real-Time Expectations . montavista

Positive

Negative

Response Time Degradation Acceptability

/ \
Consumer/User interface

Classic —
Real Time

Response Time
—>

Real Time Linux . montavista

Main assumption:

The highest priority task goes first

ALWAYS

Thus:
* Everything should be pre-emptable

* Nothing should keep higher priority things from
executing

Key Elements of Real-Time Linux montavista:

* Making Linux Real-time required addressing:

* Minimized interrupt disable times

Interrupt handling via schedulable threads

Fully pre-emptable kernel
« Short critical sections

Perform synchronization via mutexes (not spin locks)
 Allows involuntary pre-emption

Mutex support for priority inheritance

High Resolution timers

Sleeping Spinlocks montavista

* Original Linux UP Spinlock:
* IRQ disable on lock — nothing else can interrupt
* Not RT friendly

* Original Linux SMP Spinlock:
« Spinning (busy wait)
* Not performance friendly

Solution;
“Sleeping Splnlock”e

Problem: Priority Inversion

montavista
orio A Attempts to lock Q, held by C
high — ' I
orio B v No luck, so next-in-line process runs...
med | i | 0
prio C C never gets to run...
low = : I

Thus \ never gets to run...

g Solution:
“Priority
Inheritance”

Robust Mutexes montavista

Problem:

* Inter process semaphores (“named ~”

* Process / holds semaphore and dies

* Process blocks on the same semaphore

* On regular Linux: mutex locked forever
« Thus waiting process B held forever

o ...until reboot Solution: ©
“Robust
A Mutex”

Priority Queues montavista

Problem:
1000 processes waiting for a locked mutex
° . H H 7 . ’\-\
Mutex gets u.nlocked .who |{V.l” go first: Solution: ©
* On regular Linux, the first waiting process “Priority
‘gets’ the mutex Queues”

« On RT Linux, the highest priority process
should wake up and get the lock

What’s wrong with the standard IRQ mechanism? montavista

Scheduler: ALL tasklets first
“Original process continues” Scheduler:

No tasklets left, schedule
prioritized processes

|

Kernel starts interrupt handler

Running process

Interrupt occur Int. handler schegdules

“Tasklet” (bottom palve)

High prio task

hardware
iInterrupt

l

“‘unbound interrupt latency”

Solution:
s “Threaded IRQs”

RT-patch Thread Context Interrupt Handlers - montavista

Schedule
next proce:

AN

IRQ handler: “wake_process()”

e | o

A N LA\ \S . TaSkIet
\ J
N4
Highest prio
process run:
to completio

End of handler

“Sleep thread”

o)

hardware
iInterrupt

montavista

Some Results

Intel IXP425 @ xxx Mhz, 2.6.18+ . montavista

100000000 — e
||
|.

10000000 —
|
1000000 +

Interrupt Latency

O ixp_425 none
Oixpd425 RT
W ixp425 desktop

100000 —j

10000

x \

i _—

None |Desktop | RT
Min |4 5 6

Avg |6 10 7
Max |9797 |2679 349

1000

100 =

RT Limit

FreeScale 8349 mITX @xxxMHz, 2.6.18+ . montavista

1.0E408 Interrupt Latency

1.0E+07

1.0E+06 08349 RT

08349 desktop
B 8349 none

1.0E+054 |

1.0E+04- | "AlM

samples

1.0E+03

1.0E+02 -

1.0E+01

1.0E+00

None Des-ktop
Min |0 0

Avg |5 0 0
Max |3968 | 1604 53

More Results? . montavista

* Request Real Time whitepaper
« By Bill Weinberg
* http://www.mvista.com/

montavista

Common Mistakes & Myths

+ Tips & Tricks on Real Time

Mistake: “Fast” vs Determinism montavista:

“I need real time because my system needs to be fast”
“l want to have the best performance Linux can do”

NO!

REAL TIME DOES NOT MEAN
HIGHEST THROUGHPUT

Real-Time Response vs. Throughput montavista

Efficiency and Responsiveness are Inversely Related

Overhead for Real-Time Preemption
* Mutex Operations more complex than Spinlock Operations
* Priority Inheritance on Mutex increases Task Switching
« Priority Inheritance increases Worst-Case Execution Time

Design flexibility allows much better worst case scenarios

« Real-time tasks are designed to use kernel resources in managed
ways then delays can be eliminated or reduced

19

Mistake: forgetting to recompile montavista

* All kernel files need a recompile

) Klans@jip:..inux-2,6,18_proS00 - Shell - Konsole

Session Edit View Bockmarks Setings Help g FunCtlon Ca”S Change

* The scheduler gets extra code
* |IRQ mechanisms change

Use the arrow keys to navigate thi

S R L e « (even though the tasklet code
() o Forced Preemption doesn’t change!)
() oluntary Kernel P
() °ﬁt3§u Kernel (Macros change
* Syscalls do not change

* No need to recompile glibc

* This also is true for out-of-tree
il modules

* You'll get very weird issues at
module insertion or later...

RT doesn’t mix with 3rdParty binary kernel modules !

Mistake: Forget to enable Robustness/Pl in userland montavista

#include <pthread.h>

// create the mutex
pthread mutex t mutexl;

pthread mutex init(&mutexl, NULL);

// create attributes struct
pthread mutexattr t ;
pthread mutexattr init(&) ;

// set the corresponding fields
pthread mutexattr setprotocol (&

pthread mutexattr setrobust np (&

// and apply to the mutex

pthread mutex init(&mutexl, &

, PTHREAD PRIO INHERIT) ;

, PTHREAD_MUTEX_ROBUST_NP) ;

Mistake: “running at prio 99 froze my system BEEeele 8=\ 1173

testrt.c:

#include <pthread.h>
int main(void)
{
set my priority to highest();
while (true)
{:}

return 0;

or.

while (someVolatile !'= -1)

{
sched yield() ;

}

22

System Design Theory . montavista

* You should only have one highest priority process*

 |O-bound

« control algorithms are 10-bound: they start and end with 10
 Finite time running guarantee on your process

* Definitely NO infinite loops!
« sum(total running time + 2 x scheduler run) < latency req.

Scheduler
Highest Priority

Other tasks

A
A 4

Myth: “RT is difficult” . montavista

<<this page intentionally left blank>>

Myth: “RT is for embedded only” montavista

* RT pushed by audio community
« Audio not just a problem on Linux...
* Ever used iTunes on a busy Windows XP laptop?

Lk

« Games, Games, Games!
« Audio without pause/clicks/breaks/etc
 Direct response to game controllers _
« Screen updates in hard real time - never missing frames ¥

* RT is the “true way”

 Voluntary pre-emption is “Windows95 in the kernel”
* Not a good design, extra code, yada-yada

* In 2 years from now, maybe only NONE and RT left?

Mistake: “But it works on normal Linux!” montavista

* Customer switched to real time:
* Geode x86-like board
« Was missing bytes on serial ports

* And he was missing even more bytes...
* When things ‘happened’
* When he used alt+Fx to switch between X and text

* PC BIOS:

« Scrolling a VGA buffer / switching VGA resolution
« Syslog - by default logs to /dev/tty8 or so

Mistake: “A Faster CPU will solve my problem™ montavista:

 Software becomes slower faster than hardware runs
faster

* RT has been used as a “bugfix” to fix slowness

This UART chip only had a 1 byte buffer!!!

Mistake: RT vs SMP in driver development montavista

In RT any process can be preempted at any time

Thus very similar to multi-processor / multi-core:
« Same code can run simultaneously at different cores
 All requirements for SMP-safeness also apply to RT

RT and SMP share the same advanced locking

Using deadlock detection in RT
« already led to 100s of SMP bug fixes in the kernel

Mistake: RT task swapped to disk montavista:

* What happens if:

* Your system is low on memory AND your

RT task’s code pages are freed or were ; '
swapped to disk? A5

e Solution:
mlockall (MCL CURRENT | MCL FUTURE)

* Only do this on small processes!

 ALL memory pages in the process space will be locked into
memory — code + data + library!

* Imagine what this does to a big multithreaded app

* Not just swap, page faults happen everywhere
e see http://rt.wiki.kernel.org/ and http://lwn.net/Articles/259710/

AOTTES L CHBR AR ID @ CEIRGERERIMNACIS - montavista:

a.k.a. “Gleixner did it — so it must work”

* Kernel community has spend many years developing /
testing RT

* MontaVista has performed testing on all released
RT-enabled Linux Support Packages

But:
* There are 10M lines of code in the Linux kernel
 Linux RT comes with NO WARRANTY

« Hardware configuration significantly impacts RT, as do
different code paths

* YOU have to verify it works well

30

SUMMARY montavista:

* Linux used to be fair — not good for RT
* MontaVista has worked on RT behavior since 1999
* True real time appeared in 2004

 Linux can be used for hard real time now
* Interrupt latency on certain platforms always below 50 us

* RT patch is still being merged into mainline kernel
* RT system design has its challenges

« But that’s also true for programming in COBOL
* This presentation uncovers some pitfalls and mistakes

“Controlling a laser with Linux is crazy, but everyone in this room is crazy
in his own way. So if you want Linux to control an industrial welding laser,
| have no problem with your using PREEMPT _RT.” — Linus Torvalds

Fortunately, | run Linux ©

A fatal exception BE has occurred at B8137:BFFA21C3. The current
application will be terminated.

Press any key to terminate the current application.
Press CTIRL+ALT+DEL again to restart pour computer. You will

lose any unsaved information in all applications.

Press any key to continue _

Questions ???

