SONY

Overcoming Obstacles
fo Mainlining

Tim Bird
Senior Software Engineer
Sony Mobile Communications

© Sony Mobile Communications

SONY

Agenda

1. Identify obstacles to mainlining
2. 77

3. Profit!

||||||||||||||||||||||||||||||||

SONY

Agenda

1. ldentify obstacles to mainlining

2. 277
3. Profit! \ Overcome Obstacles

Overcoming Obstacles to Mainlining

SONY

Agenda

* |dentifying obstacles
e Survey

* Describing obstacles
e Observed

e QOvercoming obstacles
* Best Practices
* Incentives (Profit!)

SONY

Identifying Obstacles

SONY

Identifying Obstacles

* A side track on philosophy...

* Survey
e Some quantifiable data (on perceived issues)

e Observed obstacles

Overcoming Obstacles to Mainlining

SONY
Tolstoy and Bera

* Anna Karenina Principle

e "Happy families are all alike; every unhappy family is

unhappy in its own way"
* There are lots of ways to fail, but only a few ways to succeed

* Yogi Bera (American baseball player, philosopher)

*“|f people don’t want to come out to the ballpark, nobody’s

going to stop them.”
* Motivation is a key element

7 | 2014-10-13 Overcomin g Obstacles to Mainlining

SONY
Survey

* Conducted an online survey in September 2014

* Goal was to find qualified kernel developers, who do
NOT submit patches upstream
* And determine “why not?”

Survey results

9

* Top obstacles:

SONY

Obstacle General Industry
rating rating
Older kernel version 48% 56%
It’s too hard 47% 24%
Patch not good enough 44% 27%
Employer does not provide time 40% 34%
Afraid of rejection 35% 15%
Depends on other code not upstream 35% 46%
Could not test 33% 42%

2014-10-13

Overcoming Obstacles to Mainlining

SONY
Some more insights from survey

* Developer motivation:
e |t is important to submit change upstream: 92%
| would like to submit changes upstream: 91%

* Management motivation:
* Management doesn’t approve: 21%
e Employer doesn’t provide time: 40%

Interesting non-issues:

* English not good enough: 9%

* Not my responsibility: 6%

e Company process too hard: 26%

SONY
Some interesting quotes

* Referring to the company approval process: “It can
take weeks or months to get a commit out for
contribution”

*“[We] mainly work on older kernels with our supplier’s
modifications”

*“It is not really clear what direction a newbie should
follow after... the first few patches...”

*“Drop the hard words/language on LKML...”

Overcoming Obstacles to Mainlining

SONY
Obstacles summary

* \Version gap (working on older kernel)
* Perceived difficulty

e | ow-quality or specialized code

* Dependency on non-mainlined code
* Not enough time

Overcoming Obstacles to Mainlining

SONY

Describing Obstacles

SONY
Version gap

e Many companies use a vendor tree
e Particularly true for products with Android

* Are locked in because of processor or SOC selection
* Some amount of patches on top of vanilla

* Development/Testing/Release schedules causes
delay in kernel version

14 | 2014-10-13 Overcomin g Obstacles to Mainlining

SONY
Example of version gap

* Delta between Sony Mobile and mainline

e Sony mobile dependent on upstream supplier for Linux
version (3.4 in this case)

* | ots of patches between Sony tree and mainline

Commiter e-mail Commits Authors
Google/Android commits 963 61
Other 2677 828
Qualcomm 20395 635
Sony Mobile 1799 203
Between our tree and mainline base (3.4) 25843 1757

» Haven’t determined at which stage “Other” contributions are integrated.
» Haven’t quantified how many Sony Mobile patches are dependent on non-mainline
» Rough estimate is that most (~90%) are

15 ‘ 2014-10-13 Overcoming Obstacles to Mainlining

SONY
Perceived difficulty

* Process is cumbersome if you are not familiar

e List of requirements for a contribution is long
e SubmittingPatches, SubmitChecklist, CodingStyle
e Good, but don’t cover a variety of social issues

e Getting anything wrong can result in failure
* Lots of details which maintainers take for granted

*Not as strict as it used to be, and there are now tools to
assist (e.g. checkpatch.pl)

e Cause of strictness is maintainer overload — don’t have time

for malformed contributions
e Silly mistakes is the first filter

16 | 2014-10-13 Overcoming Obstacles to Mainlining

SONY
Perceived difficulty (cont.)

e Part-time contributions

e Switching cost of juggling between contributing and product

development is high
e Similar to high-latency scheduling — results in overall poor performance

* Not doing full-time contributing means that proficiency in
open source methods is developed slowly

e Can result in bad response time to provided feedback

e Classic error:
*\Working on a large patch in isolation
* Attempt to mainline and find that major changes are needed
e Results in mantra: “release early and often”
* Original development strategy made it hard

17 ‘ 2014-10-13 Overcomin g Obstacles to Mainlining

SONY
Low-quality or specialized code

e | ow-quality
* Workarounds and quick hacks

e Specialized code
* Not generalized for other use cases

e Sometimes, there are no frameworks, or the
framework is immature
*E.g. NFC support for Android

* Assumption by developer (probably correct) that
refactoring of submitted code or even refactoring of
upstream code is required to accept the change in
mainline

SONY
Dependency on non-mainlined code

* Modifications to drivers and systems that are not
upstream
* Bugfixes and workarounds for code not upstream

e |t's unclear where to send fixes
e [f it's an IP block in an SOC, who should get the fixes?
e SOC vendor?, IP block creator?

e Example: bugfixes for synaptics touchscreen driver
* | ong delays getting synaptics driver upstream

e I[mpractical, and low motivation to do mainlining in place of
hardware supplier

19 | 2014-10-13 Overcomin g Obstacles to Mainlining

SONY
Not enough fime

* Not enough time provided by management
* Product teams focused on tight delivery deadlines

e Causes focus on “good enough” solutions
* Not unique to open source software

* No time to respond to change requests
* | refer to this as the “product treadmill”

* Mainline versions are independent of any notion of
product release dates

* Mainline acceptance happens when it happens, not based
on your need

SONY
Observed obstacles

* Required expertise is very high (and increasing)
* This is true for core systems, but not drivers
* Proxy problem — someone other than author is contributing
the code (will be discussed later)
* Internal Linux churn
e inux has no ABI or even stable APl internally
e This is a root cause of version gap issues

* Specialized code (often hacks)
* Code for just one hardware or one product release

e Attitude that code is “throwaway”, or that code is “good
enough” for one embedded product release

* Assumption that reuse is not needed

21 ‘ 2014-10-13 Overcomin g Obstacles to Mainlining

SONY

Overcoming Obstacles

23

SONY
Overcoming Obstacles

e Solution for version gap:
* Get a minimal core of mainline running on your hardware

* Have one team working on mainline, while product
engineers work on older kernel (creates the proxy problem,
described later), until you catch up

* Solution for product treadmill
e Small team dedicated to mainline, off of product treadmill

e Solution for perceived difficulty
e |[nternal training, mentors

e Use same processes internally as upstream
* Avoid re-learning upstream methods

2014-10-13 Overcomin g Obstacles to Mainlining

SONY
Overcoming Obstacles (cont.)

* Solution for low-quality code
* Quick hacks are sometimes appropriate from a cost/benefit
standpoint
*Need to determine whether code should be upstreamed

e Measure duration in your internal tree, and re-work hack if

you are carrying it from release to release
e Maybe tag such hacks so they can be tracked?

* Solution for specialized code

* Do better at sourceing

* Require mainline Linux drivers from hardware supplier
* Actually consider software cost in BOM (I can dream can’t I?)

* Only industry working together can work on this

24 ‘ 2014-10-13 Overcoming Obstacles to Mainlining

SONY

The Proxy Problem

* Open-source-facing developers may not be experienced
with the hardware or system that needs to be mainlined

* |s when your “proxy” tries to mainline something, and
* Doesn’t have in-depth knowledge of change
e Can’t answer questions in a timely manner
* May not be able to test thoroughly

* |s a particular problem in case where the change is too far
from mainline

* Upstream has refactored and doesn’t look like your code at all
e Details matter (e.g. locking)

* Some possible solutions

* Proxies mentor original developers to have them mainline the code
* Original developers assist proxies in understanding and testing

25 ‘ 2014-10-13 Overcoming Obstacles to Mainlining

SONY

Best Practices

From the kernel gurus

26 | 2014-10-13 Overcoming Obstacles to Mainlining

SONY

Andrew Morton fips

* See Andrew Morton’s ELC 2008 Keynote:

* http://elinux.org/Session:kernel.org_development_and_the_embe
dded_world

ndustry should have an embedded maintainer
Report problems and requirements upstream

Participate in community forums

e Companies should dedicate a few developers separate

from product teams

e Develop product on latest mainline kernel, freeze it at

end of product development

e My aside: Current nature of Android features and board support
preclude this

* Ask the community (Andrew) for help

27 | 2014-10-13 Overcoming Obstacles to Mainlining

SONY
Deepak Saxena fips

* Don't be arrogant
* Don’'t assume you know better than community developers

* Release early and often

* Don’t work in isolation, and then make big changes when
submitting

* Do your homework
* Check for existing solutions and extend those

* Don't add OS abstractions (or, HALS for other OSes)
* Write general solutions
* _Learn community methods

e Work with the community
* Treat them as equals on your team

28 ‘ 2014-10-13 Overcoming Obstacles to Mainlining

SONY

Jonathan Corbet tips

e Post early and often

e Submitting patches
e Send changes - can influence direction even if not accepted
* No: multi-purpose patches - make each patch small and independent
* Make patch serieses bisectable
* Follow submission and style rules
* Send to correct place: MAINTAINERS, get-maintainer.pl
e Listen to reviewers, be polite, don't ignore feedback
* Be open to accepting changes
* Your code may be re-written or replaced
e Coding
* Follow the style guidelines
* No multi-OS code — no HAL layers, unused parameters
* Should generalize existing code instead of create new code, where possible
* Don't break APIs to user space
* Don't cause regressions

29 ‘ 2014-10-13 Overcoming Obstacles to Mainlining

SONY

Incentives

SONY
Incentives

* Why study this?
e Sony Mobile has 1100 people who have made a patch to
the kernel
*\We find ourselves applying the same changes over and over
again
* \Would like to decrease number of kernel developers
by moving stuff to mainline

* OR - have them move to different tasks (power
enhancement, performance, etc.)

31| 2014-10-13 Overcomin g Obstacles to Mainlining

SONY

Profit!

Commiter e-mail Commits Authors
Google/Android commits 963 61
Other 2677 828
Qualcomm 20395 635
Sony Mobile 1799 203
Between our tree and mainline base (3.4) 25843 1757

e Reduce maintenance cost

¢ Allows others to maintain and enhance the code

* Reduce time to market
* Even more important than cost

32 | 2014-10-13 Overcoming Obstacles to Mainlining

SONY
Reasons to submit upstream

* Improves code quality
*You get immediate feedback, even if code is not accepted
* |t gets more long-term testing

* Avoids adopting a competing implementation

e Have 3" parties enhance your implementation rather than
something else

* [t rewards your developers
* They want to contribute, for a variety of reasons

* They become better developers through interaction with the
community

¢ Please notice these are selfish reasons
e Unselfish reasons are valid also

33 ‘ 2014-10-13 Overcomin g Obstacles to Mainlining

Factors for overcoming (from survey)

SONY

Factor

General Rating

Industry Rating

Better maintainer feedback
Time dedicated by employer
Instruction or training
Mentoring

Permission from employer

48%
44%
39%
37%
25%

21%
74% !l
32%
32%
52%

34 | 2014-10-13

Overcoming Obstacles to Mainlining

SONY
Key recommendations:

* Work with SOC supplier to reduce version gap
* Have a dedicated team that works in open source

* Do specific training for:
e Better motivation (management training)
* Open source methodology and tactics

e Consciously work on social element of community
engagement

e Work on stuff for others, and they’ll help you

* Meet maintainers face-to-face if possible
* Conferences are helpful for this

35| 2014-10-13 Overcomin g Obstacles to Mainlining

SONY

CE Workgroup

Device Mainlining Project
* BOF — Thursday 4:00 pm

Overcoming Obstacles to Mainlining

SONY
Resources

* http://elinux.org/Kernel Mainlining

http://elinux.org/Kernel_Mainlining

SONY
Bonus - notes from discussions

* Many people provided feedback after talk

* Here are some ideas, in no particular order

* Proxies should work both ways — developers familiar with

open source should review designs for new code

e Can avoid glaring mismatch of internal design and what’s acceptable
upstream

e Should keep “for-mainline”, and “quick hack” patches in

separate trees

* Makes it easier to identify for-mainline patches, and encourages upstream-
level code quality during development

e Linux Foundation should create formal training for
mainlining

38 | 2014-10-13 Overcoming Obstacles to Mainlining

39

SONY
Bonus notes (cont.)

* Biggest vendors have greatest impact on sourcing in the

industry and sourcing work should focus on them

* le Google, Samsung: Google seems to be good a pushing mainlining (but
from Chrome team, not Android)

* Need to get more formal/numeric results to convince middle

management of cost savings

e L TSI has a white paper describing costs

* Should select some components and try to quantify cost of long-term
maintence for out-of-tree vs. in-tree drivers

2014-10-13 Overcoming Obstacles to Mainlining

