
Linux Application in
Safety-Critical Environment

Some Real-Life Examples

SAFETY

• General

• IEC 61508

• For Railway Applications

• EN 50126, EN 50128, EN 50129

• Failures Classification

Electric Interlocking System for
Underground

Platform

Collect inputs:
information from track
circuits

Pass calculated data to
the outdoor equipment

Calculate outputs

Electric Interlocking System for
Underground

...

...

...

...

...

...

Operator
Workstations

PLCs

Physical
interfaces

CAN bus CAN bus CAN bus CAN bus

CAN bus

CAN bus

Concepts

• Fully synchronous design

• Safety-critical code isolation

• Keeping safety-critical code as simple as possible

• Software “safe states”

• Monitoring system health

• Redundancy

• hardware

• software

Concepts Synchronous Design

{inputs}
{outputs}

t0 t1

t0

t2

ISR

processing thread

hardware

{inputs}
{outputs}

Concepts Synchronous design Real Time

• Guaranteed maximal response time

• Using interrupt threads to prioritize interrupts

• Carefully define priorities for

• IRQ handler threads

• realtime kernel threads

• realtime userspace threads

Concepts Safety-critical code isolation

• Define which code is SC

• Specify inputs and outputs

• Prove code correctness

• Set required priority

• Monitor health

Concepts Safe States

Processing...

timestamp {0,1,1,..,1} CRC

{0,1,1,..,0,1 }

t0

 {0,0,0,..,0}

t1Sending...

Inputs vector

Outputs vector Safe states vector

Concepts Monitoring system health

• Monitor state of processes

• alive status

• memory consumption

• scheduler statistics

• Generate alarms if something is going wrong

• Interchange health state between modules participating in
hardware redundancy scheme

Concepts Hardware Redundancy

• Equipment is duplicated

• Outputs are cross checked

• Different boards with different CPU architectures are used

• Clock are synchronized

Concepts Software Redundancy

• Two different implementations for safety-critical process

• written on different languages by different developers

• the solution is only taken when they give equal results

• alarm is raised otherwise and safe states are guaranteed on
outputs

• Two different OS versions on modules

Building System

• Kernel

• Filesystems

• Startup

• Shutdown

• OSADL stable rt-linux recommendation:

• 2.6.31.12-rt21 at the moment

• Standard tested configuration

• RT-Preempt Patch:

• CONFIG_PREEMPT_RT=on

• disable power management

• disable high memory support

• disable group CPU scheduler

Building System Kernel

• Read-Only root filesystem

• Separate filesystem for configuration data and logs

Building System File System

• Configure system

• remove the limit of CPU usage of
RT processes

• Startup the child process

• Configure priorities

• Wait for its completion

• monitor health

• feed watchdog

• Simplified

Building System Taking Off

#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
pid_t safety_critical_process, appstatus;
int status;

/* System setup is going here*/
/* ... */

while(1) {
! safety_critical_process = fork();
! if (safety_critical_process == -1)
! ! exit(EXIT_FAILURE);

! if (safety_critical_process == 0) {
! ! while (1) {
! ! ! /* Health monitoring actions here */
! ! ! sleep(INIT_QUANTUM);
! ! }
! }
! else {
! ! appstatus = waitpid(safety_critical_process, &status, 0);
! ! printf("exited: status %d\n restarting", status);
! }
}

}

• Graceful shutdown

• explicitly tell neighbors that we are not operational anymore

• make log record

Building System Landing

• We must be ready to use Linux when it will be possible to certify
it for SIL3/4 systems

• Until then we are using it in proof of concept designs taking
special care of its possible misbehavior :

• avoid hazardous failures falling back to safe states aggressively

• use additional modules to provide hardware redundancy and
special system design to minimize non-hazardous failures

What’s now

