
Linux Application in
Safety-Critical Environment

Some Real-Life Examples



SAFETY

• General

• IEC 61508

• For Railway Applications

• EN 50126, EN 50128, EN 50129

• Failures Classification
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Concepts

• Fully synchronous design

• Safety-critical code isolation

• Keeping safety-critical code as simple as possible

• Software “safe states”

• Monitoring system health

• Redundancy

• hardware

• software



Concepts Synchronous Design
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Concepts Synchronous design Real Time

• Guaranteed maximal response time

• Using interrupt threads to prioritize interrupts

• Carefully define priorities for

• IRQ handler threads

• realtime kernel threads

• realtime userspace threads



Concepts Safety-critical code isolation

• Define which code is SC

• Specify inputs and outputs

• Prove code correctness

• Set required priority

• Monitor health



Concepts Safe States
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Concepts Monitoring system health

• Monitor state of processes

• alive status

• memory consumption

• scheduler statistics

• Generate alarms if something is going wrong

• Interchange health state between modules participating in 
hardware redundancy scheme



Concepts Hardware Redundancy

• Equipment is duplicated

• Outputs are cross checked

• Different boards with different CPU architectures are used

• Clock are synchronized 



Concepts Software Redundancy

• Two different implementations for safety-critical process

• written on different languages by different developers

• the solution is only taken when they give equal results

• alarm is raised otherwise and safe states are guaranteed on 
outputs

• Two different OS versions on modules



Building System

• Kernel

• Filesystems

• Startup

• Shutdown



• OSADL stable rt-linux recommendation:

• 2.6.31.12-rt21 at the moment

• Standard tested configuration

• RT-Preempt Patch:

• CONFIG_PREEMPT_RT=on

• disable power management

• disable high memory support

• disable group CPU scheduler

Building System Kernel



• Read-Only root filesystem

• Separate filesystem for configuration data and logs

Building System File System



• Configure system

• remove the limit of CPU usage of 
RT processes

• Startup the child process

• Configure priorities

• Wait for its completion

• monitor health

• feed watchdog

• Simplified

Building System Taking Off

#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
pid_t safety_critical_process, appstatus;
int status;

/* System setup is going here*/
/* ... */

while(1) {
! safety_critical_process = fork();
! if ( safety_critical_process == -1 ) 
! ! exit(EXIT_FAILURE);

! if ( safety_critical_process == 0 ) {
! ! while (1) {
! ! ! /* Health monitoring actions here */
! ! ! sleep(INIT_QUANTUM);
! ! }
! }
! else {
! ! appstatus = waitpid(safety_critical_process, &status, 0);
! ! printf("exited: status %d\n restarting", status);
! }
}

}



• Graceful shutdown

• explicitly tell neighbors that we are not operational anymore

• make log record

Building System Landing



• We must be ready to use Linux when it will be possible to certify 
it for SIL3/4 systems

• Until then we are using it in proof of concept designs taking 
special care of its possible misbehavior :

• avoid hazardous failures falling back to safe states aggressively

• use additional modules to provide hardware redundancy and 
special system design to minimize non-hazardous failures

What’s now


