Linux Application in
Safety-Critical Environment

Some Real-Life Examples

SAFETY

» General
BEE@ 61505
* For Rallway Applications

=S 26, EIN S0 238, EN 50127

 Fallures Classification

Electric Interlocking System for
Underground

Collect inputs:
iInformation from track
circurts

Pass calculated data to
the outdoor equipment

d B
AN -

Calculate outputs

tlectric Interlocking System for
Undergrouna

Concepts

» Fully synchronous design

» Safety-critical code isolation

» Keeping safety-critical code as simple as possible
* Software “safe states”

 Monrtoring system health

» Redundancy
* hardware

» software

Concepts SyﬂCh FONOUS DeSIgﬂ

processing thread

Y
' [outputs} {outputs!

hardware

Concepts Synchronous design Rea‘ T| me

» Guaranteed maximal response time
» Using interrupt threads to prioritize interrupts
» Carefully define priorities for

« [RQ handler threads

* realtime kernel threads

* realtime userspace threads

concepts Dafety-critical code i1solation

RBEiifie which code Is >C

» Specify Inputs and outputs
@i i@ e cade correctness

» Set required priority

* Monitor health

@eiecpls Safe Sta_te S

Inputs vector

Safe states vector

Concepts MOﬂitOriﬂg SYStem hea‘th

ENICRITCl State of processes
» alive status
* memory consumption
* scheduler statistics

- Generate alarms It something Is going wrong

* Interchange health state between modules participating in
hardware redundancy scheme

Concepts H al”dwal”e Red Un d cll@ C>/

* Equipment I1s duplicated
R@NIBUIS are cross cnecked

« Different boards with different CPU architectures are used

» Clock are synchronized

Concepts SOﬂ:\/\/are Redumdaﬂ C>/

» [wo different implementations for safety-critical process
» written on different languages by different developers
- the solution Is only taken when they give equal results

» alarm Is raised otherwise and safe states are guaranteed on
OUtputs

« [wo different OS versions on modules

Building System

> [KEfhEl
* Filesystems
» Startup

« Shutdown

Building System Kernel

« OSADL stable rt-linux recommendation:
REc i | at the moment
- Standard tested configuration
S ERreempt Patch:
@CNEIC PREEMPT_RT=o0n
* disable power management
* disable high memory support

* disable group CPU scheduler

Building System FIle System

* Read-Only root filesystem

» Separate filesystem for configuration data and logs

Building System Taking Off

Configure system

#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>

» remove the limit of CPU usage of #include <stdlib.h>

RT processes int main(int argc, char** argv)
{

pid t safety critical process, appstatus;
int status;

Startup the child process

/* System setup is going here*/

|

while(1l) {

Conﬂgure priorities safety critical process = fork();

if (safety critical process == -1)
exit (EXIT FAILURE);

g : ; if (safety critical process == 0) {
Wait for its completion while (1) {

/* Health monitoring actions here */
sleep(INIT QUANTUM);

: }
 monitor health e

appstatus = waitpid(safety critical process, &status, 0);
printf("exited: status %d\n restarting", status);

- feed watchdog

Simplified

Building System Landing

» Graceful shutdown
- explicitly tell neighbors that we are not operational anymore

* make log record

VWhat's now

- We must be ready to use Linux when it will be possible to certity
[S@@SIE 5/l sy/stems

» Until then we are using it In proof of concept designs taking
special care of rts possible misbehavior:

» avolid hazardous fallures falling back to safe states aggressively

» use additional modules to provide hardware redundancy and
special system design to minimize non-hazardous failures

