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Assumptions

• ARMv8 SoC

• Hypervisor not used

• BL0, BL1, etc - the 

bootloader “stages” 

conceptual only.

• Microcontrollers 

handling initial SoC boot 

aren’t covered
Linux



ARMv8 SoC basic architecture

• Example of a simple (complex?)

BigLittle ARM SoC:

• A SoC is basically an organization of 

various components:

– CPU clusters

– System buses

– Memory controller

– Main Memory

– Other sub systems (Display, GPU, 

Peripherals, Host controllers, etc)

• The SOC also consists of components 

like Clock, Power switches, Power 

Domains for sub blocks.



SoC internal memory

• Apart from main memory, SoC will have a ROM (Read-Only Memory) which contains 

minimal code to setup the system for next stage binary loading.

This piece of code is executed upon CA block reset.

• It might also have an SRAM (volatile memory) which can help in execution of initial C 

routines.
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ROM code

• The ROM code does minimal initialization of SRAM block and copy Bootloader(BL0) 

from storage/flash memory to SRAM memory.

– Runs in EL3 mode

– Powering up core clocks, power domains

– Setting up C environment on SRAM for BL0 execution
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– Interrupts are mostly disabled at this stage



Setup and Initialize the RAM

• Now the Bootloader BL0 executing from SRAM can further initialize the system clocks, 

power domains and most importantly initialize main memory.

• The Bootloader is expected to find and initialize all RAM that the kernel will use.

It performs this in a machine dependent manner.
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BL1 and Secure Monitor

• Once the primary Bootloader BL0 has initialized the main memory, it can load a 

secondary bootloader (BL1) which can execute from main memory.

• BL1 initializes the system for supporting Linux boot, loads other binaries needed for 

Linux boot from storage to main memory. Can have interrupts enabled.
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Copy images to main memory

• DTB – Device Tree Blob – Description of Hardware in Device Tree format

• Image – Actual Kernel binary

• Ramdisk – Initial RAMDISK – minimal rootfs loaded before mounting actual root file 

system. Required to execute init scripts

• All loaded to memory via BL1
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Device Tree Blob

• Description of Hardware in Device tree format

• Contains memory mapped addresses and 

information about CPU, memory, GPIO, clocks, 

peripherals, etc.

• Before the kernel is executed, bootloader selects 

proper device tree file and passes it as an 

argument to the kernel

• This is because the dtb will be mapped cacheable 

using blocks of up to 2 megabytes in size, it must 

not be placed within any 2M region which must be 

mapped with any specific attributes.
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Decompressing the kernel image

• Image – Actual Kernel binary, Image.gz – Compressed Kernel binary

• The AArch64 kernel does not currently provide a decompressor and therefore 

requires decompression (gzip etc.) to be performed by the boot loader if a 

compressed Image target (e.g. Image.gz) is used.

• For bootloaders that do not implement this requirement, the uncompressed 

Image target is available instead.
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Kernel image header

• code – Start of text section

• text_offset – Obsolete

• image_size - Effective Image size

• Over the years, few of these fields have become obsolete (ex: text_offset)



Kernel image header flags

• Bit [0] Kernel endianness: 1 if BigEndian, 0 if LittleEndian.

• Bit [1-2] Kernel Page size: 0 – Unspecified, 1 - 4K, 2 - 16K, 3 - 64K

• Bit [3] Kernel physical placement

– 0: 2MB aligned base should be as close as possible to the base of DRAM, since memory below 

it is not accessible via the linear mapping

– 1: 2MB aligned base may be anywhere in physical memory

• Bits [4-63] Reserved.



Kernel Header dump



Prepare for Jumping into Kernel

• After placing the kernel image, what remains is setting up remaining environment for 

jumping into kernel.

• Before jumping into the kernel:

– Disable DMA capable devices so that memory does not get corrupted

– CPU mode

• Primary CPU general-purpose register settings:

– x0 = physical address of device tree blob (dtb) in system RAM.

– x1 = 0, x2 = 0, x3 = 0

• Secondary CPU general-purpose register settings:

– x0 = 0, x1 = 0, x2 = 0, x3 = 0 (reserved for future use)

• All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError, 

IRQ and FIQ)

• The MMU must be off.

• Caches: The instruction cache may be on or off, and must not hold any stale 

entries corresponding to the loaded kernel image. 



Prepare for Jumping into Kernel (contd…)

• Before jumping into the kernel (contd…):

– Architected timers: Timers at different exception level have to be initialized.

– Coherency: All CPUs to be booted by the kernel must be part of the same 

coherency domain on entry to the kernel.  This may require IMPLEMENTATION 

DEFINED initialization to enable the receiving of maintenance operations on each 

CPU. For ARMv8 Linux, all CPU under SMP fall into same Inner Shareable domain.

– System registers: All writable architected system registers at or below the 

exception level where the kernel image will be entered must be initialized by 

software at a higher exception level to prevent execution in an UNKNOWN state

– The requirements described above for CPU mode, caches, MMUs, architected 

timers, coherency and system registers apply to all CPUs. 

– All CPUs must enter the kernel in the same exception level. 



Deciding CPU boot configuration

• The primary CPU jumps directly to the first instruction of the kernel image. 

• The device tree blob passed by this CPU must contain an 'enable-method' 

property for other cpu nodes.

• "psci" enable-method:

– kernel will issue CPU_ON calls as described in Power State Coordination Interface

– Secure monitor code (ATF) will take care of powering up CPU internally

– Platforms mostly use PSCI method.

• "spin-table" enable-method:

– must have a 'cpu-release-addr‘ property in their cpu node

– These CPUs should spin outside of the kernel in a reserved area of memory polling 

their cpu-release-addr location

– A wfe instruction may be inserted to reduce the overhead of the busy-loop and a sev

will be issued by the primary CPU.



Jumping into Kernel

• Once the bootloader BL1 has performed all necessary SOC 

initialization (clocks, power domains) and prepared for jumping to 

kernel, it will jump to kernel.

• Lets take example of coreboot:

src/arch/arm64/arm_tf.c

3rdparty/arm-trusted-firmware/bl31/bl31_main.c



Snapshot before jumping to kernel
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head.S: primary_entry: Kernel entry point

• primary_entry (or stext in earlier 

versions of linux kernel) is the entry point 

of arm64 architecture

(arch/arm64/kernel/head.S)



arch/arm64/kernel/head.S: primary_entry

• preserve_boot_args: Preserve the 

arguments passed by the bootloader in 

x0-x3 (x21 = x0 = FDT)

• init_kernel_el: Setup based on the 

current kernel exception level - EL1/EL2 

and return w0=cpu_boot_mode

• KASLR (Kernel Address Space Layout 

Randomization) setting.

• set_cpu_boot_mode_flag: Sets the __boot_cpu_mode flag depending on the CPU 

boot mode passed in w0, for later usage.

• __create_page_tables: Setup the initial page tables

– Identity mapping for MMU enable code (low address, TTBR0) – idmap_pg_dir.

– Linear mapping for first few MB of the kernel – init_pg_dir



arch/arm64/mm/proc.S

• __cpu_setup:

– Initialize processor for turning the 

MMU on: clear TLB, set size for 

virtual, physical addresses, enable 

VM features.

– Sets the TCR (Translation control 

register), and SCTRL (System 

control register) to do the same.

• __primary_switch:

– Set Page table address for TTBR0 (idmap_pg_dir), TTBR1(init_pg_dir)

– _enable_mmu – check and configure for required Page granule, turn MMU on

– Try to relocate kernel if possible - KASLR

– call __primary_switched:

• Assign EL1 vector table, Clear BSS, setup kernel stack, create FDT mapping,

call start_kernel



• Kernel is always booted by architecture specific code. But then execution is passed to 

the start_kernel function that is responsible for common kernel initialization and is an 

architecture independent kernel starting point.

• The main purpose of the start_kernel to finish kernel initialization process and launch 

the first init process.

Arch Independent Kernel Starting Point
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start_kernel

setup_arch

parse_early_param

mm_init

sched_init

init_IRQ
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console_init

rest_init



• init_task represents the initial task structure, that stores all the information about a process.

• The process 0 is statically defined. The only process that is not created by kernel thread 

nor fork.

• set_task_stack_end_magic function will set the stack border of init_task,which is the 

process0.

Kernel Creating Process 0



• The function initializes various CPU masks for the bootstrap processor.

• The processor id is got from the function:

– int cpu = smp_processor_id();

• set the given CPU online, active, present, possible

– set_cpu_online(cpu, true);

– set_cpu_active(cpu, true);

– set_cpu_present(cpu, true);

– set_cpu_possible(cpu, true);

• cpu_possible : set of CPU ID's which can be plugged in at any time during the life of that 

system boot

• cpu_present : represents which CPUs are currently plugged in

• cpu_online: represents subset of the cpu_present and indicates CPUs which are available 

for scheduling

The First Processor Activation



setup_arch()

• early_ioremap_init:

– for early users of early_ioremap(paddr, size) 

• setup_machine_fdt

– Parse ‘bootargs’ from DT ‘chosen’ node 

– Parse Physical Memory base and size, added into 

memblock subsystem 

– Parse Machine model 

• parse_early_param:

– early_param("mem", early_mem); 

– early_param("earlycon", param_setup_earlycon); 

– early_param("debug", debug_kernel); 

• cpu_uninstall_idmap: Remove idmap_pg_dir from 

TTBR0_EL1 and invalidate

• arm64_memblock_init:

– Reserve memory used by kernel image 

– Reserve memory specified in DT and specifical

initialization if any 



setup_arch() contd(…)

• paging_init / bootmem_init

– Remap kernel sections _text, _rodata, _data 

and etc with fine grain permissions per 

segment to swapper_pg_dir

– Create Linear mapping for available physical 

memory blocks 

– Switch page table to swapper_pg_dir

– Build memory zones − Usually only one DMA 

zone for ARM64 

• psci_init

– Firmware interface implementing CPU power 

related operations specified by ARM PSCI 

spec 

– Including 

CPU_ON/OFF/SUSPNED/MIGRATION and 

etc.



• The scheduler subsystem is one of the core subsystems of the kernel. It is 

responsible for the rational allocation of CPU resources in the system. It needs to be 

able to handle the scheduling requirements of complex different types of tasks.

• kernel has five scheduling classes, and the priority is distributed from high to low as 

follows

• Scheduling initialization located at start_kernel is relatively backward. At this time, the 

memory initialization has been completed, so you can see sched_init can already call 

kzmalloc and other memory application functions.

• sched_init initialize the run queue (RQ), the global default bandwidth of DL / RT, the 

run queue of each scheduling class, and CFS soft interrupt registration for each CPU.

Scheduler Initialization

stop_sched dl_sched rt_sched fair_sched idle_sched

highest priority lowest priority



• A symmetric multiprocessor system (SMP) is a multiprocessor system with centralized shared memory called main 

memory (MM) operating under a single operating system with two or more homogeneous processors. 

• Most of the SMP code is not architecture dependent (in kernel directory).

• Few SMP functions related to the SoC:

– smp_init_cpus():

• Setup the set of possible CPUs (via cpu_possible()).

• Can be removed if the CPU topology is up to date in the device tree.

• Called very early during the boot process (from setup_arch()). 

– smp_prepare_cpus():

• Enables coherency.

• Initializes cpu_possible map.

• Prepares the resources (power, ram, clock...).

• Called early during the boot process (before the initcalls but after setup_arch()).

– smp_secondary_init():

• Perform platform specific initialization of the specified CPU".

• Called from secondary_start_kernel() on the CPU which has just been started.

– smp_boot_secondary():

• Actually boots a secondary CPU identified by the CPU number given in parameter.

• Called from cpu_up() on the booting CPU.

SMP on ARM SOC



irq_init and time_init() System Timer

• irq_init

– init_irq_stacks: Setup per CPU IRQ stack

– irqchip_init  of_irq_init(__irqchip_of_table): Initialize the GIC controllers.

Scans the device tree for matching interrupt controller nodes, and calls their 

initialization functions

• time_init

– The function time_init() selects and initializes the system timer

– It is a device that can be configured to periodically interrupt a processor with 

some predefined frequency.

– One particular application of the timer, that it is used in the process scheduling

– A scheduler needs to measure for how long each process has been executed 

and use this information to select the next process to run. 

– This measurement is based on timer interrupts.



rest_init()

• start_kernel() initializes dozens of kernel subsystems and ends calling rest_init().

• rest_init() in its turn, spawns the very first user space process: kernel_init(). 

• Its process id is 1 it will become the direct or indirect ancestor of all user space 

processes. 

• It also spawns kthread process (normally, process id 2), that's the parent of all 

kernel threads. 

• Finally, it runs cpu_idle(), a process that takes over the CPU whenever there is no 

other process using it.

• kernel_init() will start any additional CPU core.

• If there is a initial RAM disk is defined, it will decompress and mount it. 

• Then, it load the device drivers, mount the root file system in read-only mode and 

finally call the init process (normally, in /sbin/init).



Before we end:

• For a complete understanding please refer to following spec:

• References:

– ARMv8 architecture: https://developer.arm.com/documentation/den0024/a

– Kernel source: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/

– Booting on ARM64: https://www.kernel.org/doc/html/latest/arm64/booting.html

– Analyzing Linux boot process : https://opensource.com/article/18/1/analyzing-linux-boot-

process

– SMP boot in Linux : https://developer.arm.com/documentation/den0013/d/Multi-core-

processors/Booting-SMP-systems/SMP-boot-in-Linux

– Memory Layout on AArch64 Linux : 

https://www.kernel.org/doc/html/latest/arm64/memory.html
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https://developer.arm.com/documentation/den0013/d/Multi-core-processors/Booting-SMP-systems/SMP-boot-in-Linux
https://www.kernel.org/doc/html/latest/arm64/memory.html



