
Delving into the Linux boot

process for an ARM SoC
Ajay Kumar, Thiagu Ramalingam

FDS S/W solutions - Samsung Semiconductor India Research

#ossummit

CONTENTS

• ARMv8 SoC basic architecture

– SoC internal memory and bootup

• Bootloader

– Setup and Initialize the RAM

– Copy images to main memory

– Decompressing the kernel image

• Kernel image header

– Kernel image header

– Prepare for Jumping into Kernel

• Deciding CPU boot configuration

• Jumping into Kernel: primary_entry

• Arch Independent Kernel Starting Point

• Process 0

• The First Processor Activation

• setup_arch

• Scheduler Initialization

• SMP on ARM SOC

• irq_init and time_init - System Timer

• rest_init

Assumptions

• ARMv8 SoC

• Hypervisor not used

• BL0, BL1, etc - the

bootloader “stages”

conceptual only.

• Microcontrollers

handling initial SoC boot

aren’t covered
Linux

ARMv8 SoC basic architecture

• Example of a simple (complex?)

BigLittle ARM SoC:

• A SoC is basically an organization of

various components:

– CPU clusters

– System buses

– Memory controller

– Main Memory

– Other sub systems (Display, GPU,

Peripherals, Host controllers, etc)

• The SOC also consists of components

like Clock, Power switches, Power

Domains for sub blocks.

SoC internal memory

• Apart from main memory, SoC will have a ROM (Read-Only Memory) which contains

minimal code to setup the system for next stage binary loading.

This piece of code is executed upon CA block reset.

• It might also have an SRAM (volatile memory) which can help in execution of initial C

routines.

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

Other

Sub

systems

PMU

CMU

CMU

MMU

ROM

GIC

SRAM

ROM code

• The ROM code does minimal initialization of SRAM block and copy Bootloader(BL0)

from storage/flash memory to SRAM memory.

– Runs in EL3 mode

– Powering up core clocks, power domains

– Setting up C environment on SRAM for BL0 execution

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

CMU

MMU

ROM

Flash

mem
BL0

SRAM

BL0

GIC

Init SRAM + copy

– Interrupts are mostly disabled at this stage

Setup and Initialize the RAM

• Now the Bootloader BL0 executing from SRAM can further initialize the system clocks,

power domains and most importantly initialize main memory.

• The Bootloader is expected to find and initialize all RAM that the kernel will use.

It performs this in a machine dependent manner.

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

CMU

MMU

ROM

Flash

mem
BL0

SRAM

BL0

GIC

Initialize RAM

BL1 and Secure Monitor

• Once the primary Bootloader BL0 has initialized the main memory, it can load a

secondary bootloader (BL1) which can execute from main memory.

• BL1 initializes the system for supporting Linux boot, loads other binaries needed for

Linux boot from storage to main memory. Can have interrupts enabled.

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

CMU

MMU

ROM
BL1 SRAM

BL0

dtb

Image

ramdisk

BL0

BL1

GIC

SMC

• BL0/BL1 should also keep a Secure Monitor code(SMC) for handling secure access.

Initialize system

copy

Copy images to main memory

• DTB – Device Tree Blob – Description of Hardware in Device Tree format

• Image – Actual Kernel binary

• Ramdisk – Initial RAMDISK – minimal rootfs loaded before mounting actual root file

system. Required to execute init scripts

• All loaded to memory via BL1

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

CMU

MMU

ROM
BL1 SRAM

BL0

dtb

Image

ramdisk

BL0

BL1 Image

dtb ramdisk

GIC

SMC

Copy to

RAM

Device Tree Blob

• Description of Hardware in Device tree format

• Contains memory mapped addresses and

information about CPU, memory, GPIO, clocks,

peripherals, etc.

• Before the kernel is executed, bootloader selects

proper device tree file and passes it as an

argument to the kernel

• This is because the dtb will be mapped cacheable

using blocks of up to 2 megabytes in size, it must

not be placed within any 2M region which must be

mapped with any specific attributes.

MEMORY

BL1

Image

dtb

ramdisk

Size < 2 MB

0xXX_XX00_0000

Decompressing the kernel image

• Image – Actual Kernel binary, Image.gz – Compressed Kernel binary

• The AArch64 kernel does not currently provide a decompressor and therefore

requires decompression (gzip etc.) to be performed by the boot loader if a

compressed Image target (e.g. Image.gz) is used.

• For bootloaders that do not implement this requirement, the uncompressed

Image target is available instead.

MEMORY
CPU – CA75

CPU – CA75
CPU – CA75

CPU – CA75

CACHE
Memory

Controller
PMU

CMU

MMU

ROM
BL1 SRAM

BL0

dtb

Image.gz

ramdisk

BL0

BL1 Image

dtb ramdisk

GIC

SMC

decompress

Kernel image header

• code – Start of text section

• text_offset – Obsolete

• image_size - Effective Image size

• Over the years, few of these fields have become obsolete (ex: text_offset)

Kernel image header flags

• Bit [0] Kernel endianness: 1 if BigEndian, 0 if LittleEndian.

• Bit [1-2] Kernel Page size: 0 – Unspecified, 1 - 4K, 2 - 16K, 3 - 64K

• Bit [3] Kernel physical placement

– 0: 2MB aligned base should be as close as possible to the base of DRAM, since memory below

it is not accessible via the linear mapping

– 1: 2MB aligned base may be anywhere in physical memory

• Bits [4-63] Reserved.

Kernel Header dump

Prepare for Jumping into Kernel

• After placing the kernel image, what remains is setting up remaining environment for

jumping into kernel.

• Before jumping into the kernel:

– Disable DMA capable devices so that memory does not get corrupted

– CPU mode

• Primary CPU general-purpose register settings:

– x0 = physical address of device tree blob (dtb) in system RAM.

– x1 = 0, x2 = 0, x3 = 0

• Secondary CPU general-purpose register settings:

– x0 = 0, x1 = 0, x2 = 0, x3 = 0 (reserved for future use)

• All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError,

IRQ and FIQ)

• The MMU must be off.

• Caches: The instruction cache may be on or off, and must not hold any stale

entries corresponding to the loaded kernel image.

Prepare for Jumping into Kernel (contd…)

• Before jumping into the kernel (contd…):

– Architected timers: Timers at different exception level have to be initialized.

– Coherency: All CPUs to be booted by the kernel must be part of the same

coherency domain on entry to the kernel. This may require IMPLEMENTATION

DEFINED initialization to enable the receiving of maintenance operations on each

CPU. For ARMv8 Linux, all CPU under SMP fall into same Inner Shareable domain.

– System registers: All writable architected system registers at or below the

exception level where the kernel image will be entered must be initialized by

software at a higher exception level to prevent execution in an UNKNOWN state

– The requirements described above for CPU mode, caches, MMUs, architected

timers, coherency and system registers apply to all CPUs.

– All CPUs must enter the kernel in the same exception level.

Deciding CPU boot configuration

• The primary CPU jumps directly to the first instruction of the kernel image.

• The device tree blob passed by this CPU must contain an 'enable-method'

property for other cpu nodes.

• "psci" enable-method:

– kernel will issue CPU_ON calls as described in Power State Coordination Interface

– Secure monitor code (ATF) will take care of powering up CPU internally

– Platforms mostly use PSCI method.

• "spin-table" enable-method:

– must have a 'cpu-release-addr‘ property in their cpu node

– These CPUs should spin outside of the kernel in a reserved area of memory polling

their cpu-release-addr location

– A wfe instruction may be inserted to reduce the overhead of the busy-loop and a sev

will be issued by the primary CPU.

Jumping into Kernel

• Once the bootloader BL1 has performed all necessary SOC

initialization (clocks, power domains) and prepared for jumping to

kernel, it will jump to kernel.

• Lets take example of coreboot:

src/arch/arm64/arm_tf.c

3rdparty/arm-trusted-firmware/bl31/bl31_main.c

Snapshot before jumping to kernel

CPU – CA75
CPU – CA75

CPU – CA75
CPU – CA75

CACHE PMU

CMU

MMU

ROM
BL1 SRAM

BL0

dtb

Image

ramdisk

BL0

MEMORY

BL1

Image

dtb

ramdisk

• CPU 0: EL1

– CMU, PMU – on

– MMU – off

– Data cache – off, Instruction cache – may be kept on

• Binaries placed in memory at respective addresses adhering to

respective constraints.

GIC

SMC

head.S: primary_entry: Kernel entry point

• primary_entry (or stext in earlier

versions of linux kernel) is the entry point

of arm64 architecture

(arch/arm64/kernel/head.S)

arch/arm64/kernel/head.S: primary_entry

• preserve_boot_args: Preserve the

arguments passed by the bootloader in

x0-x3 (x21 = x0 = FDT)

• init_kernel_el: Setup based on the

current kernel exception level - EL1/EL2

and return w0=cpu_boot_mode

• KASLR (Kernel Address Space Layout

Randomization) setting.

• set_cpu_boot_mode_flag: Sets the __boot_cpu_mode flag depending on the CPU

boot mode passed in w0, for later usage.

• __create_page_tables: Setup the initial page tables

– Identity mapping for MMU enable code (low address, TTBR0) – idmap_pg_dir.

– Linear mapping for first few MB of the kernel – init_pg_dir

arch/arm64/mm/proc.S

• __cpu_setup:

– Initialize processor for turning the

MMU on: clear TLB, set size for

virtual, physical addresses, enable

VM features.

– Sets the TCR (Translation control

register), and SCTRL (System

control register) to do the same.

• __primary_switch:

– Set Page table address for TTBR0 (idmap_pg_dir), TTBR1(init_pg_dir)

– _enable_mmu – check and configure for required Page granule, turn MMU on

– Try to relocate kernel if possible - KASLR

– call __primary_switched:

• Assign EL1 vector table, Clear BSS, setup kernel stack, create FDT mapping,

call start_kernel

• Kernel is always booted by architecture specific code. But then execution is passed to

the start_kernel function that is responsible for common kernel initialization and is an

architecture independent kernel starting point.

• The main purpose of the start_kernel to finish kernel initialization process and launch

the first init process.

Arch Independent Kernel Starting Point

init/main.c

start_kernel

setup_arch

parse_early_param

mm_init

sched_init

init_IRQ

timer_init

console_init

rest_init

• init_task represents the initial task structure, that stores all the information about a process.

• The process 0 is statically defined. The only process that is not created by kernel thread

nor fork.

• set_task_stack_end_magic function will set the stack border of init_task,which is the

process0.

Kernel Creating Process 0

• The function initializes various CPU masks for the bootstrap processor.

• The processor id is got from the function:

– int cpu = smp_processor_id();

• set the given CPU online, active, present, possible

– set_cpu_online(cpu, true);

– set_cpu_active(cpu, true);

– set_cpu_present(cpu, true);

– set_cpu_possible(cpu, true);

• cpu_possible : set of CPU ID's which can be plugged in at any time during the life of that

system boot

• cpu_present : represents which CPUs are currently plugged in

• cpu_online: represents subset of the cpu_present and indicates CPUs which are available

for scheduling

The First Processor Activation

setup_arch()

• early_ioremap_init:

– for early users of early_ioremap(paddr, size)

• setup_machine_fdt

– Parse ‘bootargs’ from DT ‘chosen’ node

– Parse Physical Memory base and size, added into

memblock subsystem

– Parse Machine model

• parse_early_param:

– early_param("mem", early_mem);

– early_param("earlycon", param_setup_earlycon);

– early_param("debug", debug_kernel);

• cpu_uninstall_idmap: Remove idmap_pg_dir from

TTBR0_EL1 and invalidate

• arm64_memblock_init:

– Reserve memory used by kernel image

– Reserve memory specified in DT and specifical

initialization if any

setup_arch() contd(…)

• paging_init / bootmem_init

– Remap kernel sections _text, _rodata, _data

and etc with fine grain permissions per

segment to swapper_pg_dir

– Create Linear mapping for available physical

memory blocks

– Switch page table to swapper_pg_dir

– Build memory zones − Usually only one DMA

zone for ARM64

• psci_init

– Firmware interface implementing CPU power

related operations specified by ARM PSCI

spec

– Including

CPU_ON/OFF/SUSPNED/MIGRATION and

etc.

• The scheduler subsystem is one of the core subsystems of the kernel. It is

responsible for the rational allocation of CPU resources in the system. It needs to be

able to handle the scheduling requirements of complex different types of tasks.

• kernel has five scheduling classes, and the priority is distributed from high to low as

follows

• Scheduling initialization located at start_kernel is relatively backward. At this time, the

memory initialization has been completed, so you can see sched_init can already call

kzmalloc and other memory application functions.

• sched_init initialize the run queue (RQ), the global default bandwidth of DL / RT, the

run queue of each scheduling class, and CFS soft interrupt registration for each CPU.

Scheduler Initialization

stop_sched dl_sched rt_sched fair_sched idle_sched

highest priority lowest priority

• A symmetric multiprocessor system (SMP) is a multiprocessor system with centralized shared memory called main

memory (MM) operating under a single operating system with two or more homogeneous processors.

• Most of the SMP code is not architecture dependent (in kernel directory).

• Few SMP functions related to the SoC:

– smp_init_cpus():

• Setup the set of possible CPUs (via cpu_possible()).

• Can be removed if the CPU topology is up to date in the device tree.

• Called very early during the boot process (from setup_arch()).

– smp_prepare_cpus():

• Enables coherency.

• Initializes cpu_possible map.

• Prepares the resources (power, ram, clock...).

• Called early during the boot process (before the initcalls but after setup_arch()).

– smp_secondary_init():

• Perform platform specific initialization of the specified CPU".

• Called from secondary_start_kernel() on the CPU which has just been started.

– smp_boot_secondary():

• Actually boots a secondary CPU identified by the CPU number given in parameter.

• Called from cpu_up() on the booting CPU.

SMP on ARM SOC

irq_init and time_init() System Timer

• irq_init

– init_irq_stacks: Setup per CPU IRQ stack

– irqchip_init  of_irq_init(__irqchip_of_table): Initialize the GIC controllers.

Scans the device tree for matching interrupt controller nodes, and calls their

initialization functions

• time_init

– The function time_init() selects and initializes the system timer

– It is a device that can be configured to periodically interrupt a processor with

some predefined frequency.

– One particular application of the timer, that it is used in the process scheduling

– A scheduler needs to measure for how long each process has been executed

and use this information to select the next process to run.

– This measurement is based on timer interrupts.

rest_init()

• start_kernel() initializes dozens of kernel subsystems and ends calling rest_init().

• rest_init() in its turn, spawns the very first user space process: kernel_init().

• Its process id is 1 it will become the direct or indirect ancestor of all user space

processes.

• It also spawns kthread process (normally, process id 2), that's the parent of all

kernel threads.

• Finally, it runs cpu_idle(), a process that takes over the CPU whenever there is no

other process using it.

• kernel_init() will start any additional CPU core.

• If there is a initial RAM disk is defined, it will decompress and mount it.

• Then, it load the device drivers, mount the root file system in read-only mode and

finally call the init process (normally, in /sbin/init).

Before we end:

• For a complete understanding please refer to following spec:

• References:

– ARMv8 architecture: https://developer.arm.com/documentation/den0024/a

– Kernel source: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/

– Booting on ARM64: https://www.kernel.org/doc/html/latest/arm64/booting.html

– Analyzing Linux boot process : https://opensource.com/article/18/1/analyzing-linux-boot-

process

– SMP boot in Linux : https://developer.arm.com/documentation/den0013/d/Multi-core-

processors/Booting-SMP-systems/SMP-boot-in-Linux

– Memory Layout on AArch64 Linux :

https://www.kernel.org/doc/html/latest/arm64/memory.html

https://developer.arm.com/documentation/den0024/a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/
https://www.kernel.org/doc/html/latest/arm64/booting.html
https://opensource.com/article/18/1/analyzing-linux-boot-process
https://developer.arm.com/documentation/den0013/d/Multi-core-processors/Booting-SMP-systems/SMP-boot-in-Linux
https://www.kernel.org/doc/html/latest/arm64/memory.html

