
 Adventures In
Real-Time Performance Tuning
The real-time for Linux patchset does not guarantee adequate
real-time behavior for all target platforms. When using real-time
Linux on a new platform you should expect to have to tune the
kernel and drivers to provide performance that matches your
specific requirements.

This paper provides an example of the trials and tribulations of
the tuning journey for a MIPS target board. A brief back of the
envelope real-time performance characterization of the board
will also be presented.

 April 15, 2008

 Adventures In
Real-Time Performance Tuning

What I'm trying to tune

Some examples of using the available tuning tools

If I talk fast enough, some performance data for a
MIPS TX4937 processor

What is Real Time?

It is determinism (being able to respond to a
stimulus before a deadline) within a given
system load envelope.

It is NOT fast response time.

The specific real time application deadlines
determine how short the maximum response
time must be to deliver real time behaviour.

Some examples of deadlines are one second,
one millisecond, or five microseconds.

interrupt is asserted
irqs disabled

save state
start measure of irq off

which irq(s) asserted?

driver top halves

Each arrow points to the completion of the
work described by the label.

softirqs unless
CONFIG_PREEMPT_SOFTIRQS

scheduler (and context
switch if needed)

Scheduler again, if need resched

end measure of irq off

restore state

 irq off latency

Another key impact on RT
latency is preempt off latency

I will ignore preempt off latency in this talk,
but essentially the same methods used to
tune irq off latency are used to tune preempt
off latency

Actual RT latency is when the
RT “application” is actually
executing code.

The components that add up to RT latency are
important to the tuning process, but keep in
mind the goal of tuning actual RT latency.

Examples of Tuning Knobs

Which hardware is enabled and used
Which kernel functionality is enabled and used
Which drivers are used
Kernel config options
Softirq handling in thread context
Driver top half algorithms
Driver top half polling (vs irq)
Driver bottom half in thread context
Driver bottom half thread priorities
Real-time thread priorities
Non-RT application load

Examples of Tuning Knobs

Kernel algorithms and code
Locks
Timers
CPU affinity and partitioning
 - drivers
 - kernel threads
 - user processes and threads
Lock code and data in memory
Lock tlb entries
Lock code and data in cache or fast
 memory

A Roadmap of my Journey

1) add some RT pieces for MIPS and the
 tx4937 processor

2) add MIPS support to RT instrumentation

3) tuning

4) implement “lite” irq disabled instrumentation

5) tuning

Caveats

Tools, instrumentation, techniques, etc are very
dependent upon the version of the kernel and
rt-preempt patcheset.

Kernel data structures, algorithms, performance
hot spots change.

An example of instrumentation change:

RT tracing mechanism is in the process of being
submitted to mainline (but is not in 2.6.25-rc8),
which prompted partial re-write.

 To follow this, see LKML:
 From: Ingo Molnar
 Date: Fri Feb 08 2008
 Subject: [git pull] latency tracer
 “Linus, please pull the latency tracer tree”

 Date: Fri Feb 10 2008
 Subject: [00/19] latency tracer

However, the new tracer is in the rt patchset,
starting with patch 2.6.24-rt2:

 - cleaned up code
 - /debugfs/tracing/ instead of /proc with better
 control interface
 - simultaneous trace of irq off and preempt off
 - simultaneous histogram and trace

The examples in this presentation are from the
old tracer (mips 2.6.24 + rt patch 2.6.24-rt1).

Tuning, part 1

Instrumentation anomalies led to large reported
IRQ off times:

- “interrupts disabled” in idle wait (processor specific)

- timer comparison code not handling clock rollover

- timer comparison and capture code not handling
 switch between raw and non-raw clock sources

The first hint of large latency
/proc/latency_hist/interrupt_off_latency/CPU0

#Minimum latency: 2 microseconds.
#Average latency: 27 microseconds.
#Maximum latency: 5725129 microseconds.
#Total samples: 2846758
#There are 3 samples greater or equal than 10240
 microseconds
#usecs samples
0 0
1 0
2 59063
3 666520
4 362079

There are many irq disabled periods in the
range of 200 – 1000 microseconds.

Multiple tests are shown on this graph.
Each line is the result of a single test run.
A vertical bar on the right edge of the graph
indicates one or more measurements beyond
the right edge of the graph.

/proc/latency_trace points to a cause

latency: 137 us, #10/10, CPU#0 | (M:rt VP:0, KP:0, SP:1 HP:1)

 | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)

 => started at: r4k_wait_irqoff+0x40/0x98 <800213d8>
 => ended at: irq_exit+0xc0/0xf4 <800567c0>

 _------=> CPU#
 / _-----=> irqs-off
 | / _----=> need-resched
 || / _---=> hardirq/softirq
 ||| / _--=> preempt-depth
 |||| /
 ||||| delay
 cmd pid ||||| time | caller
 \ / ||||| \ | /

“interrupts disabled” in idle wait

switch (c->cputype)
case CPU_TX49XX:
 cpu_wait = r4k_wait_irqoff

static void r4k_wait_irqoff(void)
{
 local_irq_disable();
 if (!need_resched())
 __asm__("wait \n");
 local_irq_enable();
}

The WAIT instruction

The WAIT instruction causes the processor to
enter a low-power mode. The processor
exits from the low-power mode upon an interrupt
exception.

So when an interrupt occurs, r4k_wait_irqoff()
will immediately re-enable interrupts.

 Quick “FIX”

Use the pre-existing MIPS “nowait” boot option

static inline void check_wait(void)
{
 if (nowait) {
 printk("Wait instruction disabled.\n");
 return;
 }
 switch (c->cputype)
 case CPU_TX49XX:
 cpu_wait = r4k_wait_irqoff

 Real “FIX”

Explicitly stop latency tracing in cpu_idle()

for an example, see

 arch/x86/kernel/process_32.c

Fix cpu_wait()

Very large max latency remains
/proc/latency_hist/interrupt_off_latency/CPU0

#Maximum latency: 5725051 microseconds.

The cause of this was found via normal debugging.

I used the MIPS cycle counter to implement
get_cycles(), which the latency tracer uses when
the raw cycles mode is enabled. The cycle
counter holds a 32 bit value, which rolls over
quickly. The latency tracer was not coded to
handle timer rollover.

 clock rollover FIX

use the same algorithms used for jiffies in
 include/linux/jiffies.h

see:
 time_after()
 time_before()

Fix timestamp compare

Still large max latency remains
/proc/latency_trace reports large latency

/proc/latency_hist/interrupt_off_latency/CPU0

#Maximum latency: 6765 microseconds.

The cause of this was once again found via
normal debugging, not through the RT
instrumentation.

 switch between raw and
 non-raw clock sources
 Workaround

Do not switch back and forth. Use either raw
or non-raw for all tracing.

 switch between raw and
 non-raw clock sources FIX

In kernel/latency_trace.c: ____trace()

 check for switch between raw and non-raw

 delete timestamps in other mode from current
 event

Fix raw / non-raw timestamp transition

Base measurement

Fix cpu_wait()

Fix timestamp compare

Fix raw / non-raw timestamp transition

The truly outrageous irq disabled times have
been resolved, what to do next?

 - Fix the thing that disables preemption
 for the longest time

 - Fix the thing that disables interrupts for
 the longest time

I will stay with irqs disabled for the examples.

/proc/latency_trace revisited

One tool that is useful for examining paths with
irqs disabled or preempton disabled is the latency
trace. (The previous example included start and
end points, but contained no details in between.)

The next several slides show

 - the raw output of a latency trace
 - the raw output of a latency trace, slightly edited
 - hand annotations of the latency trace

 latency: 164 us, #22/22, CPU#0 | (M:rt VP:0, KP:0, SP:1 HP:1)

 | task: softirq-timer/0-7 (uid:0 nice:-5 policy:1 rt_prio:50)

 => started at: handle_int+0x10c/0x120 <80021d2c>
 => ended at: schedule+0xac/0x19c <8025ac70>

 _------=> CPU#
 / _-----=> irqs-off
 | / _----=> need-resched
 || / _---=> hardirq/softirq
 ||| / _--=> preempt-depth
 |||| /
 ||||| delay
 cmd pid ||||| time | caller
 \ / ||||| \ | /
cyclicte-247 0D... 1us+: handle_int+0x10c/0x120 (<0>)
cyclicte-247 0D.h. 14us+: hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0)
cyclicte-247 0D.h1 20us+: hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400)
cyclicte-247 0D.h1 49us+: activate_task+0x58/0xa4 <<...>-7> (150 1)
cyclicte-247 0D.h1 53us+: __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 57us : __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 58us+: try_to_wake_up+0x1d8/0x1e8 <<...>-7> (150 0)

 (additional entries not shown)

Magic Decoder Ring
 c
 p
cmdline pid uDNHx sym_name+offset/size of function (data)
-------- ----- ----- ------- ---------------------------------------
cyclicte-247 0D.h1 20us+: hrtimer_interrupt+0x164/0x350 (1115 1af136f1 0)

 d irqs off
 D irqs hard off

 n need resched delayed
 N need resched

 H hardirq && softirq
 h hardirq
 s softirq

 x preempt count as hex

 xxxx!: time delta to next entry > 100 usec
 xxxx+: time_delta to next entry > 1 usec
 xxxx : time_delta to next entry <= 1 usec

The entire trace

cyclicte-247 0D... 1us+: handle_int+0x10c/0x120 (<0>)
cyclicte-247 0D.h. 14us+: hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0)
cyclicte-247 0D.h1 20us+: hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400)
cyclicte-247 0D.h1 49us+: activate_task+0x58/0xa4 <<...>-7> (150 1)
cyclicte-247 0D.h1 53us+: __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 57us : __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 58us+: try_to_wake_up+0x1d8/0x1e8 <<...>-7> (150 0)
cyclicte-247 0DNh1 87us : activate_task+0x58/0xa4 <<...>-14> (150 2)
cyclicte-247 0DNh1 88us : __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
cyclicte-247 0DNh1 90us : __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
cyclicte-247 0DNh1 91us+: try_to_wake_up+0x1d8/0x1e8 <<...>-14> (150 0)
cyclicte-247 0DNh1 97us+: enqueue_hrtimer+0x4c/0x1b4 (1115 1b2e0200 80340400)
cyclicte-247 0DNh. 106us+: clockevents_program_event+0x9c/0x290 (1115 1af42931 99376)
cyclicte-247 0DNh2 128us : activate_task+0x58/0xa4 <<...>-27> (150 3)
cyclicte-247 0DNh2 130us+: __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
cyclicte-247 0DNh2 132us : __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
cyclicte-247 0DNh2 133us+: try_to_wake_up+0x1d8/0x1e8 <<...>-27> (150 0)
 <...>-7 0D..1 155us+: __schedule+0x3b8/0x638 <cyclicte-247> (0 150)
 <...>-7 0D... 160us+: schedule+0xac/0x19c (<0>)
 <...>-7 0D... 162us : trace_hardirqs_on+0xd4/0xf4 (schedule+0xac/0x19c)

What are the trace points?

The trace is NOT a list of all functions executed
or code paths traversed.

The trace is a collection of interesting locations
in various subsystems, which provide a sense
of the general flow of control and some related
data at some of those locations.

It is up to the analyst to interpolate between
those locations (and add additional temporary
trace points if needed).

Data Fields
(truncated left part of data to show the right half)

0D... handle_int+0x10c/0x120 (<0>)
0D.h. hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0)
0D.h1 hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400)
0D.h1 activate_task+0x58/0xa4 <<...>-7> (150 1)
0D.h1 __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
0DNh1 __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
0DNh1 try_to_wake_up+0x1d8/0x1e8 <<...>-7> (150 0)
0DNh1 activate_task+0x58/0xa4 <<...>-14> (150 2)
0DNh1 __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
0DNh1 __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
0DNh1 try_to_wake_up+0x1d8/0x1e8 <<...>-14> (150 0)
0DNh1 enqueue_hrtimer+0x4c/0x1b4 (1115 1b2e0200 80340400)
0DNh. clockevents_program_event+0x9c/0x290 (1115 1af42931 99376)
0DNh2 activate_task+0x58/0xa4 <<...>-27> (150 3)
0DNh2 __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
0DNh2 __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
0DNh2 try_to_wake_up+0x1d8/0x1e8 <<...>-27> (150 0)
0D..1 __schedule+0x3b8/0x638 <cyclicte-247> (0 150)
0D... schedule+0xac/0x19c (<0>)
0D... trace_hardirqs_on+0xd4/0xf4 (schedule+0xac/0x19c)

 Data Fields Hand Annotated

 (no Magic Decoder Ring)

latency: 164 us, #22/22, CPU#0 | (M:rt VP:0, KP:0, SP:1 HP:1)
 => started at: handle_int+0x10c/0x120 <80021d2c>
 => ended at: schedule+0xac/0x19c <8025ac70>

handle_int+0x10c/0x120 (<0>)
hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0) time 1115 1af136f1
hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400) time 1115 1af0f900 timer 80340400
activate_task+0x58/0xa4 <<...>-7> (150 1) pid 7, PRIO 150, nr_running 1
__trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1) pid 7, prio 49
__trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1) pid 7, prio 49
try_to_wake_up+0x1d8/0x1e8 <<...>-7> (150 0) pid 7, PRIO 150, PRIO(rq->curr) 0
activate_task+0x58/0xa4 <<...>-14> (150 2) pid 14, PRIO 150, nr_running 2
__trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1) pid 14, prio 49
__trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1) pid 14, prio 49
try_to_wake_up+0x1d8/0x1e8 <<...>-14> (150 0) pid 14, PRIO 150, PRIO(rq->curr) 0
enqueue_hrtimer+0x4c/0x1b4 (1115 1b2e0200 80340400) time 1115 1b2e0200 timer 80340400
clockevents_program_event+0x9c/0x290 (1115 1af42931 99376) time 1115 1af42931, delta 99376
activate_task+0x58/0xa4 <<...>-27> (150 3) pid 27, PRIO 150, nr_running 3
__trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1) pid 27, prio 49
__trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1) pid 27, prio 49
try_to_wake_up+0x1d8/0x1e8 <<...>-27> (150 0) pid 27, PRIO 150, PRIO(rq->curr) 0
__schedule+0x3b8/0x638 <cyclicte-247> (0 150) pid 247, PRIO was 0, PRIO is 150
schedule+0xac/0x19c (<0>)
trace_hardirqs_on+0xd4/0xf4 (schedule+0xac/0x19c)

Finding source location, data fields
(the easy way)
0D.h. hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0)
0D.h1 hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400)

Look at the source, maybe it's obvious
(or maybe it's not....).

void hrtimer_interrupt(struct clock_event_device *dev)
{

 retry:
 now = ktime_get();
 hrtimer_trace(now, 0);

 hrtimer_trace(timer->expires, (unsigned long) timer);

Finding source location, data fields
(gdb) i line *hrtimer_interrupt+0x9c
Line 1105 of "kernel/hrtimer.c"
 starts at address 0x8006ecf4 <hrtimer_interrupt+156>
 ends at 0x8006ed18 <hrtimer_interrupt+192>.

1102 now = ktime_get();
1103 hrtimer_trace(now, 0);
1104
1105 expires_next.tv64 = KTIME_MAX;

Note that the trace address is the location the trace function
returns to.

define hrtimer_trace(a,b) trace_special((a).tv.sec,(a).tv.nsec,b)

(gdb) i line *schedule+0xac
Line 43 of "irqflags.h" starts at address 0x8025ac70 <schedule+172>
 and ends at 0x8025ac90 <schedule+204>.

 41 static inline void raw_local_irq_enable(void)
 42 {
 43 __asm__ __volatile__(
 " mfc0 $1,$12 \n”

(gdb) x/i *schedule+0xac
0x8025ac70 <schedule+172>: mfc0 at,$12

(gdb) x/8i *schedule+0xac - 0x10
0x8025ac60 <schedule+156>: bnez v0,0x8025ac38 <schedule+116>
0x8025ac64 <schedule+160>: nop
0x8025ac68 <schedule+164>: jal 0x80084c54 <trace_hardirqs_on>
0x8025ac6c <schedule+168>: nop
0x8025ac70 <schedule+172>: mfc0 at,$12
0x8025ac74 <schedule+176>: nop
0x8025ac78 <schedule+180>: ori at,at,0x1f
0x8025ac7c <schedule+184>: xori at,at,0x1e

(gdb) i line *schedule+0xac
Line 43 of "irqflags.h" starts at address 0x8025ac70 <schedule+172>
 and ends at 0x8025ac90 <schedule+204>.

(gdb) x/i *schedule+0xac - 0x10
0x8025ac60 <schedule+156>: bnez v0,0x8025ac38 <schedule+116>

(gdb) i line *0x8025ac60
Line 3854 of "kernel/sched.c"
 starts at address 0x8025ac60 <schedule+156>
 ends at 0x8025ac68 <schedule+164>.

3852 do {
3853 __schedule();
3854 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED) ||
3855 test_thread_flag(TIF_NEED_RESCHED_DELAYED)));
3856
3857 local_irq_enable();

Interesting Kernel Paths

1) Timer interrupt

 - highres timers code
 - wake appropriate threads
 - schedule

O(n) algorithm -- more timers expiring at same
time will result in a longer maximum IRQ off

Obvious in the latency_trace we were examining.

The entire trace

cyclicte-247 0D... 1us+: handle_int+0x10c/0x120 (<0>)
cyclicte-247 0D.h. 14us+: hrtimer_interrupt+0x9c/0x350 (1115 1af136f1 0)
cyclicte-247 0D.h1 20us+: hrtimer_interrupt+0x164/0x350 (1115 1af0f900 80340400)
cyclicte-247 0D.h1 49us+: activate_task+0x58/0xa4 <<...>-7> (150 1)
cyclicte-247 0D.h1 53us+: __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 57us : __trace_start_sched_wakeup+0xac/0x19c <<...>-7> (49 -1)
cyclicte-247 0DNh1 58us+: try_to_wake_up+0x1d8/0x1e8 <<...>-7> (150 0)
cyclicte-247 0DNh1 87us : activate_task+0x58/0xa4 <<...>-14> (150 2)
cyclicte-247 0DNh1 88us : __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
cyclicte-247 0DNh1 90us : __trace_start_sched_wakeup+0xac/0x19c <<...>-14> (49 -1)
cyclicte-247 0DNh1 91us+: try_to_wake_up+0x1d8/0x1e8 <<...>-14> (150 0)
cyclicte-247 0DNh1 97us+: enqueue_hrtimer+0x4c/0x1b4 (1115 1b2e0200 80340400)
cyclicte-247 0DNh. 106us+: clockevents_program_event+0x9c/0x290 (1115 1af42931 99376)
cyclicte-247 0DNh2 128us : activate_task+0x58/0xa4 <<...>-27> (150 3)
cyclicte-247 0DNh2 130us+: __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
cyclicte-247 0DNh2 132us : __trace_start_sched_wakeup+0xac/0x19c <<...>-27> (49 -1)
cyclicte-247 0DNh2 133us+: try_to_wake_up+0x1d8/0x1e8 <<...>-27> (150 0)
 <...>-7 0D..1 155us+: __schedule+0x3b8/0x638 <cyclicte-247> (0 150)
 <...>-7 0D... 160us+: schedule+0xac/0x19c (<0>)
 <...>-7 0D... 162us : trace_hardirqs_on+0xd4/0xf4 (schedule+0xac/0x19c)

Possible Fix

Not investigated yet.

Possible workaround

Avoid large number of timers expiring at the
same time.

Interesting Kernel Paths

2) interrupt top half handling followed by
 preempt_schedule_irq() is a long path
 with irqs disabled

Found by looking at the intermediate time stamps
in a latency trace.

Possible Workaround

Remove or rate limit non-RT interrupts.

In my case, the large interrupt volume is due
to network traffic since my root file system is
NFS mounted from another host. It is not
realistic for any use case that I am expecting.

Possible Fix

resume_kernel:
 # THIS IS NOT RECOMMENDED, do not do this unless you really
 # understand the negative effects of enabling irqs here

 raw_local_irq_enable t0
 raw_local_irq_disable

 lw t0, kernel_preemption
 beqz t0, restore_all
 lw t0, TI_PRE_COUNT($28)
 bnez t0, restore_all
need_resched:
 << code deleted for brevity >>
 jal preempt_schedule_irq

WARNING

Enabling irqs on the return from interrupts patch
allows nested interrupts, which may result in a
stack overflow.

If you do not understand the negative effects
of allowing nested interrupts, or can not
ensure they will not crash your specific system,
do not apply this change.

The next three slides are tx49 irq disabled time
for two cases:

red:
 baseline

blue:
 Fix for Interesting Kernel Path 3
 resume_kernel

Good improvement for irqs off time (cyclictest RT
application results will be seen on a later slide).

(The first slide is the maximum value for each
usec for a series of tests.)

tx49 250 Mhz 100 usec (2)
tx49 250 Mhz 86 usec (2)

tx49 250 Mhz 139 usec (3)
tx49 250 Mhz 245 usec (3)

tx49 250 Mhz 112 usec (4)
tx49 250 Mhz 91 usec (4)

tx49 250 Mhz 180 usec (5)
tx49 250 Mhz 269 usec (5)

before resume_kernel fix
with resume_kernel fix, allow only rt irqs in break disable
max irq off (2,4), cyclictest max wakeup latency (3,5)

The moral

Do not lose sight of the most important
metric -- meeting the real time application
deadline -- while trying to tune the components
that cause latency.

The Real Solution

Modify the algorithms and/or data structures
to shorten the code path. Probably a major
project.

Are these last two fixes
reasonable?

No, not really, except in extremely constrained
cases. You will never see me submit these
simplistic patches upstream. They are not
appropriate for a general purpose real time
operating system.

Potentially useful if all of the real-time processing
is occurring in kernel drivers.

The code shown is much more simplistic than the
complete solution that might be reasonable.

Yet another tool

LatencyTOP

Development release 0.1 on Jan 18, 2008

www.latencytop.org

The next tuning tool

Tap into the experts' knowledge -- the
web is your friend!

Search engines, wikis, web sites, email lists...

The “Resources” slides at the end of this
presentation references some good sources
of information.

Normal mail list etiquette applies

1) Search the history
 - The issue and a solution for it may be known.
2) Try to solve the problem yourself
3) Then, consider asking on the list
 - Do your homework, present the data in a
 concise but complete form.
 - Be prepared to provide additional data and
 clarifications, collect additional data, and test
 suggested solutions upon request.
 - Don't expect other people to do your work.
 - Etc...

An example from linux-rt-user

Latencies up to 600us for
 - 2.6.24-rc8-rt1: mpc5200 powerpc
 - NFS mounted root filesystem
 - CONFIG_PREEMPT_RCU_BOOST
 or CONFIG_RCU_TRACE not set
 or CONFIG_RCU_TRACE=m

Start of the thread discussing this is on LKML
and linux-rt-user:

 Subject: Re: 2.6.24-rc8-rt1
 From: Wolfgang Grandegger
 Date: Thu Jan 17 2008

Thread subject morphs into:

 Re: 2.6.24-rc8-rt1: Strange latencies on
 mpc5200 powerpc

Some examples of recent history

 Softirq processing
 Are there any known issues, will they be fixed?

 USB subsystem (Isochronous might be OK).
 Is it usable for a real-time project?

 From the mpc5200 powerpc latency thread:
 “It's also my suspicion that the high latencies are
 related to the RCU usage in the network layer,
 where it's heavily used.”

Current performance results

Very “preliminary” since tuning has not been
completed, but there are some things that can
be said.

Kernel version:

 MIPS 2.6.24 + patch-2.6.24-rt1 + tx4937 fixes

Source of the data on
the following slides

(1) “Realtime capabilities of low-end PowerPC
 and ARM boards for embedded systems”
 Alexander Bauer
 9th Real Time Linux Workshop

(2, 3, 4, 5) Frank Rowand, March 2008

***** warning: comparing unlike metrics *****
ppc MCP 5200 266 Mhz 120 usec (1)
tx49 250 Mhz 90 usec (2)
tx49 250 Mhz 139 usec (3)
tx49 250 Mhz 91 usec (4)
tx49 250 Mhz 180 usec (5)
arm PXA270 260 Mhz 600 usec (1)

(1) moderate load (3 cyclictest threads, ping flood)
 metric: cyclictest max wakeup latency
(2,3) light load (5 cyclictest threads)
(4,5) heavy load (5 cyclictest threads, 9 ls -lR)
 0% cpu idle
 (2,4) metric: max IRQ disabled time
 (3,5) metric: cyclictest max wakeup latency

Alexander Bauer Tests
 ppc MCP 5200
 arm PXA270

 cyclictest -q -n -t 3 -p 99

 Background load:

 ping flood

Frank Rowand Tests
 Toshiba TX4937 Reference Board

 cyclictest -p 80 -t 5 -n -l 100000

 Background load either:

 1) none
 2) 9 instances of:
 ls -lR / >/dev/null

 / is nfs mounted from host

Frank Rowand Tests - priorities
 PID COMMAND RTPRIO CLS
 3 IRQ-7 50 FF
 4 IRQ-11 50 FF
 5 posix_cpu_timer 99 FF
 6 softirq-high/0 50 FF
 7 softirq-timer/0 50 FF
 8 softirq-net-tx/ 50 FF
 9 softirq-net-rx/ 50 FF
 10 softirq-block/0 50 FF
 11 softirq-tasklet 50 FF
 12 softirq-sched/0 50 FF
 13 softirq-hrtimer 50 FF
 14 softirq-rcu/0 50 FF
 16 events/0 1 FF
 19 krcupreemptd 1 FF
 24 IRQ-13 50 FF
 26 IRQ-16 50 FF
 137 cyclictest - TS
 138 cyclictest - TS
 140 cyclictest 80 FF
 142 cyclictest 79 FF
 143 cyclictest 78 FF
 144 cyclictest 77 FF
 145 cyclictest 76 FF

Measurement Overhead

Enabling measurement instrumentation adds
significant overhead. Remember to disable
it before trying to measure actual real time
behaviour.

The next slide is tx49 cyclictest latency
data (blue is average, red is max), for three
cases:

 - no latency tracing enabled
 - trace-lite enable
 - preempt-rt patch latency tracing enabled

The data shows the large performance impact
of enabling latency tracing.

Each individual graph contains multiple lines,
where each line is the result of a single test run.

½ of the tests have no “ls” background load.

The next slide is tx49 irq disabled time
for three cases:

 - baseline
 - resume_kernel fix, allow only rt irqs in break
 - resume_kernel fix

Good improvement was seen earlier for
irqs off time.

But worst case cyclictest results suffer.

This is an example of how tuning for a single
metric can harm the overall RT application.

The next slides are tx49 interrupts disabled time
for two cases:

red:
 preempt-rt patch latency tracing enabled

blue:
 trace-lite enabled

The data again shows the large performance
impact of enabling latency tracing.

lmbench “results”

The overhead for non-basic operations on
RT-PREEMPT varies from small to moderate
to large.

A few cases where the rt-preempt overhead is
smaller than for SMP kernel on UP hardware.

There are inconsistencies between test runs
(3 runs per configuration) which implies the data
is not reliable.

No attempt was made to validate this data.

Is this lmbench data valid?

It should be viewed with suspicion.

No attempt was made to validate the results
(this was just a quick attempt to collect a few
data points to see if they would provide some
insights into the overhead of preempt-rt).

Not consistent with other reports of recent
versions of the kernel on x86, such as Siro
Arthur, et al, 9th Real Time Linux Workshop.

Is this lmbench data valid?

Siro Arthur, et al

“Apparently PREEMPT RT has no significant
degrading impact on the general performance
of the system in its current version”
(2.6.21.5, 2.6.22.1, 2.6.23-rc1)

[for] ”...tests against previous version[s] e.g.
2.6.14-rt20 ... the performance of these kernels
were significantly below that of the unpatched
versions”
(apologies to Siro for severely mangling this quote)

Limitations of the test methodology

 - Non-representative workload.

 - No attempt to exercise all areas of system
 functionality.

 - Extremely short test duration.

Bottom line:

This is just the start of this specific tuning project.

The new tracer is in the rt patchset, starting
with patch 2.6.24-rt2

old file name new file name

/proc/latency_trace /debugfs/tracing/latency_trace
 /debugfs/tracing/trace

/proc/latency_hist/interrupt_off_latency/CPU0 /debugfs/tracing/
/proc/latency_hist/preempt_off_latency/CPU0 /debugfs/tracing/
/proc/latency_hist/wakeup_latency/CPU0 /debugfs/tracing/

see the patch headers for more documentation of control files

LKML:

From: Ingo Molnar
Date: Sun Feb 10 2008
Subject: [10/19] ftrace: add basic support for gcc profiler instrumentation
Subject: [11/19] ftrace: latency tracer infrastructure for documentation
Subject: [12/19] ftrace: function tracer
Subject: [13/19] ftrace: add tracing of context switches
Subject: [14/19] ftrace: tracer for scheduler wakeup latency
Subject: [15/19] ftrace: trace irq disabled critical timings
Subject: [16/19] ftrace: trace preempt off critical timings

Resources

Rtiwiki
 rt.wiki.kernel.org/index.php/Main_Page

rt-user-list
 dir.gmane.org/gmane.linux.rt.user

eLinux.org
 elinux.org/Real_Time

cyclictest
 http://git.kernel.org/?p=linux/kernel/git/tglx/rt-tests.git;a=summary

hackbench
 http://devresources.linux-foundation.org/craiger/hackbench/

LatencyTOP www.latencytop.org

http://www.latencytop.org/

Resources

“Stress actions - things that will kill realtime performance”
and information about test programs and testing
 elinux.org/Realtime_Testing_Best_Practices

A realtime preemption overview
 lwn.net/Articles/146861

What's in the realtime tree
 lwn.net/Articles/252716

Ninth Real-Time Linux Workshop 2007
 lwn.net/Articles/260118
 linuxdevices.com/articles/AT4991083271.html

