
Open First

Creating Debian-Based
Embedded Systems in the
Cloud using Debos

Christopher Obbard

email: chris.obbard@collabora.com

twitter: @obbardc

2

About
me

● Engineer at Collabora

● Working on...
– Custom distros for cloud, embedded and PC

– Continuous integration

– Packaging

– OTA upgrades

– Tooling to make life easier

– Learning Rust!

3

Overview

● Why use Debian as a base?

● Internal design decisions

● How to use Debos (warning: YAML)

● Future plans

● Q&A

https://learnxinyminutes.com/docs/yaml/

4

What is a GNU/Linux distro?
● A collection of software packages

● But also a collection of like-minded developers

● Each distribution has different common goals

● Some goals may be financial, others social

● Debian/Ubuntu uses dpkg/apt

● Red Hat/Fedora uses rpm/yum

● ...everyone has their own preference

5

Why create your own distro?
● Hardware dev kits are supplied with general-

purpose distro for evaluatation

● Cloud images

● Lots of bloat, outdated/insecure packages,
incompatibilities

● Your own distro would be nice

● A distro is a lot of work to maintain!

● No need to reinvent the wheel: base on a proven
technology...

6

Yocto & Buildroot
● Usually for only embedded platforms

● Creates totally custom distribution, can become
a maintainance nightmare

● All packages are compiled on your machine

● High learning curve

● Why make things hard...

7

Why use Debian as a base?
● Traditionally seen as a desktop OS... recent years effort has gone

into enabling embedded targets

● Released in 1993, widely used (DistroWatch top 10)

● 1,000s of volunteers shape Debian, all following the
DFSG & social contract

● 51,000 popular packages & libraries (apt!)

● Great community, lots of tutorials, easy to get started

● Stable, testing and unstable (bleeding edge)

● Timely security updates

● No one company leads the development/direction

● Allows you to concentrate on the most important part: your
application!

https://www.debian.org/social_contract

8

Debian releases
● stable, testing and unstable

● Bleeding-edge software is packaged into unstable

● Trickles into testing: usually ~2 weeks after upload so long
as no major bugs are reported

● Most devs run unstable: essentialy a QA staging area for
testing

● unstable doesn't mean buggy: usually means things can
change without warning

● stable is frozen for two years: usually only security
updates and minor releases of packages are included

● Recommend using testing, unless brave

9

Debian disadvantages
● Only cater for systemd (changing!) and glibc

● Designed with desktop/server use in mind

● Can be coservative of very new technologies

● Limited enterprise support

● Slow release cycle (not always bad!)

10

How to create custom Debian image
● Create an image (dd)

● Insert a partition table (fdisk)

● Format partitions (mkfs.****)

● Mount partitions in a loop device (kpartx)

● Chroot into the mounted image
– create basic Debian filesystem (debootstrap)

– install custom packages (apt)

– set hostname, user accounts, configuration...

● Unmount image, cleanup loop devices

● Compress your image & save build logs

● Nice, until the fragile thing breaks, works on my machine...

11

Why not use x tool?
● Lots of other tools already out there...

● The many methods to build a Debian image by Riku
Voipio summarises the most popular tools

● Other tools serve a very specific purpose

● Debos inherntly more flexible and robust against random
failures

● Debos can generate a distro from one configuration file
which can be stored in version control

● Debos is constantly evolving and improved by Collabora
and Apertis (automotive Debian derivative)

● Get started with Debos quicker!

https://people.linaro.org/~riku.voipio/debian-images
https://apertis.org/

12

The solution: Debos!
● Runs under a VM on your machine (fakemachine)

● Disks are attached to the VM (no more loop devices)

● Recipe contains actions: steps to create your image

● Recipe is translated into commands which are ran
inside the VM

● Actions abstract file changes & commands

● Where there is no action: run a shell cmd/script

● Easy cleanup even if things break: kill the VM

● Reproducable on your PC as well as the cloud

13

Who’s using Debos?
● Apertis is a Debian-based GNU/LInux platform tailored for automotive

and consumer needs; uses debos to generate reference images for
multiple platforms

● KernelCI, a Linux Foundation project, uses debos to generate Debian-
based root filesystems for Continuous Integration of the Linux Kernel

● Radxa uses debos to generate reference images for their Rockchip-PX30
based board called the ROCK Pro PX30

● Mobian Project - Debian for Mobiles a project by Arnaud Ferraris uses
debos to generate Debian images for PinePhone, PineTab and Librem 5

● Plasma Mobile use Debos to generate their Neon reference images

● Gemian: Debian for the Gemian PDA/Cosmo Communicator use debos to
generate images

● Reproducible Builds use debos to make sure Debian packages can be
independently verified

https://www.apertis.org/
https://kernelci.org/
https://github.com/radxa/debos
https://mobian-project.org/
https://www.plasma-mobile.org/
https://github.com/gemian/gemian/wiki
https://reproducible-builds.org/

14

What is Debos?
● Core is written in Golang

– No need to know Go, only to patch the core

– Similar enough to C, low barrier of entry for most

● Fakemachine seperate library/tool handles VM

● Packages are in Debian stable (amd64 host)

● Docker container

● Install from source on other OS

15

Debos recipe
● YAML file defines the steps to create your image

● YAML is simple & can be version controlled

● Consists of:
– header containing metadata (image architecture)

– multiple actions which are ran sequentially, each having their own properties

● Comments prefixed with #

● Pre-processed through the Go templating engine

● Variables can be passed from the cmdline

● Basic scripting: if/else statements

● Recipes can include other recipes

16

Example: simple-ospack.yml
This recipe creates a tarball of a Debian system
architecture: amd64
actions:
 - action: debootstrap
 suite: testing
 components:
 - main
 mirror: https://deb.debian.org/debian
 variant: minbase

 - action: apt
 packages:
 - linux-image-amd64

 - action: run
 chroot: true
 command: echo simple-ospack > /etc/hostname

 - action: pack
 file: simple-ospack.tar.gz
 compression: gz

17

Example: simple-ospack.yml
$ apt install --yes docker
$ docker run --rm --interactive --tty \
 --device /dev/kvm \
 --user $(id -u) \
 --mount "type=bind,source=$(pwd),destination=/recipes" \
 --workdir /recipes
 --security-opt label=disable \
 godebos/debos simple-ospack.yaml

2020/10/09 11:12:04 ==== debootstrap ====
2020/10/09 11:12:05 Debootstrap | ...output removed...
2020/10/09 11:13:59 ==== apt ====
2020/10/09 11:13:59 apt | ...output removed...
2020/10/09 11:15:10 ==== run ====
2020/10/09 11:15:10 ==== pack ====
2020/10/09 11:15:10 Compressing to simple-ospack.tar.gz
Powering off.
2020/10/09 11:16:06 ==== Recipe done ====

$ ls
simple-ospack.tar.gz

18

Example: simple-ospack.yml
architecture: amd64
actions:
 - action: debootstrap
 suite: testing
 components:
 - main
 mirror: https://deb...
 variant: minbase

 - action: apt
 packages:
 - linux-image-amd64

 - action: run
 chroot: true
 command: echo simple-ospack > ...

 - action: pack
 file: simple-ospack.tar.gz
 compression: gz

2020/10/09 11:12:04 ==== debootstrap ====
2020/10/09 11:12:05 Debootstrap | ...removed...
2020/10/09 11:13:59 ==== apt ====
2020/10/09 11:13:59 apt | ...removed...
2020/10/09 11:15:10 ==== run ====
2020/10/09 11:15:10 ==== pack ====
2020/10/09 11:15:10 Compressing to ospack.tar.gz
Powering off.
2020/10/09 11:16:06 ==== Recipe done ====

19

GitLab CI
stages:
 - simple-ospack

simple-ospack:
 stage: simple-ospack
 tags:
 - kvm
 image:
 name: godebos/debos:latest
 entrypoint: [""]
 script:
 - debos simple-ospack.yml
 artifacts:
 expire_in: 4 weeks
 paths:
 - simple-ospack/out

20

21

22

Action: debootstrap

 - action: debootstrap
 mirror: https://deb.debian.org/debian # ubuntu: http://archive.ubuntu.com/ubuntu/
 suite: testing # e.g: stable, unstable, bullseye, sid, xenial...
 components:
 - main
 - contrib
 - non-free
 variant: minbase # optional; minbase|buildd|fakechroot

● Sets up a basic Debian system in the target filesystem

● Mirror allows you to choose where packages come from

● /etc/sources.list is created

● Variant:

– omit for a full Debian system“ ”

– minbase (recommended) includes essential packages and apt

https://deb.debian.org/debian

23

Action: apt

 - action: apt
 recommends: false # optional; default is false
 unauthenticated: false # optional; default is false
 packages:
 - package1
 - package2

● Installs packages (and their dependencies) into the target filesystem

● “Recommends pulls in packages which are not strictly required for a ”
working minimal system (e.g. fonts for LibreOffice or ffmpeg codecs for
Firefox)

● Under the hood just calls apt to install packages: handles
dependencies the same

24

Action: pack/unpack

 - action: pack
 file: filename.ext
 compression: gz # optional; default is gz

 - action: unpack
 file: file.ext
 compression: gz # optional; default is gz

● Pack compresses the complete target filesystem to a tarball

● Unpack uncompresses a filesystem tarball into the target

● Useful for targets which have multiple image types

– common usage is to create an ospack then from that multiple “ ”
images for different targets

● Only tar.gz compression is supported currently

25

Action: image-partition
 - action: image-partition
 imagename: "test.img"
 imagesize: 4G
 partitiontype: gpt # or msdos
 partitions:
 - name: EFI
 parttype: C12A7328-F81F-11D2-…
 fs: fat32
 start: 6176s
 end: 256M
 flags: [boot]
 - name: root
 fs: ext4
 start: 256M
 end: 100%
 mountpoints: # optional
 - partition: root
 mountpoint: /
 - partition: EFI
 mountpoint: /boot/efi
 options: [x-systemd.automount]

● Creates an image & partition
table

● Formats filesystems (btrfs,
f2fs)

● Attaches image to VM

● Mounts filesystems inside VM

● May only used once per recipe!

● Uses parted, mkfs..., fdisk, etc
under the hood

26

Action: filesystem-deploy

 - action: filesystem-deploy
 setup-fstab: bool # optional; default is true
 setup-kernel-cmdline: bool # optional; default is true
 append-kernel-cmdline: arguments # optional

● By default the root filesystem is not stored on the image

● This action copies the root filesystem to the image

● Subsequent actions are executed on the mounted image

● Can create /etc/fstab from image-partition action (from block UUID)

● Can create /etc/kernel/cmdline (parameters passed to bootloader from
kernel-install script)

27

Action: overlay

 - action: overlay
 source: directory
 destination: directory # optional; default is /

● Recurisvely copies a directory into the target filesystem

● Source is relative to the recipe file

● Preserves permissions

28

Action: raw

 - action: raw
 source: filename
 offset: bytes # optional; default is 0
 partition: partition name # optional; if omitted writes to image

● Writes an image to a partition or the image itself

● Useful for:

– installing bootloader to an image

– copying pre-prepared images to a partition

29

Action: run

 - action: run
 chroot: bool # default is false
 postprocess: bool # default is false
 command: command line
 script: script argument1 argument2

● Allows scripts or commands to be ran inside the VM

● Can be run inside the chroot

● Can run after the VM has been shutdown (postprocess)

● Scripts must be executable & relative to recipe (version control!)

● Presumes failure if exit code is not 0

30

Variables
{{ $architecture := or .architecture "arm64" }}
{{ $suite := or .suite "buster" }}
{{ $image := or .image (printf "debian-%s-%s.tgz" $suite $architecture) }}

architecture: {{ $architecture }}
actions:
 - action: debootstrap
 suite: {{ $suite }}
 components:
 - main
 - contrib
 - non-free
 mirror: https://deb.debian.org/debian
 variant: minbase
 - action: pack
 file: {{ $image }}
 compression: gz

$ debos -t architecture:armhf -t suite:sid test-variables.yaml

31

If/else statements
{{ $architecture := or .architecture "arm64" }}

architecture: {{ $architecture }}
actions:
 - action: apt
 packages:
{{ if eq $architecture "amd64" }}
 - linux-kernel-arm64
 - some-package-for-arm64
{{ else }}
 - linux-kernel-armhf
 - some-other-package-for-armhf
{{ end }}

$ debos -t architecture:armhf test-if-else.yaml

32

Action: recipe

 - action: recipe
 recipe: path
 variables:
 key: value

● Include a recipe inside another recipe

● Abstract reusable things somewhere else

● Recipe must run standalone

● Variables from cmdline are passed along with extra defined variables

● Architecture must be the same (but the parent arch is passed)

● Components (e.g LibreOffice or Firefox recipe)

33

More examples!
● Debian

– basic example: a good starting point!

– Raspberry Pi 3/4 arm64 image

● Apertis
– more scripting/if statements

– ospack

– Raspberry Pi 3/4 arm64 image

https://github.com/go-debos/debos-recipes/tree/wip/d4s/rpi64
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2022dev0/ospack-target.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2022dev0/image-rpi64.yaml

34

Future plans
● Documentation & getting more people using it!

● Q4-2020:
– Automated testing

– UML support (build images on GitHub without KVM)

– More useful actions (e.g. install deb package)

● Q1-2021:
– Support for Arch

– More examples & documentation

– Release v1.1.0?

● Fix all the bugs!

35

Thank you & questions!
- type: message
 priority: high
 body: Collabora is hiring...
 recipient: you
 calltoaction: https://col.la/join

- type: message
 priority: medium
 body: Ask questions!
 recipient: you
 calltoaction: The chatbox

https://col.la/join

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

