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About
me

● Engineer at Collabora

● Working on...
– Custom distros for cloud, embedded and PC

– Continuous integration

– Packaging

– OTA upgrades

– Tooling to make life easier

– Learning Rust!
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Overview

● Why use Debian as a base?

● Internal design decisions

● How to use Debos (warning: YAML)

● Future plans

● Q&A

https://learnxinyminutes.com/docs/yaml/
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What is a GNU/Linux distro?
● A collection of software packages

● But also a collection of like-minded developers

● Each distribution has different common goals

● Some goals may be financial, others social

● Debian/Ubuntu uses dpkg/apt

● Red Hat/Fedora uses rpm/yum

● ...everyone has their own preference
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Why create your own distro?
● Hardware dev kits are supplied with general-

purpose distro for evaluatation

● Cloud images 

● Lots of bloat, outdated/insecure packages, 
incompatibilities

● Your own distro would be nice

● A distro is a lot of work to maintain!

● No need to reinvent the wheel: base on a proven 
technology...
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Yocto & Buildroot
● Usually for only embedded platforms

● Creates totally custom distribution, can become 
a maintainance nightmare

● All packages are compiled on your machine

● High learning curve

● Why make things hard...
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Why use Debian as a base?
● Traditionally seen as a desktop OS... recent years effort has gone 

into enabling embedded targets

● Released in 1993, widely used (DistroWatch top 10)

● 1,000s of volunteers shape Debian, all following  the 
DFSG & social contract 

● 51,000 popular packages & libraries (apt!)

● Great community, lots of tutorials, easy to get started

● Stable, testing and unstable (bleeding edge)

● Timely security updates

● No one company leads the development/direction

● Allows you to concentrate on the most important part: your 
application!

https://www.debian.org/social_contract
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Debian releases
● stable, testing and unstable

● Bleeding-edge software is packaged into unstable

● Trickles into testing: usually ~2 weeks after upload so long 
as no major bugs are reported

● Most devs run unstable: essentialy a QA staging area for 
testing

● unstable doesn't mean buggy: usually means things can 
change without warning

● stable is frozen for two years: usually only security 
updates and minor releases of packages are included

● Recommend using testing, unless brave
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Debian disadvantages
● Only cater for systemd (changing!) and glibc

● Designed with desktop/server use in mind

● Can be coservative of very new technologies

● Limited enterprise support

● Slow release cycle (not always bad!)
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How to create custom Debian image
● Create an image (dd)

● Insert a partition table (fdisk)

● Format partitions (mkfs.****)

● Mount partitions in a loop device (kpartx)

● Chroot into the mounted image
– create basic Debian filesystem (debootstrap)

– install custom packages (apt)

– set hostname, user accounts, configuration...

● Unmount image, cleanup loop devices

● Compress your image & save build logs

● Nice, until the fragile thing breaks, works on my machine...
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Why not use x tool?
● Lots of other tools already out there...

● The many methods to build a Debian image by Riku 
Voipio summarises the most popular tools

● Other tools serve a very specific purpose

● Debos inherntly more flexible and robust against random 
failures

● Debos can generate a distro from one configuration file 
which can be stored in version control

● Debos is constantly evolving and improved by Collabora 
and Apertis (automotive Debian derivative)

● Get started with Debos quicker!

https://people.linaro.org/~riku.voipio/debian-images
https://apertis.org/
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The solution: Debos!
● Runs under a VM on your machine (fakemachine)

● Disks are attached to the VM (no more loop devices)

● Recipe contains actions: steps to create your image

● Recipe is translated into commands which are ran 
inside the VM

● Actions abstract file changes & commands

● Where there is no action: run a shell cmd/script

● Easy cleanup even if things break: kill the VM

● Reproducable on your PC as well as the cloud
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Who’s using Debos?
●  Apertis is a Debian-based GNU/LInux platform tailored for automotive 

and consumer needs; uses debos to generate reference images for 
multiple platforms

● KernelCI, a Linux Foundation project, uses debos to generate Debian-
based root filesystems for Continuous Integration of the Linux Kernel

● Radxa uses debos to generate reference images for their Rockchip-PX30 
based board called the ROCK Pro PX30

● Mobian Project - Debian for Mobiles a project by Arnaud Ferraris uses 
debos to generate Debian images for PinePhone, PineTab and Librem 5

● Plasma Mobile use Debos to generate their Neon reference images

● Gemian: Debian for the Gemian PDA/Cosmo Communicator use debos to 
generate images

● Reproducible Builds use debos to make sure Debian packages can be  
independently verified

https://www.apertis.org/
https://kernelci.org/
https://github.com/radxa/debos
https://mobian-project.org/
https://www.plasma-mobile.org/
https://github.com/gemian/gemian/wiki
https://reproducible-builds.org/
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What is Debos?
● Core is written in Golang

– No need to know Go, only to patch the core

– Similar enough to C, low barrier of entry for most

● Fakemachine seperate library/tool handles VM

● Packages are in Debian stable (amd64 host)

● Docker container

● Install from source on other OS
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Debos recipe
● YAML file defines the steps to create your image

● YAML is simple & can be version controlled

● Consists of:
– header containing metadata (image architecture)

– multiple actions which are ran sequentially, each having their own properties

● Comments prefixed with #

● Pre-processed through the Go templating engine

● Variables can be passed from the cmdline

● Basic scripting: if/else statements

● Recipes can include other recipes
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Example: simple-ospack.yml
# This recipe creates a tarball of a Debian system
architecture: amd64
actions:
  - action: debootstrap
    suite: testing
    components:
      - main
    mirror: https://deb.debian.org/debian
    variant: minbase

  - action: apt
    packages:
      - linux-image-amd64

  - action: run
    chroot: true
    command: echo simple-ospack > /etc/hostname

  - action: pack
    file: simple-ospack.tar.gz
    compression: gz
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Example: simple-ospack.yml
$ apt install --yes docker
$ docker run --rm --interactive --tty \
    --device /dev/kvm \
    --user $(id -u) \
    --mount "type=bind,source=$(pwd),destination=/recipes" \
    --workdir /recipes
    --security-opt label=disable \
    godebos/debos simple-ospack.yaml

2020/10/09 11:12:04 ==== debootstrap ====
2020/10/09 11:12:05 Debootstrap | ...output removed...
2020/10/09 11:13:59 ==== apt ====
2020/10/09 11:13:59 apt | ...output removed...
2020/10/09 11:15:10 ==== run ====
2020/10/09 11:15:10 ==== pack ====
2020/10/09 11:15:10 Compressing to simple-ospack.tar.gz
Powering off.
2020/10/09 11:16:06 ==== Recipe done ====

$ ls
simple-ospack.tar.gz
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Example: simple-ospack.yml
architecture: amd64
actions:
  - action: debootstrap
    suite: testing
    components:
      - main
    mirror: https://deb...
    variant: minbase

  - action: apt
    packages:
      - linux-image-amd64

  - action: run
    chroot: true
    command: echo simple-ospack > ...

  - action: pack
    file: simple-ospack.tar.gz
    compression: gz

2020/10/09 11:12:04 ==== debootstrap ====
2020/10/09 11:12:05 Debootstrap | ...removed...
2020/10/09 11:13:59 ==== apt ====
2020/10/09 11:13:59 apt | ...removed...
2020/10/09 11:15:10 ==== run ====
2020/10/09 11:15:10 ==== pack ====
2020/10/09 11:15:10 Compressing to ospack.tar.gz
Powering off.
2020/10/09 11:16:06 ==== Recipe done ====
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GitLab CI
stages:
  - simple-ospack

simple-ospack:
  stage: simple-ospack
  tags:
    - kvm
  image:
    name: godebos/debos:latest
    entrypoint: [ "" ]
  script:
    - debos simple-ospack.yml
  artifacts:
    expire_in: 4 weeks
    paths:
      - simple-ospack/out
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Action: debootstrap

 - action: debootstrap
   mirror: https://deb.debian.org/debian   # ubuntu: http://archive.ubuntu.com/ubuntu/
   suite: testing # e.g: stable, unstable, bullseye, sid, xenial...
   components:
     - main
     - contrib
     - non-free
   variant: minbase # optional; minbase|buildd|fakechroot

● Sets up a basic Debian system in the target filesystem

● Mirror allows you to choose where packages come from

● /etc/sources.list is created

● Variant:

– omit for a full  Debian system“ ”

– minbase (recommended) includes essential packages and apt

https://deb.debian.org/debian
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Action: apt

 - action: apt
   recommends: false # optional; default is false
   unauthenticated: false # optional; default is false
   packages:
     - package1
     - package2

● Installs packages (and their dependencies) into the target filesystem

● “Recommends  pulls in packages which are not strictly required for a ”
working minimal system (e.g. fonts for LibreOffice or ffmpeg codecs for 
Firefox)

● Under the hood just calls apt to install packages: handles 
dependencies the same
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Action: pack/unpack

 - action: pack
   file: filename.ext
   compression: gz # optional; default is gz

 - action: unpack
   file: file.ext
   compression: gz # optional; default is gz

● Pack compresses the complete target filesystem to a tarball

● Unpack uncompresses a filesystem tarball into the target

● Useful for targets which have multiple image types

– common usage is to create an ospack  then from that multiple “ ”
images for different targets

● Only tar.gz compression is supported currently
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Action: image-partition
 - action: image-partition
   imagename: "test.img"
   imagesize: 4G
   partitiontype: gpt # or msdos
   partitions:
     - name: EFI
       parttype: C12A7328-F81F-11D2-…
       fs: fat32
       start: 6176s
       end: 256M
       flags: [ boot ]
     - name: root
       fs: ext4
       start: 256M
       end: 100%
   mountpoints: # optional
     - partition: root
       mountpoint: /
     - partition: EFI
       mountpoint: /boot/efi
       options: [ x-systemd.automount ]

● Creates an image & partition 
table

● Formats filesystems (btrfs, 
f2fs)

● Attaches image to VM

● Mounts filesystems inside VM

● May only used once per recipe!

● Uses parted, mkfs..., fdisk, etc 
under the hood



26

Action: filesystem-deploy

 - action: filesystem-deploy
   setup-fstab: bool # optional; default is true
   setup-kernel-cmdline: bool # optional; default is true
   append-kernel-cmdline: arguments # optional

● By default the root filesystem is not stored on the image

● This action copies the root filesystem to the image

● Subsequent actions are executed on the mounted image

● Can create /etc/fstab from image-partition action (from block UUID)

● Can create /etc/kernel/cmdline (parameters passed to bootloader from 
kernel-install script)
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Action: overlay

 - action: overlay
   source: directory
   destination: directory # optional; default is /

● Recurisvely copies a directory into the target filesystem

● Source is relative to the recipe file

● Preserves permissions
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Action: raw

 - action: raw
   source: filename
   offset: bytes # optional; default is 0
   partition: partition name # optional; if omitted writes to image

● Writes an image to a partition or the image itself

● Useful for:

– installing bootloader to an image

– copying pre-prepared images to a partition
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Action: run

 - action: run
   chroot: bool # default is false
   postprocess: bool # default is false
   command: command line
   script: script argument1 argument2

● Allows scripts or commands to be ran inside the VM

● Can be run inside the chroot

● Can run after the VM has been shutdown (postprocess)

● Scripts must be executable & relative to recipe (version control!)

● Presumes failure if exit code is not 0
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Variables
{{ $architecture := or .architecture "arm64" }}
{{ $suite := or .suite "buster" }}
{{ $image := or .image (printf "debian-%s-%s.tgz" $suite $architecture) }}

architecture: {{ $architecture }}
actions:
  - action: debootstrap
    suite: {{ $suite }}
    components:
      - main
      - contrib
      - non-free
    mirror: https://deb.debian.org/debian
    variant: minbase
  - action: pack
    file: {{ $image }}
    compression: gz

$ debos -t architecture:armhf -t suite:sid test-variables.yaml
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If/else statements
{{ $architecture := or .architecture "arm64" }}

architecture: {{ $architecture }}
actions:
  - action: apt
    packages:
{{ if eq $architecture "amd64" }}
      - linux-kernel-arm64
      - some-package-for-arm64
{{ else }}
      - linux-kernel-armhf
      - some-other-package-for-armhf
{{ end }}

$ debos -t architecture:armhf test-if-else.yaml
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Action: recipe

 - action: recipe
   recipe: path
   variables:
     key: value

● Include a recipe inside another recipe

● Abstract reusable things somewhere else

● Recipe must run standalone

● Variables from cmdline are passed along with extra defined variables

● Architecture must be the same (but the parent arch is passed)

● Components (e.g LibreOffice or Firefox recipe)
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More examples!
● Debian

– basic example: a good starting point!

– Raspberry Pi 3/4 arm64 image

● Apertis
– more scripting/if statements

– ospack

– Raspberry Pi 3/4 arm64 image

https://github.com/go-debos/debos-recipes/tree/wip/d4s/rpi64
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2022dev0/ospack-target.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2022dev0/image-rpi64.yaml
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Future plans
● Documentation & getting more people using it!

● Q4-2020:
– Automated testing

– UML support (build images on GitHub without KVM)

– More useful actions (e.g. install deb package)

● Q1-2021:
– Support for Arch

– More examples & documentation

– Release v1.1.0?

● Fix all the bugs!
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Thank you & questions!
- type: message
  priority: high
  body: Collabora is hiring...
  recipient: you
  calltoaction: https://col.la/join

- type: message
  priority: medium
  body: Ask questions!
  recipient: you
  calltoaction: The chatbox

https://col.la/join
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