


Recent Advances in '
U-Boot

Simon Glass, Google LLC

@imonglass

Thursday 29 June 2023




T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Agenda

What is U-Boot?

Complexity in firmware

How U-Boot helps with complexity

New things in U-Boot in the last few years
Demo

Google 3



U-Boot

e Universal boot loader

©)

O

O

O

Boot anything on anything

Project has been running for about 20 years

Typically 6k commits each year; under very active development
Four releases each year; release candidate every two weeks

e Large feature set

O O O

O

Around 3m lines of C code; some tools are in Python

Kernel style, shares APls with Linux, configured with Kconfig
Main architectures are ARM, PowerPC, RISC-V, x86

Cl covers a large subset of features

e On the forefront of embedded firmware technology

Google

eSS

EMBEDDED
OPEN SOURCE
SUMMIT




T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Why is U-Boot so popular?

e Supports most of the features that people want in a bootloader
o Large array of board support
o Linux compatibility / easy porting

e Easyto modify and extend

Relatively simple code base

Most feature development can be done on the host (sandbox builds)
Single-threaded (no locking infrastructure or concurrency problems)
Good documentation and test infrastructure

e Open to new ideas and features
e Consistent release schedule

o O O O

Google 5



The challenge of increasing complexity

T EMBEDDED
E S S OPEN SOURCE
SUMMIT

e Complexity is growing in many areas

o O O O

©)

SoCs - more IP blocks, power domains, multiple CPU types

Firmware packaging - private tools and techniques

Security / signing - SoC-specific with many variations

Boot flow / firmware fragmentation - multiple firmware projects in one frmware image
Build and device configuration - different product models, features enabled/disabled

e What is U-Boot doing to cope with this complexity?

Google



EMBEDDED
OPEN SOURCE
SUMMIT

EXSS

Dealing with SoC complexity

e U-Boot's driver model provides

Linux-compatible devicetree support

Over 100 driver classes, e.g. BLK, MMC, PCI, VIDEO
Parent / child relationships and automatic private data
Relatively easy porting from Linux (e.g. MTD layer)

o O O O

&i2c0 {
clock-frequency = <400000>; mme 1 [ +1 rockchip rk3288 dw m |-- mmc@ff0d0000
i2c-scl-rising-time-ns = <168>; blk 1 [ ] mmc blk © 7 | |-- mmc@ff0d0000.blk
i2c-scl-falling-time-ns = <4>; bootdev 1 [ 1 mmc bootdev | "-- mmc@ff0d0000.bootdev
status = "okay"; mmc 2 [ ] rockchip rk3288 dw m |[-- mmc@ff0£f0000
blk 2 ] mmc_blk | |-— mmc@Eff0£0000.blk
rk808: pmic@lb { bootdev 2 [ ] mmc_bootdev | "-— mmc@ff0£f0000.bootdev
compatible = "rockchip,rk808"; spi 0 I ] rockchip rk3288 spi |-— spi@f£f110000
reg = <0x1b>; CEOS=EE 0 [ ] google cros_ec_ spi | ‘-- ecQ0
interrupt-parent = <&gpio3>; i2c 0 I ] cros_ec_tunnel | |-- i2c-tunnel
i ! keyboard 0 [ ] google cros ec keyb | '—- keyboard-controller
interrupts = <10 IRQ TYPE LEVEL LOW>; spi 1 [ ] rockchip rk3288 spi |-- spi@ff130000
#clock-cells = <1>; spi flash 0 I ] jedec_spz_nor B | ‘—- spiflash@0
clock-output-names = "xin32k", "rk808-clkout2"; i2¢c 1 [ 1 rockchip rk3066 i2c  |-— i2c@ff140000
pinctrl-names = "default"; i2c 2 ] rockchip rk3066 i2c |-— 12c@f£150000
pinctrl-0 = <&pmic int 1>; i2c 3 ] rockchip rk3066 i2c |-- 1i2c@f£160000
rockchip,System—power—controller; i2c 4 [ ] rockchip_rk3066_i20 |-— 12c@f£170000
wakeup-source; serial 0 [ ] nsl6550 serial |-— serial@ff180000
serial 1 [ ] nsl6550 serial |-— serial@ff190000
Google serial 2 [ ] nsl6550 serial |-— serial@ff690000 7



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Complexity example: pinctrl, clocks, power

e Automatic pinmuyx, clock, power domains
e To get the first MMC device:
o uclass_get_device(UCLASS_MMC, 0)
e U-Boot selects the pin muxing, enables required power domains and clocks

1 1 1 1 *
s s WEEEeAN00D | static int mmc power init (struct mmc *mmc) {

clocks = <gcru HCLK_SDMMC>, <&cru SCLK SDMMC>, ret = device_get_ supply regulator (mmc->dev, Vmmc-supply",
<&cru SCLK_SDMMC DRV>, <&cru SCLK SDMMC SAMPLE>; &mmc—>vmmc_supply);
clock-names = "biu", "ciu", "ciu-drive", "ciu-sample";
resets = <&cru SRST SDMMC>;
reset—-names = "reset";
}; - &sdmmc {

bus-width = <4>;
cap-sd-highspeed;

cd-gpios = <&gpio0 7 GPIO ACTIVE LOW>;
disable-wp;
max—-frequency = <150000000>;
sdio0 bus4: sdioO-busé { pinctrl-names = "default";
rockchip,pins = pinctrl-0 =
<2 RK_PC4 1 &pcfg pull up>, vmmc-supply = <&vcc3v0 sd>;
<2 RK_PC5 1 s&pcfg pull up>, vgmmec-supply = <&vcc sdio>;
<2 RK PC6 1 &pcfg pull up>, status = "okay";
<2 RK PC7 1 &pcfg pull up>; ¥



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Complexity example 2: Configuration

e Problem: many similar models based on a common design
e Traditional solution: one build for each model

e Better solution: run-time configuration

o Single U-Boot build for all models
o Devicetree describes the hardware

e U-Boot handles the differences at runtime

o Devices instantiated based on devicetree
o Device parameters come from devicetree

e Pass configuration between firmware components

fifo-depth = <256>; priv->fifo depth = dev read u32 default (dev, "fifo-depth", 0);

Google 9



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Complexity 3: Firmware Packaging

rom {
filename = "u-boot.rom";
size = <0x400000>;
pad-byte = <0xff>;

e 'Binman tool collects binaries into an image e Lol e m e
o Binaries come from build systems [P
o Image is the final frmware loaded into the device iiboot-;;gse{t o t0000s,
e Data-driven operation, using an image description heot
o Models an image as an ordered list of entries ratnap
o Each has properties such as offset, size, contents, alignment, compression ’
o Binman loads the input files, puts them together, writes the output image(s)
o Works in parallel, typically in a single pass, so is extremely fast
o Very easy to modify the image as needed; allows use of CONFIG options and entry arguments
o Tool dependencies are including in the description
o Supports FIT, FIP, CBFS, IWFI, etc.
e Provides a way to build and fetch vendor tools DSeerr?o

Google 10



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Standard boot

e U-Boot has always had powerful booting features

o Flat Image Tree (FIT) for multiple images (kernel, ramdisk, FPGA)

o Signature verification, compression

o Load a collection of images based on "vendormodel" compatible strings
e Standard boot adds a higher-level interface

o Automatically locate boot devices
o Automatically search for distros to boot
o Provide a menu of available options

e Replaces 'run distro_bootcmd'
o Easier configuration (generally none at all)

Google 11



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Standard boot - unifying all boot methods

e Three basic concepts

o bootdev - storage devices to be scanned

o bootflow - an OS to boot

o bootmeth - methods for finding bootflows on bootdevs
e bootdev and bootmeth are uclasses

o We have have bootdev drivers for MMC, USB

o Bootmeth drivers for syslinux, EFl, ChromiumOQOS, custom
e bootflow is simply a data structure

o E.g. points to a extlinux.conf file, a .efi executable
o May not have a file at all
o Indicates which bootmeth to use to boot See

e U-Boot scans for available bootflows, provides a menu for the user Demo

Google 12



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

UEFI support

e EFI_LOADER provides a UEFI layer in U-Boot

o Full GPL implementation supports booting distros like Ubuntu, Fedora

o Supports UEFI secure boot; provides capsule updates, TPM measurement

o Makes use of existing U-Boot drivers, so generally there is no need to adjust board support
o Includes a boot-manager implementation along with menu support

e U-Boot can also run as an EFI application

=> bootflow scan -1b
Scanning for bootflows in all bootdevs
Seq Method State Uclass Part Name Filename

Scanning global bootmeth 'efi mgr':
Hunting with: nvme

Hunting with: gfw

Hunting with: scsi

scanning bus for devices...

Hunting with: virtio

Scanning bootdev 'gfw pio.bootdev':

* Future fatal: no kernel available
Complete fU” bOOt/Update Scanning bootdev 'virtio-blk#0.bootdev':
. . 0 efi ready virtio 1 virtio-blk#0.bootdev.part efi/boot/bootx64.efi
SUppOI't InCIUdIng ARM FWU ** Booting bootflow 'virtio-blk#0.bootdev.part 1' with efi
EFI using ACPI tables at £f0060
Google efi install fdt() WARNING: Can't have ACPI table and device tree - ignoring DT. 13

efi run image () Booting /efi\boot\bootx64.efi



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

VBE - Verified Boot for Embedded

e A true UEFI alternative

e Scope
o boot flow
o image selection for both firmware and OS armbian
o update ™ bian (Linix 540, rscivery)

e Uses FIT to package firmware / OS images
e Uses fwupd to perform firmware update

e You know in advance what you are booting and what it needs
o No EFI callbacks

e See osfc'22 talk: 'Introduction to VBE Verified Boot for Embedded’

* Future
Future: A/B firmware update sample

implementation on RockPRO64

Google 14



Documentation

e U-Boot moved to rST a few years ago
o Uses Sphinx, following Linux's lead
o 'make htmldocs' builds the documentation
o Allows patches to include documentation updates
o Supports deep links, images, etc.

e Most existing documentation has been converted

o Currently around 80K lines of rST
o Some 80 commands (out of ~250) are documented
o Some existing features are still undocumented, or not rST

* Future
Complete documentation for all

commands and features

Google

f8 wgetcommand —Das U~ X +

& (&] # u-boot.readthedocs.io,

reset command
rng command

sbi command

sf command
scp03 command
seama command
setexpr command
size command
sleep command
sound command
source command
sm command
temperature command

tftpput command

true command

& Read the Docs v

EMBEDDED
OPEN SOURCE
SUMMIT

@ » Use U-Boot » wget command O E

wget command

Synopsis

wget address [[hostIPaddr:]path]

Description

The wget command is used to download a file fr
server.

wget command will use HTTP over TCP to down
from an HTTP server. Currently it can only down
from an HTTP server hosted on port 80.

address

15


https://u-boot.readthedocs.io/en/latest/

T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Testing and CI

+ Pipeline-U-Boot/Custor x  +

e Expanded significantly over the past few years .

o Uses gitlab infrastructure with ~6 runners P henn s

o Each run takes approx. 70 minutes to complete Posine Noets jobs @D Tests @

o Local tests can run in a few minutes (e.g. 'make pcheck’)

o Around 1120 tests in total S
e Sandbox + emulators for fast, east tests ’

Check for configs without MAINTAINERS entry evb-ast2600 test.py

Check for pre-schema tags integratorcp_cm926ejs test.py

Check packing of Python tools gemu-ppce500 test.py

Run binman, buildman, dtoc, KN v gemu-riscv32 test.py

* Future
e Easier distributed labs with Labgrid

e Code-coverage tracking
e Booting common distros in ClI

Google 16



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Devicetree and Schema

e U-Boot has used devicetree since 2011 (same year as Linux)
o As aresult there are quite a few differences in bindings
o These are being resolved SoC by SoC
o U-Boot has some schema 'upstream’ (bootph-xxx and options/ node)

e Use of livetree (hierarchical data structure) is expanding

o Provides an easy way to access nodes: ofnode

o Provides an easy way for devices to read properties: dev_read...(dev, "prop")
o Faster for updates; multiple trees are now supported

o Some work on moving devicetree fix-ups to ofnode

* Future
Move schema upstream; run schema

validation on U-Boot tree

Google 17



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Quality-of-life improvements

// SPDX-License-Identifier: GPL-2.0+

‘ Kconﬁg migration /: Copyright (c) Siemens AG, 2023
o Completed as of 2023.01 -
o Very large effort by many people, over ~6 years op e
o Provides a path to drop board-specific config.h files usb_pgood_delay=900
P Text_based env'ronment sti’;z:i;zzzigigzt_ms=CONFIG_WATCHDOG_TIMEOUT_MSECS
o Simple syntax in a text file - te85£{Z;‘:gigiazgi;ggézzgzéo:f v th
o Avoids use of #defines in config.h files T iy el Himse: Siee e

fi

e Link-time Optimisation (LTO)
e U-Boot shows a logo!

e FEvents U-Boot

o Allows 'spying’ on events such as new-device creation
o Alternative to weak functions, with better visibility and auditing (event-dumper tool)

* Future
Google Updated HUSH shell .




T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Cross-project communication

e Firmware Handoff (bloblist in U-Boot)

o Provides a way to pass tagged data from one project to another
o E.g. U-Boot can pass memory information to/from TF-A, OP-TEE
O

VPL - SPL - U-Boot - OS

OP-TEE

* Future
Industry-wide, universal format

Google for firmware images .


https://github.com/FirmwareHandoff/firmware_handoff

EMBEDDED
OPEN SOURCE

Networking

e TCP/IP support and wget
o |Pv6

e New PHY API

* Future
Discussions about moving to Iwip
Google 20




T EMBEDDED
E S S OPEN SOURCE
SUMMIT

RISC-V and x86

e RISC-V boards now up to 21

o Boards from AndesTech, SiFive, Microchip, OpenPiton, Sipeed
o Running in Cl with QEMU

e Booting distros supported on x86 (pending patches)

e Coreboot support has been enhanced

o Uses SPCR to find UART
o 'cbsysinfo' command shows the sysinfo table
o Now runs in Cl with QEMU

Google 21



EMBEDDED
OPEN SOURCE

SUMMIT

Tracing

Used (with bootstage) to find bottlenecks in boot
Record function entry / exit

Export data for use with trace-cmd and kernelshark
Also supports an interactive flamegraph

MR-k
Wt ge. |- fat_o
N | [fatigeE o

fdt_nex

$ trace-cmd report trace.dat | less

cpus=1
u-boot-1 [000] 3.116364: funcgraph_entry: 0.011 us | initf_malloc();
u-boot-1 [e00] 3.116386: funcgraph_entry: | initf_bootstage() {
u-boot-1 [e0e] 3.116396: funcgraph_entry: | bootstage_init() {
u-boot-1 [eee] 3.116408: funcgraph_entry: | malloc() {
u-boot-1 [e00] 3.116418: funcgraph_entry: | malloc_simple() {
u-boot-1 [e0e] 3.116429: funcgraph_entry: 0.012 us | alloc_simple();
u-boot-1 [e00] 3.116449: funcgraph_exit: 0.031 us | }
u-boot-1 [000] 3.116457: funcgraph_exit: 0.049 us | }
u-boot-1 [000] 3.116466: funcgraph_entry: 0.063 us | memset();
u-boot-1 [000] 3.116539: funcgraph_exit: 0.143 us | } See

Demo

e htips://u-boot.readthedocs.io/en/latest/develop/trace.html
Google 22



https://u-boot.readthedocs.io/en/latest/develop/trace.html

T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Cyclic’ subsystem

e Provides a way to run things in the background
o Register a function to be called, setting a period in microseconds
o The function will be called when U-Boot is idle

e Many possible (future) uses

o Resetting the watchdog timer (implemented in 2022.10)
o Scanning the USB bus in the background

o Read files from the network in the background

o Scanning for bootflows in the background

e https://u-boot.readthedocs.io/en/latest/develop/cyclic.html

Google 23


https://u-boot.readthedocs.io/en/latest/develop/cyclic.html

T EMBEDDED
E S S OPEN SOURCE
SUMMIT

GUI and menus

scenes {
main {
id = <ID SCENEL1>;
title-id = <ID SCENE1l TITLE>;

e New ‘expo subsystem supports graphical / text display prompt = "UP and DOW to choose, ENTER to
H 1 1 . . . . cpu-speed {
o Arranged as a series of 'scenes’, each with a list of items to display type = "memu’;
o The user can move through scenes using the keyboard Citie-id o oro cey bEED TITLES;
. item-label = "2 GHz", "2.5 GHz", ":
o So far the only supported items are menus ' ftemid = <I0_CPU_SPEED. 1 Tb CPD_S:
e New ‘cedit command allows the user to edit configurations*  cicc-soes -
type = "menu";
o Like the BIOS configuration machine on x86 devices TP
item-label = "Always Off", "Always
Test Configuration
CPU speed 2 GHz
AC Power
Always On
Memory
See
* patches pending | Future DemO
Load / save configuration
Google 24



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Demo

Standard boot
Binman

Cl

Tracing
Configuration editor

Google 25



T EMBEDDED
E S S OPEN SOURCE
SUMMIT

Thank you for listening

e U-Boot is an open-source firmware project
e Patches and ideas are welcome

e My details

o Simon Glass
o to:
o CC:

Google 26


mailto:u-boot@lists.denx.de
mailto:sjg@chromium.org

