
1

Simon Glass, Google LLC
@imonglass

Thursday 29 June 2023

Recent Advances in
U-Boot

2

Agenda

● What is U-Boot?
● Complexity in firmware
● How U-Boot helps with complexity
● New things in U-Boot in the last few years
● Demo

3

U-Boot

● Universal boot loader
○ Boot anything on anything
○ Project has been running for about 20 years
○ Typically 6k commits each year; under very active development
○ Four releases each year; release candidate every two weeks

● Large feature set
○ Around 3m lines of C code; some tools are in Python
○ Kernel style, shares APIs with Linux, configured with Kconfig
○ Main architectures are ARM, PowerPC, RISC-V, x86
○ CI covers a large subset of features

● On the forefront of embedded firmware technology

4

Why is U-Boot so popular?

● Supports most of the features that people want in a bootloader
○ Large array of board support
○ Linux compatibility / easy porting

● Easy to modify and extend
○ Relatively simple code base
○ Most feature development can be done on the host (sandbox builds)
○ Single-threaded (no locking infrastructure or concurrency problems)
○ Good documentation and test infrastructure

● Open to new ideas and features
● Consistent release schedule

5

The challenge of increasing complexity

● Complexity is growing in many areas
○ SoCs - more IP blocks, power domains, multiple CPU types
○ Firmware packaging - private tools and techniques
○ Security / signing - SoC-specific with many variations
○ Boot flow / firmware fragmentation - multiple firmware projects in one firmware image
○ Build and device configuration - different product models, features enabled/disabled

● What is U-Boot doing to cope with this complexity?

6

Dealing with SoC complexity

● U-Boot's driver model provides
○ Linux-compatible devicetree support
○ Over 100 driver classes, e.g. BLK, MMC, PCI, VIDEO
○ Parent / child relationships and automatic private data
○ Relatively easy porting from Linux (e.g. MTD layer)

 mmc 1 [+] rockchip_rk3288_dw_m |-- mmc@ff0d0000
 blk 1 [] mmc_blk | |-- mmc@ff0d0000.blk
 bootdev 1 [] mmc_bootdev | `-- mmc@ff0d0000.bootdev
 mmc 2 [+] rockchip_rk3288_dw_m |-- mmc@ff0f0000
 blk 2 [] mmc_blk | |-- mmc@ff0f0000.blk
 bootdev 2 [] mmc_bootdev | `-- mmc@ff0f0000.bootdev
 spi 0 [+] rockchip_rk3288_spi |-- spi@ff110000
 cros-ec 0 [+] google_cros_ec_spi | `-- ec@0
 i2c 0 [] cros_ec_tunnel | |-- i2c-tunnel
 keyboard 0 [+] google_cros_ec_keyb | `-- keyboard-controller
 spi 1 [] rockchip_rk3288_spi |-- spi@ff130000
 spi_flash 0 [] jedec_spi_nor | `-- spiflash@0
 i2c 1 [] rockchip_rk3066_i2c |-- i2c@ff140000
 i2c 2 [] rockchip_rk3066_i2c |-- i2c@ff150000
 i2c 3 [] rockchip_rk3066_i2c |-- i2c@ff160000
 i2c 4 [] rockchip_rk3066_i2c |-- i2c@ff170000
 serial 0 [] ns16550_serial |-- serial@ff180000
 serial 1 [] ns16550_serial |-- serial@ff190000
 serial 2 [+] ns16550_serial |-- serial@ff690000

&i2c0 {
clock-frequency = <400000>;
i2c-scl-rising-time-ns = <168>;
i2c-scl-falling-time-ns = <4>;
status = "okay";

rk808: pmic@1b {
compatible = "rockchip,rk808";
reg = <0x1b>;
interrupt-parent = <&gpio3>;
interrupts = <10 IRQ_TYPE_LEVEL_LOW>;
#clock-cells = <1>;
clock-output-names = "xin32k", "rk808-clkout2";
pinctrl-names = "default";
pinctrl-0 = <&pmic_int_l>;
rockchip,system-power-controller;
wakeup-source;

7

Complexity example: pinctrl, clocks, power

● Automatic pinmux, clock, power domains
● To get the first MMC device:

○ uclass_get_device(UCLASS_MMC, 0)
● U-Boot selects the pin muxing, enables required power domains and clocks

static int mmc_power_init(struct mmc *mmc) {
..

ret = device_get_supply_regulator(mmc->dev, "vmmc-supply",
 &mmc->vmmc_supply);

&sdmmc {
bus-width = <4>;
cap-sd-highspeed;
cd-gpios = <&gpio0 7 GPIO_ACTIVE_LOW>;
disable-wp;
max-frequency = <150000000>;
pinctrl-names = "default";
pinctrl-0 = <&sdmmc_clk &sdmmc_cmd &sdmmc_bus4>;
vmmc-supply = <&vcc3v0_sd>;
vqmmc-supply = <&vcc_sdio>;
status = "okay";

};

sdio0_bus4: sdio0-bus4 {
rockchip,pins =

<2 RK_PC4 1 &pcfg_pull_up>,
<2 RK_PC5 1 &pcfg_pull_up>,
<2 RK_PC6 1 &pcfg_pull_up>,
<2 RK_PC7 1 &pcfg_pull_up>;

};

sdmmc: mmc@fe320000 {
…
clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,

 <&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;
clock-names = "biu", "ciu", "ciu-drive", "ciu-sample";
resets = <&cru SRST_SDMMC>;
reset-names = "reset";
…

};

8

Complexity example 2: Configuration

● Problem: many similar models based on a common design
● Traditional solution: one build for each model
● Better solution: run-time configuration

○ Single U-Boot build for all models
○ Devicetree describes the hardware

● U-Boot handles the differences at runtime
○ Devices instantiated based on devicetree
○ Device parameters come from devicetree

● Pass configuration between firmware components

priv->fifo_depth = dev_read_u32_default(dev, "fifo-depth", 0);fifo-depth = <256>;

9

Complexity 3: Firmware Packaging

● 'Binman' tool collects binaries into an image
○ Binaries come from build systems
○ Image is the final firmware loaded into the device

● Data-driven operation, using an image description
○ Models an image as an ordered list of entries
○ Each has properties such as offset, size, contents, alignment, compression
○ Binman loads the input files, puts them together, writes the output image(s)
○ Works in parallel, typically in a single pass, so is extremely fast
○ Very easy to modify the image as needed; allows use of CONFIG options and entry arguments
○ Tool dependencies are including in the description
○ Supports FIT, FIP, CBFS, IWFI, etc.

● Provides a way to build and fetch vendor tools See
Demo

rom {
filename = "u-boot.rom";
size = <0x400000>;
pad-byte = <0xff>;

mkimage {
args = "-n rk3399 -T rkspi";
u-boot-spl {
};

};
u-boot-img {

offset = <0x40000>;
};
u-boot {

offset = <0x300000>;
};
fdtmap {
};

10

Standard boot

● U-Boot has always had powerful booting features
○ Flat Image Tree (FIT) for multiple images (kernel, ramdisk, FPGA)
○ Signature verification, compression
○ Load a collection of images based on "vendor,model" compatible strings

● Standard boot adds a higher-level interface
○ Automatically locate boot devices
○ Automatically search for distros to boot
○ Provide a menu of available options

● Replaces 'run distro_bootcmd'
○ Easier configuration (generally none at all)

11

Standard boot - unifying all boot methods

● Three basic concepts
○ bootdev - storage devices to be scanned
○ bootflow - an OS to boot
○ bootmeth - methods for finding bootflows on bootdevs

● bootdev and bootmeth are uclasses
○ We have have bootdev drivers for MMC, USB
○ Bootmeth drivers for syslinux, EFI, ChromiumOS, custom

● bootflow is simply a data structure
○ E.g. points to a extlinux.conf file, a .efi executable
○ May not have a file at all
○ Indicates which bootmeth to use to boot

● U-Boot scans for available bootflows, provides a menu for the user
See

Demo

12

UEFI support

● EFI_LOADER provides a UEFI layer in U-Boot
○ Full GPL implementation supports booting distros like Ubuntu, Fedora
○ Supports UEFI secure boot; provides capsule updates, TPM measurement
○ Makes use of existing U-Boot drivers, so generally there is no need to adjust board support
○ Includes a boot-manager implementation along with menu support

● U-Boot can also run as an EFI application

* Future
Complete full boot/update
support including ARM FWU

=> bootflow scan -lb
Scanning for bootflows in all bootdevs
Seq Method State Uclass Part Name Filename
--- ----------- ------ -------- ---- ------------------------ ----------------
Scanning global bootmeth 'efi_mgr':
Hunting with: nvme
Hunting with: qfw
Hunting with: scsi
scanning bus for devices...
Hunting with: virtio
Scanning bootdev 'qfw_pio.bootdev':
fatal: no kernel available
Scanning bootdev 'virtio-blk#0.bootdev':
 0 efi ready virtio 1 virtio-blk#0.bootdev.part efi/boot/bootx64.efi
** Booting bootflow 'virtio-blk#0.bootdev.part_1' with efi
EFI using ACPI tables at f0060
 efi_install_fdt() WARNING: Can't have ACPI table and device tree - ignoring DT.
 efi_run_image() Booting /efi\boot\bootx64.efi

13

VBE - Verified Boot for Embedded

● A true UEFI alternative
● Scope

○ boot flow
○ image selection
○ update

● Uses FIT to package firmware / OS images
● Uses fwupd to perform firmware update
● You know in advance what you are booting and what it needs

○ No EFI callbacks
● See osfc'22 talk: 'Introduction to VBE Verified Boot for Embedded'

for both firmware and OS

* Future
Future: A/B firmware update sample
implementation on RockPRO64

14

Documentation

● U-Boot moved to rST a few years ago
○ Uses Sphinx, following Linux's lead
○ 'make htmldocs' builds the documentation
○ Allows patches to include documentation updates
○ Supports deep links, images, etc.

● Most existing documentation has been converted
○ Currently around 80K lines of rST
○ Some 80 commands (out of ~250) are documented
○ Some existing features are still undocumented, or not rST

● https://u-boot.readthedocs.io/en/latest/

* Future
Complete documentation for all
commands and features

15

https://u-boot.readthedocs.io/en/latest/

Testing and CI

● Expanded significantly over the past few years
○ Uses gitlab infrastructure with ~6 runners
○ Each run takes approx. 70 minutes to complete
○ Local tests can run in a few minutes (e.g. 'make pcheck')
○ Around 1120 tests in total

● Sandbox + emulators for fast, east tests

See
Demo

* Future
● Easier distributed labs with Labgrid
● Code-coverage tracking
● Booting common distros in CI

16

Devicetree and Schema

● U-Boot has used devicetree since 2011 (same year as Linux)
○ As a result there are quite a few differences in bindings
○ These are being resolved SoC by SoC
○ U-Boot has some schema 'upstream' (bootph-xxx and options/ node)

● Use of livetree (hierarchical data structure) is expanding
○ Provides an easy way to access nodes: ofnode
○ Provides an easy way for devices to read properties: dev_read…(dev, "prop")
○ Faster for updates; multiple trees are now supported
○ Some work on moving devicetree fix-ups to ofnode

* Future
Move schema upstream; run schema
validation on U-Boot tree

17

Quality-of-life improvements

● Kconfig migration
○ Completed as of 2023.01
○ Very large effort by many people, over ~6 years
○ Provides a path to drop board-specific config.h files

● Text-based environment
○ Simple syntax in a text file
○ Avoids use of #defines in config.h files

● Link-time Optimisation (LTO)
● U-Boot shows a logo!
● Events

○ Allows 'spying' on events such as new-device creation
○ Alternative to weak functions, with better visibility and auditing (event-dumper tool)

// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (c) Siemens AG, 2023
 *
 * Authors:
 * Jan Kiszka <jan.kiszka@siemens.com>
 */

usb_pgood_delay=900

watchdog_timeout_ms=CONFIG_WATCHDOG_TIMEOUT_MSECS
start_watchdog=

if test ${watchdog_timeout_ms} -gt 0; then
wdt dev watchdog@40610000;
wdt start ${watchdog_timeout_ms};
echo Watchdog started, timeout ${watchdog_timeout_ms} ms;

fi

* Future
Updated HUSH shell 18

Cross-project communication

● Firmware Handoff (bloblist in U-Boot)
○ Provides a way to pass tagged data from one project to another
○ E.g. U-Boot can pass memory information to/from TF-A, OP-TEE
○ github.com/FirmwareHandoff

* Future
Industry-wide, universal format
for firmware images

SPL

TF-A

OP-TEE

U-BootVPL

TL

TL

TL

TL

OS
DT

19

https://github.com/FirmwareHandoff/firmware_handoff

Networking

● TCP/IP support and wget
● IPv6
● New PHY API

* Future
Discussions about moving to lwip

20

RISC-V and x86

● RISC-V boards now up to 21
○ Boards from AndesTech, SiFive, Microchip, OpenPiton, Sipeed
○ Running in CI with QEMU

● Booting distros supported on x86 (pending patches)
● Coreboot support has been enhanced

○ Uses SPCR to find UART
○ 'cbsysinfo' command shows the sysinfo table
○ Now runs in CI with QEMU

21

Tracing

● Used (with bootstage) to find bottlenecks in boot
● Record function entry / exit
● Export data for use with trace-cmd and kernelshark
● .Also supports an interactive flamegraph

● https://u-boot.readthedocs.io/en/latest/develop/trace.html

See
Demo

22

https://u-boot.readthedocs.io/en/latest/develop/trace.html

'Cyclic' subsystem

● Provides a way to run things in the background
○ Register a function to be called, setting a period in microseconds
○ The function will be called when U-Boot is idle

● Many possible (future) uses
○ Resetting the watchdog timer (implemented in 2022.10)
○ Scanning the USB bus in the background
○ Read files from the network in the background
○ Scanning for bootflows in the background

● https://u-boot.readthedocs.io/en/latest/develop/cyclic.html

23

https://u-boot.readthedocs.io/en/latest/develop/cyclic.html

GUI and menus

● New 'expo' subsystem supports graphical / text display
○ Arranged as a series of 'scenes', each with a list of items to display
○ The user can move through scenes using the keyboard
○ So far the only supported items are menus

● New 'cedit' command allows the user to edit configurations*
○ Like the BIOS configuration machine on x86 devices

* patches pending

See
Demo

* Future
Load / save configuration

scenes {
main {

id = <ID_SCENE1>;
title-id = <ID_SCENE1_TITLE>;
prompt = "UP and DOWN to choose, ENTER to select";

cpu-speed {
type = "menu";
id = <ID_CPU_SPEED>;
title = "CPU speed";
title-id = <ID_CPU_SPEED_TITLE>;
item-label = "2 GHz", "2.5 GHz", "3 GHz";
item-id = <ID_CPU_SPEED_1 ID_CPU_SPEED_2 ID_CPU_SPEED_3>;

};

power-loss {
type = "menu";
id = <ID_POWER_LOSS>;
title = "AC Power";
item-label = "Always Off", "Always On", "Memory";

24

Demo

● Standard boot
● Binman
● CI
● Tracing
● Configuration editor

25

Thank you for listening

● U-Boot is an open-source firmware project
● Patches and ideas are welcome

● My details
○ Simon Glass
○ to: u-boot@lists.denx.de
○ cc: sjg@chromium.org

26

mailto:u-boot@lists.denx.de
mailto:sjg@chromium.org

