\
Empowered by Innovation N E‘

| A Consideration of Memory Saving
by Efficient Mapping of Shared Libraries

Masahiko Takahashi

System Platforms Research Laboratories
NEC Corporation

April 12, 2010
Embedded Linux Conference 2010

Introduction: How shared library is used

| Shared libraries are mapped
to memory by using mmap

| Position independent code
(PIC) uses PC-relative

Mmemory access

page-size
alignment
| .
file text data
4
mmap text data BSS
| | |

If process “P” links libA.so, libB.so, libC.so, and libD.so,

its memory(map

looks like...

0

P P A A B B C C'
Text area | Data+BSS area
(read/exec) (read/write)

Empowered by Innovation

NEC

mmap — pros

! Mmap provides
demand-paging
! Pros

® A physical page is not file

text

data

assigned until the
first access to the

Page mmap

text

BSS

Empowered by Innovation

NEC

mmap — CONs

| Cons
® Page-fault overhead

® Page-size alignment L
for each text and filg text GAkE
data area of a library i \
- (internal) memory
fragmentation mmap text data BSS
| |

Empowered by Innovation N E'

Internal memory fragmentation

! When mmaped, each shared library is mapped in
“text(non-writable), then, data(writable)” order,

| which means there are internal memory

fragmentation between areas.

Text area
(read/exec)

Data+BSS area
(read/write)

P P’ A A B B C

Empowered by Innovation N E'

Goal: Eliminating the fragmentation for memory saving

|dea:
| Put all data areas into one area

! Use “read” systemcall, not “mmap”

® Can't share a page between libraries when
using mmap

Data+BSS area
(read/write)

Text area
(read/exec)
P P’ A A' B C
| | * " //ii/
P P’ A' C'' D' B C @

emory saving

Empowered by Innovation N E.

Why “text-data” order is needed?
| The Load address of a library isn't

libA.so fixed
text
| So, text area needs to access to
A data area by the fixed distance
GOJ . | GOT(global offset table) is used for
indirect access to data area
data (dynamic symbol resolution)
00 o \
setFoo:
‘ _ load r3, .GOT - .LPIC
Fixed distance add r3, pc, r3
libB.S (at compile time) | .LPIC:
}OO"1 / load r3, [r3, #8]
— 4 store r0, [r3]
ret
GOT .GOT:
Y word ...
word ... I
s | = @

More generally ... fix something

! How to access to data area from text area

® Dynamic link(PIC): it needs the distance
between text and data area to be fixed

* Access with PC-relative address

* Issue: internal memory fragmentation;
due to page-size alignment

® Static link: it fixes the address of data area
by absolute address

* Access with absolute address

* Issue: text areas are also linked statically
and cannot be shared between processes

Empowered by Innovation

NEC

Proposal: introducing fixed GGOT area

| Introduce a “Global GOT area”, on the fixed address,
which is for indirect access to libraries' GOT areas

® Access with absolute address

® Assigned to each process independently

— Not fixed load address, nor fixed distance for text/data

Q

QI

AI

ive

i

Fixed

| address

Even if libB.so is not used, no page-size fragmentation

Empowered by Innovation

NEC

Pros and cons of the proposal

| Pros
® Eliminating internal memory fragmentation

| Cons
® Lack of demand-paging for data areas

* Because of using “read” systemcall for
whole data areas (instead of mmap)

® Tiny overhead in indirect access to GOT via
GGOT

Empowered by Innovation N E.

Implementation Design

GOT of libD.so
text of |ibA.so
(#0 gvar(GOT)e
GGOT
text of libD.so libA's entry e —
(#3) libB's entry NI 1| /' GOT of libA.so
/
Iib[%entry J
_ data of
| Define the address of GGOT |iSAa_S%
| Assign library number (1,2,...)
® GGOT is allocated to each process, Voo
but library# is unique in the system J
| Change program texts to access to

“GGOT address + its library# offset”

Empowered by Innovation N E‘

Prototype Implementation

| The prototype is on x86 Linux with glibc-2.7

| The following 2 modifications are needed
® Modify Id.so (ELF loader)
® Binary rewrite of shared libraries' text

nnovation [NJ Ec

Modification of Id.so

| Changes are approximately 60 lines (3 parts)
1. Allocate memory for GGOT area

2. Write the load address of GOT area of each
shared library to its corresponding GGOT entry

3. Address recalculation in symbol relocation,
e.g.,
« R 386 GLOB DAT
« R 386 JMP SLOT
« DT PLTGOT
DT _FINI_ARRAY/DT INIT _AFFAY?

Empowered by Innovation N E‘

Binary rewrite of shared libraries

! Just for prototyping
! Mainlining to gcc/gld is the right way

| We notice that at least the following three
rewrites are needed

1. Change GOT access to GGOT access in
normal function

2. Change GOT access to GGOT access Iin
_init() and _fini()

3. Change offset value in accessing RODATA
area

Empowered by Innovation N E.

1. Change GOT access to GGOT in normal functions

var

-7
v (B

GOT.BLT

PIC Proposallib# offset
foo: foo: GGOT address
call get pc thunk.bx mov $0x10000, $ebx
add $0xl1l41la, %ebx -+ (a) mov 0x4 (%ebx) , %ebx
mov -0x18 (%ebx) , $ecx..(B) mov -0x18 (%ebx) , %ecx..(B)
mov %eax, (%ecx) mov %eax, (%ecx)
ret ret
get pc thunk.bx:
mov %esp) , sebx
ret
nop
TEXT] GGOT @ 0x10000
A foo()
0x1000
(A) GOF *

gvar

GOT.RLT

hpowered by Innovation N E'

2. Change GOT access to GGOT in _init()/_fini()

PIC Proposal Lib# offset
“init: “init: /GGOT address
call LPO mov |$0x10000, $ebx
LPO: pop %ebx mov 0x4 (%ebx) , %ebx
add $0x15c0,%ebx nop
mov -0x10 (%ebx) , %$edx mov -0x10 (%ebx) , %$edx
test %edx, %$edx test %edx, %edx
je LP1 je LP1
call gmon start (@plt call gmon start (@plt
LPl: call frame dummy LPl: call frame dummy
call do global ctors aux call do global ctors aux

Empowered by Innovation N E‘

foo:

printf(“%d\n”,i);

call get pc thunk.bx
add $0x141a,%ebx
lea
mov

%eax, (%esp)
call printf@plt

... (A)
-0x1174 (%$ebx) , $eax... (B)

%$ebx
lea xxxxxx (%$ebx) , $eax
mov eax, (%esp)
call |[printf@plt
ret :
TEXT ret
f foo() _‘R_ TEXT
“%d\nnAODATA __foo()
(A) ,0x1000 RODATA. o 4\ "
. (B Gor Unfortunately, 6bytes are not sufficient to
GOT.ALT

3. Change offset value in accessing RODATA area
PIC

Proposal
foo:

mov
mov

$0x10000, $ebx

0x4 (%$ebx) , $ebx
call LPO
LPO :pop

rewrite instructions in x86 architecture.

Empowered by Innovation N E'

3. Change offset value in accessing RODATA area

(cont.)
PIC printf(“%d\n",i); Proposal
foo: foo:
call get pc thunk.bx mov
add $0x1l41a,%ebx .. (A) mov
lea -0x1174(%ebx) ,b %Seax.. (B) call
mov %eax, (%$esp) nop
call printf@plt mov
: call
ret :
ret
barl:
mov
lea
ret

Unfortunately, 6bytes are not sufficient to
rewrite instructions. So, a function named
“bar?” is added to set the offset. All bar s

.~ Should be put together into one area.

$0x10000, $ebx
0x4 (%ebx) , $ebx
barl

%eax, (%esp)
printf@plt

sesp) ,%eax
0xla9 (%eax) , %eax

Empowered by Innovation N E‘

mailto:printf@plt

Future Work

| Verification and evaluation
! Mainlining (Id.so and gcc/gld)

! Selective use of GGOT or mmap for
libraries

nnovation N Ec

Conclusion

| For memory saving, efficient memory mapping
of shared libraries is proposed

| The prototype on x86 Linux required two
modifications, but implemented in mainlins
(ld.so and gcc/gld) is the right way

I 1 need your help;
® Basic idea, implementation, and verification,
® to push into mainline,
® and other things ...

Empowered by Innovation N E.

Thank you.

Questions ?

nnovation [NJ Ec

ANEHERIZR LV it &%
A)RX—ay TEBT S
=N —F 4T IN=—

To be a leading global company
leveraging the power of innovation

to realize an information society
friendly to humans and the earth

NEC7IW—7Ea2,2017
NEC Group Vision 2017

Empowered by Innovation

NEC

23

© NEC Corporation 2009

Empowered by Innovation

NEC

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23

