FAT improvment

Nov. 25th, 2005.

machida AT sm.sony.co.jp
mokuno AT sm.sony.co.jp
notanaka AT sm.sony.co.jp
sho AT axe-inc.co.jp
takawata AT axe-inc.co.jp

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is available from
http://www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/gfdl.html
CE Linux Forum

Remind: Issues around FAT with CE
devices -1

e Hot unplug issues

— File System corruption on unplug media/storage device
e Almost same situation as power down without umount

— Notification of the event to user space
e Need to investigate, more
e Application need to know what's happened precisely
— How many un-plug and plug media/device evets occur
— System stability after unplug

e Almost same as I/0 error recovery issues discussed on LKLM

— http://developer.osdl.jp/projects/doubt/fs-consistency-and-
coherency/index.html

— http://groups.google.co.jp/group/linux.kernel/browse thread/thre
ad/b9cl1bccd59e0513/4a4dd84b411c6d32?g=[RFD]+FS+behavior+(
1% 2FO+failure)+int+kernel+summit++lkml&rnum=1&hl=ja#4a4dd84
b411c6d32

» Need to select behavior of FS after unplug
— All operations except umount() will report correctly error.
— currently just makes FS read-only.

e FS needs to survive even mounted block device disappeared
— With some USB storage, block device is dismissed on un-plug

CE Linux Forum

http://developer.osdl.jp/projects/doubt/fs-consistency-and-coherency/index.html
http://developer.osdl.jp/projects/doubt/fs-consistency-and-coherency/index.html
http://groups.google.co.jp/group/linux.kernel/browse_thread/thread/b9c11bccd59e0513/4a4dd84b411c6d32?q=[RFD]+FS+behavior+(I%2FO+failure)+in+kernel+summit++lkml&rnum=1&hl=ja#4a4dd84b411c6d32
http://groups.google.co.jp/group/linux.kernel/browse_thread/thread/b9c11bccd59e0513/4a4dd84b411c6d32?q=[RFD]+FS+behavior+(I%2FO+failure)+in+kernel+summit++lkml&rnum=1&hl=ja#4a4dd84b411c6d32
http://groups.google.co.jp/group/linux.kernel/browse_thread/thread/b9c11bccd59e0513/4a4dd84b411c6d32?q=[RFD]+FS+behavior+(I%2FO+failure)+in+kernel+summit++lkml&rnum=1&hl=ja#4a4dd84b411c6d32
http://groups.google.co.jp/group/linux.kernel/browse_thread/thread/b9c11bccd59e0513/4a4dd84b411c6d32?q=[RFD]+FS+behavior+(I%2FO+failure)+in+kernel+summit++lkml&rnum=1&hl=ja#4a4dd84b411c6d32

Remind: Issues around FAT with CE
devices -2

e Other iIssues

— Time stamp issues
e |ocal time, 2sec unit

— Issues around mapping with UNICODE and local char
code
e N-1 mapping with SJIS(ShortNmae) <-> UNICODE (LFN)
e Possible inconsistency between kernel and application
side
e interoperability with PC — OK with 2.6.x (at least 12)
— Support file size over 2GB - OK with 2.6.x (at least 12)

— FAT32 FS dirty flag

CE Linux Forum

i

D

Discussions at previous meetings

e Why FAT? - It would be difficult to share back ground
Need continuous efforts to explain

e Journaling? — Use existing functions for robustness

Feedbacks from LKLM
Need to test FAT SYNC mount introduced at 2.6.12
Need to consider “Soft Update”

e Underlying layers — Elevator and Block device driver, like
flash ROM, USB Mass and HDD

Feedbacks from LKLM
Need to consider BH_ordered is introduce.
Need to consider to isolate File system layer from underlying layer

[92)

CE Linux Forum

FAT related works — Current state
e Began work at 8/M

e Misc Improvments
e Robustness with sync option

e Other FAT robustness
— Avoid sector unaligned entry on FAT12 cluster allocation

e Not planed yet
— Better handling underlying device, like Flash ROM
— Notification of the event to user space
— System stability and FS behavior after unplug
— Possible char code problem
— FAT32 dirty flag
e No plan to address
— File Size > 2GB - Already Supported

CE Linux Forum

d@m
Misc Improvements

e dirscan speedup
— fat/fat_lookup-hint_1.patch

e fat: Handle broken free clusters on
FAT32 collectly

— fat/fat32-brkn_frclstrs.patch

e fat: POSIX attribute mapping support for
VFAT.

— fat/vfat-posix-attr.patch

CE Linux Forum

i

" Robustness with sync option

e fs: generic_osync inode() with OSYNC INODE
only passed
— fs-osync-inode-only.patch

e fat: sync attr rework with generic_osync_inode()
change
— fs-osync-attr.patch

e Sync on write - Already included in 2.6.14
— fat/fat-sync-write 1.patch

e fat: truncate write ordering issue
— fat/fat-truncate-order-with-posix-attr.patch

e fat: rename write ordering issue
— fat/vfat-avoid-double-link.patch

CE Linux Forum

o W

Soft Update

CE Linux Forum

o Soft Update

e Use write-back cache for metadata
— async, not write-through

e Record updates with per structure relation basis, not block basis
— avoid dependency circulation
— Three flags introduced in * BSD

e ATTACHED metadata update started
e« DEP_COMPLETE depdent metadata update complete
e COMPLETE complete data update complete

e On writing metadata, to keep metadata consistent
1. roll back incomplete operations effect to the metadata
2. write metadata to DISK
3. roll forward incomplete operations effect to the metadata

— This means both DISK and memory have consistent metadata, however on
DISK we may have little older metadata.

e See

— M. K. McKusick & G. R. Ganger. “Soft Updates: A Technique for Eliminating
Most Synchronous Writes in the Fast Filesystem.” Proceedings of the FREENIX
Track: 1999 USENIX Annual Technical Conference, Jun 1999.

CE Linux Forum

Q\ CELINTUX Fordm
FAT FS Organization

On disk structures

FFS FAT

bitmap allocation table (aka cluster chain)
inode dir entries + cluster chain
data block data block

A effects to B(B is depend on A)

CE Linux Forum

| FFS operations

 Following have “Update Dependency”
— file creation
— file removal
— directory creation
— directory removal
— file/directory rename
— block allocation
— Indirect block manipulation
— free map management

CE Linux Forum

| FAT FS operations

» Following operations possibly have “Update Dependency”,
not considered yet

— Append data to file (expand file)
— Create file (expand dir)

— Create dir (expand dir)

— Remove file

— Remove dir

— Truncate file

— Rename file/dir

— Change attributes

— Allocation table operations
e Allocate
e Release
e Bind/ReBind/UnBind *)

— Writev *)
*) I'm not sure we need to consider them separately

CE Linux Forum

o Apply Soft Update on FAT

e Considering one by one according with
usage frequency, not whole at once.

e As 1St step, Moving “write operation” to
Soft Update

CE Linux Forum

Allocation table operations

e allocate
— Need backward order from tail to head, the entry which is pointed to, need to
be updated, before the entry which is pointing to it.
e need to update entries on allocation table, with backward order from tail to head.

e need to update cluster chain field it the corresponding dirent, after cluster chain
allocated, when the first data cluster about to be allocated.

— Need to update size field in the corresponding dirent, after data written.

 release
— Need to update size field in the corresponding dirent, first.
— able to free and terminate entries on allocation table, with either forward or
backward order, including cluster chain field it the corresponding dirent.
— Prefer forward order from head to tail, the entry which is pointing to , need to
be updated, before the entry which is pointed from it.

e need to update cluster chain field it the corresponding dirent, before cluster chain
freed, when the first data cluster about to be freed.

e need to update entries on allocation table, with forward order from head to tail.
— c.f. with backward order

e can avoid cluster chain island while releasing

e need to update twice than with forward order

CE Linux Forum

Cluster Allocation and Release

eAllocation: backward order

Sect #N-1

T%

Cluster# 1 3 4 5

" Sect #N

Release: forward order

Sect #N-1 v " Sect #N
Cluster# 1 3 4 5

CE Linux Forum

A

Write Method (current)

I

e Current Implementation

— Allocate new cluster
and add cluster chain

e |link the cluster chain
to the dirent, if
needed.

— write data

— set new size

— update mtime/ctime
— set ATTR_ARCH flag

- write call tree
sys_write()
do_sync_write ()
fat_file_aio_write ()
generic_file_aio_write()
__generic_file_aio_write_nolock()
generic_file_buffered_write()

fat_prepare_write()
cont_prepare_write()
__block_prepare_write()
fat_get_block()
fat_add_cluster()
fat_alloc_clusters()
fat_chain_add()

fat_commit_write()
generic_commit_write()
__block_commit_write()

CE Linux Forum

B

\.H-"'

Write Method (SoftUpdate)

e Allocate an new cluster and add cluster chain

do updates on cluster chain and record them as (pos, old val)
store and record pending link from the dirent to the cluster chain, if needed.
mark buffer dirty

Allocation Table I/0 Submit

e Write data

Write Data
mark buffer dirty
Data I/0 Submit

e set inode/dirent fields and write

link cluster chain to the dirent, if link is pending.
set new size
update mtime/ctime and set ATTR_ARCH, if needed

record those as (old link, old size, old attr, old time), because single dirent
for short name holds them

mark inode dirty

DirEnt I/0O Submit

CE Linux Forum

Transaction Record - 1

DATA
ALLOCATION LE
EOK
DIR <>
Free
10
DirEntry transaction record t
sect
\4

CE Linux Forum

A

I

Transaction Record - 2

DATA

sect

DIR

DirEntry

10

se

inode

ALLOCATION

sec

LE

FEOF\SN =~ = =~

FAT dst [pos, old_val] \

3, Free

FAT src [pos, old_val] /
10, EOF

transaction record

CE Linux Forum

W

Transaction Record - 3

DATA N\

ALLOCATION LE

DIR

W

FEOF\SN =~ = =~

3, Free

sect FAT src [pos, old_val]
10, EOF

\ Data 1/O

DirEntry \\ FAT dst [pos, old_vall \ /
/

transaction record

CE Linux Forum

Transaction Record - 4

DATA N\

ALLOCATION LE

NNRANR
secC
R EOF\™ - ’
7/ DirEntry \ FAT dst [pos, old_val] \ /
%% \\ 3, Free ;
sect FAT src [pos, old_val]
10, EOF

\ Data 1/O

DENT [old link, old size, old attr, old time]

transaction record

CE Linux Forum

" Submit Method (SoftUpdate)

e submit BH

— sector submit BH
e submit BH

— DISC

CE Linux Forum

B

"~ Alloc Tabel 170 and Trans Rec 1

—
NN

DIR

%

DirEntry

/f/f/y

7

7777777%%

se

ALLOCATION LE

A2

4d o

EOFN\™ §~This sect [A2] is

about to be
submitted.
FAT dst [pos, old_val] t
\ 3, Free
FAT src [pos, old_val] /
10, EOF
\ Data 1/0
\J
DENT [old link, old size, old attr, old time]

transaction record

CE Linux Forum

A

hAIIoc Tabel I/0 and Trans Rec 2

- 1/0 sector allocation table
— The sect [A2] Is about to be submitted.
— No 170 submitted yet, regarding this inode.

- [A2] [A1]
- [Al]

CE Linux Forum

A

I

Alloc. table submit method - 1

. 1

— inode
) inode

trans. record

% N \| |
“l
N .

v

CE Linux Forum

N
Alloc. table submit method - 2
o 1 chain
— \ chain
o roll back

e 1
e roll forward

\O/} prev sect
) ~ trans. record

Newa,,, ZZZZ
I |
| |

| |

CE Linux Forum

—>
<

Alloc. table submit method - 3

. submit

trans. record

v

CE Linux Forum

A

B

Alloc. table submit method - 4

— alloc table I/0 mark
— syncer

CE Linux Forum

>~ Alloc. table submit method
Algorithm

e proc(csect) {

. foreach crec in allrec(csect) {
. if (is_marked(crec)) continue;

. mark(crec);

. if crec continue;

. depend_sect = sector(prev(crec));

. if (depend_sect == csect) continue;

. if (csect submit) wait done;

. rollback(crec); <--- rollback
. proc(depend_sect);

. if (csect submit) wait done;

. rollforward(crec);

*

. if (csect submit) wait done; <----

. submit_bh(csect);

* }

CE Linux Forum

A

e

" Alloc. table submit - Example

memory image sect A is about to be written

sect A \

X

) 4

QOO | |®

%

sect C

@ denotes the order of modification

—_ Y x depends ony

CE Linux Forum

Disk 1/0 would be done
as following order;

Sect C[5]

Sect A [6 3]

Sect B [4 1]
Sect A |2 1 K7

Vv

Q: When stop writing?

A

- Data Submit Method

e Submit

— Alloc Table I/0
or submit
e submit & submit

e dirty
e syncer

— data I/0 mark
— syncer

CE Linux Forum

A

e
DirEnt Submit Method
e Submit
- dirent Alloct Table
Data 170 or submit

e submit & submit

. dirent rollback
. dirty submit submit
e rollback rollforward
[J
— Table Data /0 // debug

— transaction record

CE Linux Forum

sect #N

Data I/O
not complete yet

Alloc/Data /O
complete

Alloc Table 1/O
not complete yet

R’ﬁllbacks on dirent

sect #N+1

Roll Back

0...‘
Q O
Alloc. tbl — sect #N+1

CE Linux Forum

Alloc. thl —

A

>
1

e rollback inode

. FAT
e rollback dirty
- submit
e rollback sector sector
- sector submit caller
e sync
. sector sync

— Ssync mount

CE Linux Forum

-
e rollback disc
- -—-[DISC]-------- [MEM] -> t

- * submit
— OK

e General: rollback mark_inode_dirty() and mark_buffer_dirty()

— Not yet considered

e Actual cluster table 170, data I/0 and DirEnt I/0 and other FS
/0 submission would be done as page or buffer 170 like
submit_bh() through page daemon. How can we identify the
target FS, inode, type of I/0 and it's related data?

CE Linux Forum

__ __ CELinux forum,

CE Linux Forum

*How page daemons write back files

WO sync - 1

e pdflush (without sync)
— wb_kupdate()
— writeback_inodes|()
- sync_sb_inodes|()
— __writeback_single inode()
- __sync_single_inode()
- do_writepages()
- generic_writepaes() // fat has writpage(), not writepages()
- mpage_writepages() :fs/mpage.c
— // getblk passed as NULL
- blkdev_writepage() for dir, fat_writepage() for file
- block write_full_page()
- ___block_write_full _page()
— submit_bh()
— write_inode()
- fat_write inode()
- mark_buffer_dirty()

CE Linux Forum

*How page daemons write back files
WOo sync - 2
— wbc
e« sync_ mode WB_SYNC NONE
e nr_to write MAXWRITEBACK_PAGES

e nonblocking 1
e for kupdate 1

— __ Dblock write full page()
e submit I/0 by submit_bh(), if mapped and locked
e do redirty if already locked by others

— fat_write _inode()
e just do mark_buffer_dirty()
— because sync_mode == WB_SYNC_NONE

CE Linux Forum

*How page daemons write back files

WO sync - 3
e * pdflush periodic writeout
= rm /a/foo
e EXIT:[pid: 267](rm)
- /#

e :submit_bh:trace:[8:pdflush]

e Call trace:

. [c0061a90] submit bh+0x1e8/0xlec

. [c0062f08] _ block write full_page+0x208/0x43c
. [c0067d84] blkdev writepage+0x1c/0x2c

. [c008b710] mpage writepages+0x278/0x460

. [c0067934] generic_writepages+0x14/0x24

. [c0042fe8] do writepages+0x38/0x58

. [c008964c] _ writeback single_inode+0x88/0x3d0
. [c0089f70] sync_sb_inodes+0x1b8/0x2d4

. [c008a4c8] writeback inodes+0x180/0x1b4

. [c0042d38] wb_kupdate+0xd4/0x168

. [c0043c34] pdflush+0x154/0x260

. [c0032338] kthread+0xec/0x128

. [c0004554] kernel thread+0x44/0x60

CE Linux Forum

*How page daemons write back files
with sync - 1

e pdflush (sync)
— background_writeout()
— writeback_inodes()
- sync_sb_inodes|()
— __writeback_single inode()
- __sync_single_inode()
- do_writepages()
- generic_writepaes() // fat has writpage(), not writepages()
- mpage_writepages() :fs/mpage.c
— // getblk passed as NULL
- blkdev_writepage() for dir, fat_writepage() for file
- block write_full_page()
- ___block_write_full _page()
— submit_bh()
— write_inode()
- fat_write inode()
- mark_buffer_dirty()

CE Linux Forum

*How page daemons write back files
with sync - 2

— wbc
e sync._ mode WB_SYNC NONE
e nr_to write MAX WRITEBACK_PAGES
e nonblocking 1

— _ block write_full page()
e submit 1/0 by submit_bh(), if mapped and locked
e do redirty If already locked by others

— fat_write _inode()

e just do mark_buffer_dirty()
— because sync_mode == WB_SYNC_NONE

CE Linux Forum

*How page daemons write back files
with sync - 3

* forced sync through pdflush
/ # touch /a/foo

EXIT:[pid: 268] (touch)

/ # sync
:submit_bh:trace:[8:pdflush]

e Call trace:

. [c0061a90] submit_bh+0x1e8/0xlec

[c0062f08] _ block write full page+0x208/0x43c
[c0067d84] blkdev_writepage+0x1lc/0x2c
[c008b710] mpage_ writepages+0x278/0x460
[c0067934] generic_writepages+0x14/0x24
[c0042fe8] do_writepages+0x38/0x58

[c008964c] _ writeback single_inode+0x88/0x3d0
[c0089f70] sync_sb_inodes+0x1b8/0x2d4
[c008a4c8] writeback inodes+0x180/0x1b4

. [c0042bb8] background_writeout+0xc8/0x114
[c0043c34] pdflush+0x154/0x260

. [c0032338] kthread+0xec/0x128

. [c0004554] kernel_thread+0x44/0x60

WRITE Start 142

EXIT:[pid: 269](sync)

CE Linux Forum

>~ How page daemons write back files
(kswapd)

e kswapd
— balance_pgdat()
— shirnk_zone()
— shrink_cache()
— shrink_list()
= pageout()
— fat_writepage()
— block write full page()
_ __block_write_full_page()
_ submit_bh()

CE Linux Forum

Block device Issues

CE Linux Forum

o Underlying block device

e BH_ordered flag

— Purpose: Ensure write ordering (including media/Zdevice side)
 E.gQ. Support code is inside in IDE driver.
e It works as following, if HDD support cache flush operation
— submit data 1/0 to HDD
— flush HDD cache
— Issues

e If device driver doesn’t support this feature, block 1/0 request would be
failed.

e FS layer need to handle explicitly

— Alternatives

e For General
— wait every 1I/0, if BH_ordered is set
» submit I/0
» wait 1/0 completion
e For devices without cache or with write through cache
— UuSe noop elevator
— Solution

e Block I/0 layer needs to provide transparency to FS.
— wait I/0 on submit if BH oreded is set and device driver dosen’t support it.

CE Linux Forum

" Better Flash ROM support

e |sSsues
— Current block device driver
e “sector” — minimal data transfer unit with device hardware.

— Flash ROM
e two transfer unit, one for read/write ops and another for erase op.
e erase unit > read/write unit, in general
e if one read/write unit is broken, need to abandon entire erase unit.
e translation layer may hide some of or most of them
e write op may have strong relation with erase op

e File system layer

— If unit of read and write may have different size, it may be good for
robustness and performance... (need to be considered)

e Cluster chain of FAT12
e size of unit to be written as atomic operation

e Elevator
— Write ops for the same erase unit could be done at once

CE Linux Forum

	FAT improvment
	Remind: Issues around FAT with CE devices -1
	Remind: Issues around FAT with CE devices -2
	Discussions at previous meetings
	FAT related works – Current state
	Misc Improvements
	Robustness with sync option
	Soft Update
	Soft Update
	FAT FS Organization
	FFS operations
	FAT FS operations
	Apply Soft Update on FAT
	Allocation table operations
	Cluster Allocation and Release
	Write Method (current)
	Write Method　(SoftUpdate)
	Transaction Record - 1
	Transaction Record - 2
	Transaction Record - 3
	Transaction Record - 4
	Submit Method (SoftUpdate)
	Alloc Tabel I/O and Trans Rec 1
	Alloc Tabel I/O and Trans Rec 2
	Alloc. table submit method - 1
	Alloc. table submit method - 2
	Alloc. table submit method - 3
	Alloc. table submit method - 4
	Alloc. table submit methodAlgorithm
	Alloc. table submit - Example
	Data Submit Method
	DirEnt Submit Method
	Rollbacks on dirent
	疑問点1
	疑問点2
	修正箇所
	How page daemons write back files wo sync - 1
	How page daemons write back files wo sync - 2
	How page daemons write back files wo sync - 3
	How page daemons write back fileswith sync - 1
	How page daemons write back fileswith sync - 2
	How page daemons write back fileswith sync - 3
	How page daemons write back files (kswapd)
	Block device issues
	Underlying block device
	Better Flash ROM support

