
Linux clock management framework

Siarhei Yermalayeu, Gert Vervoort, Shankar Mahadevan, Boudewijn Becking
Embedded Linux Conference
November 2 & 3, 2007
Siarhei.Yermalayeu@nxp.com

ELC 2007Siarhei Yermalayeu
2

Outline

Introduction to HW clock generation on Systems on Chips

Clock Management SW Framework

Conclusions

ELC 2007Siarhei Yermalayeu
3

How are the system clocks generated ?

PLL

PLL
C

lo
ck

Sw
itc

h
Bo

x

CPU

Timer

Osc

DIVs /

SPI

UARTDIV /

DIV /

DIV /

BUS

TV-outDIV /
Input clock

/

DAOExt clock DIV /

DAIDIV /Ext clock

DIV PLL

DIV

DIV

/

/

/

/

/

/

/

/

.

Clock generation unit (CGU)

ELC 2007Siarhei Yermalayeu
4

HW mechanisms for clock management

Clock stopping
– Disable/Enable every device clock (takes only a few cycles)
– Base clock can be disconnected from a PLL (takes longer)

• if allowed for all derived clocks
– PLLs can be powered down (takes even longer)

• if allowed for all derived clocks

Clock scaling
– Scaling down by using a divider (fast)
– Scaling up/down by switching to a different PLL (fast unless high to slow clk)
– Scaling up/down by reprogramming a PLL (takes longer for PLL locking)

Clock stopping/scaling simple yet effective power saving mechanism
– Clock trees can consume up to 50% of total IC power

ELC 2007Siarhei Yermalayeu
5

Why SW framework for clock management?

Why SW Framework?
– Modern embedded systems have many (over 100) clocks
– Clocks are to be managed dynamically at run-time
– Structured approach
– Hide complexity of internal clock generation & clock interdependencies
– Reuse across different versions of a system-on-chip
– Reuse across different platforms

Additional requirements
– Clock management from multiple cores
– Use existing OS PM interfaces (if possible)

ELC 2007Siarhei Yermalayeu
6

Linux support for clock management

Why SW framework for Linux?
– Linux 2.6 defines API for clock management
– But no implementation is provided
– There exist a number of example implementations (TI OMAP, ARM)

The following API is defined:
– id = clk_get(string_name)
– clk_enable(id)
– clk_disble(id)
– clk_set_rate(id, rate)
– clk_get_rate(id)
– clk_put(id)

The API is provided in kernel space only (thus for drivers)

ELC 2007Siarhei Yermalayeu
7

Clock management framework SW architecture

HW Clock Generation Unit (CGU)

ARM SW

HW

Kernel space

User space

Kernel
Device Drivers

Clock API

Linux Kernel

Low-level driver API

 Low-level clock management SW layer
(low-level HW CGU access routines)

/sysfs/clks
dump clocks

clk_get()
clk_put()

clk_enable()
clk_disable()

clk_set_rate()

 Middle-level clock management SW layer
Linux Clock API implementation

(clock reference counting + dependency resolving)

User-level Linux
Applications

ELC 2007Siarhei Yermalayeu
8

Clock framework services

Low-level layer provides CGU HW access/programming routines
– Platform-dependent layer

Middle-level layer provides clock usage reference counting
– on every clock enable/disable request

Why reference counting?
– Typically driver serializes requests to a device and the ref. counter =1
– If device (i.e. bus bridge) has no SW driver the ref. counter ≥1
– If device is shared between CPUs the ref. counter ≥1
– Safety precaution for future platforms

ELC 2007Siarhei Yermalayeu
9

Clock framework services

Middle-level layer provides dependency resolving on CGU level

Clock dependencies on CGU level
– Parent-child relationship between a clock and its all derivatives

Why dependency resolving?
– Enabling one output clock may require several CGU configuration steps
– Each required CGU clock is automatically enabled and configured
– Hides clock generation complexity
– Only CGU output clocks are managed by the framework

• Clock derivatives internal to devices are to be managed by device drivers

Clock reference counting with dependency resolving enables automatic
power optimization of clock generation

CGU
Base
clock

CGU
DIV
clock

parent
CGU
PLL
clock

CGU
DIV
clock

parent parent
CGU
input
clock

parent device
clockparent

ELC 2007Siarhei Yermalayeu
10

Clock framework internals

Every clock is described by clk structure

One type for all clocks

Major fields/members:
– Link to parent clock
– Reference counter
– Clock HW identifier
– Clock type
– Clock output frequency rate

Internally a clock dependency graph is built

Dependency links are dynamic and can be reconfigured at run-time

CGU
Base
clock

CGU
DIV
clock

parent
CGU
PLL
clock

CGU
DIV
clock

parent parent
CGU
input
clock

parent device
clockparent

ELC 2007Siarhei Yermalayeu
11

Initialization

Clock configuration is statically defined by a clock dependency graph

Each clock description has a frequency rate specified
– Upon clock enabling a default frequency will be configured

On HW reset default clock configuration is set up
– Typically all clocks enabled and derived from an input clock

During Linux boot clock framework is initialized and the specified clock
configuration is programmed to CGU

On resume from a standby mode a similar procedure but with the clock
configuration just before standby

When booted (resume) some of the clocks are configured by the
bootrom and not by the clock framework, thus the framework should
resynchronize

ELC 2007Siarhei Yermalayeu
12

Frequency scaling

Problem 1: Frequency scaling options are limited by the amount and
availability of dividers and PLLs

Problem 2: Dependencies of all kinds should be satisfied

Solving these problems by the framework requires:
– formal specification of many clock dependencies
– Intelligent algorithm for finding the right clock configuration
– Costs memory, cycles and power

Our design choice: offload the framework from solving problems 1&2
– provide a set of clock specific set_rate() functions

Clock rate change is requested using frequency values
– All dividers settings will be calculated by the framework

ELC 2007Siarhei Yermalayeu
13

Interface to applications

All clock management takes place in device drivers
– No interface to clock management is exposed to applications

Why?
– Device clocking can be complex involving clocks from other devices
– Device drivers hide clocking complexity from the applications
– Device drivers provide HW independent interface
– Many clock dependencies between various devices are handled

automatically by device drivers

Audio dev driver

I2C driver

I2S driver

CGU driver

I2C clk request

I2S clk request

audio clk request

open I2C dev

open I2S dev

ELC 2007Siarhei Yermalayeu
14

Even more dependencies

By design clock framework covers CGU dependencies only

How about clock dependencies between devices?
– Functional (bus ↔ peripheral)

Some devices have no SW driver, but still have to be clock managed
– bus, bus bridges, L2 cache

Workarounds:
– Use a ‘dummy’ driver for clock management only
– Another driver that requires such device can handle the clock

management

ELC 2007Siarhei Yermalayeu
15

Domain interface

In case of many complex dependencies a concept of domain can be
introduced

Domain
– Any combination of clocks grouped together by a certain rule
– Treated as one unit
– Domain definitions can have intersected clocks
– Domains can be exposed to both drivers and applications

Domain interface API is similar to clock API
– dmn_clk_enable(dmn_id)
– dmn_clk_disble(dmn_id)
– dmn_clk_set_rate(dmn_id, rate)
– dmn_clk_get_rate(dmn_id)

ELC 2007Siarhei Yermalayeu
16

Clock framework architecture (with domains)

/sysfs/clks
dump clocks

clk_get()
clk_put()

clk_enable()
clk_disable()

clk_set_rate()

 Middle-level clock management SW layer
Linux Clock API implementation

(clock reference counting + dependency resolving)

HW CGU IP

ARM SW

HW

Kernel space

User space

Kernel
Device Drivers

User-level Linux
Applications

Clock API

Linux Kernel

Low-level driver API

 Low-level clock management SW layer
(low-level HW CGU access routines)

dmn_clk_on()
dmn_clk_off()

dmn_set_clk_rate()

/udev/cgu
dmn_clk_on()
dmb_clk_off()

dmn_set_clk_rate()

 High-level clock management SW layer
(translation of domains to system clocks)

ELC 2007Siarhei Yermalayeu
17

Multiple core clock management

In multi-core system all cores may need clock management

Design choice: forward all clock requests to a single core
– Heterogeneous systems are assumed

Con’s
– Longer delay compared to direct HW control
– Typical IPC latency: 10us BC, 100us WC

Pro’s
– Reliable operating in case a device is shared between the cores
– Reuse of the framework (ref. counting, dependency solving, etc)

ELC 2007Siarhei Yermalayeu
18

Clock framework architecture (multi-core)

HW Clock Generation Unit (CGU)

ARM SW

HW

Kernel space

User space

Kernel
Device Drivers

Clock API

Linux Kernel

Low-level driver API

 Low-level clock management SW layer
(low-level HW CGU access routines)

Interprocessor
communication

Interprocessor
communication

DSP SW

clk_get()
clk_put()

clk_enable()
clk_disable()

clk_set_rate()

Clock API
Wrapper

DSP
SW

/sysfs/clks
dump clocks

clk_get()
clk_put()

clk_enable()
clk_disable()

clk_set_rate()

 Middle-level clock management SW layer
Linux Clock API implementation

(clock reference counting + dependency resolving)

User-level Linux
Applications

ELC 2007Siarhei Yermalayeu
19

Extensions to framework and clock API

By default the clock framework saves power aggressively
– Everything that can be switched off will be switched off

Each request for a clock can potentially lead to PLL switch on/off
– PLL locking takes considerable time (0.5 ms)

Solution 1: Introduce the concept of time to the framework
– Specify the expected time period for a clock being not used
– Specify latencies for PLL power modes, etc
– The framework shuts down CGU clocks and PLLs as far as time allows
– Extension to Linux clock API is required: clk_disable (id, time)

Solution 2: Defer stopping PLLs
– If clock enable request arrives within a time-out interval drop an older PLL

disable request
– No changes to Linux clock API are required

ELC 2007Siarhei Yermalayeu
20

Conclusions

Linux clock API is the first step towards energy-optimized clock
management for embedded systems

Already today a clock management framework can be designed around
the clock API only

We need to work further towards higher level of generalization, such as:
– Clock description by clk structure
– Intelligence for dependency graph traversing

We need to agree which dependencies should be resolved by the
framework, device drivers, applications

We have to consider making clock management time aware
– This would also be important for voltage control

Thanks for your attention!!!
Contact info: siarhei.yermalayeu@nxp.com

	Linux clock management framework
	Outline
	How are the system clocks generated ?
	HW mechanisms for clock management
	Why SW framework for clock management?
	Linux support for clock management
	Clock management framework SW architecture
	Clock framework services
	Clock framework services
	Clock framework internals
	Initialization
	Frequency scaling
	Interface to applications
	Even more dependencies
	Domain interface
	Clock framework architecture (with domains)
	Multiple core clock management
	Clock framework architecture (multi-core)
	Extensions to framework and clock API
	Conclusions

