
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/45



Thomas Petazzoni

I CTO and Embedded Linux engineer at Free Electrons
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributions
I Kernel support for the new Armada 370 and Armada XP

ARM SoCs from Marvell
I Major contributor to Buildroot, an open-source, simple and

fast embedded Linux build system

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/45

http://free-electrons.com


Agenda

I User perspective: booting with the Device Tree

I Basic Device Tree syntax and compilation

I Simple example of Device Tree fragment

I Overall organization of a Device Tree

I Examples of Device Tree usage

I General considerations about the Device Tree in Linux

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/45



User perspective: before the Device Tree

I The kernel contains the entire description of the hardware.
I The bootloader loads a single binary, the kernel image, and

executes it.
I uImage or zImage

I The bootloader prepares some additional information, called
ATAGS, which address is passed to the kernel through register
r2

I Contains information such as memory size and location, kernel
command line, etc.

I The bootloader tells the kernel on which board it is being
booted through a machine type integer, passed in register r1.

I U-Boot command: bootm <kernel img addr>

I Barebox variable: bootm.image

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/45



User perspective: before the Device Tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/45



User perspective: booting with a Device Tree

I The kernel no longer contains the description of the hardware,
it is located in a separate binary: the device tree blob

I The bootloader loads two binaries: the kernel image and the
DTB

I Kernel image remains uImage or zImage
I DTB located in arch/arm/boot/dts, one per board

I The bootloader passes the DTB address through r2. It is
supposed to adjust the DTB with memory information, kernel
command line, and potentially other info.

I No more machine type.

I U-Boot command:
bootm <kernel img addr> - <dtb addr>

I Barebox variables: bootm.image, bootm.oftree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/45



User perspective: booting with a Device Tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/45



User perspective: compatibility mode for DT booting

I Some bootloaders have no specific support for the Device
Tree, or the version used on a particular device is too old to
have this support.

I To ease the transition, a compatibility mechanism was added:
CONFIG_ARM_APPENDED_DTB.

I It tells the kernel to look for a DTB right after the kernel
image.

I There is no built-in Makefile rule to produce such kernel, so
one must manually do:

cat arch/arm/boot/zImage arch/arm/boot/dts/myboard.dtb > my-zImage

mkimage ... -d my-zImage my-uImage

I In addition, the additional option
CONFIG_ARM_ATAG_DTB_COMPAT tells the kernel to read the
ATAGS information from the bootloader, and update the DT
using them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/45



What is the Device Tree ?

I Quoted from the Power.org Standard for Embedded Power
Architecture Platform Requirements (ePAPR)

I The ePAPR specifies a concept called a device tree to describe
system hardware. A boot program loads a device tree into a
client program’s memory and passes a pointer to the device
tree to the client.

I A device tree is a tree data structure with nodes that describe
the physical devices in a system.

I An ePAPR-compliant device tree describes device information
in a system that cannot be dynamically detected by a client
program.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/45



Basic Device Tree syntax

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/45



From source to binary

I On ARM, all Device Tree Source files (DTS) are for now
located in arch/arm/boot/dts

I .dts files for board-level definitions
I .dtsi files for included files, generally containing SoC-level

definitions

I A tool, the Device Tree Compiler compiles the source into a
binary form.

I Source code located in scripts/dtc

I The Device Tree Blob is produced by the compiler, and is
the binary that gets loaded by the bootloader and parsed by
the kernel at boot time.

I arch/arm/boot/dts/Makefile lists which DTBs should be
generated at build time.

dtb-$(CONFIG_ARCH_MVEBU) += armada-370-db.dtb \

armada-370-mirabox.dtb \

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/45



A simple example, DT side

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/45



A simple example, driver side (1)

The compatible string used to bind a device with the driver
static struct of_device_id mxs_auart_dt_ids[] = {

{

.compatible = "fsl,imx28-auart",

.data = &mxs_auart_devtype[IMX28_AUART]

}, {

.compatible = "fsl,imx23-auart",

.data = &mxs_auart_devtype[IMX23_AUART]

}, { /* sentinel */ }

};

MODULE_DEVICE_TABLE(of, mxs_auart_dt_ids);

[...]

static struct platform_driver mxs_auart_driver = {

.probe = mxs_auart_probe,

.remove = mxs_auart_remove,

.driver = {

.name = "mxs-auart",

.of_match_table = mxs_auart_dt_ids,

},

};

Code from drivers/tty/serial/mxs-auart.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/45



A simple example, driver side (2)

I of_match_device allows to get the matching entry in the
mxs_auart_dt_ids table.

I Useful to get the driver-specific data field, typically used to
alter the behavior of the driver depending on the variant of
the detected device.

static int mxs_auart_probe(struct platform_device *pdev)

{

const struct of_device_id *of_id =

of_match_device(mxs_auart_dt_ids, &pdev->dev);

if (of_id) {

/* Use of_id->data here */

[...]

}

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/45



A simple example, driver side (3)

I Getting a reference to the clock
I described by the clocks property
I s->clk = clk_get(&pdev->dev, NULL);

I Getting the I/O registers resource
I described by the reg property
I r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

I Getting the interrupt
I described by the interrupts property
I s->irq = platform_get_irq(pdev, 0);

I Get a DMA channel
I described by the dmas property
I s->rx_dma_chan = dma_request_slave_channel(s->dev, "rx");

I s->tx_dma_chan = dma_request_slave_channel(s->dev, "tx");

I Check some custom property
I struct device_node *np = pdev->dev.of_node;

I if (of_get_property(np, "fsl,uart-has-rtscts", NULL))

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/45



Device Tree inclusion

I Device Tree files are not monolithic, they can be split in
several files, including each other.

I .dtsi files are included files, while .dts files are final Device
Trees

I Typically, .dtsi will contain definition of SoC-level
information (or sometimes definitions common to several
almost identical boards).

I The .dts file contains the board-level information.

I The inclusion works by overlaying the tree of the including
file over the tree of the included file.

I Inclusion using the DT operator /include/, or since a few
kernel releases, the DTS go through the C preprocessor, so
#include is recommended.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/45



Device Tree inclusion example

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/45



Device Tree inclusion example (2)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/45



Concept of Device Tree binding

I Quoting the ePAPR:
I This chapter contains requirements, known as bindings, for

how specific types and classes of devices are represented
in the device tree.

I The compatible property of a device node describes the
specific binding (or bindings) to which the node complies.

I When creating a new device tree representation for a device, a
binding should be created that fully describes the
required properties and value of the device. This set of
properties shall be sufficiently descriptive to provide device
drivers with needed attributes of the device.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/45



Documentation of Device Tree bindings

I All Device Tree bindings recognized by the kernel are
documented in Documentation/devicetree/bindings.

I Each binding documentation described which properties are
accepted, with which values, which properties are mandatory
vs. optional, etc.

I All new Device Tree bindings must be reviewed by the Device
Tree maintainers, by being posted to
devicetree@vger.kernel.org. This ensures correctness
and consistency across bindings.

OPEN FIRMWARE AND FLATTENED DEVICE TREE BINDINGS

M: Rob Herring <rob.herring@calxeda.com>

M: Pawel Moll <pawel.moll@arm.com>

M: Mark Rutland <mark.rutland@arm.com>

M: Stephen Warren <swarren@wwwdotorg.org>

M: Ian Campbell <ijc+devicetree@hellion.org.uk>

L: devicetree@vger.kernel.org

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/45



Device Tree binding documentation example

* Freescale MXS Application UART (AUART)

Required properties:

- compatible : Should be "fsl,<soc>-auart". The supported SoCs include

imx23 and imx28.

- reg : Address and length of the register set for the device

- interrupts : Should contain the auart interrupt numbers

- dmas: DMA specifier, consisting of a phandle to DMA controller node

and AUART DMA channel ID.

Refer to dma.txt and fsl-mxs-dma.txt for details.

- dma-names: "rx" for RX channel, "tx" for TX channel.

Example:

auart0: serial@8006a000 {

compatible = "fsl,imx28-auart", "fsl,imx23-auart";

reg = <0x8006a000 0x2000>;

interrupts = <112>;

dmas = <&dma_apbx 8>, <&dma_apbx 9>;

dma-names = "rx", "tx";

};

Note: Each auart port should have an alias correctly numbered in "aliases"

node.

Example:

[...]

Documentation/devicetree/bindings/tty/serial/fsl-mxs-auart.txt

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/45



Device Tree organization: top-level nodes

Under the root of the Device Tree, one typically finds the following
top-level nodes:

I A cpus node, which sub-nodes describing each CPU in the
system.

I A memory node, which defines the location and size of the
RAM.

I A chosen node, which defines parameters chosen or defined
by the system firmware at boot time. In practice, one of its
usage is to pass the kernel command line.

I A aliases node, to define shortcuts to certain nodes.

I One or more nodes defining the buses in the SoC.

I One or mode nodes defining on-board devices.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/45



Device Tree organization: imx28.dtsi

arch/arm/boot/dts/imx28.dtsi

/ {

aliases { ... };

cpus { ... };

apb@80000000 {

apbh@80000000 {

/* Some devices */

};

apbx@80040000 {

/* Some devices */

};

};

ahb@80080000 {

/* Some devices */

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/45



i.MX28 buses organization

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/45



Device Tree organization: imx28-evk.dts

arch/arm/boot/dts/imx28-evk.dts
/ {

model = "Freescale i.MX28 Evaluation Kit";

compatible = "fsl,imx28-evk", "fsl,imx28";

memory {

reg = <0x40000000 0x08000000>;

};

apb@80000000 {

apbh@80000000 { ... };

apbx@80040000 { ... };

};

ahb@80080000 { ... };

sound { ... };

leds { ... };

backlight { ... };

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/45



Top-level compatible property

I The top-level compatible property typically defines a
compatible string for the board, and then for the SoC.

I Values always given with the most-specific first, to
least-specific last.

I Used to match with the dt_compat field of the DT_MACHINE

structure:

static const char *mxs_dt_compat[] __initdata = {

"fsl,imx28",

"fsl,imx23",

NULL,

};

DT_MACHINE_START(MXS, "Freescale MXS (Device Tree)")

.dt_compat = mxs_dt_compat,

[...]

MACHINE_END

I Can also be used within code to test the machine:

if (of_machine_is_compatible("fsl,imx28-evk"))

imx28_evk_init();

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/45



Bus, address cells and size cells

Inside a bus, one typically needs to define the following properties:

I A compatible property, which identifies the bus controller (in
case of I2C, SPI, PCI, etc.). A special value
compatible = "simple-bus" means a simple
memory-mapped bus with no specific handling or driver. Child
nodes will be registered as platform devices.

I The #address-cells property indicate how many cells (i.e
32 bits values) are needed to form the base address part in the
reg property.

I The #size-cells is the same, for the size part of the reg

property.

I The ranges property can describe an address translation
between the child bus and the parent bus. When simply
defined as ranges;, it means that the translation is an
identity translation.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/45



simple-bus, address cells and size cells

apbh@80000000 {

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

reg = <0x80000000 0x3c900>;

ranges;

[...]

hsadc: hsadc@80002000 {

reg = <0x80002000 0x2000>;

interrupts = <13>;

dmas = <&dma_apbh 12>;

dma-names = "rx";

status = "disabled";

};

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/45



I2C bus, address cells and size cells

i2c0: i2c@80058000 {

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,imx28-i2c";

reg = <0x80058000 0x2000>;

interrupts = <111>;

[...]

sgtl5000: codec@0a {

compatible = "fsl,sgtl5000";

reg = <0x0a>;

VDDA-supply = <&reg_3p3v>;

VDDIO-supply = <&reg_3p3v>;

clocks = <&saif0>;

};

at24@51 {

compatible = "at24,24c32";

pagesize = <32>;

reg = <0x51>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/45



Interrupt handling

I interrupt-controller; is a boolean property that
indicates that the current node is an interrupt controller.

I #interrupt-cells indicates the number of cells in the
interrupts property for the interrupts managed by the
selected interrupt controller.

I interrupt-parent is a phandle that points to the interrupt
controller for the current node. There is generally a top-level
interrupt-parent definition for the main interrupt
controller.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/45



Interrupt example: imx28.dtsi

/ {

interrupt-parent = <&icoll>;

apb@80000000 {

apbh@80000000 {

icoll: interrupt-controller@80000000 {

compatible = "fsl,imx28-icoll", "fsl,icoll";

interrupt-controller;

#interrupt-cells = <1>;

reg = <0x80000000 0x2000>;

};

ssp0: ssp@80010000 {

[...]

interrupts = <96>;

};

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/45



A more complicated example on Tegra 20

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/45



Interrupt example: tegra20.dtsi

/ {

interrupt-parent = <&intc>;

intc: interrupt-controller {

compatible = "arm,cortex-a9-gic";

reg = <0x50041000 0x1000 0x50040100 0x0100>;

interrupt-controller;

#interrupt-cells = <3>;

};

i2c@7000c000 {

compatible = "nvidia,tegra20-i2c";

reg = <0x7000c000 0x100>;

interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;

#address-cells = <1>;

#size-cells = <0>;

[...]

};

gpio: gpio {

compatible = "nvidia,tegra20-gpio";

reg = <0x6000d000 0x1000>;

interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>, <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,

[...], <GIC_SPI 89 IRQ_TYPE_LEVEL_HIGH>;

#gpio-cells = <2>;

gpio-controller;

#interrupt-cells = <2>;

interrupt-controller;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/45



Interrupt example: tegra20-harmony.dts

i2c@7000c000 {

status = "okay";

clock-frequency = <400000>;

wm8903: wm8903@1a {

compatible = "wlf,wm8903";

reg = <0x1a>;

interrupt-parent = <&gpio>;

interrupts = <TEGRA_GPIO(X, 3) IRQ_TYPE_LEVEL_HIGH>;

gpio-controller;

#gpio-cells = <2>;

micdet-cfg = <0>;

micdet-delay = <100>;

gpio-cfg = <0xffffffff 0xffffffff 0 0xffffffff 0xffffffff>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/45



Clock tree example, Marvell Armada XP

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/45



Clock examples: instantiating clocks

soc {

coreclk: mvebu-sar@18230 {

compatible = "marvell,armada-xp-core-clock";

reg = <0x18230 0x08>;

#clock-cells = <1>;

};

cpuclk: clock-complex@18700 {

#clock-cells = <1>;

compatible = "marvell,armada-xp-cpu-clock";

reg = <0x18700 0xA0>;

clocks = <&coreclk 1>;

};

gateclk: clock-gating-control@18220 {

compatible = "marvell,armada-xp-gating-clock";

reg = <0x18220 0x4>;

clocks = <&coreclk 0>;

#clock-cells = <1>;

};

}

clocks {

/* 25 MHz reference crystal */

refclk: oscillator {

compatible = "fixed-clock";

#clock-cells = <0>;

clock-frequency = <25000000>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/45



Clock examples: consuming clocks

CPU, using a cpuclk
cpu@0 {

device_type = "cpu";

compatible = "marvell,sheeva-v7";

reg = <0>;

clocks = <&cpuclk 0>;

};

Timer, using either a coreclk or refclk
timer@20300 {

compatible = "marvell,armada-xp-timer";

clocks = <&coreclk 2>, <&refclk>;

clock-names = "nbclk", "fixed";

};

USB, using a gateclk
usb@52000 {

compatible = "marvell,orion-ehci";

reg = <0x52000 0x500>;

interrupts = <47>;

clocks = <&gateclk 20>;

status = "disabled";

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/45



pinctrl binding: consumer side

I The pinctrl subsystem allows to manage pin muxing.

I In the Device Tree, devices that need pins to be muxed in a
certain way must declare the pinctrl configuration they need.

I The pinctrl-<n> properties allow to give the list of pinctrl
configuration needed for a certain state of the device.

I The pinctrl-names property allows to give a name to each
state.

I When a device is probed, its default pinctrl state is
requested automatically.

ssp0: ssp@80010000 {

pinctrl-names = "default";

pinctrl-0 = <&mmc0_8bit_pins_a

&mmc0_cd_cfg &mmc0_sck_cfg>;

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/45



pinctrl configurations

I A pinctrl configuration provides a list of pins and their
configuration.

I Such configurations are defined as sub-nodes of the pinctrl
device, either at the SoC-level, or board-level.

I The binding for such configurations is highly dependent on
the specific pinctrl driver being used.

i.MX28
mmc0_8bit_pins_a: mmc0-8bit@0 {

fsl,pinmux-ids = <

0x2000 /* MX28_PAD_SSP0_DATA0__SSP0_D0 */

0x2010 /* MX28_PAD_SSP0_DATA1__SSP0_D1 */

[...]

0x2090 /* MX28_PAD_SSP0_DETECT__SSP0_... */

0x20a0 /* MX28_PAD_SSP0_SCK__SSP0_SCK */

>;

fsl,drive-strength = <1>;

fsl,voltage = <1>;

fsl,pull-up = <1>;

};

Marvell Kirkwood
pmx_nand: pmx-nand {

marvell,pins = "mpp0", "mpp1", "mpp2", "mpp3",

"mpp4", "mpp5", "mpp18",

"mpp19";

marvell,function = "nand";

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/45



DT is hardware description, not configuration

I The Device Tree is really a hardware description language.

I It should describe the hardware layout, and how it works.

I But it should not describe which particular hardware
configuration you’re interested in.

I As an example:
I You may describe in the DT whether a particular piece of

hardware supports DMA or not.
I But you may not describe in the DT if you want to use DMA

or not.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/45



DT bindings as an ABI

I Since the DT is OS independent, it should also be stable.

I The original idea is that DTBs can be flashed on some devices
by the manufacturer, so that the user can install whichever
operating system it wants.

I Once a Device Tree binding is defined, and used in DTBs, it
should no longer be changed anymore. It can only be
extended.

I This normally means that Device Tree bindings become
part of the kernel ABI, and it should be handled with the
same care.

I However, kernel developers are realizing that this is really hard
to achieve and slowing down the integration of drivers.

I The ARM Kernel Mini-summit discussions have relaxed those
rules.

I There will be additional discussions during the Kernel Summit,
with final conclusions published afterwards.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/45



Basic guidelines for binding design

I A precise compatible string is better than a vague one
I You have a driver that covers both variants T320 and T330 of

your hardware. You may be tempted to use foo,t3xx as your
compatible string.

I Bad idea: what if T340 is slightly different, in an incompatible
way? You’d better use foo,t320 for both T320 and T330.

I Do not encode too much hardware details in the DT
I When two hardware variants are quite similar, some developers

are tempted to encode all the differences in the DT, including
register offsets, bit masks or offsets.

I Bad idea: it makes the binding more complex, and therefore
less resilient to future changes. Instead, use two different
compatible strings and handle the differences in the driver.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/45



Future directions

I More DT bindings for various subsystems
I A tool to validate DTS against bindings

I Currently, the DT compiler only makes syntax checks, no
conformance checks against bindings.

I Proposal from Benoit Cousson and Fabien Parent,
[RFC 00/15] Device Tree schemas and validation

I Take out the Device Tree source files from the kernel
tree

I DTs are OS independent, so they can be used for other
purposes than just Linux. They are already used by Barebox or
U-Boot.

I Having them outside of the kernel reduces the amount of
churn in the kernel source.

I But is IMO likely to cause a huge number of compatibility
issues.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/45



References

I Power.orgTM Standard for Embedded Power Architecture
Platform Requirements (ePAPR), http://www.power.org/
resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf

I DeviceTree.org website, http://www.devicetree.org

I Device Tree documentation in the kernel sources,
Documentation/devicetree

I The Device Tree kernel mailing list, http:
//dir.gmane.org/gmane.linux.drivers.devicetree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/45

http://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf
http://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf
http://www.devicetree.org


Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-

tree-dummies/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/45

http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/

