
www.wolfsonmicro.com 1

regmap

The power of subsystems and abstractions

November 2012 © 2012 Wolfson Microelectronics plc

http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no
http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no
http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no
http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no
http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no
http://elceurope2012.sched.org/event/100619b669ce5767341624253aa03659?iframe=yes&w=900&sidebar=yes&bg=no

www.wolfsonmicro.com

• The quality of the subsystems is key to Linux
• Factor common code out of drivers

• Simplify driver development

• Encourage best practice

• Maximise the impact of features

• regmap provides a good case study
• Register I/O for I2C and SPI

• Originally in ASoC for audio CODECs

• Traditionally open coded in drivers

• Now provides benefits for totally different device classes

• Nothing like it in other operating systems

Overview

2 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• ASoC CODEC drivers need to provide configuration to users

• Saw that there were lots of register bitfields like:
• R0 INL_VOL [5:0]: Left input PGA Volume -23.25dB to +24.00dB in 0.75dB

steps

• R1 INR_VOL [5:0]: Right input PGA Volume -23.25dB to +24.00dB in 0.75dB
steps

• Factored this out into standard helpers for drivers:
• SOC_DOUBLE_R_TLV("Capture Volume",

WM8962_LEFT_INPUT_VOLUME,

WM8962_RIGHT_INPUT_VOLUME, 0, 63, 0, inpga_tlv),

• Supported with CODEC callbacks:
• int read(struct snd_soc_codec *codec, int reg);

• int write(struct snd_soc_codec *codec, int reg, int value);

In the beginning…

3 November 2012 © 2012 Wolfson Microelectronics plc

www.wolfsonmicro.com

• Save some boilerplate

• Simple factor out of one very common operation
• snd_soc_update_bits(struct snd_soc_codec *codec, int reg,

int mask, int val);

• Can suppress no op changes

• Make best practice clear and obvious

Quick wins

4 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Using:
• Register read and write operations

• Ideally also the maximum register address

• The subsystem can provide register dumps as a standard
feature:
0000: abcd

0001: 5e32

• Common output format

• Support for reading only specific registers

• Write support

• Enabled by previous factoring out

Register dumps

5 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Had been open coded in drivers

• Layered in with a little bit more data
• Register default values

• Volatile registers

• Really nice feature
• Many devices don’t support readback

• Performance improvement

• Simplifies suspend and resume

Register caches

6 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• The hardware interface is very consistent over devices:

• Register followed by value, big endian

• Standard implementation of read and write

• Subsystem ensures all drivers get the fiddly bits right
• Byte swapping

• Interoperability with controller features

• Performance tricks

Physical I/O

7 © 2012 Wolfson Microelectronics plc November 2012

A0D7 D1 A6SDA

SCLK

device ID

B8 B7 B0

Note: The SDA pin is used as input for the control register address and data; SDA

is pulled low by the receiving device to provide the acknowledge (ACK) response

R/W B1

register address data bits B7 – B0B8ACK(Write) ACK ACKSTART STOP

www.wolfsonmicro.com

• These patterns are present in many other devices
• PMICs

• Input controllers

• GPIO expanders

• Move the code out of ASoC
• drivers/base/regmap

• Gradual merge
• v3.1: simple register I/O functionality for I2C and SPI

• v3.2: caches, tracepoints and debugfs

Factoring out regmap

8 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

struct regmap_config {

int reg_bits;

int pad_bits;

int val_bits;

bool (*writeable_reg)(struct device *dev, unsigned int reg);

bool (*readable_reg)(struct device *dev, unsigned int reg);

bool (*volatile_reg)(struct device *dev, unsigned int reg);

bool (*precious_reg)(struct device *dev, unsigned int reg);

unsigned int max_register;

const struct reg_default *reg_defaults;

unsigned int num_reg_defaults;

};

Device description

9 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

struct regmap *devm_regmap_init_i2c(struct i2c_client *i2c,

 const struct regmap_config *config);

int regmap_read(struct regmap *map, unsigned int reg,

 unsigned int *val);

int regmap_write(struct regmap *map, unsigned int reg,

 unsigned int val);

int regmap_update_bits(struct regmap *map, unsigned int reg,

 unsigned int mask, unsigned int val);

int regcache_sync(struct regmap *map);

void regcache_cache_only(struct regmap *map, bool enable);

void regcache_mark_dirty(struct regmap *map);

Core API

10 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Initially caches just used a flat array

• Not so good when caching devices with 32 bit addresses

• Solved with better cache types
• rbtree stores blocks of contiguous registers in a red/black tree (436

lines)

• Compressed stores blocks of compressed data (380 lines)

• Both rely on existing kernel libraries

 enum regcache_type cache_type;

Complex register caches

11 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Simple, low overhead logging subsystem

• Can be built in all the time and running all the time

• Standard format allows reusable tooling in userspace

• Key tracepoints for regmap:
• regmap_reg_write 0-001a reg=1a val=3c

• regmap_reg_read 0-001a reg=1 val=3c

• See more in debugfs/trace/events/regmap/

• Also a simple define LOG_DEVICE for early init logging

Tracepoints/Logging

12 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Magic register writes done at device startup
• Performance tuning

• Workarounds

• Integrated into cache sync

int regmap_register_patch(struct regmap *map,

 const struct reg_default *regs,

 int num_regs);

Register patches

13 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Common hardware pattern, adds another level of
addressing

• Supported in regmap by creating virtual registers

• Standard interface allows upper level code to ignore
paging

struct regmap_range_cfg {

 const char *name;

 unsigned int range_min; unsigned int range_max;

 unsigned int selector_reg; unsigned int selector_mask;

 int selector_shift;

 unsigned int window_start; unsigned int window_len;

};

Paging support

14 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Cache and diagnostic infrastructure isn’t just useful to I2C
and SPI

• Allows really simple integration with runtime PM

MMIO support

15 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Common patterns in interrupt controllers
• Status register

• Mask register

• Lots of fiddly stuff with interrupt core due to blocking in
“interrupt” context

• Frequently cut’n’pasted
• Including the comments!

Interrupt controller

16 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

struct regmap_irq {

 unsigned int reg_offset; unsigned int mask;

};

struct regmap_irq_chip {

 const char *name;

 unsigned int status_base;

 unsigned int mask_base;

 unsigned int ack_base;

 unsigned int wake_base;

 unsigned int irq_reg_stride;

 unsigned int mask_invert;

 bool runtime_pm;

 const struct regmap_irq *irqs;

 int num_irqs;

};

Interrupt controller

17 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• v3.1: simple register I/O functionality for I2C and SPI

• v3.2: caches, tracepoints and debugfs

• v3.3: interrupt controller

• v3.4: patches

• v3.5: MMIO bus

• v3.6: paging support

• regmap based helpers for ASoC, regulator and IRQ

Feature summary

18 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Support for devices providing their own set and get
register operations without formatting (eg, for USB)

• Performance improvements in cache sync

• Combine rbtree and compressed into a single cache type

• Common helpers for register access patterns

• Simplify chips with dense interrupt controller bitfields

• More helpers for subsystems

Future work

19 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Liam Girdwood, ASoC comaintainer and original author

• Dimitris Papastamos, contributed advanced caches

• Lars-Peter Clausen, early adopter & bug fixer

• Stephen Warren, contributed regmap-mmio

• Krystian Garbaciak, contributed paging support

• Laxman Dewangan, contributed a bunch of improvements

Thanks

20 © 2012 Wolfson Microelectronics plc November 2012

www.wolfsonmicro.com

• Small abstractions pave the way for bigger ones

• Solving things at the right level saves time and effort

• Register I/O is very simple on Linux

Summary

21 © 2012 Wolfson Microelectronics plc November 2012

