
Linux on Power Architecture Platform Reference

Advance
Version 1.1
24 March 2016

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2014, 2016

Printed in the United States of America March 2016

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

This document is intended for the development of technology products compatible with Power Architecture®. You may
use this document, for any purpose (commercial or personal) and make modifications and distribute; however, modifica-
tions to this document may violate Power Architecture and should be carefully considered. Any distribution of this docu-
ment or its derivative works shall include this Notice page including but not limited to the IBM warranty disclaimer and IBM
liability limitation. No other licenses, expressed or implied, by estoppel or otherwise, to any intellectual property rights are
granted by this document.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. IBM makes no represen-
tations or warranties, either express or implied, including but not limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement, or that any practice or implementation of the IBM documentation will not infringe
any third party patents, copyrights, trade secrets, or other rights. In no event will IBM be liable for damages arising directly
or indirectly from any use of the information contained in this document.

IBM Systems
294 Route 100, Building SOM4
Somers, NY 10589-3216

The IBM home page can be found at ibm.com®.

Version 1.1
24 March 2016

Note: This document contains information on products in the design, sampling and/or initial production phases
of development. This information is subject to change without notice. Verify with your IBM field applications
engineer that you have the latest version of this document before finalizing a design.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com

LoPAPR, Version 1.1 (March 24, 2016)

Table of Contents

List of Tables. 21

List of Figures. 29

About this Document . 31

Document Control . 31
Version . 31
Page Numbering and End of Document . 31

Goals of This Specification. 32
Audience for This Document . 32
Suggested Reading . 33
Conventions Used in This Document. 33

Requirement Enumeration . 33
Big-Endian Numbering . 33
Hypertext Links . 33
Specific Terms . 34
Typographical Conventions . 34

Chapter 1 - Introduction. 37

1.1 Platform Topology . 38

Chapter 2 - System Requirements . 41

2.1 System Operation . 41
2.1.1 Control Flow . 41
2.1.2 POST . 42
2.1.3 Boot Phase . 42

2.1.3.1 Identify and Configure System Components . 42
2.1.3.2 Generate a Device Tree. 42
2.1.3.3 Initialize/Reset System Components . 42
2.1.3.4 Locate an OS Boot Image . 44
2.1.3.5 Load the Boot Image into Memory . 44
2.1.3.6 Boot Process . 44

2.1.3.6.1 The Boot Prompt. 45
2.1.3.6.2 The Menus . 45
2.1.3.6.3 The f1 Key. 46
2.1.3.6.4 The f5 and f6 Keys . 46
2.1.3.6.5 CDROM Boot . 47
2.1.3.6.6 Tape Boot . 47
2.1.3.6.7 Network Boot . 47
2.1.3.6.8 Service Processor Boot . 47
2.1.3.6.9 Console Selection . 48
2.1.3.6.10 Boot Retry . 48
2.1.3.6.11 Boot Failures. 48
2.1.3.6.12 Persistent Memory and Memory Preservation Boot (Storage Preservation Option). 49

2.1.4 Transfer Phase . 49
2.1.5 Run-Time . 50
2.1.6 Termination. 50

2.1.6.1 Power Off . 50
2.1.6.2 Reboot . 50

2.2 Firmware . 50
2.3 OS Installation . 51

4

 LoPAPR, Version 1.1 (March 24, 2016)

2.3.1 Tape Install. .51
2.3.2 Network Install .51

2.4 Diagnostics .51
2.5 Platform Class .52
2.6 Security. .52
2.7 Endian Support. .53
2.8 64-Bit Addressing Support .53
2.9 Minimum System Requirements. .53
2.10 Options and Extensions .54
2.11 IBM LoPAPR Platform Implementation Requirements .57

2.11.1 IBM Server Requirements .58
2.12 Behavior for Optional and Reserved Bits and Bytes .58

Chapter 3 - Address Map . 59

3.1 Address Areas .59
3.2 Address Decoding (or Validating) and Translation .61

3.2.1 Load and Store Address Decoding and Translation .61
3.2.2 DMA Address Validation and Translation .64

3.2.2.1 DMA Addressing Requirements .65
3.2.2.2 DMA Address Translation and Control via the TCE Mechanism. .65

3.2.3 Example Address Maps .67

Chapter 4 - I/O Bridges and Topologies . 71

4.1 I/O Topologies and Endpoint Partitioning .71
4.2 PCI Host Bridge (PHB) Architecture. .77

4.2.1 PHB Implementation Options. .77
4.2.2 PCI Data Buffering and Instruction Queuing .77

4.2.2.1 PCI Load and Store Ordering .78
4.2.2.2 PCI DMA Ordering .78
4.2.2.3 PCI DMA Operations and Coherence .79

4.2.3 Byte Ordering Conventions .79
4.2.4 PCI Bus Protocols .80
4.2.5 Programming Model. .81
4.2.6 Peer-to-Peer Across Multiple PHBs .82
4.2.7 Dynamic Reconfiguration of I/O .82
4.2.8 Split Bridge Implementations .82

4.2.8.1 Coherency Considerations with IOA to IOA Communications via System Memory82
4.3 I/O Bus to I/O Bus Bridges .84

4.3.1 What Must Talk to What. .84
4.3.2 PCI to PCI Bridges .84

4.4 Bridge Extensions. .85
4.4.1 Enhanced I/O Error Handling (EEH) Option. .85

4.4.1.1 EEH Option Requirements .86
4.4.1.2 Slot Level EEH Event Interrupt Option .88

4.4.2 Error Injection (ERRINJCT) Option .89
4.4.2.1 ERRINJCT Option Hardware Requirements .89
4.4.2.2 ERRINJCT Option OF Requirements .91

4.4.3 Bridged-I/O EEH Support Option .91

Chapter 5 - Processor and Memory. 93

5.1 Processor Architecture .93
5.1.1 Processor Architecture Compliance. .93
5.1.2 PA Processor Differences .93

5.1.2.1 64-bit Implementations .94
5.1.3 Processor Interface Variations .95
5.1.4 PA Features Deserving Comment .95

5.1.4.1 Multiple Scalar Operations .95
5.1.4.2 External Control Instructions (Optional) .95

5.1.5 cpu Node “Status” Property .95
5.1.6 Multi-Threading Processor Option .95

5.2 Memory Architecture .95

 Table of Contents 5

LoPAPR, Version 1.1 (March 24, 2016)

5.2.1 System Memory . 96
5.2.2 Memory Mapped I/O (MMIO) and DMA Operations . 97
5.2.3 Storage Ordering and I/O Interrupts . 98
5.2.4 Atomic Update Model . 98
5.2.5 Memory Controllers. 99
5.2.6 Cache Memory . 99
5.2.7 Memory Status information . 100
5.2.8 Reserved Memory. 100
5.2.9 Persistent Memory . 100

Chapter 6 - Interrupt Controller . 101

6.1 Interrupt Controller Virtualization. 101
6.2 PowerPC External Interrupt Option . 101

6.2.1 PowerPC External Interrupt Option Requirements . 101
6.2.2 PowerPC External Interrupt Option Properties . 103
6.2.3 MSI Option . 103

6.3 Platform Reserved Interrupt Priority Level Option. 105

Chapter 7 - Run-Time Abstraction Services. 107

7.1 RTAS Introduction. 107
7.2 RTAS Environment . 107

7.2.1 Machine State . 108
7.2.2 Register Usage . 108
7.2.3 RTAS Critical Regions . 109
7.2.4 Resource Allocation and Use . 111
7.2.5 Instantiating RTAS . 111
7.2.6 RTAS Device Tree Properties. 112

7.2.6.1 RTAS Device Tree Properties for Indicators and Sensors. 116
7.2.6.1.1 Indicators . 117
7.2.6.1.2 Sensors. 117

7.2.7 Calling Mechanism and Conventions . 118
7.2.8 Return Codes . 119

7.3 RTAS Call Function Definition. 120
7.3.1 NVRAM Access Functions . 120

7.3.1.1 nvram-fetch . 120
7.3.1.2 nvram-store . 121

7.3.2 Time of Day. 122
7.3.2.1 Time of Day Inputs/Outputs . 122
7.3.2.2 get-time-of-day . 122
7.3.2.3 set-time-of-day . 123
7.3.2.4 set-time-for-power-on. 124

7.3.3 Error and Event Reporting . 125
7.3.3.1 event-scan . 125
7.3.3.2 check-exception . 127
7.3.3.3 rtas-last-error . 128
7.3.3.4 Platform Dump Option . 129

7.3.3.4.1 ibm,platform-dump . 129
7.3.3.4.2 Platform Dump Directory Structure . 131

7.3.4 PCI Configuration Space . 133
7.3.4.1 ibm,read-pci-config. 134
7.3.4.2 ibm,write-pci-config . 135

7.3.5 Operator Interfaces and Platform Control . 137
7.3.5.1 Op Panel Display . 137
7.3.5.2 Service Processor . 138

7.3.5.2.1 Surveillance . 138
7.3.5.2.2 Surveillance on SMP Systems . 139

7.3.5.3 display-character . 140
7.3.5.4 set-indicator . 142

7.3.5.4.1 Indicators . 145
7.3.5.4.1.1 Indicator 9000 Surveillance. 145
7.3.5.4.1.2 Indicator 9005 Global Interrupt Queue Control . 145

7.3.5.5 get-sensor-state . 145

6

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.5.5.1 Sensors .148
7.3.5.5.1.1 Example Implementation of Sensors .149
7.3.5.5.1.2 Power Supply Sensors .150
7.3.5.5.1.3 Environmental Sensors .150
7.3.5.5.1.4 Sensor 9005 Global Interrupt Queue Control State151

7.3.6 Power Control .151
7.3.6.1 set-power-level .151
7.3.6.2 get-power-level .152
7.3.6.3 power-off .153
7.3.6.4 ibm,power-off-ups .154

7.3.7 Reboot and Flash Update Calls .155
7.3.7.1 system-reboot .155
7.3.7.2 ibm,update-flash-64-and-reboot .156
7.3.7.3 Flash Update with Discontiguous Block Lists .157
7.3.7.4 ibm,manage-flash-image .158
7.3.7.5 ibm,validate-flash-image .159
7.3.7.6 ibm,activate-firmware .161

7.3.8 SMP Support .161
7.3.8.1 stop-self .162
7.3.8.2 start-cpu .162
7.3.8.3 query-cpu-stopped state .164

7.3.9 Miscellaneous RTAS Calls. .165
7.3.9.1 ibm,os-term .165
7.3.9.2 Ibm,exti2c .166

7.3.10 PowerPC External Interrupt Option .169
7.3.10.1 ibm,get-xive .169
7.3.10.2 ibm,set-xive .170
7.3.10.3 ibm,int-off. .170
7.3.10.4 ibm,int-on. .171
7.3.10.5 MSI Support .172

7.3.10.5.1 ibm,change-msi .172
7.3.10.5.2 ibm,query-interrupt-source-number .175

7.3.11 Enhanced I/O Error Handling (EEH) Option Functions .176
7.3.11.1 ibm,set-eeh-option. .180
7.3.11.2 ibm,set-slot-reset .182
7.3.11.3 ibm,read-slot-reset-state2 .184
7.3.11.4 ibm,get-config-addr-info2 .187
7.3.11.5 ibm,slot-error-detail .188

7.3.12 Bridged-I/O EEH Support Option .193
7.3.12.1 ibm,configure-bridge .193
7.3.12.2 ibm,configure-pe .195

7.3.13 Error Injection Option .197
7.3.14 Firmware Assisted Non-Maskable Interrupts Option (FWNMI) .204
7.3.15 Memory Statistics. .207
7.3.16 System Parameters Option .207

7.3.16.1 ibm,get-system-parameter .211
7.3.16.2 ibm,set-system-parameter. .212
7.3.16.3 HMC Parameter .212
7.3.16.4 Capacity on Demand (CoD) Option. .213

7.3.16.4.1 CoD Capacity Card Info .213
7.3.16.4.2 Predictive Failure Sparing with Free Resources .214
7.3.16.4.3 Enhanced CoD Capacity Info. .214

7.3.16.5 Restart Parameters .221
7.3.16.5.1 partition_auto_restart Parameter .221
7.3.16.5.2 platform_auto_power_restart Parameter .221

7.3.16.6 Remote Serial Port System Management Parameters .222
7.3.16.7 Surveillance Parameters .222
7.3.16.8 Call Home Parameter .222
7.3.16.9 Current Flash Image Parameter .224
7.3.16.10 Platform Dump Max Size Parameter. .224
7.3.16.11 Storage Preservation Option System Parameters .225
7.3.16.12 SCSI Initiator Identifier System Parameters .225
7.3.16.13 CoD Options .228
7.3.16.14 Platform Error Classification .228

 Table of Contents 7

LoPAPR, Version 1.1 (March 24, 2016)

7.3.16.15 Firmware Boot Options . 228
7.3.16.16 Platform Processor Diagnostics Options . 229
7.3.16.17 Processor Module Information . 230
7.3.16.18 Cede Latency Settings Information . 230
7.3.16.19 Target Active Memory Compression Factor . 231
7.3.16.20 Performance Boost Modes Vector . 231
7.3.16.21 Universally Unique IDentifier. 233

7.4 ibm,get-indices RTAS Call . 234
7.4.1 ibm,set-dynamic-indicator RTAS Call . 236
7.4.2 ibm,get-dynamic-sensor-state RTAS Call. 237
7.4.3 ibm,get-vpd RTAS Call . 238
7.4.4 Managing Storage Preservation . 240
7.4.5 ibm,lpar-perftools RTAS Call . 242
7.4.6 ibm,suspend-me RTAS Call . 243
7.4.7 ibm,update-nodes RTAS Call . 246
7.4.8 ibm,update-properties RTAS Call . 249
7.4.9 ibm,configure-kernel-dump RTAS call . 255
7.4.10 DMA Window Manipulation Calls . 259

7.4.10.1 ibm,query-pe-dma-window. 260
7.4.10.2 ibm,create-pe-dma-window . 261
7.4.10.3 ibm,remove-pe-dma-window . 262
7.4.10.4 Extensions to Dynamic DMA Windows . 263

7.4.10.4.1 ibm,reset-pe-dma-windows. 264

Chapter 8 - Non-Volatile Memory . 265

8.1 System Requirements . 265
8.2 Structure . 265
8.3 Signatures . 266
8.4 Architected NVRAM Partitions . 267

8.4.1 System (0x70). 267
8.4.1.1 System NVRAM Partition . 268

8.4.1.1.1 Name . 268
8.4.1.1.2 Value. 268
8.4.1.1.3 OF Configuration Variables. 268

8.4.1.1.3.1 Boolean Configuration Variables. 269
8.4.1.1.3.2 Integer Configuration Variables. 269
8.4.1.1.3.3 String Configuration Variables. 269
8.4.1.1.3.4 Byte Configuration Variables. 270

8.4.1.2 DASD Spin-up Control . 270
8.4.2 Free Space (0x7F) . 270

8.5 NVRAM Space Management . 271

Chapter 9 - I/O Devices . 273

9.1 PCI IOAs . 273
9.1.1 Resource Locking . 273
9.1.2 PCI Expansion ROMs. 274
9.1.3 Assignment of Interrupts to PCI IOAs. 274
9.1.4 PCI-PCI Bridge Devices . 274
9.1.5 Graphics Controller and Monitor Requirements for Clients . 274
9.1.6 PCI Plug-in Graphic Cards . 275
9.1.7 PCI Cache Support Protocol. 275
9.1.8 PCI Configuration Space for IOAs . 275
9.1.9 PCI IOA Use of PCI Bus Memory Space Address 0. 276
9.1.10 PCI Express Completion Timeout. 276
9.1.11 PCI Express I/O Virtualized (IOV) Adapters . 276

9.2 Multi-Initiator SCSI Support. 278
9.3 Contiguous Memory . 278
9.4 Re-directed Serial Ports . 278
9.5 System Bus IOAs . 279

Chapter 10 - Error and Event Notification . 281

10.1 Introduction . 281

8

 LoPAPR, Version 1.1 (March 24, 2016)

10.2 RTAS Error and Event Classes .281
10.2.1 Internal Error Indications .283

10.2.1.1 Error Indication Mechanisms. .284
10.2.2 Environmental and Power Warnings .287
10.2.3 Hot Plug Events .289

10.3 RTAS Error and Event Information Reporting .289
10.3.1 Introduction .289
10.3.2 RTAS Error/Event Return Format .289

10.3.2.1 Reporting and Recovery Philosophy, and Description of Fields .289
10.3.2.1.1 Version .290
10.3.2.1.2 Severity .290
10.3.2.1.3 RTAS Disposition .290
10.3.2.1.4 Optional Part Presence .291
10.3.2.1.5 Initiator .291
10.3.2.1.6 Target. .291
10.3.2.1.7 Type .291
10.3.2.1.8 Extended Event Log Length / Change Scope .292
10.3.2.1.9 RTAS Event Return Format Fixed Part .292

10.3.2.2 Version 6 Extensions of Event Log Format .294
10.3.2.2.1 RTAS General Extended Event Log Format, Version 6. .294
10.3.2.2.2 Platform Event Log Format, Version 6 .296
10.3.2.2.3 Platform Event Log Format, Main-A Section .297
10.3.2.2.4 Platform Event Log Format, Main-B Section .298

10.3.2.2.4.1 Error/Event Severity .300
10.3.2.2.4.2 Event Sub-Type .301
10.3.2.2.4.3 Error Action Flags. .302

10.3.2.2.5 Platform Event Log Format, Logical Resource Identification section.303
10.3.2.2.6 Platform Event Log Format, Primary SRC Section .304

10.3.2.2.6.1 FRU Replacement or Maintenance Procedure Priority 306
10.3.2.2.6.2 Failing Component Type Description .306

10.3.2.2.7 Platform Event Log Format, Dump Locator Section. .307
10.3.2.2.8 Platform Event Log Format, EPOW Section .308
10.3.2.2.9 Platform Event Log Format, IO Events Section .309
10.3.2.2.10 Platform Event Log Format, Failing Enclosure MTMS .310
10.3.2.2.11 Platform Event Log Format, Impacted Partitions .310
10.3.2.2.12 Platform Event Log Format, Failing Memory Address .311

10.3.3 Location Codes .313
10.4 Error Codes .314

10.4.1 Displaying Codes on the Standard Operator Panels .314
10.4.2 Firmware Error Codes .314

Chapter 11 - The Symmetric Multiprocessor Option . 321

11.1 SMP System Organization .321
11.2 An SMP Boot Process .323

11.2.1 SMP-Safe Boot .323
11.2.2 Finding the Processor Configuration .324
11.2.3 SMP-Efficient Boot .324
11.2.4 Use of a Service Processor .324

Chapter 12 - Product Topology . 325

12.1 VPD and Location Code OF Properties .325
12.2 System Identification .326
12.3 Hardware Location Codes .327

12.3.1 Converged Location Code Labels .328
12.3.1.1 Prefix Summary Table. .328
12.3.1.2 Unit Location Label .329
12.3.1.3 Planar Location Label .329
12.3.1.4 Air Handler Location Label .330
12.3.1.5 Card Connector Location Label. .330
12.3.1.6 Device Location Label .330
12.3.1.7 Electrical Location Label .330
12.3.1.8 Port Location Label .330

 Table of Contents 9

LoPAPR, Version 1.1 (March 24, 2016)

12.3.1.9 Worldwide Unique Identifier . 330
12.3.1.10 Logical Path Label . 331
12.3.1.11 Virtual Planar Location Label . 331
12.3.1.12 Firmware Location Label . 331
12.3.1.13 Horizontal Placement Location Label. 331
12.3.1.14 EIA Location Label . 331
12.3.1.15 Frame Location Label . 331
12.3.1.16 Virtual Function Location Label . 331
12.3.1.17 Mechanical Location Label. 332
12.3.1.18 Resource Location Label . 332

12.3.2 Converged Location Code Rules . 332
12.3.2.1 Usage of Location Codes. 332
12.3.2.2 Persistence of Location Codes . 332
12.3.2.3 Forming Location Codes . 332
12.3.2.4 Length Restrictions . 332
12.3.2.5 Location Labels Content . 333
12.3.2.6 Physical Representation . 333
12.3.2.7 Multiple Function FRUs . 333
12.3.2.8 Multiple Connectors for One Port. 333
12.3.2.9 Location Label Numbering Scope . 333
12.3.2.10 FRU Orientation . 333
12.3.2.11 Unit Location Codes. 334
12.3.2.12 Planar Location Codes. 334
12.3.2.13 Card Connector Location Codes . 335
12.3.2.14 Riser Card Connector Location Codes . 335
12.3.2.15 Blade Daughter Card Connector Location Codes . 335
12.3.2.16 Virtual Card Connector Location Codes. 335
12.3.2.17 Port Location Codes. 336

12.3.2.17.1 Resources without Port VPD . 336
12.3.2.17.2 Determining Port Number . 336
12.3.2.17.3 Physical Device Location Codes . 336

12.3.2.18 SCSI Device Logical Path Location Codes -- Real and Virtual . 337
12.3.2.19 SAS Device Logical Path Location Codes . 337
12.3.2.20 IDE/ATAPI Device Logical Path Location Codes . 337
12.3.2.21 Fibre Channel Device Logical Path Location Codes -- Real and Virtual . 338
12.3.2.22 Location Codes for SR-IOV Adapter Virtual Functions . 338
12.3.2.23 Group Labels . 338
12.3.2.24 Sandwich FRU Location Label. 338
12.3.2.25 Sandwich FRU Child Location Labels . 338
12.3.2.26 Location Code Reported by Sensors . 338
12.3.2.27 Sensor Locations . 338
12.3.2.28 Location Code Reported for Indicators . 338
12.3.2.29 Indicator Locations. 339
12.3.2.30 Firmware Location Codes . 339
12.3.2.31 Bulk Power Assembly (BPA) Location Codes . 339
12.3.2.32 Internal Battery Features Location Codes . 339
12.3.2.33 Media Drawer Location Codes. 339
12.3.2.34 Horizontal Placement Location Labels. 339
12.3.2.35 EIA Location Label . 339
12.3.2.36 Blade Chassis Location Codes . 340
12.3.2.37 Location Codes for Hot-pluggable Devices . 340
12.3.2.38 Location Code for USB Attached Devices . 340

12.4 Vital Product Data . 341
12.4.1 Introduction . 341
12.4.2 VPD Data Structure Description . 341
12.4.3 Keyword Format Definition . 342

12.4.3.1 VPD fields . 342
12.4.3.2 Additional Fields for Product Specific use . 352

Chapter 13 - Dynamic Reconfiguration (DR) Architecture . 355

13.1 DR Architecture Structure . 355
13.2 Definitions Used in DR . 356
13.3 Architectural Limitations . 358

10

 LoPAPR, Version 1.1 (March 24, 2016)

13.4 Dynamic Reconfiguration State Transitions .358
13.5 Base DR Option .360

13.5.1 For All DR Options - Platform Requirements .360
13.5.2 For All DR Options - OF Requirements .362

13.5.2.1 General Requirements .362
13.5.2.2 “ibm,drc-indexes” Property .363
13.5.2.3 “ibm,my-drc-index” Property .363
13.5.2.4 “ibm,drc-names” Property .363
13.5.2.5 “ibm,drc-power-domains” Property .364
13.5.2.6 “ibm,drc-types” Property .364
13.5.2.7 “ibm,phandle” Property .364

13.5.3 For All DR Options - RTAS Requirements .364
13.5.3.1 General Requirements .365
13.5.3.2 set-power-level .365
13.5.3.3 get-sensor-state .366
13.5.3.4 set-indicator .367
13.5.3.5 ibm,configure-connector RTAS Call .369

13.5.4 For All DR Options - OS Requirements .371
13.5.4.1 Visual Indicator States. .371
13.5.4.2 Other Requirements .372

13.6 PCI Hot Plug DR Option .372
13.6.1 PCI Hot Plug DR - Platform Requirements .372
13.6.2 PCI Hot Plug DR - Boot Time Firmware Requirements .374
13.6.3 PCI Hot Plug DR - Run Time Firmware Requirements .374
13.6.4 PCI Hot Plug DR - OS Requirements .377

13.7 Logical Resource Dynamic Reconfiguration (LRDR) .377
13.7.1 Platform Requirements for LRDR .378
13.7.2 DR Properties for Logical Resources. .378
13.7.3 Architectural Intent -- Logical DR Sequences: .379

13.7.3.1 Acquire Logical Resource from Resource Pool. .379
13.7.3.2 Release Logical Resource .380

13.7.4 RTAS Call Semantics/Restrictions. .380
13.7.4.1 set-indicator (isolation-state, isolate). .380

13.7.4.1.1 Isolation of CPUs .380
13.7.4.1.2 Isolation of MEM Regions .381
13.7.4.1.3 Isolation of PHBs and Slots .381

13.7.4.2 set-indicator (dr-indicator) .382
13.7.4.3 ibm,configure-connector .382

Chapter 14 - Logical Partitioning Option . 385

14.1 Overview. .385
14.1.1 Real Mode Accesses .386

14.1.1.1 Offset and Limit Registers .386
14.1.1.2 Reserved Virtual Addresses .386

14.1.2 General LPAR Reservations and Conventions .386
14.2 Processor Requirements .387
14.3 I/O Sub-System Requirements. .387
14.4 Interrupt Sub-System Requirements .388
14.5 Hypervisor Requirements .389

14.5.1 System Reset Interrupt .392
14.5.2 Machine Check Interrupt .393
14.5.3 Hypervisor Call Interrupt .393
14.5.4 Hypervisor Call Functions .405

14.5.4.1 Page Frame Table Access .405
14.5.4.1.1 H_REMOVE .408
14.5.4.1.2 H_ENTER .410
14.5.4.1.3 H_READ. .414
14.5.4.1.4 H_CLEAR_MOD .414
14.5.4.1.5 H_CLEAR_REF .415
14.5.4.1.6 H_PROTECT .416
14.5.4.1.7 H_BULK_REMOVE .417

14.5.4.2 Translation Control Entry Access .419
14.5.4.2.1 H_GET_TCE .419

 Table of Contents 11

LoPAPR, Version 1.1 (March 24, 2016)

14.5.4.2.2 H_PUT_TCE. 419
14.5.4.2.3 H_STUFF_TCE. 420
14.5.4.2.4 H_PUT_TCE_INDIRECT . 421

14.5.4.3 Processor Register Hypervisor Resource Access . 423
14.5.4.3.1 H_SET_SPRG0 . 423
14.5.4.3.2 H_SET_DABR . 424
14.5.4.3.3 H_PAGE_INIT. 424
14.5.4.3.4 H_SET_XDABR . 425
14.5.4.3.5 H_SET_MODE . 425

14.5.4.4 Debugger Support hcall()s . 427
14.5.4.4.1 H_LOGICAL_CI_LOAD . 428
14.5.4.4.2 H_LOGICAL_CI_STORE . 428

14.5.4.5 Virtual Terminal Support . 428
14.5.4.6 Dump Support hcall()s . 429

14.5.4.6.1 H_HYPERVISOR_DATA . 429
14.5.4.7 Interrupt Support hcall()s . 429

14.5.4.7.1 H_EOI . 429
14.5.4.7.2 H_CPPR . 430
14.5.4.7.3 H_IPI . 430
14.5.4.7.4 H_IPOLL . 430
14.5.4.7.5 H_XIRR / H_XIRR-X. 431

14.5.4.8 Memory Migration Support hcall()s . 431
14.5.4.8.1 H_MIGRATE_DMA. 433

14.5.4.9 Performance Monitor Support hcall()s . 436
14.5.4.9.1 H_PERFMON . 436

14.5.4.10 H_GET_DMA_XLATES_LIMITED . 436
14.6 RTAS Requirements . 439
14.7 OF Requirements . 440
14.8 NVRAM Requirements . 442
14.9 Administrative Application Communication Requirements . 443
14.10 RTAS Access to Hypervisor Virtualized Resources . 444
14.11 Shared Processor LPAR Option . 446

14.11.1 Virtual Processor Areas . 449
14.11.1.1 Per Virtual Processor Area. 449
14.11.1.2 Dispatch Trace Log Buffer . 452
14.11.1.3 SLB Shadow Buffer . 453

14.11.2 Shared Processor LPAR OF Extensions . 454
14.11.2.1 Shared Processor LPAR Function Sets in “ibm,hypertas-functions” 454
14.11.2.2 Device Tree Variances. 454

14.11.3 Shared Processor LPAR Hypervisor Extensions . 455
14.11.3.1 Virtual Processor Preempt/Dispatch . 455
14.11.3.2 H_REGISTER_VPA. 457
14.11.3.3 H_CEDE. 460
14.11.3.4 H_CONFER . 460
14.11.3.5 H_PROD . 462
14.11.3.6 H_GET_PPP . 462
14.11.3.7 H_SET_PPP . 464
14.11.3.8 H_PURR . 464
14.11.3.9 H_POLL_PENDING. 465

14.11.4 Pool Idle Count Function Set . 465
14.11.4.1 H_PIC. 465

14.11.5 Thread Join Option . 466
14.11.5.1 H_JOIN . 466

14.11.6 Virtual Processor Home Node Option (VPHN) . 467
14.11.6.1 H_HOME_NODE_ASSOCIATIVITY . 468
14.11.6.2 VPA Home Node Associativity Changes Counters . 469

14.12 Virtualizing Partition Memory. 469
14.12.1 Partition Migration/Hibernation . 470
14.12.2 Virtualizing the Real Mode Area . 473

14.12.2.1 H_VRMASD . 473
14.12.3 Cooperative Memory Over-commitment Option (CMO) . 474

14.12.3.1 CMO Background (Informative) . 475
14.12.3.2 CMO Page Usage States. 477

14.12.3.2.1 Setting CMO Page Usage States using HPT hcall() flags Parameter 478

12

 LoPAPR, Version 1.1 (March 24, 2016)

14.12.3.2.2 Setting CMO Page Usage States with H_BULK_REMOVE. .479
14.12.3.3 CMO Extensions for I/O Mapping Hcall()s .480

14.12.3.3.1 CMO I/O Mapping Extended Return Codes. .481
14.12.3.3.2 CMO I/O Mapping Extended Return Parameter .481

14.12.3.4 H_SET_MPP .481
14.12.3.5 H_GET_MPP. .482

14.12.3.5.1 H_GET_MPP_X .483
14.12.3.6 Restoration Failure Interrupt .484
14.12.3.7 H_MO_PERF .484
14.12.3.8 Expropriation/Subvention Notification Option .485

14.12.3.8.1 ESN Augmentation of CMO Page Usage States .485
14.12.3.8.2 Expropriation Notification .486

14.12.3.8.2.1 ESN VPA Fields .486
14.12.3.8.2.2 Expropriation Interrupt .487

14.12.3.8.3 ESN Subvention Event Notification .488
14.12.3.8.3.1 SNS Memory Area .488
14.12.3.8.3.2 SNS Registration (H_REG_SNS). .489
14.12.3.8.3.3 SNS Event Processing .490

14.12.3.8.4 ESN Interrupts .490
14.12.3.8.4.1 Subvention Notification Queue Transition Interrupt490
14.12.3.8.4.2 Restoration Paradox Failure. .490

14.12.4 Virtual Partition Memory Pool Statistics Function Set .490
14.12.4.1 H_VPM_PSTAT .490

14.13 Logical Partition Control Modes .491
14.13.1 Secondary Page Table Entry Group (PTEG) Search. .491

14.14 Partition Energy Management Option (PEM) .492
14.14.1 Long Term Processor Cede .492
14.14.2 H_GET_EM_PARMS .492

14.14.2.1 H_BEST_ENERGY .495
14.15 Platform Facilities .499

14.15.1 H_RANDOM. .499
14.15.2 Co-Processor Facilities .499

14.15.2.1 14.15.2.1 H_COP_OP: .499
14.15.2.2 14.15.2.2 H_STOP_COP_OP .504

Chapter 15 - Non Uniform Memory Access (NUMA) Option . 505

15.1 Summary of Extensions to Support NUMA .505
15.2 NUMA Resource Associativity .505
15.3 Relative Performance Distance .507

15.3.1 Form 0 .507
15.3.2 Form 1 .508

15.4 Dynamic Reconfiguration with Cross CEC I/O Drawers. .508
15.5 Maximum Associativity Domains .508
15.6 Platform Resource Reassignment Notification Option (PRRN) .509

Chapter 16 - Service Indicators . 511

16.1 General. .511
16.1.1 Basic Platform Definitions .511

16.1.1.1 “Enclosure”, Packaging, and Other Terminology .511
16.1.1.2 Service Indicator Visibility and Transparency to the OS .514
16.1.1.3 Service Indicator .514
16.1.1.4 Service Indicator Modes .515

16.1.1.4.1 Lightpath Mode .515
16.1.1.4.2 Guiding Light Mode .516

16.1.1.5 Covert Storage Channels .516
16.1.1.6 Service Focal Point (SFP) and Service Partition. .517
16.1.1.7 Logical Indicators vs. Physical Indicators .517

16.1.2 Machine Classes and Service Strategy .518
16.1.3 General Information about Service Indicators .518
16.1.4 Secondary Light Panels .520
16.1.5 Group Identify Operation .520
16.1.6 System-Level Diagrams .520

 Table of Contents 13

LoPAPR, Version 1.1 (March 24, 2016)

16.2 Service Indicator Requirements . 524
16.2.1 Service Indicator General Requirements . 524

16.2.1.1 Fault Detection and Problem Determination Requirements. 524
16.2.1.2 FRU-Level and Connector Indicator Requirements . 526
16.2.1.3 Enclosure-Level Indicator Requirements . 528
16.2.1.4 Rack-Level Indicator Requirements . 530
16.2.1.5 Row-Level Indicator Requirements . 530
16.2.1.6 Shared Indicator (Multiple Partition System) Requirements . 531
16.2.1.7 Additional Indicator Requirements . 531
16.2.1.8 Blade Systems Chassis-level Indicator Requirements. 533
16.2.1.9 Service Indicator State Diagrams. 533

16.2.2 Requirements for 9002, 9006, and 9007 Indicators . 543
16.2.3 Lightpath User Interface (UI) Requirements . 544

16.2.3.1 Lightpath UI Base Enablement Requirements . 545
16.2.3.2 See/Select/Service (Triple-S) User Interface Requirements . 547

16.3 Green Indicator Requirements . 548
16.3.1 Green Indicator Uses and General Requirements . 548
16.3.2 Green Indicator States . 548

16.3.2.1 Power Supply Green Indicators . 549
16.3.2.2 System Power Green Indicators . 549
16.3.2.3 HDD Green Indicators . 549
16.3.2.4 Other Component/FRU Green Indicators. 550
16.3.2.5 Communication Link Green Indicators . 550

16.4 Interpartition Logical LAN (ILLAN) Option . 551
16.4.1 Logical LAN IOA Data Structures . 552

16.4.1.1 Buffer Descriptor . 553
16.4.1.2 Buffer List . 553
16.4.1.3 Receive Queue . 553
16.4.1.4 MAC Multicast Filter List . 554
16.4.1.5 Receive Buffers . 555

16.4.2 Logical LAN Device Tree Node. 555
16.4.3 Logical LAN hcall()s . 557

16.4.3.1 H_REGISTER_LOGICAL_LAN . 557
16.4.3.2 H_FREE_LOGICAL_LAN . 558
16.4.3.3 H_ADD_LOGICAL_LAN_BUFFER . 559
16.4.3.4 H_FREE_LOGICAL_LAN_BUFFER . 559
16.4.3.5 H_SEND_LOGICAL_LAN . 560
16.4.3.6 H_MULTICAST_CTRL. 562
16.4.3.7 H_CHANGE_LOGICAL_LAN_MAC. 564
16.4.3.8 H_ILLAN_ATTRIBUTES . 564
16.4.3.9 Other hcall()s extended or used by the Logical LAN Option . 568

16.4.3.9.1 H_VIO_SIGNAL . 568
16.4.3.9.2 H_EOI . 568
16.4.3.9.3 H_XIRR. 568
16.4.3.9.4 H_PUT_TCE. 568
16.4.3.9.5 H_GET_TCE. 568
16.4.3.9.6 H_MIGRATE_DMA. 568

16.4.4 RTAS Calls Extended or Used by the Logical LAN Option. 568
16.4.5 Interpartition Logical LAN Requirements . 569
16.4.6 Logical LAN Options . 571

16.4.6.1 ILLAN Backup Trunk Adapter Option. 571
16.4.6.2 ILLAN Checksum Offload Support Option . 572

16.4.6.2.1 General . 572
16.4.6.2.2 H_SEND_LOGICAL_LAN Semantic Changes . 572
16.4.6.2.3 Checksum Offload Padded Packet Support Option . 574

16.4.6.3 ILLAN Buffer Size Control Option . 574
16.4.6.3.1 General . 574
16.4.6.3.2 H_SEND_LOGICAL_LAN Semantic Changes . 574

16.5 Virtual SCSI (VSCSI). 575
16.5.1 VSCSI General . 575
16.5.2 Virtual SCSI Requirements . 578

16.5.2.1 Client Partition Virtual SCSI Device Tree Node . 578
16.5.2.2 Server Partition Virtual SCSI Device Tree Node . 580

16.6 Virtual Terminal (Vterm) . 582

14

 LoPAPR, Version 1.1 (March 24, 2016)

16.6.1 Vterm General .582
16.6.2 Vterm Requirements .583

16.6.2.1 Character Put and Get hcall()s .583
16.6.2.1.1 H_GET_TERM_CHAR. .583
16.6.2.1.2 H_PUT_TERM_CHAR .584

16.6.2.2 Interrupts .584
16.6.2.3 Client Vterm Device Tree Node (vty). .585
16.6.2.4 Server Vterm .586

16.6.2.4.1 Server Vterm Device Tree Node (vty-server) and Other Requirements 586
16.6.2.4.2 Server Vterm hcall()s .587

16.6.2.4.2.1 H_VTERM_PARTNER_INFO. .587
16.6.2.4.2.2 H_REGISTER_VTERM .588
16.6.2.4.2.3 H_FREE_VTERM. .589

16.7 Virtual Fibre Channel (VFC) using NPIV .590
16.7.1 VFC and NPIV General .590
16.7.2 VFC and NPIV Requirements .593

16.7.2.1 Client Partition VFC Device Tree Node. .594
16.7.2.2 Server Partition VFC Device Tree Node .595

Chapter 17 - Virtualized Input/Output . 597

17.1 Terminology used with VIO .597
17.2 VIO Architectural Infrastructure .599

17.2.1 VIO Infrastructure - General. .600
17.2.1.1 Properties of the /vdevice OF Tree Node .600
17.2.1.2 RTCE Table and Properties of the Children of the /vdevice Node .601
17.2.1.3 VIO Interrupt Control .602

17.2.1.3.1 H_VIO_SIGNAL .603
17.2.1.4 General VIO Requirements .603
17.2.1.5 Shared Logical Resources .605

17.2.1.5.1 H_GRANT_LOGICAL .609
17.2.1.5.2 H_RESCIND_LOGICAL. .611
17.2.1.5.3 H_ACCEPT_LOGICAL .612
17.2.1.5.4 H_RETURN_LOGICAL .612

17.2.1.6 H_VIOCTL. .613
17.2.1.6.1 GET_VIOA_DUMP_SIZE Subfunction Semantics. .615
17.2.1.6.2 GET_VIOA_DUMP Subfunction Semantics. .615
17.2.1.6.3 GET_ILLAN_NUMBER_VLAN_IDS Subfunction Semantics .615
17.2.1.6.4 GET_ILLAN_VLAN_ID_LIST Subfunction Semantics .616
17.2.1.6.5 GET_ILLAN_SWITCH_ID Subfunction Semantics .616
17.2.1.6.6 DISABLE_MIGRATION Subfunction Semantics .616
17.2.1.6.7 ENABLE_MIGRATION Subfunction Semantics. .616
17.2.1.6.8 GET_PARTNER_INFO Subfunction Semantics .617
17.2.1.6.9 GET_PARTNER_WWPN_LIST Subfunction Semantics .617
17.2.1.6.10 DISABLE_ALL_VIO_INTERRUPTS Subfunction Semantics. .618
17.2.1.6.11 DISABLE_VIO_INTERRUPT Subfunction Semantics .618
17.2.1.6.12 ENABLE_VIO_INTERRUPT Subfunction Semantics .618
17.2.1.6.13 GET_ILLAN_MAX_VLAN_PRIORITY Subfunction Semantics .619
17.2.1.6.14 GET_ILLAN_NUMBER_MAC_ACLS Subfunction Semantics .619
17.2.1.6.15 GET_MAC_ACLS Subfunction Semantics. .619
17.2.1.6.16 GET_PARTNER_UUID Subfunction Semantics .619
17.2.1.6.17 FW_Reset Subfunction Semantics .619
17.2.1.6.18 GET_ILLAN_SWITCHING_MODE Subfunction Semantics. .620
17.2.1.6.19 DISABLE_INACTIVE_TRUNK_RECEPTION Subfunction Semantics:620

17.2.2 Partition Managed Class Infrastructure - General .620
17.2.2.1 Command/Response Queue (CRQ) .621

17.2.2.1.1 CRQ Format and Registration .621
17.2.2.1.2 CRQ Entry Format .621
17.2.2.1.3 CRQ Entry Processing .622
17.2.2.1.4 CRQ Facility Interrupt Notification .623
17.2.2.1.5 Extensions to Other hcall()s for CRQ. .623

17.2.2.1.5.1 H_MIGRATE_DMA. .623
17.2.2.1.5.2 H_XIRR, H_EOI .623

17.2.2.1.6 CRQ Facility Requirements .624

 Table of Contents 15

LoPAPR, Version 1.1 (March 24, 2016)

17.2.2.2 Redirected RDMA (Using H_PUT_RTCE, and H_PUT_RTCE_INDIRECT) 625
17.2.2.2.1 H_PUT_RTCE . 627
17.2.2.2.2 H_PUT_RTCE_INDIRECT . 628
17.2.2.2.3 H_REMOVE_RTCE . 630
17.2.2.2.4 Redirected RDMA TCE Recovery and In-Flight DMA. 631
17.2.2.2.5 LIOBN Attributes . 632
17.2.2.2.6 H_LIOBN_ATTRIBUTES . 632
17.2.2.2.7 Extensions to Other hcall()s for Redirected RDMA. 633

17.2.2.2.7.1 H_PUT_TCE, H_PUT_TCE_INDIRECT, and H_STUFF_TCE. 633
17.2.2.2.7.2 H_MIGRATE_DMA . 634

17.2.2.3 Subordinate Command/Response Queue (Sub-CRQ) . 634
17.2.2.3.1 Sub-CRQ Format and Registration. 635
17.2.2.3.2 Sub-CRQ Entry Format. 635
17.2.2.3.3 Sub-CRQ Entry Processing . 636
17.2.2.3.4 Sub-CRQ Facility Interrupt Notification . 636
17.2.2.3.5 Extensions to Other hcall()s for Sub-CRQ . 636

17.2.2.3.5.1 H_MIGRATE_DMA . 636
17.2.2.3.5.2 H_XIRR, H_EOI . 637

17.2.2.3.6 Sub-CRQ Facility Requirements. 637
17.2.3 Partition Managed Class - Synchronous Infrastructure . 637

17.2.3.1 Reliable Command/Response Transport Option . 637
17.2.3.1.1 Reliable CRQ Format and Registration . 637
17.2.3.1.2 Reliable CRQ Entry Format . 638
17.2.3.1.3 Reliable CRQ Entry Processing . 638
17.2.3.1.4 Reliable Command/Response Transport Interrupt Notification. 638
17.2.3.1.5 Reliable Command/Response Transport hcall()s . 638

17.2.3.1.5.1 H_REG_CRQ . 638
17.2.3.1.5.2 H_FREE_CRQ . 639
17.2.3.1.5.3 H_SEND_CRQ . 640
17.2.3.1.5.4 H_ENABLE_CRQ . 641

17.2.3.1.6 Reliable Command/Response Transport Option Requirements. 642
17.2.3.2 Logical Remote DMA (LRDMA) Option . 642

17.2.3.2.1 Copy RDMA . 642
17.2.3.2.1.1 H_COPY_RDMA. 643
17.2.3.2.1.2 H_WRITE_RDMA . 643
17.2.3.2.1.3 H_READ_RDMA . 644

17.2.3.2.2 Logical Remote DMA Option Requirements . 645
17.2.3.3 Subordinate CRQ Transport Option. 645

17.2.3.3.1 Sub-CRQ Format and Registration. 646
17.2.3.3.2 Sub-CRQ Entry Format. 646
17.2.3.3.3 Sub-CRQ Entry Processing . 646
17.2.3.3.4 Sub-CRQ Transport Interrupt Notification. 646
17.2.3.3.5 Sub-CRQ Transport hcall()s . 646

17.2.3.3.5.1 H_REG_SUB_CRQ. 646
17.2.3.3.5.2 H_FREE_SUB_CRQ. 647
17.2.3.3.5.3 H_SEND_SUB_CRQ . 648
17.2.3.3.5.4 H_SEND_SUB_CRQ_INDIRECT . 649

17.2.3.3.6 Subordinate CRQ Transport Option Requirements . 650
17.3 Virtual Network Interface Controller (VNIC) . 652

17.3.1 VNIC General . 652
17.3.2 VNIC Requirements . 653

Appendix A - SPLPAR Characteristics Definitions . 657

A.1 SPLPAR Terms . 657
A.2 Key Words And Values . 658

Appendix B - LoPAPR Binding . 661

B.1 Purpose of this System Binding. 661
B.2 Overview . 661

B.2.1 General Requirements for OF . 661
B.3 Terms. 661
B.4 LoPAPR Boot Flow . 662

16

 LoPAPR, Version 1.1 (March 24, 2016)

B.4.1 Boot Overview. .663
B.4.1.1 Additional Requirements for probe-all Method .663
B.4.1.2 LoPAPR Multiboot .664
B.4.1.3 Bootinfo Configuration Variables .664
B.4.1.4 Bootinfo Properties .664
B.4.1.5 Standard Locations for Bootinfo Objects .665
B.4.1.6 Bootinfo Objects .665

B.4.1.6.1 Bootinfo Entities. .666
B.4.1.6.2 Bootinfo Character Sets. .667
B.4.1.6.3 Element Tag Descriptions .667
B.4.1.6.4 CHRP-BOOT Element .667
B.4.1.6.5 OS-NAME element .667
B.4.1.6.6 BOOT-SCRIPT element .667
B.4.1.6.7 ICON element .667

B.4.1.6.7.1 BITMAP element .667
B.4.1.7 Multiboot Menu .668

B.4.2 Reboot-Command Variable Description .669
B.5 LoPAPR Processor .669

B.5.1 Processor Endian-ness Support .669
B.5.2 Multi-Threading Support .669

B.6 OF Platform Extensions .670
B.6.1 Properties for Dynamic Reconfiguration .670
B.6.2 OF Root Node. .673

B.6.2.1 Root Node Properties .673
B.6.2.2 Properties of the Children of Root .679
B.6.2.3 Root Node Methods .679
B.6.2.4 ROM Node(s) .688

B.6.2.4.1 ROM Node Properties .688
B.6.2.4.2 ROM Node Methods .689

B.6.2.5 ROM Child Node(s) .689
B.6.2.5.1 ROM Child Node Properties .689
B.6.2.5.2 ROM Child Node Methods. .690

B.6.3 Run Time Abstraction Services (RTAS) Node .690
B.6.3.1 RTAS Node Properties .690
B.6.3.2 /RTAS node DR Sensors and Indicators .696
B.6.3.3 RTAS Function Property Names .697
B.6.3.4 RTAS Node Methods .697

B.6.4 Properties of the Node of type cpu .698
B.6.5 Extensions for LoPAPR I/O Sub-Systems .699

B.6.5.1 PCI Host Bridge Nodes .700
B.6.5.1.1 PCI Host Bridge Properties .701

B.6.5.1.1.1 Properties for Children of PCI Host Bridges .703
B.6.5.1.1.2 LPAR Option Properties .706

B.6.6 Memory Node .707
B.6.6.1 Properties of the memory Node. .707
B.6.6.2 ibm,dynamic-reconfiguration-memory .708

B.6.7 Memory Controller Nodes .710
B.6.7.1 Memory Controller Node Properties .710

B.6.8 IBM,memory-module Nodes .711
B.6.8.1 Properties for Memory Modules .711
B.6.8.2 IBM,memory-module Node Properties .712

B.6.9 Interrupt Controller Nodes. .713
B.6.9.1 PowerPC External Interrupt Controller Nodes .713

B.6.9.1.1 PowerPC External Interrupt Presentation Controller Node Properties 713
B.6.9.1.2 PowerPC External Interrupt Source Controller Node Properties .715

B.6.10 Additional Node Properties .716
B.6.10.1 Interrupt Properties. .716
B.6.10.2 Miscellaneous Node Properties .717

B.6.11 /aliases Node .718
B.6.12 /event-sources Node .719

B.6.12.1 Child nodes of the Event Sources Node. .720
B.6.12.1.1 internal-errors .720
B.6.12.1.2epow-events .720
B.6.12.1.3 ibm,io-events .720

 Table of Contents 17

LoPAPR, Version 1.1 (March 24, 2016)

B.6.13 /reserved Node . 721
B.6.14 /chosen Node . 721
B.6.15 /vdevice Node . 722

B.6.15.1 Children of the /vdevice Node . 723
B.6.15.1.1Virtual Teletype Device. 724
B.6.15.1.2Children of /vdevice node defined in other documents . 725

B.6.16 Barrier Synchronization Facility . 725
B.6.17 Nodes of device_type “block” and “byte” . 726
B.6.18 /ibm,platform-facilities . 726

B.6.18.1 Children of the /ibm,platform-facilities Node. 727
B.7 Symmetric Multi-Processors (SMP). 729

B.7.1 SMP Platform Device Tree Structure. 729
B.7.2 SMP Properties . 729

B.7.2.1 Processor Node. 729
B.8 Device Power Management Properties/Methods . 730

B.8.1 System Node Properties . 730
B.8.1.1 Properties assigned to the RTAS node. 730
B.8.1.2 Properties of the power-management-events node . 731

B.8.2 Device Properties . 731
B.8.2.1 Properties for Power Domain Control Points. 733

B.8.3 Power Management Related Methods . 734
B.9 Configuration of Platform Resources. 734

B.9.1 Power Management Resource Configuration . 734
B.9.1.1 Power Management Information Utility . 734
B.9.1.2 PM Configuration Process. 735
B.9.1.3 PM Configuration Format . 735

B.10 Client Program Requirements . 737
B.10.1 Load Address. 737
B.10.2 Initial Register Values . 737
B.10.3 I/O Devices State. 737
B.10.4 Client Program Format . 738

B.10.4.1 ELF-Format . 738
B.10.4.1.1ELF Note Section . 738

B.10.4.1.1.11275 PowerPC Note Definition . 739
B.10.4.1.1.21275 IBM,RPA-Client-Config Note Definition . 739

B.10.4.1.2Recognizing ELF-Format Programs. 741
B.10.4.1.3Preparing ELF-Format Programs for Execution . 742

B.10.5 Additional Client Interface Requirements . 743
B.10.5.1 Client Interface Callbacks . 743

B.10.5.1.1Real-Mode Memory Management Assist Callbacks. 743
B.10.5.1.2Virtual Address Translation Assist Callbacks . 743

B.10.5.2 Client Interface Services . 744
B.11 Support Packages . 744

B.11.1 “disk-label” Support Package. 745
B.11.1.1 Media Layout Format . 745

B.11.1.1.1FDISK Partition Types . 745
B.11.1.2 Open Method Algorithm . 746

B.11.2 tape-label Support Package . 750
B.11.2.1 Tape Format . 750
B.11.2.2 Tape bootinfo.txt File. 751

B.11.3 network Support Package . 751
B.11.4 Program-image formats. . 751

Appendix C - PA Processor Binding. 753

C.1 Purpose of this Binding . 753
C.2 Overview . 753
C.3 Terms. 753
C.4 Data Formats and Representations. 754
C.5 Memory Management . 754

C.5.1 PA Address Translation Model . 754
C.5.1.1 Translation requirements. 755
C.5.1.2 Segmented Address Translation . 755
C.5.1.3 Block Address Translation. 755

18

 LoPAPR, Version 1.1 (March 24, 2016)

C.5.2 OF’s use of memory .756
C.5.2.1 Real-Mode .756
C.5.2.2 Virtual-Mode .757
C.5.2.3 Device Interface (Real-Mode) .757
C.5.2.4 Device Interface (Virtual-Mode) .757
C.5.2.5 Client Interface (Real-Mode) .757
C.5.2.6 Client Interface (Virtual-Mode) .758
C.5.2.7 User Interface (Real-Mode) .759
C.5.2.8 User Interface (Virtual-Mode) .759

C.6 Properties .759
C.6.1 CPU properties .759

C.6.1.1 The Device Tree .759
C.6.1.2 Physical Address Formats and Representations for CPU Nodes .759

C.6.1.2.1 Numerical Representation .759
C.6.1.2.2 Text Representation .760
C.6.1.2.3 Unit Address Representation. .760

C.6.1.3 CPUS Node Properties. .760
C.6.1.4 CPU Node Properties .760
C.6.1.5 TLB properties .772
C.6.1.6 Internal (L1) cache properties. .773
C.6.1.7 Memory Management Unit properties .774
C.6.1.8 SLB properties .774

C.6.2 Ancillary (L2,L3...) cache node properties .774
C.7 Methods .775

C.7.1 MMU related methods. .775
C.8 Client Interface Requirements .776

C.8.1 Calling Conventions .776
C.9 Client Program Requirements. .777

C.9.1 Load Address .777
C.9.2 Initial Program State .778

C.9.2.1 Initial Register Values. .778
C.9.2.2 Initial Stack .779
C.9.2.3 Client Interface Handler Address .779
C.9.2.4 Client Program Arguments .779

C.9.3 Caching. .779
C.9.4 Interrupts. .779
C.9.5 Client callbacks .780

C.9.5.1 Real-Mode physical memory management assist callback .780
C.9.5.2 Virtual address translation assist callbacks .780

C.10 User Interface Requirements .781
C.10.1 Machine Register Access .781

C.10.1.1 Branch Unit Registers. .781
C.10.1.2 Fixed-Point Registers .782
C.10.1.3 Floating-Point Registers .782

C.11 Configuration Variables. .782
C.12 MP Extensions .783

C.12.1 The Device Tree .783
C.12.1.1 Additional Properties .783

C.12.2 Initialization .783
C.12.3 Client Interface Services .784
C.12.4 Breakpoints .786
C.12.5 Serialization .786

Appendix D - A Protocol for a Virtual TTY Interface . 787

D.1 Overview .787
D.2 Protocol Definition. .787

D.2.1 Packet Formation .787
D.2.1.1 Data Packet .787
D.2.1.2 Control Packet .788

D.2.1.2.1 VSV_SET_MODEM_CTL Verb (0x01) .788
D.2.1.2.2 VSV_MODEM_CTL_UPDATE Verb (0x02). .789
D.2.1.2.3 VSV_RENEGOTIATE_CONNECTION Verb (0x03) .789

D.2.1.3 Query Packet .790

 Table of Contents 19

LoPAPR, Version 1.1 (March 24, 2016)

D.2.1.3.1 VSV_SEND_VERSION_NUMBER Verb (0x01). 790
D.2.1.3.2 VSV_SEND_MODEM_CTL_STATUS Verb (0x02) . 790

D.2.1.4 Query Response Packet . 790
D.2.2 Verb Formation . 791
D.2.3 Sequence Numbers . 791
D.2.4 Flow Control. 791
D.2.5 Packet Type and Verb Summary. 792

D.3 Connection Negotiation . 792

Appendix E - A Protocol for VSCSI Communications. 795

E.1 Introduction . 795
E.2 SCSI Remote DMA Protocol (SRP). 796
E.3 Connection Establishment . 796
E.4 Connection Termination. 798
E.5 Client Migration . 798
E.6 VSCSI Message Formats . 799
E.7 CRQ Message formats . 799
E.8 CRQ VSCSI Client Message Format. 800
E.9 CRQ VSCSI VIOS Message Format . 800
E.10 Transport Events . 801
E.11 Messages in CRQs . 801
E.12 VSCSI Management Datagrams (MADs) . 802

E.12.1 #define MAD_EMPTY_IU 0x01 . 803
E.12.2 #define MAD_ERROR_LOGGING_REQUEST 0x02 . 803
E.12.3 #define MAD_ADAPTER_INFO_REQUEST 0x03 . 804
E.12.4 #define MAD_CAPABILITIES_EXCHANGE 0x05. 806
E.12.5 #define MAD_PHYS_ADAP_INFO_REQUEST 0x06 . 808
E.12.6 #define MAD_TAPE_PASSTHROUGH_REQUEST 0x07. 809
E.12.7 #define MAD_ENABLE_FAST_FAIL 0x08 . 809

Appendix F - A Protocol for VMC Communications .811

F.1 Overview . 811
F.1.1 Logical Partition Manager . 811
F.1.2 Virtual Management Channel (VMC). 811

F.2 VMC CRQ Message Definition . 812
F.2.1 Administrative Messages. 812

F.2.1.1 VMC Capabilities. 812
F.2.1.2 VMC Capabilities Response . 813

F.2.2 HMC Interface Buffers . 813
F.2.3 HMC Interface Messages . 814

F.2.3.1 Interface Open. 814
F.2.3.2 Interface Open Response . 814
F.2.3.3 Interface Close . 814
F.2.3.4 Interface Close Response . 815
F.2.3.5 Add Buffer . 815
F.2.3.6 Add Buffer Response . 815
F.2.3.7 Remove Buffer . 816
F.2.3.8 Remove Buffer Response . 816
F.2.3.9 Signal Message. 817

F.3 Example Management Partition VMC Driver Interface . 817
F.3.1 VMC Interface Initialization . 817
F.3.2 VMC Interface Open . 818
F.3.3 VMC Interface Runtime . 818
F.3.4 VMC Interface Close . 819

Appendix G - Firmware Assisted Dump Data Format . 821

G.1 Register Save Area . 821
G.2 Hardware Page Table Entry Save Area. 832

Appendix H - EEH Error Processing. 835

H.1 General Scenarios . 835

20

 LoPAPR, Version 1.1 (March 24, 2016)

H.2 More Detail on the Most General Approach .836
H.2.1 Error Logging .836
H.2.2 PE Recovery .837

Appendix I - CMO Characteristics Definitions . 839

I.1 CMO Terms .839
I.2 Key Words And Values .839

Appendix J - Platform Dependent hcall()s . 841

J.1 hcall()s Supported by Firmware Release & Hardware Platform .841
J.2 Supported hcall()s. .841

J.2.1 H_GetPerformanceCounterInfo (0xF080). .841

Appendix K - A Protocol for VNIC Communications . 845

K.1 Introduction .845
K.2 VNIC Adapter .845
K.3 Zero Copy DMA Models .846
K.4 Protocol Overview. .846
K.5 Typical VNIC Protocol Flows .850

K.5.1 Boot Flow .850
K.5.2 Adapter reboot .851
K.5.3 Partition Mobility .852
K.5.4 Dump .852
K.5.5 Frame Transmission .852
K.5.6 Frame Reception .853

K.6 VNIC Commands .854
K.6.1 Version Exchange. .854
K.6.2 VNIC Capabilities .854
K.6.3 Login Support .857
K.6.4 Physical Port Parameters .859
K.6.5 Logical Link State .860
K.6.6 TCP, UDP, and IP Offload Support. .861
K.6.7 Dump Support. .864
K.6.8 Reliability, Availability, and Service (RAS) Support .865
K.6.9 Statistics Support .869
K.6.10 Error Reporting Support .871
K.6.11 Link State Change .873
K.6.12 Change MAC Address .874
K.6.13 Multicast Support .874
K.6.14 VPD Support .875
K.6.15 Access Control Support .876
K.6.16 Debugging Support .878

K.7 Subordinate CRQ Definitions .879
K.7.1 Frame Transmission .879
K.7.2 Frame Reception .883

Appendix L - When to use: Fault vs. Error Log Indicators (Lightpath Mode) 885

Bibliography . 889

Glossary. 891

End of LoPAPR Document . 900

LoPAPR, Version 1.1 (March 24, 2016)

List of Tables

1. Typographical Conventions .34

2. IOA Reset States .43

3. LoPAPR Optional Features. .55

4. IBM Server Required Functions and Features .58

5. Map Legend. .60

6. Processor Bus Address Space Decoding and Translation .62

7. DMA Address Decoding and Translation (I/O Bus Memory Space) .65

8. TCE Definition. .66

9. Conventional PCI Express PE Support Summary .72

10. Big-Endian Mode Load and Store Programming Considerations .79

11. PCI Express Optional Feature Usage in LoPAPR Platforms .80

12. Supported Errors for Conventional PCI, PCI-X Mode 1 or PCI-X Mode 2 Error Injectors90

13. Supported Errors for PCI Express Error Injectors .91

14. LSI and MSI Support Requirements and Initial Assignment .103

15. Use of “used-by-rtas” .109

16. instantiate-rtas or instantiate-rtas-64 Argument Call Buffer .112

17. RTAS Tokens for Functions .112

18. OF Device Tree Properties .115

19. RTAS Argument Call Buffer .118

20. RTAS Status Word Values .119

21. nvram-fetch Argument Call Buffer. .121

22. nvram-store Argument Call Buffer .121

23. get-time-of-day Argument Call Buffer .122

24. set-time-of-day Argument Call Buffer. .123

25. set-time-for-power-on Argument Call Buffer .124

26. event-scan Argument Call Buffer .126

27. check-exception Argument Call Buffer .127

28. Additional Information Provided to check-exception call .127

29. rtas-last-error Argument Call Buffer .128

30. ibm,platform-dump Argument Call Buffer .129

31. Platform Dump File Directory Entry Format .131

32. Dump Section Directory Entry Format .132

33. Dump File Format Directory Options .133

34. Config_addr Definition .134

35. ibm,read-pci-config Argument Call Buffer. .135

36. ibm,write-pci-config Argument Call Buffer .136

37. display-character Argument Call Buffer. .141

38. Display ASCII Characters .141

39. set-indicator Argument Call Buffer .142

40. Defined Indicators .143

41. get-sensor-state Argument Call Buffer .146

42. Defined Sensors. .147

43. Example - Contents of “rtas-sensors” property .149

44. Example - Sensor Definitions .149

45. Power Supply Sensor Values. .150

46. set-power-level Argument Call Buffer .151

47. get-power-level Argument Call Buffer .153

48. power-off Argument Call Buffer .153

49. Defined Power On Triggers .154

22 List of Tables

 LoPAPR, Version 1.1 (March 24, 2016)

50. ibm,power-off-ups Argument Call Buffer . 154

51. system-reboot Argument Call Buffer . 155

52. ibm,update-flash-64-and-reboot Argument Call Buffer . 156

53. Format of Block List . 156

54. Format of Discontiguous Block_list . 157

55. ibm,manage-flash-image Argument Call Buffer . 159

56. ibm,validate-flash-image Argument Call Buffer . 160

57. Update Results Token Values. 161

58. ibm,activate-firmware Argument Call Buffer . 161

59. stop-self Argument Call Buffer . 162

60. start-cpu Argument Call Buffer . 163

61. Machine State Register (MSR) State in Started Processor . 163

62. query-cpu-stopped-state Argument Call Buffer . 164

63. ibm,os-term Argument Call Buffer . 166

64. ibm,exti2c Argument Call Buffer . 167

65. EXTI2C Buffer Write Operation Format . 167

66. EXTI2C Buffer Read Operation Format (Optional) . 168

67. ibm,get-xive Argument Call Buffer . 169

68. ibm,set-xive Argument Call Buffer . 170

69. ibm,int-off Argument Call Buffer . 171

70. ibm,int-on Argument Call Buffer . 172

71. ibm,change-msi Argument Call Buffer . 173

72. ibm,query-interrupt-source-number Argument Call Buffer . 176

73. PE State Transition Table. 178

74. PE State Control . 179

75. ibm,set-eeh-option Argument Call Buffer . 181

76. ibm,set-slot-reset Argument Call Buffer . 183

77. ibm,read-slot-reset-state2 Argument Call Buffer . 185

78. ibm,get-config-addr-info2 Argument Call Buffer. 188

79. ibm,get-config-addr-info2 Function Input and Info Output. 188

80. ibm,slot-error-detail Argument Call Buffer . 189

81. Suggested Minimum PCI Configuration Registers to Capture for ibm,slot-error-detail 191

82. ibm,configure-bridge Argument Call Buffer . 194

83. ibm,configure-pe Argument Call Buffer. 195

84. ibm,open-errinjct Argument Call Buffer. 197

85. ibm,close-errinjct Argument Call Buffer . 198

86. ibm,errinjct Argument Call Buffer . 199

87. Errinjct-token-names . 199

88. Errinjct Work Buffer Formats . 200

89. ioa-bus-error Semantics for ioa-bus-error Sixth Word and ioa-bus-error-64 Eighth Word Values 0-19 202

90. ibm,nmi-register or ibm,nmi-register-2 Argument Call Buffer. 205

91. Unsafe Processor Recovery Options . 206

92. ibm,nmi-interlock Argument Call Buffer . 207

93. Defined Parameters . 207

94. ibm,get-system-parameter Argument Call Buffer . 211

95. ibm,set-system-parameter Argument Call Buffer. 212

96. CoD Capacity Card Info String Packed Fields . 214

97. Enhanced CoD Processor Capacity Info, Version 1 . 215

98. Enhanced CoD Memory Capacity Info, Version 1 . 218

99. sp-call-home Strings. 223

100. CoD Options System Parameter Keyword and Values . 228

101. Firmware Boot Options System Parameter Keywords and Values . 229

102. Byte definitions within a cede latency setting record . 231

103. Performance Boost Modes Vector Bits Definitions . 232

104. UUID Format. 233

105. ibm,get-indices Argument Call Buffer . 234

106. ibm,set-dynamic-indicator Argument Call Buffer . 236

107. ibm,get-dynamic-sensor-state Argument Call Buffer . 237

  23

LoPAPR, Version 1.1 (March 24, 2016)

108. ibm,get-vpd Argument Call Buffer .239

109. ibm,manage-storage-preservation Argument Call Buffer. .241

110. ibm,lpar-perftools Argument Call Buffer .242

111. ibm,suspend-me Argument Call Buffer .243

112. System Parameters that May Change During Partition Migration and Hibernation .245

113. ibm,update-nodes Argument Call Buffer .247

114. Initial Format of Work Area for ibm,update-nodes .247

115. Format of Work Area for ibm,update-nodes. .247

116. Format of Work Area for Subsequent Calls to ibm,update-nodes .248

117. Nodes That May be Reported by ibm,update-nodes for a Given Value of the “Scope” Argument248

118. ibm,update-properties Argument Call Buffer .250

119. Initial Format of Work Area for ibm,update-properties .250

120. Return Format of Work Area for ibm,update-properties .251

121. Format of Work Area for Subsequent Calls to ibm,update-properties .251

122. Properties of the Nodes That May Be Reported by ibm,update-properties for a “Scope”252

123. ibm,configure-kernel-dump Argument Call Buffer .255

124. Kernel Assisted Dump Memory Structure. .256

125. ibm,query-pe-dma-window Argument Call Buffer. .260

126. ibm,create-pe-dma-window Argument Call Buffer .262

127. ibm,remove-pe-dma-window Argument Call Buffer .263

128. DDW Option Extensions .263

129. ibm,reset-pe-dma-windows Argument Call Buffer .264

130. NVRAM Structure .266

131. NVRAM Signatures .267

132. Software Programming of PCI Configuration Header Registers .275

133. IOV Environment Characteristics .277

134. Error and Event Classes with RTAS Function Call Mask .282

135. Error Indications for System Operations .285

136. EPOW Action Codes. .288

137. RTAS Event Return Format (Fixed Part) .292

138. RTAS General Extended Event Log Format, Version 6 .296

139. Overview of Platform Event Log Format, Version 6. .297

140. Platform Event Log Format, Version 6, Main-A Section. .297

141. Platform Event Log Format, Version 6, Main-B Section. .298

142. Platform Event Log Format, Version 6, Logical Resource Identification Section .303

143. Platform Event Log Format, Version 6, Primary SRC Section .304

144. Platform Event Log Format, Version 6, FRU Call-out Structure. .305

145. Platform Event Log Format, Version 6, Dump Locator Section .307

146. Platform Event Log Format, Version 6, EPOW Section .308

147. Platform Event Log Format, Version 6, IO Events Section .309

148. Platform Event Log Format, Version 6, Failing Enclosure MTMS .310

149. Platform Event Log Format, Version 6, Impacted Partitions .310

150. Platform Error Event Log Format, Version 6, Failing Memory Address. .311

151. UE Error Information .312

152. SLB Error Information. .312

153. ERAT Error Information .313

154. TLB Error Information .313

155. Service Reference Code (SRC) Field Layout .315

156. Service Reference Code (SRC) Field Descriptions .315

157. Current PCI Class Code Definition .316

158. S2-S3-S4 Definition for Devices/FRUs not Defined in the PCI Specification. .318

159. Converged Location Code Prefix Values .328

160. LoPAPR VPD Fields .343

161. LoPAPR Usage of Product Specific VPD Fields. .353

162. DR Definitions .356

163. RTAS Call Operation During DR Operations. .360

164. “ibm,drc-names” Property Format .363

165. set-power-level Error Status for specific DR options .365

24 List of Tables

 LoPAPR, Version 1.1 (March 24, 2016)

166. get-sensor-state Defined Sensors for All DR Options. 366

167. get-sensor-state Error Status for All DR Options . 367

168. set-indicator Defined Indicators for all DR Options . 368

169. ibm,configure-connector Argument Call Buffer . 369

170. Initial Work Area Initialization. 370

171. Visual Indicator Usage. 371

172. PCI Property Names which will be Generated by ibm,configure-connector . 375

173. Non-exhaustive list of PCI properties that may not be generated by ibm,configure connector 376

174. DR Property Values for Logical Resources. 378

175. Architected hcall()s . 389

176. Hypervisor Call Function Table . 394

177. MSR State on Entrance to Hypervisor . 400

178. Page Frame Table Access flags field definition . 401

179. Hypervisor Call Return Code Table . 402

180. H_SET_MODE Parameters per ISA Level . 427

181. OF Client Interface Functions Supported under the LPAR Option . 442

182. LPAR NVRAM Map . 443

183. NVRAM partitions on LPAR platforms . 443

184. Per Virtual Processor Area. 449

185. Dispatch Trace Log Buffer Entry. 452

186. OF Variances due to SPLPAR . 455

187. Properties Related to the Partition Suspension Option . 470

188. HPT hcall()s extended with CMO flags. 478

189. CMO Page Usage State flags Definition . 479

190. H_BULK_REMOVE Translation Specifier control/status Byte Extended Definition for CMO Option. 480

191. I/O Mapping hcall()s Modified by the CMO Option.. 481

192. ESN Augmentation of CMO Page Usage State flags Definition . 486

193. VPA Byte Offset 0xB9 . 486

194. Firmware Written VPA Starting at Byte Offset 0x178. 487

195. Expropriation Flags at VPA Byte Offset 0x17D . 487

196. Subvention Notification Structure . 488

197. RTAS Event Return Format (Fixed Part) for PRRN events . 510

198. Machine Classifications and Service Characteristics . 518

199. Power Supply Green Indicator States and Usage. 549

200. System Power Green Indicator States and Usage . 549

201. HDD Green Indicator States and Usage . 550

202. Sub-Unit (Component) Green Indicator States and Usage . 550

203. Communication Link Green Indicator States and Usage . 550

204. Receive Queue Entry . 554

205. Receive Buffer Format. 555

206. Properties of the Logical LAN OF Device Tree Node. 556

207. ILLAN Attributes. 564

208. Summary of H_SEND_LOGICAL_LAN Semantics with Checksum Offload . 573

209. General Form of Reliable CRQ Element . 577

210. Example Reliable CRQ Entry Format Byte Definitions for VSCSI . 577

211. Example VSCSI Command Queue Element. 578

212. Example VSCSI Response Queue Element . 578

213. Properties of the VSCSI Node in the Client Partition . 579

214. Properties of the VSCSI Node in the Server Partition . 580

215. Client Vterm versus Server Vterm Comparison . 582

216. Properties of the vty Node (Client Vterm IOA) . 585

217. Properties of the vty-server Node (Server Vterm IOA) . 586

218. General Form of Reliable CRQ Element . 592

219. Example Reliable CRQ Entry Format Byte Definitions for VFC . 592

220. Example VFC Command Queue Element . 593

221. Example VFC Response Queue Element . 593

222. Properties of the VFC Node in the Client Partition . 594

223. Properties of the VFC Node in the Server Partition . 595

  25

LoPAPR, Version 1.1 (March 24, 2016)

224. Terminology used with VIO. .597

225. Properties of the /vdevice Node .600

226. VIO Window Pane Usage and Applicable Hcall()s .602

227. VIO Interrupt Control hcall() Usage .602

228. Format of H_GRANT_LOGICAL parameters .610

229. Semantics for H_VIOCTL subfunction parameter values .614

230. CRQ Entry Header Byte Values .621

231. Initialization Command/Response Entry Format Byte Definitions .622

232. Transport Event Codes .622

233. LIOBN Attributes .632

234. CRQ and Sub-CRQ Comparison .634

235. Sub-CRQ Entry Header Byte Values .635

236. Properties of the vnic Node in the OF Device Tree .654

237. SPLPAR Terms .657

238. SPLPAR Characteristics .658

239. Standard Pathnames for bootinfo.txt File .665

240. Currently Defined DR Connector Types .671

241. Example Encoding Strings .675

242. Level of Partition Performance Parameter Reporting Supported .677

243. Address types supported in “ibm,managed-address-types” property .678

244. ibm,architecture.vec option vectors .681

245. “ibm,rks-hcalls” bit vector to hcall map. .695

246. “ibm,reserved-explanation” Values .705

247. “ibm,is-vf” Values .706

248. Flag Word. .709

249. Virtual tty compatibility strings .725

250. Semantics of device state values .732

251. Combinations of Device Power State/Domain Power Level .733

252. Power Management Configuration Data Header .736

253. Data Block Format .736

254. Node Data Block Format .736

255. Property Data Block Format .736

256. Numerical Representation of a Processor’s “address” .760

257. Logical Processor Version Values .761

258. Documentation for Implementation Specific Performance Monitors. .764

259. attribute-specifier definition for attribute-specifier-type value 0 .767

260. ‘definition for pi-attribute-specifier-type value 0 .770

261. negotiated-pa-attribute-specifier definition for negotiated-pa-attribute-specifier-type value 0 770

262. raw-pi-attribute-specifier definition for raw-pi-attribute-specifier-type value 0 .771

263. pa-optimization-attribute-specifier definition for pa-optimization-attribute-specifier-type value 0.771

264. Register usage conventions .776

265. Initial Register Values. .778

266. VTERM Data Packet. .788

267. VTERM Control Packet .788

268. VSV_SET_MODEM_CTL Verb Data Member .788

269. VS_MODEM_CTL Bit Definition .789

270. VSV_MODEM_CTL_UPDATE Verb Data Member .789

271. VS_MODEM_CTL Word Bits .789

272. VTERM Query Packet .790

273. VTERM Query Response Packet .791

274. VTERM Packet Type and Verb Summary .792

275. First Byte of the CRQ Message. .799

276. Second Byte of the CRQ Message. .799

277. CRQ VSCSI Client Message .800

278. CRQ VSCSI VIOS Message. .801

279. CRQ Message Base Format. .812

280. VMC Capabilities Message. .812

281. VMC Capabilities Response Message .813

26 List of Tables

 LoPAPR, Version 1.1 (March 24, 2016)

282. Interface Open Command Message . 814

283. Interface Open Response Message . 814

284. Interface Close Message . 814

285. Interface Close Response Message . 815

286. Add Buffer Message. 815

287. Add Buffer Response Message . 815

288. Remove Buffer Message. 816

289. Remove Buffer Response Message . 816

290. Signal Message . 817

291. Register Save Area Format . 821

292. RegEntry Format . 822

293. CPUSTRT and CPUEND have the following format. 822

294. 8-Byte RegEntries . 822

295. 4-Byte RegEntries . 822

296. Identifiers Supported in Version 0x0 of the Table . 822

297. HPT Entry Save Area Format . 832

298. HPT Entry Format . 833

299. CMO Terms. 839

300. CMO Characteristics . 839

301. Platform Dependent hcall()s Supported by Release and Hardware Platform . 841

302. Performance_Counter_Info_Parms struct . 842

303. Performance Counter Info Requested_Information Values . 842

304. Format of the VNIC command. 846

305. VNIC Return Code . 846

306. VNIC Command Types . 847

307. VNIC Architected Return Values . 849

308. VERSION_EXCHANGE and VERSION_EXCHANGE_RSP Command . 854

309. VNIC Protocol Versions. 854

310. CAPABILITIES Commands . 855

311. VNIC Capabilities . 855

312. LOGIN Request . 857

313. LOGIN Buffer . 857

314. LOGIN Response Buffer . 858

315. LOGIN_RSP Command . 859

316. Physical Port Parameters Commands . 860

317. LOGICAL_LINK_STATE and LOGICAL_LINK_STATE_RSP commands. 861

318. QUERY_IP_OFFLOAD and QUERY_IP_OFFLOAD_RSP Commands. 861

319. CONTROL_IP_OFFLOAD and CONTROL_IP_OFFLOAD_RSP Command . 862

320. QUERY_IP_OFFLOAD Buffer. 862

321. CONTROL_IP_OFFLOAD Buffer . 863

322. REQUEST_DUMP_SIZE and REQUEST_DUMP_SIZE_RSP Commands . 864

323. REQUEST_DUMP Command. 865

324. REQUEST_DUMP_RSP Command . 865

325. REQUEST_RAS_COMP_NUM and REQUEST_RAS_COMP_NUM_RSP Commands 866

326. REQUEST_RAS_COMPS and REQUEST_RAS_COMPS_RSP Commands . 866

327. CONTROL_RAS and CONTROL_RAS_RSP Commands . 866

328. COLLECT_FW_TRACE and COLLECT_FW_TRACE_RSP Commands . 867

329. Firmware Trace Data Entry Format . 868

330. Firmware Component Format . 868

331. REQUEST_STATISTICS Command. 869

332. REQUEST_STATISTICS_RSP Command . 869

333. VNIC Statistics Version 1 . 870

334. REQUEST_DEBUG_STATS command. 871

335. ERROR_INDICATION Command . 871

336. REQUEST_ERROR_INFO Command . 872

337. REQUEST_ERROR_INFO_RSP Command . 872

338. Error Cause. 873

339. LINK_STATE_INDICATION Command . 873

  27

LoPAPR, Version 1.1 (March 24, 2016)

340. CHANGE_MAC_ADDR and CHANGE_MAC_ADDR_RSP Commands .874

341. MULTICAST_CTRL and MULTICAST_CTRL_RSP Commands .875

342. GET_VPD_SIZE Command .875

343. GET_VPD_SIZE_RSP Command .875

344. GET_VPD Command .876

345. GET_VPD_RSP Command .876

346. ACL_CHANGE_INDICATION .877

347. ACL_QUERY. .877

348. ACL_QUERY_RSP .877

349. ACL Buffer .877

350. TUNE Command .878

351. TUNE_RSP Command. .879

352. Transmit Descriptor Version Zero .879

353. Transmit Completion Descriptor .881

354. Transmit Descriptor Version One .881

355. Transmit Descriptor Version Two .882

356. Receive Completion Descriptor .883

357. Receive Buffer Add Descriptor. .884

358. Service Indicator Activation Models for Typical System Issues (Lightpath Mode) .886

28 List of Tables

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

List of Figures

1. Typical Desktop Topology .39

2. General Platform Topology .40

3. Phases of Operation (example) .41

4. Boot Process .45

5. PE DMA Address Validation and Translation in the Platform .64

6. Example Address Map: One PHB, Peripheral Memory and Peripheral I/O Spaces below 4 GB.68

7. Example Address Map: Four PHBs, all Peripheral Memory and Peripheral I/O Spaces above 4GB.69

8. PE and DR Partitioning Examples for Conventional PCI and PCI-X HBs. .75

9. PE and DR Partitioning Examples for PCI Express HBs .76

10. Example System Diagram Showing the PA Coherency Domain. .96

11. DR Architecture Structure .356

12. Dynamic Reconfiguration State Transition Diagrams .359

13. Processor SLB relationship to the OS registered VPA and SLB Shadow Buffer .453

14. Example NUMA configuration with domains and corresponding “ibm,associativity” values506

15. Representation of the Indicators -- Lightpath Mode Platform .521

16. Representation of the Indicators -- Guiding Light Mode Platform .522

17. Representation of the Indicators -- Rack System. .523

18. FRU or Connector Fault/Identify Indicator State Diagram .535

19. Error Log Indicator State Diagram .536

20. Enclosure Identify Indicator State Diagram for Scalable Systems .537

21. Enclosure Identify Indicator State Diagram .538

22. Enclosure Fault Indicator State Diagram .539

23. For Blade Systems: Chassis-level Error Log Indicator State Diagram .540

24. For Blade Systems: Chassis-level Fault Indicator State Diagram .540

25. For Blade Systems: Chassis-level Enclosure Identify Indicator State Diagram .541

26. Rack-level Error Log Indicator State Diagram. .542

27. Rack-level Fault State Indicator Diagram .542

28. Rack-level Enclosure Identify Indicator State Diagram. .542

29. Row-level Error Log State Diagram .543

30. Row-level Fault State Diagram .543

31. Row-level Identify State Diagram .543

32. Logical LAN IOA Structures .552

33. VIO Architecture Structure .597

34. Shared Logical Resource State Transitions. .606

35. Example Implementation of Control Structures for Shared Logical Resources .608

36. Tape Boot Format .750

37. Stopped, Running, and Idle State Diagram .784

38. SCSI Initiator/Target Architecture .795

39. VMC Interface Initialization .817

40. VMC Interface Open .818

41. VMC Interface Runtime .819

42. VMC Interface Close. .819

30 List of Figures

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

About this Document

The purpose of this document is to define the architecture and minimum system requirements on which all LoPAPR
platforms are based. These requirements are intended to be precise enough to assure OS compatibility for several oper-
ating system (OS) levels (current and “n-1” versions), broad enough to cover workstations through server platforms in
single or multiprocessor configurations, and forward-looking enough to allow evolution.

Within the context of this document the term “this architecture” is used to refer to the requirements contained in this
document and “LoPAPR” will be used to denote: (1) the architectural requirements specified by this document, (2) the
document itself, and (3) as an adjective to qualify an entity as being related to this architecture.

Within the context of this document, “architecture” is defined as the specification of the interface between the platform
and the OS. The term “platform” means both hardware and firmware. Device drivers also use this architecture, but re-
quire additional definition of the device1 interfaces to the hardware and OS interfaces within the software.

To the extent that firmware abstracts the hardware interface, it becomes part of the hardware. The firmware to OS inter-
face is defined in this architecture. Two types of firmware are discussed here. Open Firmware (OF) is the initialization
or boot code that controls the platform prior to the transfer of control to the OS. Run-Time Abstraction Services
(RTAS) is the run-time firmware which provides abstractions to the executing OS. Interfaces within the software or
within the hardware are not defined in this document. Where necessary, reference is made to documents where those
definitions can be found.

Document Control

Version

The user of this document is responsible for using the most recent version of this document. Please destroy any previ-
ous version of this document in your possession.

Page Numbering and End of Document

The pages in this document are numbered sequentially, starting with page 1 at the title page. The last page in this docu-
ment should say “End of LoPAPR Document.”

1.A device that attaches to an I/O bus is referred to as I/O Adapter, or IOA. See “Glossary” on page 891 for the definition of an IOA.

32 About this Document

 LoPAPR, Version 1.1 (March 24, 2016)

Goals of This Specification

The specific goals of this specification are as follows:

 To provide an architecture which can be supported by converged AS/RS hardware designs.

 To create a stable platform architecture to be used by platforms based on processors defined by Power ISA [1]. Pro-
cessor implementations based on this architecture include IBM POWER8™ processors and their successors.

 To create an architecture which will allow platforms to operate with previous versions of the OS (“n-1” capability).

 To leverage existing and future industry-standard buses and interfaces.

 To provide a flexible address map. Another key attribute of this specification is the relocatability of devices and sub-
systems within the Processor Architecture (PA) address space. Subsystem address information, which defines where
I/O Adapters (IOAs) reside, is detected by the OF and passed to the OS in the device tree. This architecture accom-
modates the use of multiple identical buses and IOAs in the same platform without address conflicts.

 To build upon the OF boot environment defined in IEEE 1275, IEEE Standard for Boot (Initialization Configura-
tion) Firmware: Core Requirements and Practices [2].

 To provide an architecture which can evolve as technology changes.

 To minimize the support cost for multiple OS versions through the definition of common platform abstraction tech-
niques. Common and compatible approaches to the abstraction of hardware will reduce the burden on hardware de-
velopers who produce differentiated machines.

 To architect a mechanism for error handling, error reporting, and fault isolation. This architecture provides for the
implementation of more robust systems, if desired by the system developers.

 To architect a mechanism for Dynamic Reconfiguration of the hardware.

 To provide an architecture which allows for the logical partitioning of system resources, in order to execute multiple
concurrent OS instances.

Audience for This Document

This document defines the platform and system requirements for designing LoPAPR platforms. This document is the
primary source of information that a platform, OS, or hardware component developer would need to create compatible
products. Additional requirements are defined by the industry standards referenced in this document.

This document describes the platform to OS interface which must be provided in these platforms. Platform designers
must assemble components and firmware which match this interface. Also, the document defines minimum system
configuration requirements. Platform designers must meet or exceed these minimums to build a standard platform.

This document must be used by those designing compatible software including the OS, boot software, or firmware. If a
function is supported, software developers must provide support for the interfaces described in this document. This
software must provide the mandatory functions and capabilities as described in the requirements in this document.
However, this document does not limit this software from going beyond the specification through software tailored to
specific hardware. For example, the OS must implement the interface to the required abstracted interfaces to hardware,
but the OS may also implement fast paths to specific hardware that it recognizes.

 Suggested Reading 33

LoPAPR, Version 1.1 (March 24, 2016)

Suggested Reading

The “Bibliography” on page 889 provides a full list of references and ordering information for these references. Within
this document, the number of the reference in the bibliography is placed after the citation in brackets, “[nn]”.

This document assumes the reader has an understanding of computer architecture in general, the Processor Architec-
ture, the various Peripheral Component Interconnect (PCI) specifications, and OF. Some understanding of the current
personal computer and workstation architectures is also useful. A list of suggested background reading includes:

 Power ISA [1]. Note that this specification is referred to as the “Processor Architecture,” or “PA,” in the body of this
document.

 PCI Local Bus Specification [18]

 PCI-X Protocol Addendum to the PCI Local Bus Specification [21]

 PCI Express Base Specification [22]

 IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2]
and relevant bindings

Conventions Used in This Document

Requirement Enumeration

Within the body of this document requirements are clearly defined by separate paragraphs beginning with a bold text
sequence number. A list of all these are available as a separate document. These requirements may point to other stan-
dards documents, or figures or tables which conveniently show the requirement. The referenced material becomes part
of the requirements in this document. Users of this document must comply with these requirements to build a standard
platform. Other material in this document is supportive description of these requirements, architecture notes, or imple-
mentation notes. Architecture or implementation notes are flagged with a descriptive phrase—for example, “Hardware
Implementation Note”— and followed by indented paragraphs. The descriptive material and notes provide no addi-
tional requirements and may be used for their information content.

Big-Endian Numbering

Big-Endian numbering of bytes and bits is used in this document, unless indicated otherwise. Numbering of bits starts
at 0 for the most significant bit and continues to the least significant bit, unless indicated otherwise. All data structures
used for communicating between the OS and the platform (for example, RTAS and hypervisor calls) will be in Big-En-
dian format, unless otherwise designated.

Hypertext Links

This document makes use of hypertext links. Cross references, Table of Contents entries, List of Tables entries, and
List of Figures entries are all clickable hypertext links, to make navigation of the document easier.

34 About this Document

 LoPAPR, Version 1.1 (March 24, 2016)

Specific Terms

In this document:

 The term “Processor Architecture” (PA) is used to mean compliance with the requirements specified in Power ISA
[1].

 The term “processor” is used as a general term to mean “processor,” or “processor core,” or “thread of a
multi-threaded processor design.” In any case where it makes a difference, the specific terminology for that case is
used.

 The term “real” used in relationship with addresses is a generic term that means “processor real address” when the
platform is running in SMP (non-LPAR) mode and partition “logical real address” when the platform is running in
LPAR mode.

 The term “PCI” is used as a general term to describe the most recent versions of all forms of PCI standards. In cases
where there are significant differences between individual PCI standards, the following terminology is used to dif-
ferentiate between the PCI standards: conventional PCI, PCI-X, and PCI Express.

Typographical Conventions

Typographical conventions used in this document are described in Table 1‚ “Typographical Conventions‚” on page 34.

Table 1. Typographical Conventions

Text Element Description of Use

Rn-m-x.

A requirement number. The number “n” indicates a requirement sequence number and is changed only when it is
necessary change the sequence numbers of one or more requirements on an update. The number “m” is the section
that the requirement appears in, and the number “x” is the number of the requirement within that section. The
sequence numbers are automatically generated and are restarted at the beginning of each new section. Sequence
numbers for existing requirements will not change unless it becomes necessary to insert a requirement between
other requirements or to add a section that renumbers other sections (at which point, the number “n” will be
incremented for the next publication of the document).

Italics

 Used for emphasis such as the first time a new term is used.

 Indicates a book title.

 Indicates PA instruction mnemonics.

 Indicates RTAS function, field names, and parameter names

Courier Bold

 Indicates OF properties, methods, configuration variables, node names and encode functions (for example,
encode-int and encode-string). In addition, OF properties are enclosed in quotes.

 Indicates NVRAM partition names

Courier
(not bold, enclosed in quotes)

Indicates a character string value.

0xnnnn Prefix to denote hexadecimal numbers.

0bnnnn Prefix to denote binary numbers.

nnnnn Numbers without a prefix are decimal numbers.

0xF... FFF100
This hexadecimal notation represents a replication of the hexadecimal character to the right of the ellipsis to fill
out the field width. For example, the address 0xF... FFF100 would be 0xFFFFF100 on a processor with a 32-bit
address bus or 0xFFFFFFFFFFFFF100 on a processor with a 64-bit address bus.

0:9
Ranges of bits are specified by two numbers separated by a colon. The range includes the first number, all numbers
in between, and the last number.

0xm-0xn A range of addresses or values within the document is always inclusive, from m up to and including n.

 Conventions Used in This Document 35

LoPAPR, Version 1.1 (March 24, 2016)

<token>
This notation means the character or character string named within the less than and greater than symbols is used
in the place of the symbols and name. For instance, the property name “ibm,sensor-<token>” indicates the set of
properties “ibm,sensor-9000”, “ibm,sensor-9001”, . . .

Reserved For Compatibility
This notation is a placeholder used to reserve numbering (for example, chapter, section and requirement numbers)
so that subsequent numbering remains consistent with document changes.

NULL vs. null NULL designates an ASCII NULL string (0x00). The term “null” indicates the empty set.

Table 1. Typographical Conventions (Continued)

Text Element Description of Use

36 About this Document

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

1 Introduction

This architecture specification provides a comprehensive computer system platform-to-software interface definition,
combined with minimum system requirements, that enables the development of and software porting to a range of
compatible industry-standard computer systems from workstations through servers. These systems are based on the re-
quirements defined in Power ISA [1]1. The definition supports the development of both uniprocessor and multiproces-
sor system implementations.

A key attribute and benefit of this architecture is the ability of platform developers to have degrees of freedom of im-
plementation below the level of architected interfaces and therefore have the opportunity for adding unique value. This
flexibility is achieved through architecture facilities including: (1) device drivers; (2) Open Firmware (OF); (3)
Run-Time Abstraction Services (RTAS); and (4) hardware abstraction layers. The role of items 1 and 4 are described in
separate operating system (OS) documentation. The role that items 2 and 3 play in this architecture will be described in
subsequent paragraphs and chapters.

This architecture combines leading-edge technologies to create a superior computing platform. By design, it supports a
wide range of computing needs including personal productivity, engineering design, data management, information
analysis, education, desktop publishing, multimedia, entertainment, and database, file, and application servers. This ar-
chitecture effectively leverages industry-standard I/O through the PCI bus. Systems based on this architecture are ex-
pected to offer price/performance advantages and to address the expected growth in computing performance and
functionality.

Architecture Note: In modern platforms, designers may choose between various PCI topology standards. This
architecture uses the term “PCI” as a general term to describe the most recent versions of all forms of PCI
standards including any approved Engineering Change Requests (ECRs) against them. In cases where there are
significant differences between individual PCI standards, the following terminology is used to differentiate
between the PCI standards.

 The term “conventional PCI” refers to behavior or features that conform to the most recent version of the PCI
Local Bus Specification [18], including any approved ECRs against it.

 The term “PCI-X” refers to behavior or features that conform to the most recent version of the PCI-X Protocol
Addendum to the PCI Local Bus Specification [21], including any approved ECRs against it.

 The term “PCI Express” refers to behavior or features that conform to the most recent version of the PCI Ex-
press Base Specification [22] including any approved ECRs against it. In addition, the terms “bus,” “bridge”
and “PCI Host Bridge (PHB)” used in relation to “PCI” throughout this architecture may refer to a PCI Ex-
press “link,” “switch,” and “root complex” respectively.

1.The term “Processor Architecture” (PA) is used throughout this document to mean compliance with the requirements specified in Power ISA [1].

38 Introduction

 LoPAPR, Version 1.1 (March 24, 2016)

1.1 Platform Topology

To the experienced computer designer and system manufacturer, much of the content of this architecture will be famil-
iar. A typical desktop topology is shown in Figure 1‚ “Typical Desktop Topology‚” on page 39. This topology consists
of a single PA processor, volatile System Memory, and a single Host Bridge providing a PCI Bus. The PCI Bus pro-
vides for connection of I/O adapters (IOAs). See “Glossary” on page 891 for the definition of an IOA.

A more complex general topology is shown in Figure 2‚ “General Platform Topology‚” on page 40. All platforms con-
sist of one or more PA processors, a volatile System Memory separate from other subsystems, and a number of IOAs,
which may initiate transactions to System Memory. The processors are linked over the primary processor bus/switch to
each other, to the System Memory, and to one or more Host Bridges. In general, IOAs do not connect to the primary
processor bus/switch. The Host Bridges connect to secondary buses which have IOAs connected to them. In turn, one
or more bus bridges may be employed to tertiary buses (and beyond) with additional IOAs connected to them. Typi-
cally, the bus speeds and throughput decrease and the number of supportable loads increases as one progresses from the
primary processor bus to more remote buses.

There are variations on these topologies, which are likely to occur and are therefore worth describing below. This ar-
chitecture describes interfaces, not implementation. The logical software model must remain the same, even if the
physical topology is different.

 In a smaller platform, the Host Bridge and/or the memory and/or an IOA may be integrated into a single chip. In this
case, the topology would not look like Figure 1‚ “Typical Desktop Topology‚” on page 39 from a chip point of view,
but instead would be integrated onto the single chip.

 In a larger platform, secondary buses may be implemented, with two or more Host Bridges, as two or more parallel
expansion buses for performance reasons. Similarly, tertiary buses may be two or more parallel expansion buses off
each secondary bus. This is indicated by the ellipses near the Host Bridge and the Bus Bridge.

 In a high performance platform, with multiple processors and multiple memories, a switch may be employed to al-
low multiple parallel accesses by the processors to memory. The path through the switches would be decided by the
addressing of the memory.

Each of the following chapters provides information necessary to successfully implement compliant systems. It is rec-
ommended that the reader become thoroughly familiar with the contents of these chapters and their references prior to
beginning system or software development. It is anticipated that standard chip sets will simplify the development of
compliant implementations consistent with the topologies shown below and will be available from third-party industry
sources.

1.1  Platform Topology 39

LoPAPR, Version 1.1 (March 24, 2016)

Figure 1. Typical Desktop Topology

PA Processor

(L1/L2 Cache)

System Memory
Host

Bridge

I/O

Adapter

Primary Processor Bus

Conventional PCI Express

• • •
I/O

Adapter

40 Introduction

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 2. General Platform Topology

PA Processor

(L1/L2 Cache)

PA Processor

(L1/L2 Cache)

System Memory
Host

Bridge

Bus

Bridge

I/O

Adapter

I/O

Adapter

I/O

Adapter

I/O

Adapter

Primary Processor Bus/Switch

Tertiary Bus

• • •

• • • • • •

• • •

(See Note)

Note: To enable the implementation of a large number of I/O adapters in a large system, the Host Bridge
 may be split into two pieces -- a Hub and a Bridge -- with the two connected by a cable,
thus enabling the I/O adapters to be housed at a distance from the main processor enclosure.

Conventional PCI Express

LoPAPR, Version 1.1 (March 24, 2016)

2 System Requirements

This chapter gives an operational overview of LoPAPR systems and introduces platform specific software and/or firm-
ware components that are required for OS support. This chapter also addresses some system level requirements that are
broad in nature and are fundamental to the architecture described in later chapters. Lastly, a table of requirements is
presented as a guide for platform providers.

2.1 System Operation

2.1.1 Control Flow

Figure 3‚ “Phases of Operation (example)‚” on page 41 is an example of typical phases of operation from power-on to
full system operation to termination. This section gives an overview of the processes involved in moving through these
phases of operation. This section will introduce concepts and terms that will be explained in more detail in the follow-
ing chapters. Most requirements relating to these processes will also appear in later chapters.

The discussion in this chapter will be restricted to systems with a single processor. Refer to Chapter 11, “The Symmet-
ric Multiprocessor Option,” on page 321 for the unique requirements relating to multiprocessor systems.

Figure 3. Phases of Operation (example)

Boot Phase

Scan Configuration
Set up Device Tree
Initialize I/O
Load OS image

Transfer Phase

Query device tree (CIS)
Instantiate RTAS
Reclaim OF space

Run-TimePOST Termination

Call RTAS

P
o
w
e
r

O
n

OS

CIS
RTAS

OF OF

OF = Open Firmware
OS = Operating System
CIS = Client Interface Services
RTAS = Run-Time Abstraction Services

Start OS
•Reboot
•Power Off

42 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

2.1.2 POST

Power On Self Test (POST) is the process by which the firmware tests those areas of the hardware that are critical to its
ability to carry out the boot process. It is not intended to be all-inclusive or to be sophisticated in how it relates to the
user. Diagnostics with these characteristics will generally be provided as a service aid.

Platform Implementation Note: The platform may choose to utilize a service processor to assist in the implementation
of functions during various phases of operation. The service (or support) processor is not a requirement of this
architecture, but is usually seen in the larger systems.

2.1.3 Boot Phase

The following sections describe the boot phase of operation. The fundamental parts of the boot phase are:

1. Identify and configure system components.

2. Generate a device tree.

3. Initialize/reset system components.

4. Locate an OS boot image.

5. Load the boot image into memory.

2.1.3.1 Identify and Configure System Components

Firmware is generally written with a hardware in mind, so some components and their configuration data can be hard-
coded. Examples of these components are: type of processor, cache characteristics, and the use of imbedded compo-
nents on the planar. This hardcoding is not a requirement, only a practical approach to a part of this task.

R1–2.1.3.1–1. The firmware must, by various means, become aware of all components in the system associated
with the boot process and configure or reset those components into a known state (components include, for
example, buses, bridges, I/O Adapters (IOAs)1, and I/O devices).

R1–2.1.3.1–2. The firmware must obtain certain system information which is necessary to build the OF device tree
from “walking” the I/O buses (for example, identification of IOAs and bridges).

2.1.3.2 Generate a Device Tree

R1–2.1.3.2–1. The firmware must build a device tree and the OS must gain access to the device tree through Client
Interface Services (CIS).

R1–2.1.3.2–2. Configuration information (configuration variables) which are stored in non-volatile memory must
be stored under the partition names of-config or common, depending on the nature of the information
(see Chapter 8, “Non-Volatile Memory,” on page 265).

2.1.3.3 Initialize/Reset System Components

The OS requires devices to be in a known state at the time control is transferred from the firmware. Firmware may gain
control with the hardware in various states depending on what has initiated the boot process.

 Normal boot: Initiated by a power-on sequence; all devices and registers begin in a hardware reset state.

1.See “Glossary” on page 891 for the definition of an IOA.

2.1  System Operation 43

LoPAPR, Version 1.1 (March 24, 2016)

 Reboot: Device state is unpredictable at the start of a reboot.

The hardware reset state for a device is an inactive state. An inactive state is defined as a state that allows no system
level activity; there can be no bus activity, interrupt requests, or DMA requests possible from the IOA that is in a reset
state. Since the OS may configure devices in a manner that requires very specific control over these functions to avoid
transitory resource conflicts, these functions should be disabled at the device and not at a central controlling agent (for
example, the interrupt controller). Devices that do not share any resources may have these resources disabled at a sys-
tem level (for example, keyboard interrupts may be disabled at the interrupt controller in standard configurations).

R1–2.1.3.3–1. IOAs must adhere to the reset states given in Table 2‚ “IOA Reset States‚” on page 43 when control
of the system is passed from firmware to an OS.

R1–2.1.3.3–2. The platform must include the root node OF device tree property “ibm,pci-full-cfg” with a
value of 1 and configure the configuration registers of all PCI IOAs and bridges as specified by Requirement
R1–9.1.8–1.

R1–2.1.3.3–3. Prior to passing control to the OS, the platform must initialize all processor registers to a value
which, if accessed, will not yield a machine check.

R1–2.1.3.3–4. Prior to passing control to the OS, the platform must initialize all registers not visible to the OS to a
state that is consistent with the system view represented by the OF device tree.

R1–2.1.3.3–5. During boot or reboot operations and prior to passing control to the OS, the platform must initialize
the interrupt controller.

R1–2.1.3.3–6. Hardware must provide a mechanism, callable by software, to hard reset all processors and I/O sub-
systems in order to facilitate the implementation of the RTAS system-reboot function.

Platform Implementation Note: The platform is required to reset the interrupt controller to avoid inconsistency among
the states of IOAs, the interrupt controller, and software interrupt handler routines. The reset state is shown in
Table 2‚ “IOA Reset States‚” on page 43.

Software and Firmware Implementation Note: The conventional PCI configuration registers are further described in
the PCI Local Bus Specification [18] and are copied into OF properties described in the PCI Bus binding to: IEEE
Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware [6]. PCI-X configuration registers are
further described in the PCI-X Protocol Addendum to the PCI Local Bus Specification [21]. PCI Express
configuration registers are further described in the PCI Express Base Specification [22]. PCI-X IOAs and bridges

Table 2. IOA Reset States

Bus IOAs Left Open by OF Other IOAs

PCI
Interrupts not active
No outstanding I/O operations
IOA is configured

The IOA is inactive:
•I/O access response disabled
•Memory access response disabled
•PCI master access disabled
•Interrupts not active
IOA is reset (see note)

System

Configured per OF device tree
•Interrupts inactive
•DMA inactive
•No outstanding I/O operations

The IOA is in hardware reset state (see
note) or inactive:
•Interrupts inactive
•DMA inactive

44 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

and PCI Express IOAs, bridges, and switches are treated the same as conventional PCI IOAs and bridges for
purposes of generation of OF properties.

Software and Firmware Implementation Note: In reference to Requirement R1–2.1.3.3–3, generally the initial value
of processor registers is contained in the processor binding. However, some processors have deviations on register
usage. Also, since some register implementation is optional, all processors are not the same.

2.1.3.4 Locate an OS Boot Image

The OS boot image is located as described in Appendix B, “LoPAPR Binding,” on page 661. A device and filename
can be specified directly from the command interpreter (the boot command) or OF will locate the image through an
automatic boot process controlled by configuration variables. Once a boot image is located, the device path is set in the
device tree as the “bootpath” property of the chosen node.

The devices searched by the automatic boot process are those contained in the boot-device configuration variable.
Implementations may choose to limit the number of boot device entries that are searched. The root node device tree
property “ibm,max-boot-devices” communicates the number of boot-device entries that the platform pro-
cesses.

If multi-boot (multiple bootable OSs residing on the same platform) is supported, a configuration variable instructs the
firmware to display a multi-boot menu from which the OS and bootpath are selected. See Appendix B, “LoPAPR Bind-
ing,” on page 661 for information relating to the multiboot process.

R1–2.1.3.4–1. The platform must supply in the OF root node the “ibm,max-boot-devices” property.

2.1.3.5 Load the Boot Image into Memory

After locating the image, it is loaded into memory at the location given by a configuration variable or as specified by
the OS load image format.

2.1.3.6 Boot Process

The boot process is described in Appendix B, “LoPAPR Binding,” on page 661. Steps in the process are reviewed here,
but the authoritative and complete description of the process is included in Appendix B, “LoPAPR Binding,” on
page 661. Figure 4‚ “Boot Process‚” on page 45 is a depiction of the boot flow showing the action of the f1, f5, and f6
function keys. The figure should only be used as an aid in understanding the requirements for LoPAPR systems.

2.1  System Operation 45

LoPAPR, Version 1.1 (March 24, 2016)

Figure 4. Boot Process

2.1.3.6.1 The Boot Prompt

R1–2.1.3.6.1–1. After the banner step of the boot sequence, the platform display must present a clearly visible
graphical or text message (boot prompt), and must provide a reaction window of at least 3 seconds that
prompts the user to activate various options including the f1, f5, and f6 control keys detailed in this docu-
ment.

R1–2.1.3.6.1–2. The functions provided by f1, f5 and f6 described in this chapter must be equivalently provided by
the tty numeral keys 1, 5, and 6, respectively when a serial terminal is attached.

R1–2.1.3.6.1–3. The boot prompt must identify the platform and communicate to the user that there are options that
may be invoked to alter the boot process.

2.1.3.6.2 The Menus

Once the boot prompt is displayed, the System Management Services (SMS) menu can be invoked. SMS provides a
user interface for utilities, configuration, and the Multiboot Menu (as introduced in Appendix B, “LoPAPR Binding,”
on page 661) for boot/install and the OF command interpreter.

The Multiboot menu is formatted so that block devices that currently contain boot information are most easily selected
by the user. Because of the serial nature of byte devices, they should not be opened unless specifically included in a
boot list. The user may also wish to add devices to the boot-device and/or diag-device configuration variables (boot
lists) that currently do not contain boot information. The Multiboot menu presents these devices in a secondary man-
ner.

banner

auto-boot?

f1 pushed?

menu?

System Management
Services (SMS)Multiboot

Menu

False

True

False

f5 pushed?

True

(Diagnostics Boot)
boot default:

(Diagnostics Boot)
boot default:diag-device

boot-command

Utilities
Configuration

 Interpreter

diagnostic-mode?=true

f6 pushed?

Y

Y

Y

N

N

(Normal Boot)
boot default:boot-device

boot<no arguments>

Boot Retry

Evaluate reboot-command
Boot Prompt

 diag-device default

Command Boot/Install

46 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

If the Multiboot Menu boot/install option is chosen, OF will execute the bootinfo.txt<boot-script> of the
selected OS, and if the user elects to make this the default, the boot-command variable will be set equal to the con-
tents of bootinfo.txt<boot-script>.

R1–2.1.3.6.2–1. The SMS menu must provide a means to display the Multiboot Menu.

R1–2.1.3.6.2–2. If, after the boot prompt is displayed, auto-boot? = false and menu?=true, the firmware
must display the Multiboot Menu directly.

R1–2.1.3.6.2–3. The Multiboot Menu must present all potential boot device options, differentiating block devices
that contain locatable bootinfo objects.

R1–2.1.3.6.2–4. Firmware must evaluate all bootinfo objects at each invocation of the Multiboot Menu to ensure
that any modifications made by the OS will be included.

R1–2.1.3.6.2–5. The Multiboot Menu must provide a means to enter the currently selected boot option into the de-
sired location within the boot-device/boot-file or diag-device/diag-file configuration
variables.

R1–2.1.3.6.2–6. The platform must provide a means to delete individual boot options from the boot-de-
vice/boot-file and diag-device/diag-file configuration variables.

R1–2.1.3.6.2–7. The Multiboot Menu must provide an option for the user to select whether or not to return to the
Multiboot Menu on each boot.

Firmware Implementation Note: Returning to the Multiboot Menu on reboot is controlled with the auto-boot? and
menu? configuration variables.

2.1.3.6.3 The f1 Key

The boot process is further controlled by the auto-boot? and menu? OF configuration variables and the f1 key.

R1–2.1.3.6.3–1. If, after the boot prompt is displayed, function key f1 is pushed or if auto-boot? = false and
menu?=false, the firmware must display the System Management Services (SMS) menu.

R1–2.1.3.6.3–2. The default value for the auto-boot? configuration variable must be true.

R1–2.1.3.6.3–3. The default value for the menu? configuration variable must be false.

2.1.3.6.4 The f5 and f6 Keys

If auto-boot? = true, the commands specified by the boot-command configuration variable are executed.

If the boot command has no arguments, IEEE 1275 states that the arguments are determined as follows:

 Normal Boot - If the diagnostic-mode? FCode function returns false, the boot device is given by
boot-device and the default boot arguments are given by boot-file.

 Diagnostics Boot - If the diagnostic-mode? FCode function returns true, the boot device is given by
diag-device and the default boot arguments are given by diag-file.

Platform Implementation Note: boot-device, boot-file, diag-device and diag-file are potentially
multi-entry strings. The boot-command searches the devices specified in boot-device/diag-device in
the order defined by the string for the boot-file/diag-file to load into system memory. Failure occurs
only if no corresponding file is found/usable on any of the specified devices.

Platforms give the user the ability to control the boot process further with function keys f5 and f6 (within the window
described in Requirement R1–2.1.3.6.1–1).

2.1  System Operation 47

LoPAPR, Version 1.1 (March 24, 2016)

R1–2.1.3.6.4–1. If, after the boot prompt is displayed, function key f5 is pushed (and auto-boot? = true), then
diagnostic-mode? must return true and the default diagnostic device as defined in Requirements R1–
2.1.3.6.4–4 and R1–2.1.3.6.4–5 must be used to locate bootable media.

R1–2.1.3.6.4–2. If, after the boot prompt is displayed, function key f6 is pushed (and auto-boot? = true), then
diagnostic-mode? must return true and diag-device must be used to locate the boot image, else if
diag-device is empty, then its default as defined in Requirements R1–2.1.3.6.4–4 and R1–2.1.3.6.4–5
must be used to locate bootable media.

R1–2.1.3.6.4–3. boot-command must default to boot<with no arguments>.

R1–2.1.3.6.4–4. boot-device and diag-device must default to the first devices of each type that would be
encountered by a search of the device tree.

R1–2.1.3.6.4–5. The search order for the boot-device and diag-device defaults must be floppy, cdrom,
tape, disk, network.

R1–2.1.3.6.4–6. boot-file must default to <null>.

R1–2.1.3.6.4–7. diag-file must default to diag.

Note: Requirement R1–2.1.3.6.4–1 provides a method to invoke stand-alone diagnostics or to start reinstallation without
going through the menus. Requirement R1–2.1.3.6.4–2 provides a method to boot with on-line diagnostics.

Software Implementation Note: Pressing either f5 or f6 at the correct time will cause the contents of diag-file to
be set into the “bootargs” property of the chosen node of the device tree. The OS can recognize a
diagnostics boot request when it finds the “diag” substring in “bootargs”.

2.1.3.6.5 CDROM Boot

If the CDROM is the first bootable media found in the devices listed in the bootlist (boot-device strings), the
CDROM should boot without having to enter optional file specification information or using the f5 function key nor-
mally used for diagnostic boot. This is accomplished by having the appropriate bootinfo.txt file specification in
the CDROM entry in the bootlist.

R1–2.1.3.6.5–1. CDROM entries for the default OF boot-device and diag-device configuration variables
must include the standard block device bootinfo.txt file specification as documented in Appendix B,
“LoPAPR Binding,” on page 661 (\ppc\bootinfo.txt).

2.1.3.6.6 Tape Boot

Boot from tape is defined in Appendix B, “LoPAPR Binding,” on page 661.

2.1.3.6.7 Network Boot

The user selects from a list of network devices on the Multiboot Menu and then selects the boot option. The user may
be prompted for network parameters (IP addresses, etc.) which are set as arguments in boot-device by the firm-
ware. If the BOOTP protocol is used, the BOOTREPLY packet contains the network parameters to be used for subse-
quent transmissions (see Open Firmware Recommended Practice:OBP-TFTP extension [4] for details of this process).

R1–2.1.3.6.7–1. If network boot is selected, firmware must provide a means for the user to specify or override net-
work parameters.

2.1.3.6.8 Service Processor Boot

In platforms with a service processor, the user may call for a boot using a local/remote connection to the service pro-
cessor. The particular port used for this remote session is sent to the firmware in a status message after the service pro-

48 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

cessor finishes POST. The port is identified in the “stdin” and “stdout” properties in the chosen node of the
OF device tree.

2.1.3.6.9 Console Selection

During the boot process, firmware establishes the console to be used for displaying status and menus. The following
pseudocode describes the console selection process:

IF there is a configuration change detected for “display”, “keyboard” or “mouse” type devices OR if a console selec-
tion timeout occurred on the last boot,

IF Firmware can locate a supported console device,

Firmware will prompt the user to select a console and wait approximately
60 seconds for a valid response.

IF a valid response is received within the 60 second timeout,

Use the selected console.

ELSE choose the Primary Serial Port.

ELSE choose the Primary Serial Port.

ELSE

IF input-device and output-device are valid,

Firmware will choose these devices for the console.

ELSE choose the Primary Serial Port.

R1–2.1.3.6.9–1. If a console has been selected during the boot process, firmware must set the “stdin” and
“stdout” properties of the chosen node to the ihandles of this console’s input and output devices prior to
passing control to the OS.

2.1.3.6.10 Boot Retry

 For boot failures related to firmware trying to access a boot device, it is appropriate for the platform to retry the boot
operation, especially in the case of booting from a network device. However, in platforms which have a service proces-
sor, there are several other types of detected errors for which a reboot retry may be appropriate; for example, check-
stops or loss of communication between firmware and the service processor. To ensure that the user policy is followed,
the coordination and counting of retry attempts need to be interlocked between the service processor and boot firm-
ware. The most straightforward way to implement this is to have the boot firmware inform the service processor of all
failed boot attempts, and let the service processor initiate the system reset (as it also would for checkstops or hangs).
This way the service processor can easily manage the retry count and initiate a service dial-out if the boot retry limit is
exceeded.

R1–2.1.3.6.10–1. Platform Implementation: In platforms with service processors, retry of failed boot operations
must be coordinated between boot firmware and the service processor, to ensure correct counting and han-
dling of reboot retries according to the service processor configuration reboot policies.

2.1.3.6.11 Boot Failures

Failure to boot occurs only when no corresponding file is found which is usable on any device specified in the
boot-device, boot-file, diag-device, or diag-file string being used.

R1–2.1.3.6.11–1. If an error occurs in a boot device preventing boot from that device, and after all defined retries
have occurred, the failure must be reported as a POST error.

2.1  System Operation 49

LoPAPR, Version 1.1 (March 24, 2016)

R1–2.1.3.6.11–2. If a boot device is physically missing or lacks a boot record (for example, if a CDROM is not
present in a CDROM drive), then a POST error must be generated for this case, must not result in the calling
out of a boot device as being defective, and must not result in a hardware service repair action to the device.

R1–2.1.3.6.11–3. In Requirement R1–2.1.3.6.11–2, if it is not possible for a device to distinguish between an actual
device error, as opposed to a missing device or boot record, then a POST error must be generated that indi-
cates the possible causes of the failure to boot from the device, and this POST error must not imply that a
hardware service repair action is required for the boot device.

Implementation Note: All device errors of the same type may be consolidated into a single POST log entry with multiple
location codes listed if needed. This architecture anticipates remote support center notification of hardware errors.
It is the intention that only definitive boot device errors will be reported as requiring hardware repair. This is meant
to prevent service calls for systems for non-hardware errors such as no tape in a tape drive.

2.1.3.6.12 Persistent Memory and Memory Preservation Boot (Storage Preservation Option)

Selected regions of storage, or Logical Memory Blocks (LMBs), may be optionally preserved across client program
boot cycles. These LMBs are denoted by the presence of the “ibm,preservable” property in their OF device tree
/memory node. The client program registers the LMB with the platform using the ibm,manage-storage-preservation
RTAS call if it wants the contents of the storage preserved across client boot cycles (see also Section 7.4.4‚ “Managing
Storage Preservation‚” on page 240). The architectural intent of this facility is to enable client programs to emulate per-
sistent storage. This is done by a client program registering preservable LMBs. Then, after a subsequent boot cycle
(perhaps due to error or impending power loss) the presence of the “ibm,preserved-storage” property in the
/RTAS node of the device tree indicates to the client program that it has preserved memory. When the client program
detects that it has booted with preserved storage and that it might be necessary to preserve the storage for long term, the
client program is responsible for copying the preserved data to long term persistent storage medium, and then clearing
the registration of the preserved LMBs to prevent potential corruption of the persistent storage medium due to subse-
quent failures.

Upon reboot after such an operation, the “ibm,request-partition-shutdown” property is provided in the
/rtas node with a value of 2, indicating that the client program should save appropriate data and shutdown the parti-
tion.

Implementation Note: How areas get chosen to be marked as preservable is beyond the scope of this architecture.

2.1.4 Transfer Phase

The image is prepared for execution by checking it against certain configuration variables; this may result in a reboot.

Once the OS gains control, it may use the CIS interface to learn about the platform contents and configuration. The OS
will generally build its own version of this configuration data and may discard the OF code and device tree in order to
reclaim the space used by OF. A set of platform-specific functions are provided by Run-Time Abstraction Services
(RTAS) which is instantiated by the OS invoking the instantiate-rtas method of the RTAS OF device tree
node.

R1–2.1.4–1. If any device tree property is presented that contains a phandle value to identify a certain node in the
device tree, the device tree node so identified must contain the “ibm,phandle” property, and the value of
the “ibm,phandle” property must match the phandle value in the property identifying that node.

R1–2.1.4–2. If the “ibm,phandle” property is present in a device tree node, the OS must use this value, and not
the phandle value returned by a client interface service, to associate this node with a device tree property that
uses a phandle value to identify this node.

R1–2.1.4–3. An OS must not assume that the “ibm,phandle” property, if present, corresponds to the phandle
used by or returned by OF client interface services. A phandle value passed to a client interface service as an

50 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

argument must have been obtained by use of a client interface service, and not from a device tree property
value.

Note: If the “ibm,phandle” property exists, there are two “phandle” namespaces which must be kept separate. One
is that actually used by the OF client interface, the other is properties in the device tree making reference to device
tree nodes. These requirements are written to maintain backward compatibility with older FW versions predating
these requirements; if the “ibm,phandle” property is not present, the OS may assume that any device tree
properties which refer to this node will have a phandle value matching that returned by client interface services.
It will be necessary to have the OSs ready for this requirement before the firmware implementation.

2.1.5 Run-Time

During run-time, the OS has control of the system and will have RTAS instantiated to provide low-level hardware-spe-
cific functions.

2.1.6 Termination

Termination is the phase during which the OS yields control of the system and may return control to the firmware de-
pending on the nature of the terminating condition.

2.1.6.1 Power Off

If the user activates the system power switch, power may be removed from the hardware immediately (switch directly
controls the power supply) or software may be given an opportunity to bring the system down in an orderly manner
(power management control of the power switch).

If power is removed from the hardware immediately, the OS will lose control of the system in an undetermined state.
Any I/O underway will be involuntarily aborted and there is potential for data loss or system damage. A shut-down
process prior to power removal is highly recommended.

In most power managed systems, power switch activation is fielded as a power management interrupt and the OS
(through RTAS) is able to quiesce the system before removing power. The OS may turn off system power using the
RTAS power-off function.

2.1.6.2 Reboot

The OS may cause the system to reset and reboot by calling the RTAS system-reboot function.

2.2 Firmware

R1–2.2–1. Platforms must implement OF as defined in Appendix B, “LoPAPR Binding,” on page 661.

R1–2.2–2. The OF User Interface must include the following methods as specified in IEEE 1275, IEEE Standard
for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2], Section 7.6:.reg-
isters, to, load, go, state-valid and init-program.

R1–2.2–3. Platforms must implement the Run-Time Abstraction Services (RTAS) as described in Chapter 7,
“Run-Time Abstraction Services,” on page 107.

R1–2.2–4. OSs must use OF and the RTAS functions to be compatible with all platforms.

2.3  OS Installation 51

LoPAPR, Version 1.1 (March 24, 2016)

2.3 OS Installation

Installation of OSs will be accomplished through the Multiboot Menu as follows:

1. The system boots or reboots normally; the user enters the Multiboot Menu by one of the methods described
herein.

2. The Multiboot Menu presents a list of all installation devices.

3. The user selects “install” and an installation device from the menu; firmware locates the bootinfo object or install
image on the selected installation device.

4. Firmware will execute init-program and, if a bootinfo object was found, firmware parses it, replaces the
<boot-script> entities with appropriate values and executes the script.

5. The OS gets control and selects the target device.

6. After the install process is determined to be successful, the OS updates variables such as boot-device,
boot-file, and boot-command.

7. The OS adds the bootinfo-nnnn configuration variable to the NVRAM common system partition.

R1–2.3–1. The Multiboot Menu must provide an option for OS installation that lists all possible installation devices.

R1–2.3–2. After the install process is determined to be successful, the OS must set boot-device, boot-file,
and boot-command.

2.3.1 Tape Install

The OF definition of installation from tape is defined in Appendix B, “LoPAPR Binding,” on page 661.

2.3.2 Network Install

Network install follows the same process as network boot with the exception that after installation is complete, the OS
will write boot-device with the target device information.

R1–2.3.2–1. If network install is selected, firmware must provide a means for the user to override default network
parameters.

2.4 Diagnostics

IBM Power® system platforms may use IBM AIX® Kernel-based stand-alone diagnostics as their multi-OS common
diagnostics package. Since AIX will run on other vendors’ platforms which might not have permission to use AIX di-
agnostics, the “ibm,aix-diagnostics” property indicates that AIX diagnostics are permitted (see
Section B.6.2.1‚ “Root Node Properties‚” on page 673).

R1–2.4–1. If AIX diagnostics are supported on a platform, then the firmware for that platform must include the
property “ibm,aix-diagnostics” in the root node.

52 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: Each OS may implement an OS-specific run-time diagnostics package, but should, for
purposes of consistency, adhere to the error log formats in Section 10.3‚ “RTAS Error and Event Information
Reporting‚” on page 289.

2.5 Platform Class

The “ibm,model-class” OF property is defined to classify platforms for planning, marketing, licensing, and ser-
vice purposes (see Section B.6.2.1‚ “Root Node Properties‚” on page 673).

R1–2.5–1. The “ibm,model-class” property must be included in the platform’s root node.

2.6 Security

Platforms will provide the user with options for a Power On Password (POP) and a Privileged Access Password (PAP)
and will have some optional physical security features.

R1–2.6–1. Platform Implementation: Platforms must provide a Power On Password (POP) capability which,
when enforced, controls the user’s ability to power-on and execute the configured boot sequence.

R1–2.6–2. Platform Implementation: Platforms must provide a Privileged Access Password (PAP) capability
which, when enforced, controls the user’s ability to alter the boot sequence using f5/f6, and to enter SMS and
the Multiboot Menu.

R1–2.6–3. Platform Implementation: If the PAP is absent or <NULL>, but the POP is non-<NULL>, then the
POP must act as the PAP.

R1–2.6–4. Platform Implementation: Platforms must accept the PAP as a valid response to a request to enter the
POP.

R1–2.6–5. Platform Implementation: If there is a key switch implemented with a secure position, the system must
not complete the boot process regardless of the state of POP and PAP when the switch is in this position.

R1–2.6–6. Platform Implementation: If a key switch is implemented and the switch is in the maintenance (ser-
vice) position, the POP and PAP must not be enforced.

R1–2.6–7. Platform Implementation: Platforms, except for rack mounted systems, must provide a locking mecha-
nism as an option which prevents the removal of the covers.

R1–2.6–8. Platform Implementation: Platforms, except for rack mounted systems, must provide a tie-down
mechanism as an option which prevents the physical removal of the system from the premises.

R1–2.6–9. Platform Implementation: Passwords and keyswitch positions must be implemented in a manner that
makes their values accessible to both OF and the service processor.

R1–2.6–10. Platform Implementation: The OF configuration variable security-password must be main-
tained to be equivalent to the Privileged Access Password (PAP).

R1–2.6–11. Platform Implementation: If the PAP and security-password are absent or <NULL>, secu-
rity-mode must be set to “none”, otherwise security-mode must be set to “command”.

R1–2.6–12. Platform Implementation: If security-mode is set to any value other than “none” (such as
“command” or “full”), it must be treated as security-mode = command.

2.7  Endian Support 53

LoPAPR, Version 1.1 (March 24, 2016)

Platform Implementation Notes:

1. As defined here, the PAP and security-password are stronger than as specified in IEEE 1275 for se-
curity-mode = command in that they are required for any command line operations, including go and
boot. The PAP and security-password are not required to boot the system with default parameters,
however, and in this sense the intent of security-mode = command is achieved. There is currently no
implementation of security-mode = full.

2. If a service processor is provided, the requirements relating to passwords are applicable in the service pro-
cessor environment. Service processor documentation refers to the POP as the General User Password and
the PAP as the Privileged User Password.

2.7 Endian Support

LoPAPR platforms operate with either Big-Endian (BE) or Little-Endian (LE) addressing. In Big-Endian systems, the
address of a word in memory is the address of the most significant byte (the “big” end) of the word. Increasing memory
addresses will approach the least significant byte of the word. In Little-Endian (LE) addressing, the address of a word
in memory is the address of the least significant byte (the “little” end) of the word.

All data structures used for communicating between the OS and the platform (for example, RTAS and hypervisor calls)
are Big-Endian format, unless otherwise designated.

R1–2.7–1. Platforms must by default operate with Big-Endian addressing.

R1–2.7–2. Platforms that operate with Little-Endian addressing must make System memory appear to be in Lit-
tle-Endian format to all entities in the system that may observe that image, including I/O.

Platform Implementation Notes:

1. Some hardware (for example, bridges, memory controllers, and processors) may have modal bits to allow
those components to be used in platforms which operate in Little-Endian mode. In this case, the hardware or
firmware will need to set those bits appropriately.

2. Requirement R1–2.7–2 may have an impact on the processor chosen for the platform.

2.8 64-Bit Addressing Support

A 64-bit-addressing-capable platform is defined as one capable of supporting System Memory and Memory Mapped
I/O (MMIO) configured above 4 GB (greater than 32 bits of real addressing). This means that all hardware elements in
the topology down to the Host Bridges are capable of dealing with a real address range greater than 32 bits, and all
Host Bridges are capable of providing a translation mechanism for translating 32-bit I/O bus DMA addresses. All plat-
forms compliant with LoPAPR version 2.3 and beyond are required to be 64-bit-addressing-capable.

A 64-bit-addressing-aware OS is an OS that can deal with a real address space larger than 4GB. It must handle the
64-bit processor page table format (required of all OSs), and must understand Host Bridge mechanisms and Host
Bridge OF methods for supporting System Memory greater than 4 GB. All OSs compliant with LoPAPR version 2.3
and beyond are required to be 64-bit-addressing-aware.

2.9 Minimum System Requirements

This section summarizes the minimum hardware and functionality required for LoPAPR compliance.

The term portable is used in this document to describe that class of systems that is primarily battery powered and is
easily carried by its user.

54 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

The term personal is used in this document to describe that class of systems that is bound to a specific work area due to
its size or power source, and whose use is generally restricted to a single direct user or a small set of users.

The term server is used in this document to describe that class of systems that supports a multi-user environment, pro-
viding a particular service such as file storage, software repository, or remote processing capability.

Each of these classes may have unique requirements due to the way it is used or which OS it generally employs and,
for this reason, the requirements in this document my have qualifiers based on the type of system being developed.

R1–2.9–1. (Requirement moved to Table 4‚ “IBM Server Required Functions and Features‚” on page 58)

R1–2.9–2. A means of attaching a diskette drive must be provided (may be through a connector or over a network)
and the drive must have the following characteristics:

a. Media sense: Implementations must allow polling of the drive up to 100x per second to determine the pres-
ence of media in the drive.

b. Must accept media of type: 3.5" 1.44 MB MFM

R1–2.9–3. A means of attaching a CD-ROM drive must be provided (may be through a connector or over a net-
work) and the drive must have the following characteristics:

a. ISO9600 compliant

b. Supports multi-session

R1–2.9–4. When a keyboard is provided, it must be capable of generating at least 101 scan codes.

R1–2.9–5. When a mouse is provided, it must have at least two buttons.

R1–2.9–6. The capability to generate a tone must be provided on portable and personal platforms, and on server
platforms which are not housed in rack enclosures.

R1–2.9–7. A Real Time Clock (RTC) must be provide which must have the following characteristics:

a. Is non-volatile

b. Runs continuously

c. Has a resolution of at least one second

2.10 Options and Extensions

Options are features that are covered by this architecture, but are not necessarily required to be present on a given plat-
form. Platforms that implement options are required to conform to the definitions in this architecture, so that an aware
OS environment can recognize and support them. Some options may be required on some platforms. Refer to Table 3‚
“LoPAPR Optional Features‚” on page 55 for the disposition of currently defined options, including requirements for
implementation of some of these options on some platforms. Note that in this table, “optional” does not mean “not re-
quired;” see the description column of the table for more information.

An extension is a feature that is added to this architecture and is required on all platforms developed after a specified
effective date.

Options and extensions will normally need to be dormant or invisible in the presence of a non-aware OS environment.
In general, this means that they come up passively; that is, they are initialized to an inactive state and activated by an
aware OS.

2.10  Options and Extensions 55

LoPAPR, Version 1.1 (March 24, 2016)

R1–2.10–1. Extensions and options must come up passively unless otherwise specified in this architecture.

R1–2.10–2. Extensions and options that affect the OS interface to the platform must be identified, when present,
through some architected means, such as OF device tree properties.

It is the responsibility of the product development teams to keep the “usage” columns of Table 3‚ “LoPAPR Optional
Features‚” on page 55 up to date,

Table 3. LoPAPR Optional Features

Option Name

Usage

Description

B
as

e

IB
M

 S
er

ve
r

Usage Legend: NS = Not Supported; O = Optional (see also Description); OR = Optional but Recommended; R = Required; SD = See Description

Symmetrical Multiprocessing (SMP) O R Required on MP platforms.

Multiboot O O Required to support multiple versions of an OS.

PCI Hot Plug DR O OR
See Chapter 13, “Dynamic Reconfiguration (DR) Architecture,” on page 355 for more
information.

Logical Resource Dynamic Reconfiguration
(LRDR)

O OR See Section 13.7‚ “Logical Resource Dynamic Reconfiguration (LRDR)‚” on page 377.

Enhanced I/O Error Handling (EEH)
OR
SD

R
See Section 4.1‚ “I/O Topologies and Endpoint Partitioning‚” on page 71 and Section 4.4.1‚
“Enhanced I/O Error Handling (EEH) Option‚” on page 85. Required for platforms that implement
LPAR, regardless of the number of partitions (Requirements R1–14.3–1 and R1–14.3–2).

Error Injection (ERRINJCT) O R Required of servers which implement the EEH option.

Logical Partitioning (LPAR) O R See Chapter 14, “Logical Partitioning Option,” on page 385.

Bridged-I/O EEH Support O R
EEH support for I/O structures which contain PCI to PCI bridges or PCI Express switches. See
Section 4.4.3‚ “Bridged-I/O EEH Support Option‚” on page 91. Required if EEH is supported.

PowerPC External Interrupt
R

SD
R

SD
May be virtualized; See Chapter 6, “Interrupt Controller,” on page 101.

EXTI2C O O See Section 7.3.9.2‚ “Ibm,exti2c‚” on page 166. For support of I2C buses.

Firmware Assisted NMI (FWNMI) R R
See Section 7.3.14‚ “Firmware Assisted Non-Maskable Interrupts Option (FWNMI)‚” on page
204.

System Parameters R R See Section 7.3.16‚ “System Parameters Option‚” on page 207.

Capacity on Demand (CoD) O O See Section 7.3.16.4‚ “Capacity on Demand (CoD) Option‚” on page 213.

Predictive Failure Sparing O O See Section 7.3.16.4.2‚ “Predictive Failure Sparing with Free Resources‚” on page 214.

Converged Location Codes R R
The Converged Location Codes option is required on all platforms being developed. See
Section 12.3‚ “Hardware Location Codes‚” on page 327 and Requirement R1–12.3–1.

Shared Processor LPAR (SPLPAR) O O See Section 14.11‚ “Shared Processor LPAR Option‚” on page 446.

Reliable Command/Response Transport O O See Section 17.2.3.1‚ “Reliable Command/Response Transport Option‚” on page 637.

Logical Remote DMA (LRDMA) O O See Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on page 642.

Interpartition Logical LAN (ILLAN) O O See Section 16.4‚ “Interpartition Logical LAN (ILLAN) Option‚” on page 551.

ILLAN Backup Trunk Adapter O O See Section 16.4.6.1‚ “ILLAN Backup Trunk Adapter Option‚” on page 571.

56 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

ILLAN Checksum Offload Support O O See Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on page 572.

Checksum Offload Padded Packet Support O O See Section 16.4.6.2.3‚ “Checksum Offload Padded Packet Support Option‚” on page 574.

Virtual SCSI (VSCSI) O O See Section 16.5‚ “Virtual SCSI (VSCSI)‚” on page 575.

Virtual FC (VFC) O O See Section 16.7‚ “Virtual Fibre Channel (VFC) using NPIV‚” on page 590.

Storage Preservation O NS
See Section 2.1.3.6.12‚ “Persistent Memory and Memory Preservation Boot (Storage Preservation
Option)‚” on page 49 and Section 7.4.4‚ “Managing Storage Preservation‚” on page 240.

Client Vterm O R

Required of all platforms that support LPAR, otherwise not implemented. Provides a virtual
“Asynchronous” IOA for connecting to a server Vterm IOA, the hypervisor, or HMC (for example,
to a virtual console). See Section 16.6‚ “Virtual Terminal (Vterm)‚” on page 582 for more
information.

Server Vterm O O Allows a partition to serve a partner partition's client Vterm IOA.

NUMA
Associativity Information

OR OR See Chapter 15, “Non Uniform Memory Access (NUMA) Option,” on page 505.

Performance Tool Support O NS
Provides access to platform-level facilities for performance tools running in a partition on an LPAR
system. See Section 7.4.5‚ “ibm,lpar-perftools RTAS Call‚” on page 242.

MSI (Message Signaled Interrupt) SD SD Required for all platforms that support PCI Express.

ILLAN Buffer Size Control O O See Section 16.4.6.3‚ “ILLAN Buffer Size Control Option‚” on page 574.

Virtual Management Channel (VMC) O O See Section 17.7‚ “Virtual Management Channel (VMC)‚” on page 714.

Partition Suspension O O Requires the Logical Partitioning, LRDR, and Update OF Tree options.

Partition Hibernation O O
Allows a partition to sleep for an extended period; during this time the partition state is stored on
secondary storage for later restoration. Requires the Partition Suspension, ILLAN, and VASI
options.

Partition Migration O O
Allows the movement of a logical partition from one platform to another; the source and destination
platforms cooperate to minimize the time that the partition is non-responsive. Requires the Partition
Suspension, ILLAN, and VASI options.

Thread Join O O Allows the multi-threaded caller to efficiently establish a single threaded processing environment.

Update OF Tree O O
Allows the caller to determine which device tree nodes changed due to a massive platform
reconfiguration as happens during a partition migration or hibernation.

Virtual
Asynchronous Services Interface (VASI)

O O
Allows an authorized virtual server partition (VSP) to safely access the internal state of a specific
partition. See Section 17.8‚ “Virtual Asynchronous Services Interface (VASI)‚” on page 715 for
more details. Requires the Reliable Command/Response Transport option.

Virtualized Real Mode Area (VRMA) O O Allows the OS to dynamically relocate, expand, and shrink the Real Mode Area.

TC O O
Allows the OS to indicate that there is no need to search secondary page table entry groups to
determine a page table search has failed. See Section 14.12.2‚ “Virtualizing the Real Mode Area‚”
on page 473 for more details.

Configure Platform Assisted Kernel Dump O O Allows the OS to register and unregister kernel dump information with the platform.

Table 3. LoPAPR Optional Features (Continued)

Option Name

Usage

Description

B
as

e

IB
M

 S
er

ve
r

Usage Legend: NS = Not Supported; O = Optional (see also Description); OR = Optional but Recommended; R = Required; SD = See Description

2.11  IBM LoPAPR Platform Implementation Requirements 57

LoPAPR, Version 1.1 (March 24, 2016)

2.11 IBM LoPAPR Platform Implementation Requirements

The tables in this section detail specific product requirements which are not defined as an “option” in this architecture.
The intent is to define base requirements for these products, over and beyond what is specified in Table 3‚ “LoPAPR
Optional Features‚” on page 55 and elsewhere in this architecture.

In addition, any options that are unique to specific implementations (that is, not general usage), and which do not ap-
pear in Table 3‚ “LoPAPR Optional Features‚” on page 55, are listed in this section.

I/O Super Page O OR Allows the OS to specify I/O pages that are greater than 4 KB in length.

Subordinate CRQ (Sub-CRQ) Transport O O
Support for the Subordinate CRQs as needed by some Virtual IOAs. See Section 17.2.3.3‚
“Subordinate CRQ Transport Option‚” on page 645.

Cooperative Memory Over-commitment
(CMO)

O O
The CMO option allows for partition participation in the over-commitment of logical memory by
the platform. See Section 14.12.3‚ “Cooperative Memory Over-commitment Option (CMO)‚” on
page 474.

Partition Energy Management (PEM) O O
Allows the OS to cooperate with platform energy management. See Section 14.14‚ “Partition
Energy Management Option (PEM)‚” on page 492.

Multi-TCE-Table (MTT) O O
Support for the Multi-TCE-Table Option. See Section 14.5.4.2.4‚ “H_PUT_TCE_INDIRECT‚” on
page 421.

Virtual Processor Home Node (VPNH) O O
Provides substantially consistent virtual processor associativity in a shared processor LPAR
environment. See Section 14.11.6‚ “Virtual Processor Home Node Option (VPHN)‚” on page 467.

IBM Active Memory™ Compression O O Allows the partition to perform active memory compression.

Virtual Network Interface Controller (VNIC) O O See Section 17.3‚ “Virtual Network Interface Controller (VNIC)‚” on page 652.

Expropriation Subvention Notification O O
Allows OS notification of a cooperative memory overcommitment page fault see
Section 14.12.3.8‚ “Expropriation/Subvention Notification Option‚” on page 485.

Boost Modes O O
Allows the platform to communicate and the availability of performance boost modes along with
any ability to manage the same. See Section 7.3.16.20‚ “Performance Boost Modes Vector‚” on
page 231

Platform Resource Reassignment
Notification (PRRN)

O O See Section 15.6‚ “Platform Resource Reassignment Notification Option (PRRN)‚” on page 509

Dynamic DMA Windows (DDW) O O
Allows the creation of DMA Windows above 4 GB. See Section 7.4.10‚ “DMA Window
Manipulation Calls‚” on page 259.

Universally Unique Partition Identification
Option (UUID)

O O See Section 7.3.16.21‚ “Universally Unique IDentifier‚” on page 233

Platform Facilities Option (PFO) O O
See Section 14.5.4.1.1‚ “H_REMOVE‚” on page 408, Section 14.5.4.1.2‚ “H_ENTER‚” on
page 410, and Section 14.15‚ “Platform Facilities‚” on page 499

Extended Cooperative Memory
Overcommittment (XCMO)

O O
Introduces additional cooperative memory overcommitment functions see Section 14.12.3‚
“Cooperative Memory Over-commitment Option (CMO)‚” on page 474

Table 3. LoPAPR Optional Features (Continued)

Option Name

Usage

Description

B
as

e

IB
M

 S
er

ve
r

Usage Legend: NS = Not Supported; O = Optional (see also Description); OR = Optional but Recommended; R = Required; SD = See Description

58 System Requirements

 LoPAPR, Version 1.1 (March 24, 2016)

It is the responsibility of the product development teams to keep these tables up to date.

2.11.1 IBM Server Requirements

This section talks to the requirements for IBM LoPAPR Compliant server platforms.

R1–2.11.1–1. For all IBM LoPAPR Compliant Platforms: The platform must implement the options marked as
“required” in the IBM Server column of Table 3‚ “LoPAPR Optional Features‚” on page 55 and the addi-
tional functions as indicated in Table 4‚ “IBM Server Required Functions and Features‚” on page 58 (that is,
the “Base” column of Table 3‚ “LoPAPR Optional Features‚” on page 55 is not sufficient).

It is the responsibility of the product development teams to keep Table 4‚ “IBM Server Required Functions and Fea-
tures‚” on page 58 up to date.

2.12 Behavior for Optional and Reserved Bits and Bytes

Behavior of the OSs and platforms for bits and bytes in this architecture that are marked as reserved or optional are de-
fined here.

R1–2.12–1. Bits and bytes which are marked as “optional” by this architecture and which are not implemented by
the platform must be ignored by the platform on a Store and must be returned as 0’s on a Load, including the
reserved or optional bits of a partially implemented field.

R1–2.12–2. Bits and bytes which are marked as “reserved” by this architecture must be ignored by the platform on
a Store and must be returned as 0’s on a Load, except that bits that are marked as “reserved” and which were
previously defined by the architecture maybe be treated appropriately by legacy hardware (such bits in this
architecture will state the value that software must use henceforth).

R1–2.12–3. Bits and bytes marked as “reserved” must be set to 0 by the OS on a Store, except as otherwise defined
by the architecture, and must be ignored on a Load.

Table 4. IBM Server Required Functions and Features

Function/Feature Effective Date Description

All IOA device drivers EEH enabled or EEH safe 6/2004 Required even for systems running with just one partition.

LoPAPR, Version 1.1 (March 24, 2016)

3 Address Map

The address map of an LoPAPR platform is made up of several distinct areas. These areas are one of five basic types.
Each of these types has its own general characteristics such as coherency, alignment, size restrictions, variability of
starting address and size, the system action on access of the area, and so on. This chapter gives details on some of those
characteristics, and other chapters define the other characteristics. The variable characteristics of these areas are re-
ported to the OS via properties in the OF device tree.

3.1 Address Areas

The following is a definition of the five areas and some of their characteristics:

 System Memory refers to memory which forms a coherency domain with respect to the PA processor(s) that execute
application software on a system. See Section 5.2‚ “Memory Architecture‚” on page 95 for details on aspects of co-
herence. System Memory Spaces refer to one or more pieces that together form the System Memory. System Mem-
ory areas may be marked with a special value of the “status” property of “reserved” which means that this
memory is not for general use by the base OS, but may be reserved for use by OS extensions (see Section 5.2.8‚
“Reserved Memory‚” on page 100). Some System Memory areas may be preservable across boots (see
Section 2.1.3.6.12‚ “Persistent Memory and Memory Preservation Boot (Storage Preservation Option)‚” on
page 49).

 Peripheral Memory Space refers to a range of real addresses which are assigned to the Memory Space of a Host
Bridge (HB) or System Bus attached IOA, and which are sufficient to contain all of the Load and Store address
space requirements of all IOAs in the Memory Space of the I/O bus that is generated by the HB or which are encom-
passed by the System Bus attached IOA. The frame buffer of a graphics IOA is an example of a device which may
reside in the Peripheral Memory Space. Due to space limitations in the address space below 4 GB, the HBs of plat-
forms may split this space into two pieces; one to support the IOAs that need to have their addresses below 4 GB
(because they only support 32-bit addresses) and another to support the IOAs that can have their addresses above 4
GB (because they support 64-bit addresses). In addition to a Memory Space, many types of I/O buses have a sepa-
rate address space called the I/O Space. An HB which generates such I/O buses must decode another address range,
the Peripheral I/O Space.1

 Peripheral I/O Space refers to a range of real addresses which are assigned to the I/O Space of an HB or System Bus
attached IOA and which are sufficient to contain all of the Load and Store address space requirements of all the
IOAs in the I/O Space of the I/O bus that is generated by the HB or which are encompassed by the System Bus IOA.
A keyboard controller is an example of an IOA which may require Peripheral I/O Space addresses.

 System Control Area (SCA) refers to a range of addresses which contains all reserved addresses (architected or unar-
chitected) which are not part of one of the other defined address spaces. For example, the system ROM(s), unarchi-
tected platform-dependent addresses used by firmware and Run-Time Abstraction Services for control of the
platform, and architected entities like interrupt controller addresses when those addresses are not in another defined
address space.

1.A peripheral space may also include a “configuration” address space. The configuration space is abstracted by a Run-Time Abstraction Service (for
example, see Section 7.3.4‚ “PCI Configuration Space‚” on page 133).

60 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

 Undefined refers to areas that are not one of the above four areas. The result of accessing one of these areas is de-
fined in Section 10.2.1.1‚ “Error Indication Mechanisms‚” on page 284 as an invalid address error.

In addition to the above definitions, it is convenient, relative to I/O operations, to define a Partitionable Endpoint. A
Partitionable Endpoint (PE) is an I/O subtree that can be treated as a unit for the purposes of partitioning and error re-
covery. A PE may be a single or multi-function IOA, a function of a multi-function IOA, or multiple IOAs (possibly in-
cluding switch and bridge structures above the multiple IOAs). See Section 4.1‚ “I/O Topologies and Endpoint
Partitioning‚” on page 71 for more information about PEs.

In describing the characteristics of these various areas, it is convenient to have a nomenclature for the various boundary
addresses. Table 5‚ “Map Legend‚” on page 60 defines the labels which are used in this document when describing the
various address ranges. Note that “bottom” refers to the smallest address of the range and “top” refers to the largest ad-
dress.

Table 5. Map Legend

Label Description

BIOn
Bottom of Peripheral I/O Space for HBn (n=0, 1, 2,...). The OF property “ranges” in the OF device tree for HBn contains
the value of BIOn.

TIOn

Top of Peripheral I/O Space for HBn (n=0, 1, 2,...). The value of TIOn can be determined by adding the size of the area as
found in the OF property “ranges” in the OF device tree for HBn to the value of BIOn found in that same property and
then subtracting 1.

This architecture allows at most one Peripheral I/O area per HB which may be above or below 4 GB. For any given n, BIOn
to TIOn cannot span from the first 4 GB of address space to the second.

BPMn,m
Bottom of Peripheral Memory Space m (m=0,1) for HBn (n=0, 1, 2,...), as viewed from the system side of HBn. The OF
property “ranges” in the OF device tree for HBn contains the value of BPMn,m.

BPM’n,m
Bottom of Peripheral Memory Space m (m=0,1) for HBn (n=0, 1, 2,...), as viewed from the I/O side of the HBn. That is, this
is the value to which BPMn,m gets translated to as it passes through the HB. The OF property “ranges” in the OF device
tree for HBn contains the value of BPM’n,m. BPM’n,m may be equal to BPMn,m or may not be.

TPMn,m

Top of Peripheral Memory Space m (m=0,1) for HBn (n=0, 1, 2,...) as viewed from the system side of HBn. The Peripheral
Memory Space address range is in the OF device tree, as indicated by the “ranges” property in the node in the OF device
tree for HBn; BPMn,m to TPMn,m. The value of TPMn,m can be determined by adding the size of the area as found in the
OF property “ranges” in the OF device tree for HBn to the value of BPMn,m found in that same property and then
subtracting 1.

This architecture allows for one or two Peripheral Memory areas per HB (hence, m=0,1). A Peripheral Memory area may be
above 4 GB or below. For any given n, BPMn,m to TPMn,m cannot span from the first 4 GB of address space to the second.

TPM’n,m

Top of Peripheral Memory Space m (m=0,1) for HBn (n=0, 1, 2,...) as viewed from the I/O side of HBn. The value of
TPM’n,m can be calculated from the values in the “ranges” property as was TPMn,m. In some cases TPM’n,m is required
to be equal to TPMn,m and in some cases it is not required to be equal. For any given n, BPM’n,m to TPM’n,m cannot span
from the first 4 GB of address space to the second.

BSCAn
Bottom of System Control Area. Corresponding top of the System Control Area is TSCAn. This architecture allows for one
or two SCAs per platform. The SCA below 4 GB is at the top (largest addresses) of the lower 4 GB range.

TSCAn
Top of System Control Area. For any given n, BSCAn to TSCAn cannot span from the first 4 GB of address space to the
second.

BSMn
Bottom of System Memory Space n (n=0, 1, 2,...); BSM0 = 0. The OF property “reg” in the OF device tree for the Memory
Controller’s node contains the value of BSMn.

TSMn
Top of System Memory Space n (n=0, 1, 2,...). The value of TSMn can be determined by adding the value of BSMn as found
in the Memory Controller’s node of the OF device tree to the value of the size of that area as found in the same property, and
then subtracting 1.

3.2  Address Decoding (or Validating) and Translation 61

LoPAPR, Version 1.1 (March 24, 2016)

The figures found in Section 3.2.3‚ “Example Address Maps‚” on page 67, show examples of the areas referenced by
the labels in Table 5.

The OS and other software should not use fixed addresses for these various areas. A given platform may, however,
make some of these addresses unchangeable. Each of these areas is defined in the OF device tree in the node of the ap-
propriate controller. This gives platforms the most flexibility in implementing the System Address Map to meet their
market requirements.

R2–3.1–1. All unavailable addresses in the Peripheral Memory and Peripheral I/O Spaces must be conveyed in the
OF device tree.

a. A “device_type” of “reserved” must be used to specify areas which are not to be used by software
and not otherwise reported by OF.

b. Shadow aliases must be communicated as specified by the appropriate OF bus binding.

R2–3.1–2. There must not be any address generated by the system which causes the system to hang.

Hardware Implementation Note: The reason for Requirement R2–3.1–1 is to reserve address space for registers used
only by the firmware or addresses which are used only by the hardware.

3.2 Address Decoding (or Validating) and Translation

In general, different components in the hardware are going to decode the address ranges for the various areas. In some
cases the component may be required to translate the address to a new address as it passes through the component. The
requirements, below, describe the various system address decodes (or validating) and, where appropriate, what address
transforms take place outside of the processor.

The HB requirements in this section refer to HBs which are defined by this architecture. Currently, there is only one
HB defined by this architecture, and that is the PHB. HBs which implement I/O buses other than those defined by this
architecture may or may not require changes to this addressing model.

The reader may want to reference the example address maps found in Section 3.2.3‚ “Example Address Maps‚” on
page 67, while reading through the requirements of this section.

3.2.1 Load and Store Address Decoding and Translation

Load and Store operations may be targeted at System Memory or I/O. The latter is called Memory Mapped I/O
(MMIO).

R2–3.2.1–1. Processor Load and Store operations must be routed and translated as shown in Table 6‚ “Processor
Bus Address Space Decoding and Translation‚” on page 62.

BTTAn,m
Bottom of TCE Translatable Address space m (m=0, 1, 2,...) for HBn (n=0, 1, 2,...) as viewed from the I/O side of HBn. This
is the bottom of an address range that is translatable by a Translation Control Entry (TCE) table. The value of BTTAn,m is
obtained from the “ibm,dma-window” or “ibm,my-dma-window” property in the OF device tree.

TTTAn,m

Top of TCE Translatable Address space m (m=0, 1, 2,...) for HBn (n=0, 1, 2,...) as viewed from the I/O side of HBn. This is
the top of an address range that is translatable by a TCE table. The range BTTAn,m to TTTAn,m is not accessible by more
than one PE for any given “n”. The value of TTTAn,m can be determined by adding the size of the area as found in the OF
property “ibm,dma-window” or “ibm,my-dma-window” in the OF device tree for HBn to the value of BTTAn,m
found in that same property and then subtracting 1.

Table 5. Map Legend (Continued)

Label Description

62 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

R2–3.2.1–2. There must be no architected address spaces (Peripheral Memory, Peripheral I/O, SCA, or System
Memory) which span the (4GB - 1) to 4 GB boundary.

R2–3.2.1–3. The following are the System Control Area requirements:

a. The platform must have at most one System Control Area below 4 GB and at most one per platform or per
NUMA node at or above 4 GB.

b. The System Control Area must not overlap with the System Memory Space(s), Peripheral Memory
Space(s), or the Peripheral I/O Space(s) in the platform.

R2–3.2.1–4. The following are the System Memory Space requirements:

a. Each platform must have at least one System Memory Space.

b. The System Memory Space(s) must not overlap with the Peripheral I/O Space(s), Peripheral Memory
Space(s), the System Control Area, or other System Memory Space(s) in the platform.

c. The first System Memory Space must start at address 0 (BSM0 = 0), must be at least 128 MB before a sec-
ond System Memory Space is added and must be contiguous.

d. Each of the additional (optional) System Memory Space(s) must start on a 4 KB boundary.

e. Each of the additional (optional) System Memory Space(s) must be contiguous within itself.

f. There must be at most eight System Memory Spaces below BSCA0 and at most eight at or above 4 GB.

g. If multiple System Memory Spaces exist below 4 GB, then they must not have any Peripheral Memory or
Peripheral I/O Spaces interspersed between them and if multiple System Memory Spaces exist above 4

Table 6. Processor Bus Address Space Decoding and Translation

Address Range at
Processor Bus

Route and Translation Requirements Other Requirements and Comments

BSCAn to TSCAn
(n=0, 1)

To ROM controller or to a platform dependent area. Translation dependent on
implementation.

Areas other than ROM are reserved for
firmware use, or have their address
passed by the OF device tree.

BIOn to TIOn
(n=0,1, 2,...)

Send through the HB to the I/O space of the I/O bus, translating by subtracting the value
of BIO from each address in this range (that is, translate BIO to TIO to be at 0 to (TIO -
BIO) on the I/O side).

BPMn,m to TPMn,m
(n=0, 1, 2,...)

(m=0, 1)

Send through HBn to the Memory Space of the I/O bus.

 If BPMn,m < 4 GB, do not translate an address in the BPMn,m to TPMn,m range as
the transaction passes through the bridge (that is, BPM’n,m = BPMn,m and
TPM’n,m = TPMn,m).

 If BPMn,m is at or above 4 GB then if BPM’n,m is to be below 4 GB (for 32-bit
IOAs) then translate addresses in the BPMn,m to TPMn,m range so that this address
range becomes BPM’n,m to TPM’n,m (where BPM’n,m and TPM’n,m are less than
4 GB) as the transaction passes through the bridge, otherwise do not translate an
address in the BPMn,m to TPMn,m range as the transaction passes through the
bridge (for 64-bit IOAs which are configured at or above 4 GB).

Platforms that need to support both 32-bit
capable and 64-bit capable IOAs and do
not want to configure the 64-bit capable
IOAs below 4 GB need to support two
Peripheral Memory spaces per HB.

BSMm to TSMm
(m>0)

To System Memory Space m, no translation.
Can be at or above 4 GB, or below
BSCA0.

0 to TSM0 To System Memory Space 0, no translation

All other addresses See Section 10.2.1.1‚ “Error Indication Mechanisms‚” on page 284. Access is to undefined space.

3.2  Address Decoding (or Validating) and Translation 63

LoPAPR, Version 1.1 (March 24, 2016)

GB, then they must not have any Peripheral Memory or Peripheral I/O Spaces interspersed between
them.

R2–3.2.1–5. The following are the Peripheral Memory Space requirements:

a. The Peripheral Memory Space(s) must not overlap with the System Memory Space(s), Peripheral I/O
Space(s), the System Control Area, or other Peripheral Memory Space(s) in the platform.

b. The size of each Peripheral Memory Space (TPMn,m - BPMn,m + 1) must be a power of two for sizes up
to and including 256 MB, with the minimum size being 1 MB, and an integer multiple of 256 MB plus a
power of two which is greater than or equal to 1 MB for sizes greater than 256 MB (for example, 1 MB,
2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 128 MB, 256 MB, (256 + 1) MB, (256 + 2) MB,...,
(512 + 1) MB,...).

c. The boundary alignment for each Peripheral Memory Space must be an integer multiple of the size of the
space up to and including 256 MB and must be an integer multiple of 256 MB for sizes greater than
256 MB.

d. There must be at most two Peripheral Memory Spaces per HB.

e. If the Peripheral Memory Space for a HB is below 4 GB, then the address must not be translated as it
passes through the HB from the system side to the I/O side of the HB (see Table 6‚ “Processor Bus Ad-
dress Space Decoding and Translation‚” on page 62).

f. If the Peripheral Memory Space for a HB is above 4 GB, then the address may or may not be translated as
it passes through the HB from the system side to the I/O side of the HB, but if it is translated, then the
translated address range must be aligned on a boundary which is an integer multiple of the size of the Pe-
ripheral Memory Space.

Implementation Note: Relative to Requirement R2–3.2.1–5f, not all OSs can support BPM’ to TPM’ being above 4 GB.

R2–3.2.1–6. The following are the Peripheral I/O Space requirements:

a. The Peripheral I/O Space(s) must not overlap with the System Memory Space(s), Peripheral Memory
Space(s), the System Control Area, or other Peripheral I/O Space(s) in the platform.

b. The size of each Peripheral I/O Space (TIOn - BIOn + 1) must be a power of two with the minimum size
being 64 KB (that is, sizes of 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB,
32 MB, 64 MB, and so on, are acceptable).

c. The boundary alignment for each Peripheral I/O Space must be an integer multiple of the size of the space.

d. There must be at most one Peripheral I/O Space per HB.

R2–3.2.1–7. All System Memory must be accessible via DMA operation from all IOAs in the system, except where
LPAR requirements limit accessibility of an IOA belonging to one partition to the System Memory of another
partition.

Hardware Implementation Notes: Memory controller and memory card designers who are designing for 64-bit
platforms should be careful to consider that the amount of I/O space below 4 GB is reduced by the amount of
System Memory space below 4 GB. Therefore it may be prudent to design the hardware to allow minimization of
the amount of System Memory below 4 GB, in order to allow maximization of the space for 32-bit Peripheral
Memory and Peripheral I/O spaces below 4 GB.

The beginning addresses and sizes of the Peripheral I/O Space(s) and Peripheral Memory Space(s), are controlled by
firmware. Information about the address map is reported by the OF Device Tree or, for items that can change, through
RTAS calls (for example, for Dynamic Reconfiguration, through the ibm,configure-connector RTAS call).

64 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

Certain System Memory addresses must be reserved in all systems for specific uses (see Section 5.1.2‚ “PA Processor
Differences‚” on page 93 and Section 5.2.8‚ “Reserved Memory‚” on page 100 for more information).

3.2.2 DMA Address Validation and Translation

Figure 5‚ “PE DMA Address Validation and Translation in the Platform‚” on page 64 is a representation of how the
validation and translation mechanism works, along with a description of the steps which are involved. At the core of
the translation mechanism is the Translation and Control Entry (TCE) table.

Figure 5. PE DMA Address Validation and Translation in the Platform

Step 1 includes:

 Validate that the PE is allowed to use that address, including that the address is not outside of the translatable range for the PE (Note 1).

Step 2 includes:

 Lookup the TCE for the transaction, using the appropriate TCE table for the PE, using the high order (page address) bits of the DMA address, as
the index into the table.

 Validate that the Page Mapping and Control bits in the TCE accessed, indicate a valid TCE and that the type of operation matches the bits, other-
wise signal an invalid address error (See Section 10.2.1.1‚ “Error Indication Mechanisms‚” on page 284),

 Replace the high-order (page address) bits of the DMA address with the Real Page Number (RPN) bits from the TCE. The number of low order
bits used from the original DMA address in the new translated address is 12 bits for a 4 KB I/O page size. This is shown, below, for a 32-bit to
64-bit address translation with 4 KB I/O page size.

Step 3 includes:

 Validate or assure that the translated address does not re-access the same HB or another HB (Note 1). If the firmware controls the TCE content and
the address is translated by a TCE in Step 2, then the firmware can assure this.

 Do any other validation required by the platform (Note 1).

Notes:

1. For the types of errors signalled on validation or translation failures, see the requirements detailed in this chapter.

I/O bus DMA
address

Validated and
Translated
I/O DMA
address

Step 1:

Validate I/O Bus
DMA address

Step 2:

Translate the
validated I/O bus

DMA address

Step 3:

Validate/assure
the translated I/O
bus DMA address

(from TCE)

TCE
Translate

Table

Least significant 12 bits of the addr (addr within page)

2
Page Mapping and Control

20
Page addr

12

New page addr

Up to 52
12

DMA Address
Before translation

DMA Address
After translation

3.2  Address Decoding (or Validating) and Translation 65

LoPAPR, Version 1.1 (March 24, 2016)

3.2.2.1 DMA Addressing Requirements

R2–3.2.2.1–1. Upon receiving a DMA transaction to the Memory Space of an I/O bus, the HB must perform the
validation and translation steps, as indicated in Figure 5‚ “PE DMA Address Validation and Translation in the
Platform‚” on page 64 and in Table 7‚ “DMA Address Decoding and Translation (I/O Bus Memory Space)‚”
on page 65.

R2–3.2.2.1–2. An HB must not act as a target for operations in the I/O Space of an I/O bus.

3.2.2.2 DMA Address Translation and Control via the TCE Mechanism

This architecture defines a Translation and Control Entry (TCE) mechanism for translating and controlling DMA ad-
dresses. There are several reasons for doing such translations, including:

 To provide a mechanism for increasing the number of addressing bits for some IOAs. For example, IOAs which are
only capable of accessing up to 4 GB via DMA need a way to access above that limit when used in 64-bit addressing
systems and the addressing requirements go beyond 4 GB.

 To provide a redirection mechanism. A redirection mechanism is needed, even for 64-bit addressing capable IOAs,
in order to provide the protection and indirection benefits provided by such a translation.

The description of how the access to the TCE table occurs, for the translation of a 32-bit address and using a 4 KB I/O
page size, follows. The most significant 20 bits of the address (for example, AD[31:12], for PCI) is used as an offset
into the TCE table for the PE to select the TCE. Thus, the first TCE maps the addresses BTTAn to
BTTAn + 0x00000FFF of the Memory Space of the I/O bus; the second entry controls translation of addresses
BTTAn + 0x00001000 to BTTAn + 0x00001FFF, and so on. The translated real system address is generated as follows.
The Real Page Number (RPN) from the TCE replaces the 20 most significant bits of the address from the I/O bus. The
least significant 12 bits from the I/O bus address are used as-is for the least significant 12 bits of the new address.

Thus, the TCE table entries have a one-to-one correspondence with the first n pages of the Memory Space of the I/O
bus starting at BTTAn that corresponds to the TCE table. The size of the Memory address space of the I/O bus that can

Table 7. DMA Address Decoding and Translation (I/O Bus Memory Space)

Address Range at I/O
Side of HBn

Route and Translation Requirements Other Requirements and Comments

BPM’n,m to TPM’n,m
(n=0, 1, 2,...)

(m=0, 1)
(note 1)

HB does not respond or responds and signals an invalid address error (See Section 10.2.1.1‚
“Error Indication Mechanisms‚” on page 284).

BTTAn,m to TTTAn,m
(n=0, 1, 2,...)
(m=0, 1, 2,...)

(note 1)

If the PE that is trying to access this space is allowed to access this space, then translate via
the TCE table (as specified in Section 3.2.2.2‚ “DMA Address Translation and Control via the
TCE Mechanism‚” on page 65) and pass the translated address through the HB, otherwise
generate an invalid address or TCE extent error, as appropriate (See Section 10.2.1.1‚ “Error
Indication Mechanisms‚” on page 284).

See Notes 2, 3

All other addresses
Generate an invalid address error (See Section 10.2.1.1‚ “Error Indication Mechanisms‚” on
page 284).

See Note 3

Notes:
1. n = # of HB Viewing or Receiving the Operation, m = # of instance within the HB.
2. After translation of the address, if the translated address would re-access the same HB or another HB (for example, is in the Peripheral Memory Space or
Peripheral I/O Space of that HB or another HB), then the HB generates an invalid address error (See Section 10.2.1.1‚ “Error Indication Mechanisms‚” on
page 284).
3. If the Enhanced I/O Error Handling (EEH) option is implemented and enabled, then on an error, the PE will enter the DMA Stopped State (See Section 4.4.1‚
“Enhanced I/O Error Handling (EEH) Option‚” on page 85).

66 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

be mapped to the system address space for a particular HB depends on how much System Memory is allocated to the
TCE table(s) and on how much mappable I/O bus Memory Space is unavailable due to IOAs which are mapped there.

Each TCE also contains two control bits. These are used to identify whether that page is mapped to the system address
space, and if the page is mapped, whether it is mapped read/write, read only, or write only. See the Table 8‚ “TCE Def-
inition‚” on page 66 for a definition of these control bits.

The TCE table is the analogue of the system translation tables. However, unlike the system translation tables, the dy-
namic page faulting of memory during an I/O operation is not required (the page fault value, 0b00, in the TCE Page
Mapping and Control field is used for error detection; that is, access to an invalid TCE by the I/O creates an error indi-
cation to the software).

The size and location of the HB’s TCE table is set up and changed only by the firmware.

R2–3.2.2.2–1. The platform must provide the “64-bit-addressing” and “ibm,extended-address”
OF properties in all HB nodes of the device tree and the “ibm,extended-address” OF property in the
root node of the OF device tree.

R2–3.2.2.2–2. The bits of the TCE must be implemented as defined in Table 8‚ “TCE Definition‚” on page 66.

R2–3.2.2.2–3. If the address that the HB would use to access the TCE table (in order to get the TCE) would access
outside of the TCE table, then the HB must create a TCE extent error (See Section 10.2.1.1‚ “Error Indication
Mechanisms‚” on page 284).

R2–3.2.2.2–4. Enough bits must be implemented in the TCE so that DMA IOAs are able to access all System Mem-
ory addresses.

R2–3.2.2.2–5. Each PE must have its own independent TCE table.

R2–3.2.2.2–6. Any non-recoverable error while an HB is accessing its TCE table must result in a TCE access error;
the action to be taken by the HB being defined under the TCE access error in Section 10.2.1.1‚ “Error Indica-
tion Mechanisms‚” on page 284.

Table 8. TCE Definition

Bits Description

0 to 51

RPN: If the page mapping and control field of the TCE indicate anything other than page
fault, then these bits contain the Real Page Number (RPN) to which the bus address is
mapped in the system address space. In certain HB implementations, all of these bits may
not be required, however enough bits must be implemented to match the largest real
address in the platform.

52 to 61 Reserved for future use.

62 to 63

Page Mapping and Control: These bits define page mapping and read-write authority.
They are coded as follows:
00 Page fault (no access)
01 System address space (read only)
10 System address space (write only)
11 System address space (read/write)

Code point 0b00 signifies that the page is not mapped. It must be used to indicate a page
fault error. Hardware must not change its state based on the value in the remaining bits
of a TCE when code point 0b00 is set in this field of the TCE.

For accesses to system address space with an invalid operation (write to a read-only page
or read to a write-only page), the HB generates an error. See Section 10.2.1.1‚ “Error
Indication Mechanisms‚” on page 284 for more information about error handling.

3.2  Address Decoding (or Validating) and Translation 67

LoPAPR, Version 1.1 (March 24, 2016)

R2–3.2.2.2–7. In implementations which cache TCEs, if software changes a TCE, then the platform must perform
the following steps: First, if any data associated with the page represented by that TCE is in an I/O bridge
cache or buffer, the hardware must write the data, if modified, to System Memory. Secondly, it must invali-
date the data in the cache. Finally, it must invalidate the TCE in the cache.

R2–3.2.2.2–8. Neither an IOA nor an HB must ever modify a TCE.

R2–3.2.2.2–9. If the page mapping and control bits in the TCE are set to 0b00, the hardware must not change its
state based on the values of the remaining bits of the TCE.

R2–3.2.2.2–10. The OS must initialize all its TCEs upon receiving control from the platform.

3.2.3 Example Address Maps

Figure 6‚ “Example Address Map: One PHB, Peripheral Memory and Peripheral I/O Spaces below 4 GB‚” on page 68
shows how to construct a simple address map with one PHB and with Peripheral Memory, Peripheral I/O, and SCA
spaces below 4 GB.

Figure 7‚ “Example Address Map: Four PHBs, all Peripheral Memory and Peripheral I/O Spaces above 4GB‚” on
page 69 shows how to construct the address map with Peripheral Memory, Peripheral I/O, and SCA spaces above
4 GB. This configuration allows some overlap of the System Memory space and 32-bit I/O bus memory space (with
the resulting loss of the TCE table in the overlap), while moving some of the SCA spaces above 4 GB. Several things
can be noted from this configuration:

 I/O bus memory areas can overlap System Memory addresses (see memory space of PHB0). However, significant
overlap of these I/O bus memory areas and the TCE table may significantly reduce the amount of TCE table space
that is available for mapping I/O memory space to system address space (a potential performance impact).

 The System Memory which is above 4GB is shown starting at 4GB. This architecture also allows this to be pushed
further up, with Peripheral Memory, Peripheral I/O, and SCAs existing above 4 GB and below the System Memory
areas.

 BPM’n,m to TPM’n,m spaces for different PHBs (different “n”) are allowed to occur at the same memory addresses
in the various memory spaces of different I/O buses, but are not required to do so (and are not shown as the same in
the figure). Implementations are likely have BPM’n,m to TPM’n,m at the same address range for all “n” when the
BPM’n,m to TPM’n,m ranges are below 4 GB.

68 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 6. Example Address Map: One PHB, Peripheral Memory and Peripheral I/O Spaces below 4 GB

4 GB

BSCA0

Peripheral
I/O Space 0

System
Control Area

TIO0

BIO0

Peripheral
Memory
Space 0

TPM0,0

System
Memory

TSM0

0

I/O Space
for PHB0

dev’s

Memory
Space for

PHB0 dev’s

BSM1

BPM0,0

TSM1

Processor View PCI Host Bridge 0 View
Memory Space I/O Space

System
Memory
through

TCE
translation

= Addresses which are invalid for Load and Store

= PHB does not respond

System
Memory

Note: The address range that is
translatable via a TCE table to
access System Memory, is
determined by the platform and
is reported in the OF device tree
(“ibm,dma-window”
property), with each
Partitionable Endpoint (PE)
getting its own DMA window

TSCA0

= PHB does not respond or responds and signals and error

BTTA0

TTTA0

TPM’0,0

BPM’0,0

3.2  Address Decoding (or Validating) and Translation 69

LoPAPR, Version 1.1 (March 24, 2016)

Figure 7. Example Address Map: Four PHBs, all Peripheral Memory and Peripheral I/O Spaces above 4GB

PM0,0

System
Memory

PM2,0
TPM2,0

BPM2,0

= Addresses which are invalid for Load and Store = PHB does not respond

Processor View PCI Host Bridge 0 View
Memory Space I/O SpaceI/O Space Memory Space

PCI Host Bridge 2 View

Legend:

PM = Peripheral Memory space, PI = Peripheral I/O space

PM1,0

PCI Host Bridge 1 View
Memory Space I/O Space

System
Memory
through

TCE trans-
lation

(see note)

I/O Space Memory Space
PCI Host Bridge 3 View

PM3,0
TPM3,0

BPM3,0

System
Memory

SCA’

SCA

PI2

PI3

= PHB does not respond or responds and signals an error

PI0

PI1

System
Memory
through

TCE trans-
lation

(see note)

System
Memory
through

TCE trans-
lation

(see note)

System
Memory
through

TCE trans-
lation

(see note)

Note: The address range that is translatable via a TCE table to access System Memory, is determined by the platform and is reported in the OF device
tree (“ibm,dma-window” property), with each Partitionable Endpoint (PE) getting its own DMA window

PM0,1
TPM0,1
BPM0,1

PM1,1
TPM1,1

BP1,1

PM2,1

PM3,1

4 GB

BSCA0

TPM0,0

TSM0

0

BPM0,0

BSM1

TSM1

TPM1,0
BPM1,0

TIO2
BIO2

TIO3
BIO3

TIO0
BIO0

TIO1
BIO1

TPM2,1
BPM2,1

TPM3,1
BPM3,1

70 Address Map

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

4 I/O Bridges and Topologies

There will be at least one bridge in a platform which interfaces to the system interconnect on the processor side, and in-
terfaces to the Peripheral Component Interface (PCI) bus on the other. This bridge is called the PCI Host Bridge
(PHB). The architectural requirements on the PHB, as well as other aspects of the I/O structures, PCI bridges, and PCI
Express switches are defined in this chapter.

4.1 I/O Topologies and Endpoint Partitioning

As systems get more sophisticated, partitioning of various components of the system will be used, in order to obtain
greater Reliability, Availability, and Serviceability (RAS). For example, Dynamic Reconfiguration (DR) allows the re-
moval, addition, and replacement of components from an OS’s pool of resources, without having to stop the operation
of that OS. In addition, Logical Partitioning (LPAR) allows the isolation of resources used by one OS from those used
by another. This section will discuss aspects of the partitioning of the I/O subsystem. Further information on DR and
LPAR can be found in Chapter 13, “Dynamic Reconfiguration (DR) Architecture,” on page 355 and Chapter 14, “Log-
ical Partitioning Option,” on page 385.

To be useful, the granularity of assignment of I/O resources to an OS needs to be fairly fine-grained. For example, it is
not generally acceptable to require assignment of all I/O under the same PCI Host Bridge (PHB) to the same partition
in an LPARed system, as that restricts configurability of the system, including the capability to dynamically move re-
sources between partitions1. To be able to partition I/O adapters (IOAs), groups of IOAs or portions of IOAs for DR or
to different OSs for LPAR will generally require some extra functionality in the platform (for example, I/O bridges and
firmware) in order to be able to partition the resources of these groups, or endpoints, while at the same time preventing
any of these endpoints from affecting another endpoint or getting access to another endpoint’s resources. These end-
points (that is, I/O subtrees) that can be treated as a unit for the purposes of partitioning and error recovery will be
called Partitionable Endpoints (PEs)2 and this concept will be called Endpoint Partitioning.

A PE is defined by its Enhanced I/O Error Handling (EEH) domain and associated resources. The resources that need
to be partitioned and not overlap with other PE domains include:

 The Memory Mapped I/O (MMIO) Load and Store address space which is available to the PE. This is accomplished
by using the processor’s Page Table mechanism (through control of the contents of the Page Table Entries) and not
having any part of two separate PEs’ MMIO address space overlap into the same 4 KB system page. Additionally,
for LPAR environments, the Page Table Entries are controlled by the hypervisor.

 The DMA I/O bus address space which is available to the PE. This is accomplished by a hardware mechanism (in a
bridge in the platform) which enforces the correct DMA addresses, and for LPAR, this hardware enforcement is set
up by the hypervisor. It is also important that a mechanism be provided for LPAR such that the I/O bus addresses can
further be limited at the system level to not intersect; so that one PE cannot get access to a partition’s memory to
which it should not have access. The Translation Control Entry (TCE) mechanism, when controlled by the firmware

1.Dynamic LPAR or DLPAR is defined by the Logical Resource Dynamic Reconfiguration (LRDR) option. See Section 13.7‚ “Logical Resource Dy-
namic Reconfiguration (LRDR)‚” on page 377 for more information. Assignment of all IOAs under the same PHB to one partition may be acceptable
if that I/O is shared via the Virtual I/O (VIO) capability defined in Chapter 17, “Virtualized Input/Output,” on page 597.

2.A “Partitionable Endpoint” in this architecture is not to be confused with what the PCI Express defines as an “endpoint.” PCI Express defines an end-
point as “a device with a Type 0x00 Configuration Space header.” That means PCI Express defines any entity with a unique Bus/Dev/Func # as an end-
point. In most implementations, a PE will not exactly correspond to this unit.

72 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

(for example, a hypervisor), is such a mechanism. See Section 3.2.2.2‚ “DMA Address Translation and Control via
the TCE Mechanism‚” on page 65 for more information on the TCE mechanism.

 The configuration address space of the PE, as it is made available to the device driver. This is accomplished through
controlling access to a PE’s configuration spaces through Run Time Abstraction Services (RTAS) calls, and for
LPAR, these accesses are controlled by the hypervisor.

 The interrupts which are accessible to the PE. An interrupt cannot be shared between two PEs. For LPAR environ-
ments, the interrupt presentation and management is via the hypervisor.

 The error domains of the PE; that is, the error containment must be such that a PE error cannot affect another PE or,
for LPAR, another partition or OS image to which the PE is not given access. This is accomplished though the use of
the Enhanced I/O Error Handling (EEH) option of this architecture. For LPAR environments, the control of EEH is
through the hypervisor via several RTAS calls.

 The reset domain: A reset domain contains all the components of a PE. The reset is provided programmatically and
is intended to be implemented via an architected (non implementation dependent) method.1 Resetting a component
is sometimes necessary in order to be able to recover from some types of errors. A PE will equate to a reset domain,
such that the entire PE can be reset by the ibm,set-slot-reset RTAS call. For LPAR, the control of the reset from the
RTAS call is through the hypervisor.

In addition to the above PE requirements, there may be other requirements on the power domains. Specifically, if a PE
is going to participate in DR, including DLPAR,2 then either the power domain of the PE is required to be in a power
domain which is separate from other PEs (that is, power domain, reset domain, and PE domain all the same), or else the
control of that power domain and PCI Hot Plug (when implemented) of the contained PEs will be via the platform or a
trusted platform agent. When the control of power for PCI Hot Plug is via the OS, then for LPAR environments, the
control is also supervised via the hypervisor.

It is possible to allow several cooperating device drivers to share a PE. Sharing of a PE between device drivers within
one OS image is supported by the constructs in this architecture. Sharing between device drivers in different partitions
is beyond the scope of the current architecture.

A PE domain is defined by its top-most (closest to the PHB) PCI configuration address (in the terms of the RTAS calls,
the PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr), which will be called the PE configuration address in
this architecture, and encompasses everything below that in the I/O tree. The top-most PCI bus of the PE will be called
the PE primary bus. Determination of the PE configuration address is made as described in Table 9‚ “Conventional
PCI Express PE Support Summary‚” on page 72.

A summary of PE support can be found in Table 9‚ “Conventional PCI Express PE Support Summary‚” on page 72.
This architecture assumes that there is a single level of bridge within a PE if the PE is heterogeneous (some Conven-
tional PCI Express), and these cases are shown by the shaded cells in the table.

1.For example, through a Standard Hot Plug Controller in a bridge, or through the Secondary Bus Reset bit in the Bridge Control register of a PCI
bridge or switch.

2.To prevent data from being transferred from one partition to another via data remaining in an IOA’s memory, most implementations of DLPAR will
require the power cycling of the PE after removal from one partition and prior to assigning it to another partition.

Table 9. Conventional PCI Express PE Support Summary

Function IOA Type
PE Primary Bus

PCI Express

PE determination
(is EEH supported for the IOA?)

All Use the ibm,read-slot-reset-state2 RTAS call.

4.1  I/O Topologies and Endpoint Partitioning 73

LoPAPR, Version 1.1 (March 24, 2016)

R1–4.1–1. All platforms must implement the ibm,get-config-addr-info2 RTAS call.

R1–4.1–2. All platforms must implement the ibm,read-slot-reset-state2 RTAS call.

R1–4.1–3. For the EEH option: The resources of one PE must not overlap the resources of another PE, including:

 Error domains

 MMIO address ranges

 I/O bus DMA address ranges (when PEs are below the same PHB)

 Configuration space

 Interrupts

R1–4.1–4. For the EEH option: All the following must be true relative to a PE:

a. An IOA function must be totally encompassed by a PE.

b. All PEs must be independently resetable by a reset domain.

Architecture Note: The partitioning of PEs down to a single IOA function within a multi-function IOA requires a way
to reset an individual IOA function within a multi-function IOA. For PCI, the only mechanism defined to do this
is the optional PCI Express Function Level Reset (FLR). A platform supports FLR if it supports PCI Express and
the partitioning of PEs down to a single IOA function within a multi-function IOA. When FLR is supported, if the
ibm,set-slot-reset RTAS call uses FLR for the Function 1/Function 0 (activate/deactivate reset) sequence for an
IOA function, then the platform provides the “ibm,pe-reset-is-flr” property in the function’s node of
the OF device tree, See Section 7.3.11.2‚ “ibm,set-slot-reset‚” on page 182 for more information.

R1–4.1–5. The platform must own (be responsible for) any error recovery for errors that occur outside of all PEs
(for example in switches and bridges above defined PEs).

PE reset All
PE reset is required for all PEs and is activated/deactivated via the ibm,set-slot-reset RTAS call.
The PCI configuration address used in this call is the PE configuration address (the reset domain
is the same as the PE domain).

ibm,get-config-addr-info2
RTAS call

PCI
Express

Required to be implemented.

Top of PE domain determinationa

(How to obtain the PE configuration
address)

PCI
Express

Use the ibm,get-config-addr-info2 RTAS call to obtain PE configuration address.

Shared PE determinationb

(is there more than one IOA
per PE?)

PCI
Express

Use the ibm,get-config-addr-info2 RTAS call.

PEs per PCI Hot Plug domain and
PCI Hot Plug control point

PCI
Express

May have more than one PE per PCI Hot Plug DR entity, but a PE will be entirely encompassed
by the PCI Hot Plug power domain. If more than one PE per DR entity, then PCI Hot Plug control
is via the platform or some trusted platform agent.

a. PE configuration address is used as input to the RTAS calls which are used for PE control, namely: ibm,set-slot-reset, ibm,set-eeh-option,
ibm,slot-error-detail, ibm,configure-bridge

b. If device driver is written for the shared PE environment, then this may be a don’t care.

Table 9. Conventional PCI Express PE Support Summary (Continued)

Function IOA Type
PE Primary Bus

PCI Express

74 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: As part of the error recovery of Requirement R1–4.1–5, the platform may, as part of the error
handling of those errors, establish an equivalent EEH error state in the EEH domains of all PEs below the error
point, in order to recover the hardware above those EEH domains from its error state. The platform also returns a
PE Reset State of 5 (PE is unavailable) with a PE Unavailable Info non-zero (temporarily unavailable) while a
recovery is in progress.

R1–4.1–6. The platform must own (be responsible for) fault isolation for all errors that occur in the I/O fabric (that
is, down to the IOA; including errors that occur on that part of the I/O fabric which is within a PE’s domain).

R1–4.1–7. For the EEH option with the PCI Hot Plug option: All of the following must be true:

 If PCI Hot Plug operations are to be controlled by the OS to which the PE is assigned, then the PE domain
for the PCI Hot Plug entity and the PCI Hot Plug power domain must be the same.

 All PE domains must be totally encompassed by their respective PCI Hot Plug power domain, regardless of
the entity that controls the PCI Hot Plug operation.

R1–4.1–8. All platforms that implement the EEH option must enable that option by default for all PEs.

Implementation Notes:

1. See Requirement R1–14.3–1 and Requirement R1–14.3–2 relative to EEH requirements with LPAR.

2. Defaulting to EEH enabled, as required by Requirement R1–4.1–8 does not imply that the platform has no
responsibility in assuring that all device drivers are EEH enabled or EEH safe before allowing their the Bus
Master, Memory Space or I/O Space bits in the PCI configuration Command register of their IOA to
be set to a 1. Furthermore, even though a platform defaults its EEH option as enabled, as required by Re-
quirement R1–4.1–8 does not imply that the platform cannot disable EEH for a PE. See Requirement R1–
4.4.1.1–18 for more information.

The following two figures show some examples of the concept of Endpoint Partitioning. See also Section 4.4.1‚ “En-
hanced I/O Error Handling (EEH) Option‚” on page 85 for more information on the EEH option.

4.1  I/O Topologies and Endpoint Partitioning 75

LoPAPR, Version 1.1 (March 24, 2016)

Figure 8. PE and DR Partitioning Examples for Conventional PCI and PCI-X HBs.

PCI to PCI Bridge
(PE State)

PCI to PCI Bridge
(PE State)

Conventional PCI or PCI-X HB

PCI/PCI-X
IOA

PCI
IOA

Partitionable
Endpoints (PEs)

PCI
IOA

PCI to PCI
Bridge

 Connector Connector

Conventional PCI or PCI-X HB PCI-X HB

 Connector

PCI
IOA

PCI
IOA

PCI to PCI
Bridge

PCI Express
IOA

PCI-X to PCI Express
Bridge

 Connector

Partitionable
Endpoints (PEs)

(PE State) (PE State)

PCI-X HB

PCI Express
IOA

PCI-X to PCI Express
Bridge

 Connector

(PE State)

Notes:

are meant to designate physical PCI Hot Plug connectors)

Example 1 Example 2 Example 3

Example 4

1. Connectors are shown, but the connectors may or may not exist for a given implementation (connectors

2. PE State includes such items as: EEH enablement state, MMIO Stopped state, and DMA Stopped state

76 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 9. PE and DR Partitioning Examples for PCI Express HBs

...(PE State)

PCI Express HB

PCI-X
IOA

PCI Express
IOA

PCI Express

PCI-X
IOA

PCI-X
IOA

Partitionable
Endpoints (PEs)

PCI Express
IOA

PCI-X to PCI-X
Bridge

 Connector

 Connector Connector

(PE State)

PCI
Express
Switch

Bridge Bridge

Bridge

Bridge Bridge

Bridgeto PCI-X
Bridge

PCI
Express
Switch

Bridge Bridge

Bridge

Bridge

PCI Express
IOA

PCI Express
IOA

PCI
Express
Switch

Bridge Bridge

Bridge

Notes:

are meant to designate physical PCI Hot Plug connectors)
1. Connectors are shown, but the connectors may or may not exist for a given implementation (connectors

2. PE State includes such items as: EEH enablement state, MMIO Stopped state, and DMA Stopped state

 Connector

 Connector

4.2  PCI Host Bridge (PHB) Architecture 77

LoPAPR, Version 1.1 (March 24, 2016)

4.2 PCI Host Bridge (PHB) Architecture

The PHB architecture places certain requirements on PHBs. There should be no conflict between this document and
the PCI specifications, but if there is, the PCI documentation takes precedence. The intent of this architecture is to pro-
vide a base architectural level which supports the PCI architecture and to provide optional constructs which allow for
use of 32-bit PCI IOAs in platforms with greater than 4 GB of system addressability.

R1–4.2–1. All PHBs that implement conventional PCI must be compliant with the most recent version of the PCI
Local Bus Specification [18] at the time of their design, including any approved Engineering Change Re-
quests (ECRs) against that document.

R1–4.2–2. All PHBs that implement PCI-X must be compliant with the most recent version of the PCI-X Protocol
Addendum to the PCI Local Bus Specification [21] at the time of their design, including any approved Engi-
neering Change Requests (ECRs) against that document.

R1–4.2–3. All PHBs that implement PCI Express must be compliant with the most recent version of the PCI Ex-
press Base Specification [22] at the time of their design, including any approved Engineering Change Re-
quests (ECRs) against that document.

R1–4.2–4. All requirements defined in Chapter 3, “Address Map,” on page 59 for HBs must be implemented by all
PHBs in the platform.

4.2.1 PHB Implementation Options

There are a few implementation options when it comes to implementing a PHB. Some of these become requirements,
depending on the characteristics of the system for which the PHB is being designed. The options affecting PHBs, in-
clude the following:

 The Enhanced I/O Error Handling (EEH) option enhances RAS characteristics of the I/O and allows for smaller
granularities of I/O assignments to partitions in an LPAR environment.

 The Error Injection (ERRINJCT) option enhances the testing of the I/O error recovery code. This option is required
of bridges which implement the EEH option.

R1–4.2.1–1. All PHBs for use in platforms which implement LPAR must support EEH, in support of Requirements
R1–14.3–1 and R1–14.3–2.

R1–4.2.1–2. All PCI HBs designed for use in platforms which will support PCI Express must support the PCI ex-
tended configuration address space and the MSI option.

4.2.2 PCI Data Buffering and Instruction Queuing

Some PHB implementations may include buffers or queues for DMA, Load, and Store operations. These buffers are re-
quired to be transparent to the software with only certain exceptions, as noted in this section.

Most processor accesses to System Memory go through the processor data cache. When sharing System Memory with
IOAs, hardware must maintain consistency with the processor data cache and the System Memory, as defined by the
requirements in Section 5.2‚ “Memory Architecture‚” on page 95.

R1–4.2.2–1. PHB implementations which include buffers or queues for DMA, Load, and Store operations must
make sure that these are transparent to the software, with a few exceptions which are allowed by the PCI ar-
chitecture, by Power ISA [1], and by Section 5.2‚ “Memory Architecture‚” on page 95.

R1–4.2.2–2. PHBs must accept up to a 128 byte MMIO Loads, and must do so without compromising performance
of other operations.

78 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

4.2.2.1 PCI Load and Store Ordering

For the platform Load and Store ordering requirements, see Section 5.2.2‚ “Memory Mapped I/O (MMIO) and DMA
Operations‚” on page 97 and the appropriate PCI specifications (per Requirements R1–4.2–1, R1–4.2–2, and R1–4.2–
3). Those requirements will, for most implementations, require strong ordering (single threading) of all Load and Store
operations through the PHB, regardless of the address space on the PCI bus to which they are targeted. Single thread-
ing through the PHB means that processing a Load requires that the PHB wait on the Load response data of a Load is-
sued on the PCI bus prior to issuing the next Load or Store on the PCI bus.

4.2.2.2 PCI DMA Ordering

For the platform DMA ordering requirements, see the requirements in this section, in Section 5.2.2‚ “Memory Mapped
I/O (MMIO) and DMA Operations‚” on page 97, and the appropriate PCI specifications (per Requirements R1–4.2–1,
R1–4.2–2, and R1–4.2–3).

In general, the ordering for DMA path operations from the I/O bus to the processor side of the PHB is independent
from the Load and Store path, with the exception stated in Requirement R1–4.2.2.2–6. Note that in the requirement, be-
low, a read request is the initial request to the PHB and the read completion is the data phase of the transaction (that is,
the data is returned).

R1–4.2.2.2–1. (Requirement Number Reserved For Compatibility)

R1–4.2.2.2–2. (Requirement Number Reserved For Compatibility)

R1–4.2.2.2–3. (Requirement Number Reserved For Compatibility)

R1–4.2.2.2–4. The hardware must make sure that a DMA read request from an IOA that specifies any byte address
that has been written by a previous DMA write operation (as defined by the untranslated PCI address) does
not complete before the DMA write from the previous DMA write is in the coherency domain.

R1–4.2.2.2–5. (Requirement Number Reserved For Compatibility)

R1–4.2.2.2–6. The hardware must make sure that all DMA write data buffered from an IOA, which is destined for
system memory, is in the platform’s coherency domain prior to delivering data from a Load operation through
the same PHB which has come after the DMA write operation(s).

R1–4.2.2.2–7. The hardware must make sure that all DMA write data buffered from an IOA, which is destined for
system memory, is in the platform’s coherency domain prior to delivering an MSI from that same IOA which
has come after the DMA write operation(s).

Architecture Notes:

 Requirement R1–4.2.2.2–4 clarifies (and may tighten up) the PCI architecture requirement that the read be to
the “just-written” data.

 The address comparison for determining whether the address of the data being read is the same as the address
of that being written is in the same cache line is based on the PCI address and not a TCE-translated address.
This says that the System Memory cache line address will be the same also, since the requirement is directed
towards operations under the same PHB. However, use of a DMA Read Request and DMA Write Request that
use different PCI addresses (even if they hit the same System Memory address) are not required to be kept in
order (see Requirement R1–4.2.8.1–1). So, for example, Requirement R1–4.2.2.2–4 says that split PHBs that
share the same data buffers at the system end do not have to keep DMA Read Request following a DMA Write
Request in order when they do not traverse the same PHB PCI bus (even if they get translated to the same sys-
tem address) or when they originate on the same PCI bus but have different PCI bus addresses (even if they
get translated to the same system address).

 Requirement R1–4.2.2.2–6 is the only case where the Load and Store paths are coupled to the DMA data path.
This requirement guarantees that the software has a method for forcing DMA write data out of any buffers in

4.2  PCI Host Bridge (PHB) Architecture 79

LoPAPR, Version 1.1 (March 24, 2016)

the path during the servicing of a completion interrupt from the IOA. Note that the IOA can perform the flush
prior to the completion interrupt, via Requirement R1–4.2.2.2–4. That is, the IOA can issue a read request to
the last word written and wait for the read completion data to return. When the read is complete, the data will
have arrived at the destination. In addition, the use of MSIs, instead of LSIs, allows for a programming model
for IOAs where the interrupt signalling itself pushes the last DMA write to System Memory, prior to the sig-
nalling of the interrupt to the system (see Requirement R1–4.2.2.2–7).

 A DMA read operation is allowed to be processed prior to the completion of a previous DMA read operation,
but is not required to be.

4.2.2.3 PCI DMA Operations and Coherence

The I/O is not aware of the setting of the coherence required bit when performing operations to System Memory, and
so the PHB needs to assume that the coherency is required.

R1–4.2.2.3–1. I/O transactions to System Memory through a PHB must be made with coherency required.

4.2.3 Byte Ordering Conventions

LoPAPR platforms operate with either Big-Endian (BE) or Little-Endian addressing. In Big-Endian systems, the ad-
dress of a word in memory is the address of the most significant byte (the “big” end) of the word. Increasing memory
addresses will approach the least significant byte of the word. In Little-Endian (LE) addressing, the address of a word
in memory is the address of the least significant byte (the “little” end) of the word. See also Section 2.7‚ “Endian Sup-
port‚” on page 53.

The PCI bus itself can be thought of as not inherently having an endianess associated with it (although its numbering
convention indicates LE). It is the IOAs on the PCI bus that can be thought of as having endianess associated with
them. Some PCI IOAs will contain a mode bit to allow them to appear as either a BE or LE IOA. Some IOAs will even
have multiple mode bits; one for each data path (Load and Store versus DMA). In addition, some IOAs may have mul-
tiple concurrent apertures, or address ranges, where the IOA can be accessed as a LE IOA in one aperture and as a BE
IOA in another.

R1–4.2.3–1. When the processor is operating in the Big-Endian mode, the platform design must produce the results
indicated in Table 10‚ “Big-Endian Mode Load and Store Programming Considerations‚” on page 79 while
issuing Load and Store operations to various entities with various endianess.

R1–4.2.3–2. When performing DMA operations through a PHB, the platform must not modify the data during the
transfer process; the lowest addressed byte in System Memory being transferred to the lowest addressed byte
on the PCI bus, the second byte in System Memory being transferred as the second byte on the PCI bus, and
so on.

Table 10. Big-Endian Mode Load and Store Programming Considerations

Destination Transfer Operation

BE scalar entity:
For example,

TCE or BE register in a PCI IOA
Load or Store

LE scalar entity:
For example,

LE register in a PCI IOA or
PCI Configuration Registers

Load or Store Reverse

80 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

4.2.4 PCI Bus Protocols

This section details the items from the PCI Local Bus Specification [18], PCI-X Protocol Addendum to the PCI Local
Bus Specification [21], and PCI Express Base Specification [22] documents where there is variability allowed, and
therefore further specifications, requirements, or explanations are needed.

Specifically, Table 11‚ “PCI Express Optional Feature Usage in LoPAPR Platforms‚” on page 80 details specific PCI
Express options and the requirements for usage of such in LoPAPR platforms. These requirements will drive the design
of PHB implementations. See the PCI Express Base Specification [22] for more information.

Table 11. PCI Express Optional Feature Usage in LoPAPR Platforms

PCI Express Option Name

Usage

Description

B
as

e

IB
M

 S
er

ve
r

Usage Legend: NS = Not Supported; O = Optional (see also Description); OR = Optional but Recommended; R = Required; SD = See Description

Peripheral I/O Space SD SD

Required if the platform is going to support any Legacy I/O devices, as defined by the PCI Express
Base Specification [22], otherwise support not required. The expectation is that Legacy I/O device
support by PHBs will end soon, so platform designers should not rely on this being there when
choosing I/O devices.

64-bit DMA addresses O
OR
SD

Implementation is optional, but is expected to be needed in some platforms, especially those with
more complex PCI Express fabrics. Although the “ibm,dma-window” property can implement
64-bit addresses, some OSs and Device Drivers may not be able to handle values in the
“ibm,dma-window” property that are greater than or equal to 4 GB. Therefore, it is
recommended that 64-bit DMA addresses be implemented through the Dynamic DMA Window
option (see Section 7.4.10‚ “DMA Window Manipulation Calls‚” on page 259).

Advanced Error Reporting (AER) O
R

SD
This has implications in the IOAs selected for use in the platform, as well as the PHB and firmware
implementation. See the PCI Express Base Specification [22].

PCIe Relaxed Ordering (RO) and
ID-Based Ordering (IDO)

NS NS

Enabling either of these options could allow DMA transactions that should be dropped by an EEH
Stopped State, to get to the system before the EEH Stopped State is set, and therefore these options
are not to be enabled. Specifically, either of these could allow DMA transactions that follow a
DMA transaction in error to bypass the PCI Express error message signalling an error on a previous
packet.

Platform Implementation Note: It is permissible for the platform (for example, the PHB or the
nest) to re-order DMA transactions that it knows can be re-ordered -- such as DMA transactions
that come from different Requester IDs or come into different PHBs -- as long as the ordering with
respect to error signalling is met.

5.0 GT/s signalling (Gen 2) O OR

8 GT signalling (Gen 3) O OR

TLP Processing Hints O O If implemented, it must be transparent to OSs.

Atomic Operations (32 and 64 bit) O
OR
SD

May be required if the IOAs being supported require it. May specifically be needed for certain
classes of IOAs such as accelerators.

Atomic Operations (128 bit) O
OR
SD

When 128 bit Atomic Operations are supported, 32 and 64 bit Atomic Operations must be also
supported.

Resizable BAR O O

Dynamic Power Allocation (DPA) NS NS No support currently defined in LoPAPR.

Latency Tolerance Reporting (LTR) NS NS No support currently defined in LoPAPR.

4.2  PCI Host Bridge (PHB) Architecture 81

LoPAPR, Version 1.1 (March 24, 2016)

4.2.5 Programming Model

Normal memory mapped Load and Store instructions are used to access a PHB’s facilities or PCI IOAs on the I/O side
of the PHB. Chapter 3, “Address Map,” on page 59 defines the addressing model. Addresses of IOAs are passed by OF
via the OF device tree.

R1–4.2.5–1. If a PHB defines any registers that are outside of the PCI Configuration space, then the address of
those registers must be in the Peripheral Memory Space or Peripheral I/O Space for that PHB, or must be in
the System Control Area.

PCI master DMA transfers refer to data transfers between a PCI master IOA and another PCI IOA, or System Memory,
where the PCI master IOA supplies the addresses and controls all aspects of the data transfer. Transfers from a PCI
master to the PCI I/O Space are essentially ignored by a PHB (except for address parity checking). Transfers from a
PCI master to PCI Memory Space are either directed at PCI Memory Space (for peer to peer operations) or need to be
directed to the host side of the PHB. DMA transfers directed to the host side of a PHB may be to System Memory or
may be to another IOA via the Peripheral Memory Space of another HB. Transfers that are directed to the Peripheral
I/O Space of another HB are considered to be an addressing error (see Chapter 10, “Error and Event Notification,” on

Optimized Buffer Flush/Fill (OBFF) NS NS No support currently defined in LoPAPR.

PCIe Multicast NS NS No support currently defined in LoPAPR.

Alternative Routing ID Interpretation
(ARI)

O SD Required when the platform will support PCI Express IOV IOAs.

Access Control Services (ACS) SD SD

It is required that peer to peer operation between IOAs be blocked when LPAR is implemented and
those IOAs are assigned to different LPAR partitions. For switches below a PHB, when the IOA
functions below the switch may be assigned to different partitions, this blocking is provided by
ACS in the switch. This is required even in Base platforms, if the above conditions apply.

Function Level Reset (FLR) SD SD
Required when a PE consists of something other than a full IOA. For example, if each function of
a multi-function IOA each is in its own PE. An SR-IOV Virtual Function (VF) may be one such
example.

End-to-End CRC (ECRC) O
R

SD
This has implications in the IOAs selected for use in the platform, as well as the PHB and firmware
implementation. See the PCI Express Base Specification [22].

Internal Error Reporting
OR
SD

OR
SD

Implement where appropriate. Platforms need to consider this for platform switches, also. PHBs
may report internal errors to firmware using a different mechanism outside of this architecture.

Address Translation Services (ATS) NS NS
LoPAPR does not support ATS, because the invalidation and modification of the Address
Translation and Protection Table (ATPT) -- called the TCEs in LoPAPR -- is a synchronous
operations, whereas the ATS invalidation requires a more asynchronous operation.

Page Request Interface (PRI) NS NS Requires ATS, which is not supported by LoPAPR.

Single Root I/O Virtualization (SR-IOV) O OR It is likely that most server platforms will need to be enabled to use SR-IOV IOAs.

Multi-Root I/O Virtualization (MR-IOV) SD SD
Depending on how this is implemented, an MR-IOV device is likely to look like an SR-IOV device
to an OS (with the platform hiding the Multi-root aspects). PHBs may be MR enabled or the MR
support may be through switches external to the PHBs.

Table 11. PCI Express Optional Feature Usage in LoPAPR Platforms (Continued)

PCI Express Option Name

Usage

Description

B
as

e

IB
M

 S
er

ve
r

Usage Legend: NS = Not Supported; O = Optional (see also Description); OR = Optional but Recommended; R = Required; SD = See Description

82 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

page 281). For information about decoding these address spaces and the address transforms necessary, see Chapter 3,
“Address Map,” on page 59.

4.2.6 Peer-to-Peer Across Multiple PHBs

This architecture does not architect peer-to-peer traffic between two PCI IOAs when the operation traverses multiple
PHBs.

R1–4.2.6–1. The platform must prevent Peer-to-Peer operations that would cross multiple PHBs.

4.2.7 Dynamic Reconfiguration of I/O

Disconnecting or connecting an I/O subsystem while the system is operational and then having the new configuration
be operational, including any new added subsystems, is a subset of Dynamic Reconfiguration (DR).

Some platforms may also support plugging/unplugging of PCI IOAs while the system is operational. This is another
subset of DR.

DR is an option and as such, is not required by this architecture. Attempts to change the hardware configuration on a
platform that does not enable configuration change, whose OS does not support that configuration change, or without
the appropriate user configuration change actions may produce unpredictable results (for example, the system may
crash).

PHBs in platforms that support the PCI Hot Plug Dynamic Reconfiguration (DR) option may have some unique design
considerations. For information about the DR options, see Chapter 13, “Dynamic Reconfiguration (DR) Architecture,”
on page 355.

4.2.8 Split Bridge Implementations

In some platforms the PHB may be split into two pieces, separated by a cable or fiber optics. The piece that is con-
nected to the system bus (or switch) and which generates the interconnect is called the Hub. There are several implica-
tions of such implementations and several requirements to go along with these.

4.2.8.1 Coherency Considerations with IOA to IOA Communications via System Memory

Bridges which are split across multiple chips may introduce a large enough latency between the time DMA write data
is accepted by the PHB and the time that previously cached copies of the same System Memory locations are invali-
dated, and this latency needs to be taken into consideration in designs, as it can introduce the problems described be-
low. This is not a problem if the same PCI address is used under a single PHB by the same or multiple IOAs, but can be
a problem under any of the following conditions:

 The same PCI address is used by different IOAs under different PHBs.

 Different PCI addresses are used which access the same System Memory coherency block, regardless of whether the
IOA(s) are under the same PHB or not; for example:

 Two different TCEs accessing the same System Memory coherency block.

An example scenario where this could be a problem is as follows:

1. Device 1 does a DMA read from System Memory address x using PCI address y

2. Device 2 (under same PHB as Device 1 -- the devices could even be different function in the same IOA) does a
DMA write to System Memory address x using PCI address z.

4.2  PCI Host Bridge (PHB) Architecture 83

LoPAPR, Version 1.1 (March 24, 2016)

3. Device 2 attempts to read back System Memory address x before the time that its previous DMA write is globally
coherent (that is, before the DMA write gets to the Hub and an invalidate operation on the cache line containing
that data gets back down to the PHB), and gets the data read by Device 1 rather than what it just wrote.

Another example scenario is as follows:

1. Device 1 under PHB 1 does a DMA read from System Memory location x.

2. Device 2 under PHB 2 does a DMA write to System Memory location x and signals an interrupt to the system.

3. The interrupt bypasses the written data which is on its way to the coherency domain.

4. The device driver for Device 2 services the interrupt and signals Device 1 via a Store to Device 1 that the data is
there at location x.

5. Device 1 sees the Store before the invalidate operation on the cache line containing the data propagates down to
invalidate the previous cached copy of x, and does a DMA read of location x using the same address as in step (1),
getting the old copy of x instead of the new copy.

This last example is a little far-fetched since the propagation times should not be longer than the interrupt service la-
tency time, but it is possible. In this example, the device driver should do a Load to Device 2 during the servicing of the
interrupt and wait for the Load results before trying to signal Device 1, just the way that this device driver would to a
Load if it was a program which was going to use the data written instead of another IOA. Note that this scenario can
also be avoided if the IOA uses a PCI Message Signalled Interrupt (MSI) rather than the PCI interrupt signals pins, in
order to signal the interrupt (in which case the Load operation is avoided).

R1–4.2.8.1–1. A DMA read to a PCI address which is different than a PCI address used by a previous DMA write
or which is performed under a different PHB must not presume that a previous DMA write is complete, even
if the DMA write is to the same System Memory address, unless one of the following is true:

 The IOA doing the DMA write has followed that write by a DMA read to the address of the last byte of
DMA write data to be flushed (the DMA read request must encompass the address of the last byte written,
but does not need to be limited to just that byte) and has waited for the results to come back before an IOA
is signaled (via peer-to-peer operations or via software) to perform a DMA read to the same System Mem-
ory address.

 The device driver for the IOA doing the DMA write has followed that write by a Load to that IOA and has
waited for the results to come back before a DMA read to the same System Memory address with a differ-
ent PCI address is attempted.

 The IOA doing the DMA write has followed the write with a PCI Message Signalled Interrupt (MSI) as a
way to interrupt the device driver, and the MSI message has been received by the interrupt controller.

84 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

4.3 I/O Bus to I/O Bus Bridges

The PCI bus architecture was designed to allow for bridging to other slower speed I/O buses or to another PCI bus. The
requirements when bridging from one I/O bus to another I/O bus in the platform are defined below.

R1–4.3–1. All bridges must comply with the bus specification(s) of the buses to which they are attached.

4.3.1 What Must Talk to What

Platforms are not required to support peer to peer operations between IOAs. IOAs on the same shared bus segment will
generally be able to do peer to peer operations between themselves. Peer to peer operations in an LPAR environment,
when the operations are between IOAs that are not in the same partition, is specifically prohibited (see Requirement
R1–14.3–4).

4.3.2 PCI to PCI Bridges

This architecture allows the use of PCI to PCI bridges and PCI Express switches in the platform. TCEs are used with
the IOAs attached to the other side of the PCI to PCI bridge or PCI Express switch when those IOAs are accessing
something on the processor side of the PHB. After configuration, PCI to PCI bridges and PCI Express switches are ba-
sically transparent to the software as far as addressing is concerned (the exception is error handling). For more infor-
mation, see the appropriate PCI Express switch specification.

R1–4.3.2–1. Conventional PCI to PCI bridges used on the base platform and plug-in cards must be compliant with
the most recent version of the PCI-to-PCI Bridge Architecture Specification [19] at the time of the platform
design, including any approved Engineering Change Requests (ECRs) against that document. PCI-X to
PCI-X bridges used on the base platform and plug-in cards must be compliant with the most recent version of
the PCI-X Protocol Addendum to the PCI Local Bus Specification [21] at the time of the platform design, in-
cluding any approved Engineering Change Requests (ECRs) against that document.

R1–4.3.2–2. PCI Express to PCI/PCI-X and PCI/PCI-X to PCI Express bridges used on the base platform and
plug-in cards must be compliant with the most recent version of the PCI Express to PCI/PCI-X Bridge Speci-
fication [23] at the time of the platform design, including any approved Engineering Change Requests
(ECRs) against that document.

R1–4.3.2–3. PCI Express switches used on the base platform and plug-in cards must be compliant with the most re-
cent version of the PCI Express Base Specification [22] at the time of the platform design, including any ap-
proved Engineering Change Requests (ECRs) against that document.

R1–4.3.2–4. Bridges and switches used in platforms which will support PCI Express IOAs beneath them must sup-
port pass-through of PCI configuration cycles which access the PCI extended configuration space.

Software and Platform Implementation Notes:

1. Bridges used on plug-in cards that do not follow Requirement R1–4.3.2–4 will presumably allow for the op-
eration of their IOAs on the plug-in card, even though not supporting the PCI extended configuration ad-
dress space, because the card was designed with the bridges and IOAs in mind.

2. Determination of support of the PCI configuration address space is via the “ibm,pci-con-
fig-space-type” property in the IOA's node.

R1–4.3.2–5. Bridges and switches used in platforms which will support PCI Express IOAs beneath them must sup-
port 64-bit addressing.

4.4  Bridge Extensions 85

LoPAPR, Version 1.1 (March 24, 2016)

4.4 Bridge Extensions

4.4.1 Enhanced I/O Error Handling (EEH) Option

The EEH option uses the following terminology.

PE A Partitionable Endpoint. This refers to the granule that is treated as one for purposes of EEH
recovery and for assignment to an OS image (for example, in an LPAR environment). Note that
the PE granularity supported by the hardware may be finer than is supported by the firmware.
See also Section 4.1‚ “I/O Topologies and Endpoint Partitioning‚” on page 71. A PE may be
any one of the following:

A single-function or multi-function IOA

A set of IOAs and some piece of I/O fabric above the IOAs that consists of one or more
bridges or switches.

EEH Stopped state The state of a PE being in both the MMIO Stopped state and DMA Stopped state.

MMIO Stopped state The state of the PE which will discard any MMIO Stores to that PE, and will return all-1's data
for Loads to that PE. If the PE is in the MMIO Stopped state and EEH is disabled, then a Load
will also return a machine check to the processor that issued the Load, for the Load that had the
initial error and while the PE remains in the MMIO Stopped state.

DMA Stopped state The state of the PE which will block any further DMA requests from that PE (DMA comple-
tions that occur after the DMA Stopped state is entered that correspond to DMA requests that
occurred before the DMA Stopped state is entered, may be completed).

Failure A detected error between the PE and the system (for example, processor or memory); errors in-
ternal to the PE are not considered failures unless the PE signals the error via a normal I/O fabric
error signalling protocol. (for example, SERR or ERR_FATAL).

The Enhanced I/O Error Handling (EEH) option is defined primarily to enhance the system recoverability from failures
that occur during Load and Store operations. In addition, certain failures that are normally non-recoverable during
DMA are prevented from causing a catastrophic failure to the system (for example, a conventional PCI address parity
error).

The basic concept behind the EEH option is to turn all failures that cannot be reported to the IOA, into something that
looks like a conventional PCI Master Abort (MA) error1 on a Load or Store operation to the PE during and after the
failure; responding with all-1’s data and no error indication on a Load instruction and ignoring Store instructions. The
MA error should be handled by a device driver, so this approach should just be an extension to what should be the error
handling without this option implemented.

The following is the general idea behind the EEH option:

 On a failure that occurs in an operation between the PHB and PE:

 Put the PE into the MMIO Stopped and DMA Stopped states (also known as the EEH Stopped state). This is de-
fined as a state where the PE is prevented from doing any further operations that could corrupt the system; which
for the most part means blocking DMA from the PE and preventing load and store completions to the PE.

1.A conventional PCI MA error is where the conventional PCI IOA does not respond as a target with a device select indication (that is, the IOA does
not respond by activating the DEVSEL signal back to the master). For PCI Express, the corresponding error is Unsupported Request (UR).

86 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

 While the PE is in the MMIO Stopped state, if a Load or Store is targeted to that PE, then return all-1’s data with
no error indication on a Load and discard all Stores to that PE. That is, essentially treat the Load or Store the same
way as if a MA error was received on that operation.

 The device driver and OS recovers a PE by removing it from the MMIO Stopped state (keeping it in the DMA
Stopped state) and doing any necessary loads to the PE to capture PE state, and then either doing the necessary
stores to the PE to set the appropriate state before removing the PE from the DMA Stopped state and continuing
operations, or doing a reset of the PE and then re-initializing and restarting the PE.1

 In order to make sure that there are no interactions necessary between device drivers during recovery operations,
each PE will have the capability of being removed from its MMIO Stopped and DMA Stopped states independent
from any other PE which is in the MMIO Stopped or DMA Stopped state.

 In order to take into account device drivers which do not correctly implement MA recovery, make sure that the EEH
option can be enabled and disabled independently for each PE.2

 EEH, as defined, only extends to operations between the processor and a PE and between a PE and System Memory.
It does not extend to direct IOA to IOA peer to peer operations.

Hardware changes for this option are detailed in the next section. RTAS changes required are detailed in
Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Functions‚” on page 176.

4.4.1.1 EEH Option Requirements

Although the EEH option architecture may be extended to other I/O topologies in the future, for now this recovery ar-
chitecture will be limited to PCI.

In order to be able to test device driver additional code for the EEH-enabled case, the EEH option also requires the Er-
ror Injection option be implemented concurrently.

The additional requirements on the hardware for this option are as follows. For the RTAS requirements for this option,
see Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Functions‚” on page 176.

R1–4.4.1.1–1. For the EEH option: A platform must implement the Error Injection option concurrently with the
EEH option, with an error injection granularity to the PE level.

R1–4.4.1.1–2. For the EEH option: If a platform is going to implement the EEH option, then the I/O topology im-
plementing EEH must only consist of PCI components.

R1–4.4.1.1–3. For the EEH option: The hardware must provide a way to independently enable and disable the
EEH option for each PE with normal processor Load and Store instructions, and must provide the capability
of doing this while not disturbing operations to other PEs in the platform.

R1–4.4.1.1–4. For the EEH option: The hardware fault isolation register bits must be set the same way on errors
when the EEH option is enabled as they were when the EEH option is not implemented or when it is imple-
mented but disabled.

R1–4.4.1.1–5. For the EEH option: Any detected failure to/from a PE must set both the MMIO Stopped and DMA
Stopped states for the PE, unless the error that caused the failure can be reported to the IOA in a way that the
IOA will report the error to its device driver in a way that will avoid any data corruption.

1.Most device drivers will implement a reset and restart in order to assure a clean restart of operations.

2.LPAR implementations limit the capability of running with EEH disabled (see Requirement R1–14.3–1 and Requirement R1–14.3–2).

4.4  Bridge Extensions 87

LoPAPR, Version 1.1 (March 24, 2016)

R1–4.4.1.1–6. For the EEH option: If an I/O fabric consists of a hierarchy of components, then when a failure is
detected in the fabric, all PEs that are downstream of the failure must enter the MMIO Stopped and DMA
Stopped states if they may be affected by the failure.

R1–4.4.1.1–7. For the EEH option: While a PE has its EEH option enabled, if a failure occurs, the platform must
not propagate it to the system as any type of error (for example, as an SERR for a PE which is a conventional
PCI-to-PCI bridge).

R1–4.4.1.1–8. For the EEH option: From the time that the MMIO Stopped state is entered for a PE, the PE must
be prevented from responding to Load and Store operations including the operation that caused the PE to en-
ter the MMIO Stopped state; a Load operation must return all-1’s with no error indication and a Store opera-
tion must be discarded (that is, Load and Store operations being treated like they received a conventional PCI
Master Abort error), until one of the following is true:

a. The ibm,set-eeh-option RTAS call is called with function 2 (Release PE for MMIO Load/Store operations).

b. The ibm, set-slot-reset RTAS call is called with function 0 (Deactivate the reset signal to the PE).

c. The power is cycled (off then on) to the PE.

d. The partition or system is rebooted.

R1–4.4.1.1–9. For the EEH option: From the time that the DMA Stopped state is entered for a PE, the PE must be
prevented from initiating a new DMA request or completing a DMA request that caused the PE to enter the
DMA Stopped state (DMA requests that were started before the DMA Stopped State is entered may be com-
pleted), and including MSI DMA operations, until one of the following is true:

a. The ibm,set-eeh-option RTAS call is called with function 3 (Release PE for DMA operations).

b. The ibm, set-slot-reset RTAS call is called with function 0 (Deactivate the reset signal to the PE).

c. The power is cycled (off then on) to the PE.

d. The partition or system is rebooted.

R1–4.4.1.1–10. For the EEH option: The hardware must provide the capability to the firmware to determine, on a
per-PE basis, that a failure has occurred which has caused the PE to be put into the MMIO Stopped and DMA
Stopped states and to read the actual state information (MMIO Stopped state and DMA Stopped state).

R1–4.4.1.1–11. For the EEH option: The hardware must provide the capability of separately enabling and reset-
ting the DMA Stopped and MMIO Stopped states for a PE without disturbing other PEs on the platform. The
hardware must provide this capability without requiring a PE reset and must do so through normal processor
Store instructions.

R1–4.4.1.1–12. For the EEH option: The hardware must provide the capability to the firmware to deactivate the
reset to each PE, independent of other PEs, and the hardware must provide the proper controls on the reset
transitions in order to prevent failures from being introduced into the platform by the changing of the reset.

R1–4.4.1.1–13. For the EEH option: The hardware must provide the capability to the firmware to activate the re-
set to each PE, independent of other PEs, and the hardware must provide the proper controls on the reset tran-
sitions in order to prevent failures from being introduced into the platform by the changing of the reset.

R1–4.4.1.1–14. For the EEH option: The hardware must provide the capability to the firmware to read the state of
the reset signal to each PE.

R1–4.4.1.1–15. For the EEH option: When a PE is put into the MMIO Stopped and DMA Stopped states, it must
be done in such a way to not introduce failures that may corrupt other parts of the platform.

88 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

R1–4.4.1.1–16. For the EEH option: The hardware must allow firmware access to internal bridge and I/O fabric
control registers when any or all of the PEs are in the MMIO Stopped state.

Platform Implementation Note: It is expected that bridge and fabric control registers will have their own PE state
separate from the PEs for IOAs.

R1–4.4.1.1–17. For the EEH option: A PE that supports the EEH option must not share an interrupt with another
PE in the platform.

Hardware Implementation Notes:

1. Requirement R1–4.4.1.1–4 means that the hardware must always update the standard PCI error/status regis-
ters in the bus’ configuration space as defined by the bus architecture, even when the EEH option is enabled.

2. The type of error information trapped by the hardware when a PE is placed into the MMIO Stopped and
DMA Stopped states is implementation dependent. It is expected that the system software will do an
check-exception or ibm,slot-error-detail RTAS call to gather the error information when a failure is de-
tected.

3. A DMA operation (Read or Write) that was initiated before a Load, Store, or DMA error, does not necessar-
ily need to be blocked, as it was not a result of the Load, Store, or DMA that failed. The normal PCI Express
ordering rules require that an ERR_FATAL or ERR_NONFATAL from a failed Store or DMA error, or a
Load Completion with error status, will reach the PHB prior to any DMA that might have been kicked-off in
error as a result of a failed Load or Store or a Load or Store that follows a failed Load or Store. This means
that as long as the PHB processes an ERR_FATAL, ERR_NONFATAL, or Load Completion which indi-
cates a failure, prior to processing any more DMA operations or Load Completions, and puts the PE into the
MMIO and Stopped DMA Stopped states, implementations should be able to block DMA operations that
were kicked-off after a failing DMA operation and allow DMA operations that were kicked off before a fail-
ing DMA operation without violating the normal PCI Express ordering rules.

4. In reference to Requirements R1–4.4.1.1–5, and R1–4.4.1.1–6, PCI Express implementations may choose to
enter the MMIO Stopped and DMA Stopped states even if an error can be reported back to the IOA.

R1–4.4.1.1–18. For the EEH option: If the device driver(s) for any IOA(s) in a PE in the platform are EEH un-
aware (that is may produce data integrity exposures due to a MMIO Stopped or DMA Stopped state), then the
firmware must prevent the IOA(s) in such a PE from being enabled for operations (that is, do not allow the
Bus Master, Memory Space or I/O Space bits in the PCI configuration Command register from being set to a
1) while EEH is enabled for that PE, and instead of preventing the PE from being enabled, may instead turn
off EEH when such an enable is attempted without first an attempt by the device driver to enable EEH (by the
ibm,set-eeh-option), providing such EEH disablement does not violate any other requirement for EEH en-
ablement (for example, Requirement R1–14.3–1 or R1–14.3–2).

Software Implementation Note: To be EEH aware, a device driver does not need to be able to recover from an MMIO
Stopped or DMA Stopped state, only recognize the all-1's condition and not use data from operations that may
have occurred since the last all-1's checkpoint. In addition, the device driver under such failure circumstances
needs to turn off interrupts (using the ibm,set-int-off RTAS call or by resetting the PE and keeping it reset with
ibm,set-slot-reset or ibm,slot-error-detail) in order to make sure that any (unserviceable) interrupts from the PE
do not affect the system. Note that this is the same device driver support needed to protect against an IOA dying
or against a no-DEVSEL type error (which may or may not be the result of an IOA that has died).

4.4.1.2 Slot Level EEH Event Interrupt Option

Some platform implementations may allow asynchronous notification of EEH events via an external interrupt. This is
called the Slot Level EEH Event Interrupt option. When implemented, the platform will implement the
“ibm,io-events-capable” property in the nodes where the EEH control resides, and the ibm,set-eeh-option
RTAS call will implement function 4 to enable the EEH interrupt for each of these nodes and function 5 to disable the
EEH interrupt for each of these nodes (individual control by node). Calling the ibm,set-eeh-option RTAS call with

4.4  Bridge Extensions 89

LoPAPR, Version 1.1 (March 24, 2016)

function 4 or function 5 when the node specified does not implement this capability will return a -3, indicating invalid
parameters.

The interrupt source specified in the ibm,io-events child must be enabled (in addition to any individual node en-
ables) via the ibm,int-on RTAS call and the priority for that interrupt, as set in the XIVE by the ibm,set-xive RTAS call,
must be something other than 0xFF, in order for the external interrupt to be presented to the system.

The “ibm,io-events-capable” property, when it exists, contains 0 to N interrupt specifiers (per the definition
of interrupt specifiers for the node's interrupt parent). When no interrupt specifiers are specified by the
“ibm,io-events-capable” property, then the interrupt, if enabled, is signaled via the interrupt specifier given
in the ibm,io-events child node of the /events node.

R1–4.4.1.2–1. For the Slot Level EEH Event Interrupt option: All of the following must be true:

a. The platform must implement the “ibm,io-events-capable” property in all device tree nodes
which represent bridge where EEH is implemented and for which the EEH io-event interrupt is to be sig-
naled.

b. The platform must implement functions 4 and 5 of the ibm,set-eeh-option RTAS call for all PEs under
nodes that contain the “ibm,io-events-capable” property.

4.4.2 Error Injection (ERRINJCT) Option

The Error Injection (ERRINJCT) option is defined primarily to test enhanced error recovery software. As implemented
in the I/O bridge, this option is used to test the software which implements the recovery which is enabled by the EEH
option in that bridge. Specifically, the ioa-bus-error and ioa-bus-error-64 functions of the ibm,errinjct RTAS call are
used to inject errors onto each PE primary bus, which in turn will cause certain actions on the bus and certain actions
by the PE, the EEH logic, and by the error recovery software.

4.4.2.1 ERRINJCT Option Hardware Requirements

Although the ioa-bus-error and ioa-bus-error-64 functions of the ibm,errinjct RTAS call may be extended to other I/O
buses and PEs in the future, for now this architecture will be limited to PCI buses.

The type of errors, and the injection qualifiers, place the following additional requirements on the hardware for this op-
tion.

R1–4.4.2.1–1. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: If a platform
is going to implement either of these functions of this option, then the I/O topology must be PCI.

R1–4.4.2.1–2. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The hard-
ware must provide a way to inject the required errors for each PE primary bus, and the errors must be inject-
able independently, without affecting the operations on the other buses in the platform.

R1–4.4.2.1–3. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The hard-
ware must provide a way to set up for the injection of the required errors without disturbing operations to
other buses outside the PE.

R1–4.4.2.1–4. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The hard-
ware must provide a way to the firmware to set up the following information for the error injection operation
by normal processor Load and Store instructions:

 Address at which to inject the error

 Address mask to mask off any combination of the least significant 24 (64 for the ioa-bus-error-64 func-
tion) bits of the address

90 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

 PE primary bus number which is to receive the error

 Type of error to be injected

R1–4.4.2.1–5. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The platform
must have the capability of selecting the errors specified in Table 12‚ “Supported Errors for Conventional
PCI, PCI-X Mode 1 or PCI-X Mode 2 Error Injectors‚” on page 90 when the bus directly below the bridge in-
jecting the error is a Conventional PCI or PCI-X Bus, and the errors specified in Table 13‚ “Supported Errors
for PCI Express Error Injectors‚” on page 91 when the bus directly below the bridge injecting the error is a
PCI Express link, and when that error is appropriate for the platform configuration, and the platform must
limit the injection of errors which are inappropriate for the given platform configuration.

Platform Implementation Note: As an example of inappropriate errors to inject in Requirement R1–4.4.2.1–5, consider
the configuration where there is an I/O bridge or switch below the bridge with the injector and that bridge
generates multiple PEs and when those PEs are assigned to different LPAR partitions. In that case, injection of
some real errors may cause the switches or bridges to react and generate an error that affects multiple partitions,
which would be inappropriate. Therefore, to comply with Requirement R1–4.4.2.1–5, the platform may either
emulate some errors in some configurations instead of injecting real errors on the link or bus, or else the platform
may not support injection at all to those PEs. Another example where a particular error may be inappropriate is
when there is a heterogeneous network between the PHB and the PE (for example, a PCI Express bridge that
converts from a PCI Express PHB and a PCI-X PE).

Table 12. Supported Errors for Conventional PCI, PCI-X Mode 1 or PCI-X Mode 2 Error Injectors

Operation
PCI

Address
Space(s)

Error (s) Other Requirements

Load
Memory,

I/O, Config

Data Parity Error

All PCI-X adapters operating in Mode 2 and some operating
in Mode 1 utilize a double bit detecting, single bit correcting
Error Correction Code (ECC). In these cases, ensure that at
least two bits are modified to detect this error.

Address Parity Error

Store
Memory,

I/O, Config

Data Parity Error

Address Parity Error

DMA read Memory

Data Parity Error All PCI-X adapters operating in Mode 2 and some operating
in Mode 1 utilize a double bit detecting, single bit correcting
Error Correction Code (ECC). In these cases, ensure that at
least two bits are modified to detect this error.

Address Parity Error

Master Abort

Target Abort

DMA write Memory

Data Parity Error All PCI-X adapters operating in Mode 2 and some operating
in Mode 1 utilize a double bit detecting, single bit correcting
Error Correction Code (ECC). In these cases, ensure that at
least two bits are modified to detect this error.

Address Parity Error

Master Abort

Target Abort

4.4  Bridge Extensions 91

LoPAPR, Version 1.1 (March 24, 2016)

R1–4.4.2.1–6. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The hard-
ware must provide a way to inject the errors in Table 13‚ “Supported Errors for PCI Express Error Injectors‚”
on page 91 in a non-persistent manner (that is, at most one injection for each invocation of the ibm,errinjct
RTAS call).

4.4.2.2 ERRINJCT Option OF Requirements

The Error Injection option will be disabled for all IOAs prior to the OS getting control.

R1–4.4.2.2–1. For the ioa-bus-error and ioa-bus-error-64 functions of the Error Injection option: The OF must
disable the ERRINJCT option for all PEs and all empty slots on all bridges which implement this option prior
to passing control to the OS.

Hardware and Firmware Implementation Note: The platform only needs the capability to setup the injection of one
error at a time, and therefore injection facilities can be shared. The ibm,open-errinjct and ibm,close-errinjct are
used to make sure that only one user is using the injection facilities at a time.

4.4.3 Bridged-I/O EEH Support Option

If a platform requires multi-function I/O cards which are constructed by placing multiple IOAs beneath a PCI to PCI
bridge, then extra support is needed to support such cards in an EEH-enabled environment. If this option is imple-
mented, then the ibm,configure-bridge RTAS call will be implemented and therefore the “ibm,config-
ure-bridge” property will exist in the rtas device node.

R1–4.4.3–1. For the Bridged-I/O EEH Support option: The platform must support the ibm,configure-bridge
RTAS call.

R1–4.4.3–2. For the Bridged-I/O EEH Support option: The OS must provide the correct EEH coordination be-
tween device drivers that control multiple IOAs that are in the same PE.

Table 13. Supported Errors for PCI Express Error Injectors

Operation
PCI

Address
Space(s)

Error (s) Other Requirements

Load
Memory,

I/O, Config
TLP ECRC Error

The TLP ECRC covers the address and data bits of a TLP.
Therefore, one cannot determine if the integrity error resides
in the address or data portion of a TLP.

Store
Memory,

I/O, Config
TLP ECRC Error

DMA read Memory

TLP ECRC Error
The TLP ECRC covers the address and data bits of a TLP.
Therefore, one cannot determine if the integrity error resides
in the address or data portion of a TLP.

Completer Abort or
Unsupported Request

Inject the error that is injected on a TCE Page Fault.

DMA write Memory TLP ECRC Error
The TLP ECRC covers the address and data bits of a TLP.
Therefore, one cannot determine if the integrity error resides
in the address or data portion of a TLP.

92 I/O Bridges and Topologies

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

5 Processor and Memory

The purpose of this chapter is to specify the processor and memory requirements of this architecture. The processor ar-
chitecture section addresses differences between the processors in the PA family as well as their interface variations
and features of note. The memory architecture section addresses coherency, minimum system memory requirements,
memory controller requirements, and cache requirements.

5.1 Processor Architecture

The Processor Architecture (PA) governs software compatibility at an instruction set and environment level. However,
each processor implementation has unique characteristics which are described in its user’s manual. To facilitate
shrink-wrapped software, this architecture places some limitations on the variability in processor implementations.
Nonetheless, evolution of the PA and implementations creates a need for both software and hardware developers to
stay current with its progress. The following material highlights areas deserving special attention and provides pointers
to the latest information.

5.1.1 Processor Architecture Compliance

The PA is defined in Power ISA [1].

R1–5.1.1–1. Platforms must incorporate only processors which comply fully with Power ISA [1].

R1–5.1.1–2. For the Symmetric Multiprocessor option: Multiprocessing platforms must use only processors
which implement the processor identification register.

R1–5.1.1–3. Platforms must incorporate only processors which implement tlbie and tlbsync, and slbie and slbia for
64-bit implementations.

R1–5.1.1–4. Except where specifically noted otherwise in Section 5.1.4‚ “PA Features Deserving Comment‚” on
page 95, platforms must support all functions specified by the PA.

Hardware and Software Implementation Note: The PA and this architecture view tlbia as an optional performance
enhancement. Processors need not implement tlbia. Software that needs to purge the TLB should provide a
sequence of instructions that is functionally equivalent to tlbia and use the content of the OF device tree to choose
the software implementation or the hardware instruction. See Section 5.1.2‚ “PA Processor Differences‚” on
page 93 for details.

5.1.2 PA Processor Differences

A complete understanding of processor differences may be obtained by studying Power ISA [1] and the user’s manuals
for the various processors.

The creators of this architecture cooperate with processor designers to maintain a list of supported differences, to be
used by the OS instead of the processor version number (PVN), enabling execution on future processors. OF communi-
cates these differences via properties of the cpu node of the OF device tree. Examples of OF device tree properties

94 Processor and Memory

 LoPAPR, Version 1.1 (March 24, 2016)

which support these differences include “64-bit” and “performance-monitor”. See Appendix C, “PA Pro-
cessor Binding,” on page 753 for a complete listing and more details.

R1–5.1.2–1. The OS must use the properties of the cpu node of the OF device tree to determine the programming
model of the processor implementation.

R1–5.1.2–2. The OS must provide an execution path which uses the properties of the cpu node of the OF device.
The PVN is available to the platform aware OS for exceptional cases such as performance optimization and
errata handling.

R1–5.1.2–3. The OS must support the 64-bit page table formats defined by Power ISA [1].

R1–5.1.2–4. Processors which exhibit the “64-bit” property of the cpu node of the OF device tree must also im-
plement the “bridge architecture,” an option in Power ISA [1].

R1–5.1.2–5. Platforms must restrict their choice of processors to those whose programming models may be de-
scribed by the properties defined for the cpu node of the OF device tree in Appendix C, “PA Processor Bind-
ing,” on page 753.

R1–5.1.2–6. Platform firmware must initialize the second and third pages above Base correctly for the processor in
the platform prior to giving control to the OS.

R1–5.1.2–7. OS and application software must not alter the state of the second and third pages above Base.

R1–5.1.2–8. Platforms must implement the “ibm,platform-hardware-notification” property (see
Appendix B, “LoPAPR Binding,” on page 661) and include all PVRs that the platform may contain.

5.1.2.1 64-bit Implementations

Some 64-bit processor implementations will not support the full virtual address allowed by Power ISA [1]. As a result,
this architecture adds a 64-bit virtual address subset to the PA and the corresponding cpu node property
“64-bit-virtual-address” to OF.

In order for an OS to make use of the increased addressability of 64-bit processor implementations:

 The memory subsystem must support the addressing of memory located at or beyond 4 GB, and

 Any system memory located at or beyond 4 GB must be reported via the OF device tree.

At an abstract level, the effort to support 64-bit architecture in platforms is modest. The requirements follow.

R1–5.1.2.1–1. The OS must support the 64-bit virtual address subset, but may defer support of the full 80-bit virtual
address until such time as it is required.

R1–5.1.2.1–2. Firmware must report the “64-bit-virtual-address” property for processors which imple-
ment the 64-bit virtual address subset.

R1–5.1.2.1–3. RTAS must be capable of being instantiated in either a 32-bit or 64-bit mode on a platform with ad-
dressable memory above 4 GB.

Software Implementation Note: A 64-bit OS need not require 64-bit client interface services in order to boot. Because
of the problems that might be introduced by dynamically switching between 32-bit and 64-bit modes in OF, the

5.2  Memory Architecture 95

LoPAPR, Version 1.1 (March 24, 2016)

configuration variable 64-bit-mode? is provided so that OF can statically configure itself to the needs of the
OS.

5.1.3 Processor Interface Variations

Individual processor interface implementations are described in their respective user’s manuals.

5.1.4 PA Features Deserving Comment

Some PA features are optional, and need not be implemented in a platform. Usage of others may be discouraged due to
their potential for poor performance. The following sections elaborate on the disposition of these features in regard to
compliance with the PA.

5.1.4.1 Multiple Scalar Operations

The PA supports multiple scalar operations. The multiple scalar operations are Load and Store String and Load and
Store Multiple. Due to the long-term performance disadvantage associated with multiple scalar operations, their use by
software is not recommended.

5.1.4.2 External Control Instructions (Optional)

The external control instructions (eciwx and ecowx) are not supported by this architecture.

5.1.5 cpu Node “Status” Property

See Appendix C, “PA Processor Binding,” on page 753 for the values of the “status” property of the cpu node.

5.1.6 Multi-Threading Processor Option

Power processors may optionally support multi-threading.

R1–5.1.6–1. For the Multi-threading Processor option: The platform must supply one entry in the
ibm,ppc-interrupt-server#s property associated with the processor for each thread that the proces-
sor supports.

Refer to Section B.6.4‚ “Properties of the Node of type cpu‚” on page 698 for the definition of the ibm,ppc-in-
terrupt-server#s property.

5.2 Memory Architecture

The Memory Architecture of an LoPAPR implementation is defined by Power ISA [1] and Chapter 3, “Address Map,”
on page 59, which defines what platform elements are accessed by each real (physical) system address, as well as the
sections which follow.

The PA allows implementations to incorporate such performance enhancing features as write-back caching, non-coher-
ent instruction caches, pipelining, and out-of-order and speculative execution. These features introduce the concepts of
coherency (the apparent order of storage operations to a single memory location as observed by other processors and
DMA) and consistency (the order of storage accesses among multiple locations). In most cases, these features are
transparent to software. However, in certain circumstances, OS software explicitly manages the order and buffering of
storage operations. By selectively eliminating ordering options, either via storage access mode bits or the introduction

96 Processor and Memory

 LoPAPR, Version 1.1 (March 24, 2016)

of storage barrier instructions, software can force increasingly restrictive ordering semantics upon its storage opera-
tions. Refer to Power ISA [1] for further details.

PA processor designs usually allow, under certain conditions, for caching, buffering, combining, and reordering in the
platform’s memory and I/O subsystems. The platform’s memory subsystem, system interconnect, and processors,
which cooperate through a platform implementation specific protocol to meet the PA specified memory coherence,
consistency, and caching rules, are said to be within the platform’s coherency domain.

Figure 10‚ “Example System Diagram Showing the PA Coherency Domain‚” on page 96 shows an example system.
The shaded portion is the PA coherency domain. Buses 1 through 3 lie outside this domain. The figure shows two I/O
subsystems, each interfacing with the host system via a Host Bridge. Notice that the domain includes portions of the
Host Bridges. This symbolizes the role of the bridge to apply PA semantics to reference streams as they enter or leave
the coherency domain, while implementing the ordering rules of the I/O bus architecture.

Memory, other than System Memory, is not required to be coherent. Such memory may include memory in IOAs.

Figure 10. Example System Diagram Showing the PA Coherency Domain

Hardware Implementation Note: Components of the platform within the coherency domain (memory controllers and
in-line caches, for example) collectively implement the PA memory model, including the ordering of operations.
Special care should be given to configurations for which multiple paths exist between a component that accesses
memory and the memory itself, if accesses for which ordering is required are permitted to use different paths.

5.2.1 System Memory

System Memory normally consists of dynamic read/write random access memory which is used for the temporary stor-
age of programs and data being operated on by the processor(s). A platform usually provides for the expansion of Sys-
tem Memory via plug-in memory modules and/or memory boards.

R1–5.2.1–1. Platforms must provide at least 128 MB of System Memory. (Also see Chapter 3, “Address Map,” on
page 59 for other requirements which apply to memory within the first 32MB of System Memory.)

Processor

System Interconnect

System Memory
Host Bridge 1 Host Bridge 2

BUS 1 BUS 2BUS-BUS

BUS 1
IOA

BUS 2
IOA

BUS 3
IOA

PA
Coherency

BUS 3

Domain

 Bridge

Processor Processor Processor

5.2  Memory Architecture 97

LoPAPR, Version 1.1 (March 24, 2016)

R1–5.2.1–2. Platforms must support the expansion of System Memory to 2 GB or more.

Hardware Implementation Note: These requirements are minimum requirements. Each OS has its own recommended
configuration which may be greater.

Software Implementation Note: System Memory will be described by the properties of the memory node(s) of the OF
device tree.

5.2.2 Memory Mapped I/O (MMIO) and DMA Operations

Storage operations which cross the coherency domain boundary are referred to as Memory Mapped I/O (MMIO) oper-
ations if they are initiated within the coherency domain, and DMA operations if they are initiated outside the coherency
domain and target storage within it. Accesses with targets outside the coherency domain are assumed to be made to
IOAs. These accesses are considered performed (or complete) when they complete at the IOA’s I/O bus interface.

Bus bridges translate between bus operations on the initiator and target buses. In some cases, there may not be a
one-to-one correspondence between initiator and target bus transactions. In these cases, the bridge selects one or a se-
quence of transactions which most closely matches the meaning of the transaction on the source bus. See also
Chapter 4, “I/O Bridges and Topologies,” on page 71 for more details and the appropriate PCI specifications.

For MMIO Load and Store instructions, the software needs to set up the WIMG bits appropriately to control Load and
Store caching, Store combining, and speculative Load execution to I/O addresses. This architecture does not require
platform support of caching of MMIO Load and Store instructions. See the PA for more information.

R1–5.2.2–1. For MMIO Load and Store instructions, the hardware outside of the processor must not introduce any
reordering of the MMIO instructions for a processor or processor thread which would not be allowed by the
PA for the instruction stream executed by the processor or processor thread.

Hardware Implementation Note: Requirement R1–5.2.2–1 may imply that hardware outside of the processor cannot
reorder MMIO instructions from the same processor or processor thread, but this depends on the processor
implementation. For example, some processor implementations will not allow multiple Loads to be issued when
those Loads are to Cache Inhibited and Guarded space (as are MMIO Loads) or allow multiple Stores to be issued
when those Stores are to Cache Inhibited and Guarded space (as are MMIO Stores). In this example, hardware
external to the processors could re-order Load instructions with respect to other Load instructions or re-order Store
instructions with respect to other Store instructions since they would not be from the same processor or thread.
However, hardware outside of the processor must still take care not to re-order Loads with respect to Stores or vice
versa, unless the hardware has access to the entire instruction stream to see explicit ordering instructions, like
eieio. Hardware outside of the processor includes, but is not limited to, buses, interconnects, bridges, and switches,
and includes hardware inside and outside of the coherency domain.

R1–5.2.2–2. (Requirement Number Reserved For Compatibility)

Apart from the ordering disciplines stated in Requirements R1–5.2.2–1 and, for PCI the ordering of MMIO Load data
return versus buffered DMA data, as defined by Requirement R1–4.2.2.2–6, no other ordering discipline is guaranteed
by the system hardware for Load and Store instructions performed by a processor to locations outside the PA coherency
domain. Any other ordering discipline, if necessary, must be enforced by software via programming means.

The elements of a system outside its coherency domain are not expected to issue explicit PA ordering operations. Sys-
tem hardware must therefore take appropriate action to impose ordering disciplines on storage accesses entering the
coherency domain. In general, a strong-ordering rule is enforced on an IOA’s accesses to the same location, and write
operations from the same source are completed in a sequentially consistent manner. The exception to this rule is for the
special protocol ordering modifiers that may exist in certain I/O bus protocols. An example of such a protocol ordering
modifier is the PCI Relaxed Ordering bit1, as indicated in the requirements, below.

1.The PCI Relaxed Ordering bit is an optional implementation, from both the IOA and platform perspective.

98 Processor and Memory

 LoPAPR, Version 1.1 (March 24, 2016)

R1–5.2.2–3. Platforms must guarantee that accesses entering the PA coherency domain that are from the same IOA
and to the same location are completed in a sequentially consistent manner, except transactions from PCI-X
and PCI Express masters may be reordered when the Relaxed Ordering bit in the transaction is set, as speci-
fied in the PCI-X Protocol Addendum to the PCI Local Bus Specification [21] and PCI Express Base Specifi-
cation [22].

R1–5.2.2–4. Platforms must guarantee that multiple write operations entering the PA coherency domain that are is-
sued by the same IOA are completed in a sequentially consistent manner, except transactions from PCI-X and
PCI Express masters may be reordered when the Relaxed Ordering bit in the transaction is set, as specified in
the PCI-X Protocol Addendum to the PCI Local Bus Specification [21] and PCI Express Base Specification
[22].

R1–5.2.2–5. Platforms must be designed to present I/O DMA writes to the coherency domain in the order required
by Power ISA [1], except transactions from PCI-X and PCI Express masters may be reordered when the Re-
laxed Ordering bit in the transaction is set, as specified in the PCI-X Protocol Addendum to the PCI Local
Bus Specification [21] and PCI Express Base Specification [22].

5.2.3 Storage Ordering and I/O Interrupts

The conclusion of I/O operations is often communicated to processors via interrupts. For example, at the end of a
DMA operation that deposits data in the System Memory, the IOA performing the operation might send an interrupt to
the processor. Arrival of the interrupt, however, may be no guarantee that all the data has actually been deposited; some
might be on its way. The receiving program must not attempt to read the data from the memory before ensuring that all
the data has indeed been deposited. There may be system and I/O subsystem specific method for guaranteeing this. See
Section 4.2.2.2‚ “PCI DMA Ordering‚” on page 78.

5.2.4 Atomic Update Model

An update of a memory location by a processor, involving a Load followed by a Store, can be considered “atomic” if
there are no intervening Stores to that location from another processor or mechanism. The PA provides primitives in the
form of Load And Reserve and Store Conditional instructions which can be used to determine if the update was indeed
atomic. These primitives can be used to emulate operations such as “atomic read-modify-write” and “atomic
fetch-and-add.” Operation of the atomic update primitives is based on the concept of “Reservation,”1 which is sup-
ported in an LoPAPR system via the coherence mechanism.

R1–5.2.4–1. The Load And Reserve and Store Conditional instructions must not be assumed to be supported for
Write-Through storage.

Software Implementation Note: To emulate an atomic read-modify-write operation, the instruction pair must access the
same storage location, and the location must have the Memory Coherence Required attribute.

Hardware Implementation Note: The reservation protocol is defined in Book II of the Power ISA [1] for atomic updates
to locations in the same coherency domain.

R1–5.2.4–2. The Load And Reserve and Store Conditional instructions must not be assumed to be supported for
Caching-Inhibited storage.

1.See Book I and II of Power ISA [1].

5.2  Memory Architecture 99

LoPAPR, Version 1.1 (March 24, 2016)

5.2.5 Memory Controllers

A Memory Controller responds to the real (physical) addresses produced by a processor or a host bridge for accesses to
System Memory. It is responsible for handling the translation from these addresses to the physical memory modules
within its configured domain of control.

R1–5.2.5–1. Memory controller(s) must support the accessing of System Memory as defined in Chapter 3, “Ad-
dress Map,” on page 59.

R1–5.2.5–2. Memory controller(s) must be fully initialized and set to full power mode prior to the transfer of con-
trol to the OS.

R1–5.2.5–3. All allocations of System Memory space among memory controllers must have been done prior to the
transfer of control to the OS.

Software Implementation Note: Memory controller(s) are described by properties of the memory-controller
node(s) of the OF device tree.

5.2.6 Cache Memory

All of the PA processors include some amount of on-chip or internal cache memory. This architecture allows for cache
memory which is external to the processor chip, and this external cache memory forms an extension to internal cache
memory.

R1–5.2.6–1. If a platform implementation elects not to cache portions of the address map in all external levels of the
cache hierarchy, the result of not doing so must be transparent to the operation of the software, other than as a
difference in performance.

R1–5.2.6–2. All caches must be fully initialized and enabled, and they must have accurate state bits prior to the
transfer of control to the OS.

R1–5.2.6–3. If an in-line external cache is used, it must support one reservation as defined for the Load And Reserve
and Store Conditional instructions.

R1–5.2.6–4. For the Symmetric Multiprocessor option: Platforms must implement their cache hierarchy such
that all caches at a given level in the cache hierarchy can be flushed and disabled before any caches at the
next level which may cache the same data are flushed and disabled (that is, L1 first, then L2, and so on).

R1–5.2.6–5. For the Symmetric Multiprocessor option: If a cache implements snarfing, then the cache must be
capable of disabling the snarfing during flushing in order to implement the RTAS stop-self function in an
atomic way.

R1–5.2.6–6. Software must not depend on being able to change a cache from copy-back to write-through.

Software Implementation Notes:

1. Each first level cache will be defined via properties of the cpu node(s) of the OF device tree. Each higher
level cache will be defined via properties of the l2-cache node(s) of the OF device tree. See
Appendix C, “PA Processor Binding,” on page 753 for more details.

2. To ensure proper operation, cache(s) at the same level in the cache hierarchy should be flushed and disabled
before cache(s) at the next level (that is, L1 first, then L2, and so on).

100 Processor and Memory

 LoPAPR, Version 1.1 (March 24, 2016)

5.2.7 Memory Status information

New OF properties are defined to support the identification and contain the status information on good and bad system
memory.

R1–5.2.7–1. Firmware must implement all of the properties for memory modules, as specified by Appendix B, “Lo-
PAPR Binding,” on page 661, and any other properties defined by this document which apply to memory
modules.

5.2.8 Reserved Memory

Sections of System Memory may be reserved for usage by OS extensions, with the restrictions detailed below. Memory
nodes marked with the special value of the “status” property of “reserved” is not to be used or altered by the base
OS. Several different ranges of memory may be marked as “reserved”. If DLPAR of memory is to be supported and
growth is expected, then, an address range must be unused between these areas in order to allow growth of these areas.
Each area has its own DRC Type (starting at 0, MEM, MEM-1, MEM-2, and so on). Each area has a current and a max-
imum size, with the current size being the sum of the sizes of the populated DRCs for the area and the max being the
sum total of the sizes of all the DRCs for that area. The logical address space allocated is the size of the sum of the all
the areas' maximum sizes. Starting with logical real address 0, the address areas are allocated in the following order:
OS, DLPAR growth space for OS (if DLPAR is supported), reserved area (if any) followed by the DLPAR growth
space for that reserved area (if DLPAR is supported), followed by the next reserved space (if any), and so on. The cur-
rent memory allocation for each area is allocated contiguously from the beginning of the area. On a boot or reboot, in-
cluding hypervisor reboot, if there is any data to be preserved (that is, the “ibm,preserved-storage” property
exists in the RTAS node), then the starting logical real address of each LMB is maintained through the reboot. The
memory in each region can be independently increased or decreased using DLPAR memory functions, when DLPAR is
supported. Changes to the current memory allocation for an area results in the addition or removal of memory to the
end of the existing memory allocation.

Implementation Note: if the shared memory regions are not accessed by the programs, and are just used for DMA most
of the time, then the same HPFT hit rate could be achieved with a far lower ration of HPFT entries to logical
storage space.

R1–5.2.8–1. For the Reserved Memory option: Memory nodes marked with the special value of the “status”
property of “reserved” must not be used or altered by the base OS

Implementation Note: How areas get chosen to be marked as reserved is beyond the scope of this architecture.

R1–5.2.8–2. For the Reserved Memory option with the LRDR option: Each unique memory area that is to be
changed independently via DLPAR must have different DRC Types (for example, MEM, MEM-1, and so
on).

5.2.9 Persistent Memory

Selected regions of storage (LMBs) may be optionally preserved across client program boot cycles. See
Section 2.1.3.6.12‚ “Persistent Memory and Memory Preservation Boot (Storage Preservation Option)‚” on page 49
and Section 7.4.4‚ “Managing Storage Preservation‚” on page 240.

LoPAPR, Version 1.1 (March 24, 2016)

6 Interrupt Controller

This chapter specifies the requirements for the LoPAPR interrupt controller. Platforms may chose to virtualize the in-
terrupt controller or to provide the PowerPC External Interrupt option.

6.1 Interrupt Controller Virtualization

Virtualization of the interrupt controller is done through the Interrupt Support hcalls. See Section 14.5.4.7‚ “Interrupt
Support hcall()s‚” on page 429.

6.2 PowerPC External Interrupt Option

The PowerPC External Interrupt option is based upon a subset of the PowerPC External Interrupt Architecture. The
PowerPC External Interrupt Architecture contains a register-level architectural definition of an interrupt control struc-
ture. This architecture defines means for assigning properties such as priority, destination, etc., to I/O and interproces-
sor interrupts, as well as an interface for presenting them to processors. It supports both specific and distributed
methods for interrupt delivery. See also Appendix A, “PowerPC External Interrupt Architecture,” on page 1015.

In NUMA platform configurations, the interrupt controllers may be configured in disjoint domains. The firmware
makes the server numbers visible to any single OS image appear to come from a single space without duplication. This
may be done by appropriately initializing the interrupt presentation controllers or the firmware may translate the server
numbers presented to it in RTAS calls before entering them into the interrupt controller registers. The OS is made
aware that certain interrupts are only served by certain servers by the inclusion of the “ibm,interrupt-domain”
property in the interrupt controller nodes.

6.2.1 PowerPC External Interrupt Option Requirements

The following are the requirements for the PowerPC External Interrupt option. Additional requirements and informa-
tion relative to the MSI option, when implemented with this option, are listed in Section 6.2.3‚ “MSI Option‚” on
page 103.

R1–6.2.1–1. For the PowerPC External Interrupt option: Platforms must implement interrupt architectures that
are in register-level architectural compliance with Appendix A, “PowerPC External Interrupt Architecture,”
on page 1015.

R1–6.2.1–2. For the PowerPC External Interrupt option: The platform’s OF device tree must include one or
more PowerPC External Interrupt Presentation node(s), as children of the root node.

R1–6.2.1–3. For the PowerPC External Interrupt option: The platform’s OF device tree must include an
“ibm,ppc-interrupt-server#s” and an “ibm,ppc-interrupt-gserver#s” property as
defined for each processor in the processor’s /cpus/cpu node.

R1–6.2.1–4. For the PowerPC External Interrupt option: The various “ibm,ppc-interrupt-server#s”
property values seen by a single OS image must be all unique.

102 Interrupt Controller

 LoPAPR, Version 1.1 (March 24, 2016)

R1–6.2.1–5. For the PowerPC External Interrupt option: If an OS image sees multiple global interrupt server
queues, the “ibm,ppc-interrupt-gserver#s” properties associated with the various queues must
have unique values.

R1–6.2.1–6. For the PowerPC External Interrupt option: The platform’s OF device tree must include a Pow-
erPC External Interrupt Source Controller node, as defined for each Bus Unit Controller (BUC) that can gen-
erate PowerPC External Interrupt Architecture interrupts, as a child of the platform’s root node.

R1–6.2.1–7. For the PowerPC External Interrupt option: The platform’s OF device tree must conform to the
Open Firmware: Recommended Practice - Interrupt Mapping [7] and include the appropriate mapping and
interrupt properties to allow the mapping of all non-zero XISR values (interrupt#) to the corresponding node
generating the interrupt.

R1–6.2.1–8. For the PowerPC External Interrupt option: The PowerPC External Interrupt Presentation Control-
ler node must not contain the “used-by-rtas” property.

R1–6.2.1–9. For the PowerPC External Interrupt option: The PowerPC External Interrupt Source Controller
node must contain the “used-by-rtas” property.

R1–6.2.1–10. For the PowerPC External Interrupt option: If the interrupt hardware is configured such that,
viewed from any given OS image, any interrupt source controller cannot direct interrupts to any interrupt pre-
sentation controller, then the platform must include the “ibm,interrupt-domain” property in all inter-
rupt source and presentation controller nodes for that OS so that the OS can determine the servers that may be
valid targets for any given interrupt.

R1–6.2.1–11. For the PowerPC External Interrupt option: All interrupt controller registers must be accessed via
Caching-Inhibited, Memory Coherence not required and Guarded Storage mapping.

R1–6.2.1–12. For the PowerPC External Interrupt option: The platform must manage the Available Processor
Mask Register so that global interrupts (server number field of the eXternal Interrupt Vector Entry (XIVE) set
to a value from “ibm,ppc-interrupt-gserver#s”) are only sent to one of the active processors.

R1–6.2.1–13. For the PowerPC External Interrupt option: The platform must initialize the interrupt priority in
each XIVE to the least favored level (0xFF), enable any associated IER bit for interrupt sources owned by the
OS, and set the Current Processor Priority Register to the Most favored level (0x00) prior to the transfer of
control to the OS so that no interrupts are signaled to a processor until the OS has taken explicit action.

R1–6.2.1–14. For the PowerPC External Interrupt option: Any implemented PowerPC External Interrupt Archi-
tecture registers that are not reported in specific interrupt source or destination controller nodes (such as the
APM register) must be included in the “reg” property of the /reserved node.

R1–6.2.1–15. For the PowerPC External Interrupt option: The interrupt source controller must prevent signal-
ling new interrupts when the XIVE interrupt priority field is set to the least favored level.

R1–6.2.1–16. For the PowerPC External Interrupt option: Interrupt controllers that do not implement the behav-
ior of Requirement R1–6.2.1–15, must provide an Interrupt Enable Register (IER) which can be manipulated
by RTAS,

R1–6.2.1–17. For the PowerPC External Interrupt option: The platform must assign the Bus Unit Identifiers
(BUIDs) such that they form a compact address space. That is, while the first BUID value is arbitrary, subse-
quent BUIDs should be contiguous.

R1–6.2.1–18. For the PowerPC External Interrupt option: Platforms implementing interrupt server number
fields greater than 8 bits must include the “ibm,interrupt-server#-size” property in the interrupt
source controller node.

6.2  PowerPC External Interrupt Option 103

LoPAPR, Version 1.1 (March 24, 2016)

R1–6.2.1–19. For the PowerPC External Interrupt option: Platforms implementing interrupt buid number fields
greater than 9 bits must include the “ibm,interrupt-buid-size” property in the interrupt presenta-
tion controller node.

R1–6.2.1–20. For the PowerPC External Interrupt option: Platforms must include the “ibm,inter-
rupt-server-ranges” property in the interrupt presentation controller node.

6.2.2 PowerPC External Interrupt Option Properties

See Appendix B, “LoPAPR Binding,” on page 661 for property definitions.

6.2.3 MSI Option

The Message Signaled Interrupt (MSI) or Enhanced MSI (MSI-X) capability of PCI IOAs in many cases allows for
greater flexibility in assignment of external interrupts to IOA functions than the predecessor Level Sensitive Interrupt
(LSI) capability, and in some cases treats MSIs as a resource pool that can be reassigned based on availability of MSIs
and the need of an IOA function for more interrupts than initially assigned. Platforms that implement the MSI option
implement the ibm,change-msi and ibm,query-interrupt-source-number RTAS calls. These RTAS calls manage inter-
rupts in a platform that implements the MSI option. In particular, these calls assign additional MSI resources to an IOA
function (as defined by its PCI configuration address: PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr), when
supported by the platform. See Section 7.3.10.5‚ “MSI Support‚” on page 172 for more information on theses RTAS
calls for MSI management.

This architecture will refer generically to the MSI and MSI-X capabilities as simply “MSI,” except where differentia-
tion is required. In this architecture, MSIs and LSIs are what the IOA function signals, and what the software sees for
that signal is ultimately the LSI or MSI source number. The interrupt source numbers returned by the ibm,query-inter-
rupt-source-number RTAS call are the numbers used to control the interrupt as in the ibm,get-xive, ibm,set-xive,
ibm,int-on, and ibm,int-off RTAS calls.

PCI-X and PCI Express IOA functions that signal interrupts are required by the PCI specifications to implement either
the MSI or MSI-X interrupt capabilities, or both. For PCI Express, it is expected that IOAs will only support MSI or
MSI-X (that is, no support for LSIs). When both MSI and MSI-X are implemented by an IOA function, the MSI
method will be configured by the platform, but may be overridden by the OS or device driver, via the ibm,change-msi
RTAS call, to be MSI-X or, if assigned by the firmware, to LSI (by removal of the MSIs assigned). Table 14‚ “LSI and
MSI Support Requirements and Initial Assignment‚” on page 103 summarizes the LSI and MSI support.

Table 14. LSI and MSI Support Requirements and Initial Assignment

IOA Type
LSI

required by PCI
specifications?

MSI or MSI-X
required by PCI
specifications?

Bridge between IOA
and PHB

Possible platform support

Initial interrupt
assignmenta

If PHB does not
support MSI option
(Not including PCI

Express HBs)

If PHB supports
MSI option

(Including all PCI
Express HBs)

PCI
When interrupts are

required
No

(allowed; optional)
- LSI LSI or MSI LSIb

PCI-X

Encouraged when
interrupts are required, for

backward platform
compatibility

Yes - LSI LSI or MSI LSIc

104 Interrupt Controller

 LoPAPR, Version 1.1 (March 24, 2016)

The ibm,change-msi RTAS call is used to query the initial number of MSIs assigned to a PCI configuration address and
to request a change in the number of MSIs assigned. The MSIs interrupt source numbers assigned to an IOA function
are returned via the ibm,query-interrupt-source-number RTAS call. In addition, when the ibm,query-inter-
rupt-source-number RTAS call is implemented, it may be used to query the LSI source numbers, also. The
ibm,query-interrupt-source-number RTAS call is called iteratively, once for each interrupt assigned to the IOA func-
tion. When an IOA function receives an initial assignment of an LSI, the interrupt number for that LSI may also be ob-
tained through the same OF device tree properties that are used to report interrupt information when the
ibm,query-interrupt-source-number RTAS call is not implemented.

R1–6.2.3–1. The platform must implement the MSI option if the platform contains at least one PCI Express HB.

Architecture and Software Note: The MSI option may also be implemented in the absence of any PCI Express HBs. In
that case, the implementation of the MSI option is via the presence of the implementation of the associated
ibm,change-msi and ibm,query-interrupt-source-number RTAS calls.

R1–6.2.3–2. For the MSI option: The platform must implement the PowerPC External Interrupt option.

R1–6.2.3–3. For the MSI option: The platform must implement the ibm,change-msi and ibm,query-inter-
rupt-source-number RTAS calls.

R1–6.2.3–4. For the MSI option: The platform must initially assign LSI or MSIs to IOA functions as defined in
Table 14‚ “LSI and MSI Support Requirements and Initial Assignment‚” on page 103 and must enable the as-
signed interrupts in the IOA function’s configuration space (the interrupts remains disabled at the PHB, and
must be enabled by the device driver though the ibm,set-xive and ibm,int-on RTAS calls.

R1–6.2.3–5. For the MSI option: The platform must provide a minimum of one MSI per IOA function (that is per
each unique PCI configuration address, including the Function #) to be supported beneath the interrupt source
controller, and any given MSI and MSI source number must not be shared between functions or within one
function (even within the same PE).

R1–6.2.3–6. For the MSI option: The platform must provide at least one MSI port (the address written by the MSI)
per Partitionable Endpoint (PE).

PCI Express
Discouraged

(expect IOAs to not
implement in most cases)

Yes

None or PCI Express
switch only

n/a MSI MSId

Reverse bridge
(primary, PCI Express

secondary)
LSI or not supportede LSIf or MSI LSIg

a. Assignment means to allocate the platform resources and to enable the interrupt in the IOA function’s configuration space.
b. If MSIs are to be supported, the device driver must enable via the ibm,change-msi RTAS call.
c. If MSIs are to be supported, the device driver must enable via the ibm,change-msi RTAS call.
d. MSI as an initial assignment means that one or more MSIs are reported as being available for the IOA function. In addition, LSIs may also be

reported but not enabled, in which case if the device driver removes the assigned MSIs, the assigned LSI are enabled by the platform firmware in the
IOA function’s configuration space.

e. If PCI Express IOA function does not support LSI, then this combination is not supported.
f. If PCI Express IOA function does not support LSI, then this combination is not supported.
g. If the PCI Express IOA function does not support LSI, then the platform will set the initial interrupt assignment to MSI, and if the device driver does

not support MSI, then the IOA function will not be configurable (that is, conversion from MSI to LSI through the bridge is not supported by this
architecture). If LSI is the initial assignment, then if MSIs are to be supported, device driver must enable via the ibm,change-msi RTAS call.

Table 14. LSI and MSI Support Requirements and Initial Assignment (Continued)

IOA Type
LSI

required by PCI
specifications?

MSI or MSI-X
required by PCI
specifications?

Bridge between IOA
and PHB

Possible platform support

Initial interrupt
assignmenta

If PHB does not
support MSI option
(Not including PCI

Express HBs)

If PHB supports
MSI option

(Including all PCI
Express HBs)

6.3  Platform Reserved Interrupt Priority Level Option 105

LoPAPR, Version 1.1 (March 24, 2016)

Platform Implementation Note: Requirement R1–6.2.3–5 in conjunction with Requirement R1–6.2.3–6 may have
certain ramifications on the design. Depending on the implementation, a unique MSI port per IOA function may
be required, and not just a unique port per PE.

R1–6.2.3–7. For the MSI option with the LPAR option: The platform must prevent a PE from creating an inter-
rupt to a partition other than those to which the PE is authorized by the platform to interrupt.

R1–6.2.3–8. For the MSI option: The platform must set the PCI configuration space MSI registers properly in an
IOA at all the following times:

a. Initial boot time

b. During the ibm,configure-connector RTAS call

c. During the ibm,change-msi or ibm,query-interrupt-source-number RTAS call

R1–6.2.3–9. For the MSI option: The platform must initialize any bridges necessary to appropriately route inter-
rupts at all the following times:

a. At initial boot time

b. During the ibm,configure-connector RTAS call

c. During the ibm,configure-bridge RTAS call

d. During the ibm,change-msi or ibm,query-interrupt-source-number RTAS call

R1–6.2.3–10. For the MSI option: The platform must provide the “ibm,req#msi” property for any IOA func-
tion which is requesting MSIs; at initial boot time and during the ibm,configure-connector RTAS call.

R1–6.2.3–11. For the MSI option: The platform must remember and recover on error recovery any previously al-
located and setup interrupt information in the platform-owned hardware.

Software and Platform Implementation Note: In Requirement R1–6.2.3–11, it is possible that some interrupts may be
lost as part of the error recovery, and software should be implemented to take into consideration that possibility.

6.3 Platform Reserved Interrupt Priority Level Option

The Platform Reserved Interrupt Priority Level option allows platforms to reserve interrupt priority levels for internal
uses. When the platform exercises this option, it notifies the client program via the OF device tree
“ibm,plat-res-int-priorities” property of the root node of the device tree.

R1–6.3–1. For the Platform Reserved Interrupt Priority Level option: The platform must include the
“ibm,plat-res-int-priorities” property in the root node of the device tree.

R1–6.3–2. For the Platform Reserved Interrupt Priority Level option: The platform must not reserve priority
levels 0x00 through 0x07 and 0xFF for internal use.

106 Interrupt Controller

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

7 Run-Time Abstraction Services

7.1 RTAS Introduction

The Run-Time Abstraction Service (RTAS) functions are provided by LoPAPR platforms to insulate the OS from hav-
ing to know about and manipulate a number of key platform hardware functions which ordinarily require platform-de-
pendent code. The OS calls RTAS functions rather than manipulating hardware registers directly, reducing the need for
platform tailoring by the OS. This method of abstracting access to these platform functions also permits hardware de-
signers considerable flexibility in hardware implementation. Since RTAS is provided by the platform developer, this
approach places the responsibility for supporting the platform hardware design with the platform developer, not the OS
developer. This permits a degree of independence between the schedules of hardware and software and reduces the re-
lease and test requirements for the OS, since it can be tested to conform to the RTAS interface and not to every specific
hardware implementation. See Table 17‚ “RTAS Tokens for Functions‚” on page 112 for a list of all RTAS calls, and
which ones are required based on which LoPAPR options that are implemented in the platform.

In order for platforms to achieve this separation of OS code from hardware implementation dependencies, RTAS de-
fines an interface between the platform and the OS that provides control of some of the common devices found on all
platforms. RTAS is a system programming interface that is realized, on a specific platform, by an RTAS implementa-
tion. The RTAS implementation provides the platform specific processing of the common components. RTAS limits it-
self to the run-time control of non-I/O, typically system board-resident, hardware features. Traditionally, features such
as these have been implemented differently on different platforms. The different implementations have required much
effort and platform-dependent code in the OS. RTAS permits the OS to operate over a much wider range of platforms
without specialized code for each platform.

In general, the OS should not access RTAS resources directly. It should call RTAS to control the resource.

OS drivers are necessary to provide device specific processing for IOAs.

The role of RTAS versus OF is very important to understand. OF and RTAS are both platform-specific software, and
both are tailored by the platform developer to manipulate the specific platform hardware. However, RTAS is intended
to be present during the execution of the OS, and to be called by the OS to access platform hardware features on behalf
of the OS, whereas OF need not be present when the OS is running. This frees OF’s memory to be used by applica-
tions. RTAS is small enough to painlessly coexist with the OS and applications.

This chapter uses the term RTAS to refer both to the architected RTAS interface and to an RTAS implementation.

7.2 RTAS Environment

RTAS provides an interface definition between the OS and the firmware provided by the platform. This chapter defines
the calling conventions used by both the OS and the platform’s RTAS firmware.

RTAS runs with instruction and data relocate as well as processing exceptions disabled. To not interfere with the OS,
RTAS may not cause any exceptions, nor can it depend on any particular virtual memory mappings.

All RTAS functions are invoked from the OS by calling the rtas-call function. The address of this function is obtained
from OF when RTAS is instantiated. See Requirement R1–7.2.3–1 for more details. RTAS determines what function to

108 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

invoke based on the data passed into the rtas-call function. This section describes the mechanisms used to invoke the
rtas-call function, the machine state, register usage, resource allocation, and the invocation requirements.

If the LPAR option is enabled, multiple partitions may exist, each with its own OS instance. This requires some
changes to the RTAS environment. These changes are discussed in Chapter 14, “Logical Partitioning Option,” on
page 385

7.2.1 Machine State

When RTAS functions are invoked, the calling processor shall have address translations, floating point, and most other
exceptions disabled and it shall be running in privileged state.

R1–7.2.1–1. RTAS must be called in “real mode,” that is, all address translation must be disabled. Bits MSRIR and
MSRDR of the MSR register must be zero.

R1–7.2.1–2. RTAS must be called in privileged mode, and the MSRPR bit must be set to 0.

R1–7.2.1–3. RTAS must be called with external interrupts disabled, and the MSREE bit must be set to 0.

R1–7.2.1–4. RTAS must be called with trace disabled, and the MSRSE and MSRBE bits must be set to 0.

R1–7.2.1–5. RTAS must be called with floating point disabled, and the MSRFE0, MSRFE1, and MSRFP bits must be
set to 0.

R1–7.2.1–6. RTAS must be called with the MSRSF, (MSRISF, and ASRV bits if applicable on the specific processor)
set to match the mode used to instantiate RTAS (0 for instantiate-rtas or 1 for instanti-
ate-rtas-64) and the LE bit set to 0.

R1–7.2.1–7. With the exception of the MSRDR and MSRRI bits, RTAS must not change the state of the machine by
modifying the MSR.

R1–7.2.1–8. If rtas-call is entered in a non-recoverable mode, indicated by having the MSRRI bit set equal to 0,
then RTAS must not enter a recoverable mode by setting the MSRRI bit to 1.

R1–7.2.1–9. If called with MSRRI equal to 1, then RTAS must protect its own critical regions from recursion by set-
ting the MSRRI bit to 0 when in the critical regions.

Software Implementation Notes:

1. If the MSRME bit is left enabled, the OS’s exception handler must be aware that RTAS might have been run-
ning and that various processor registers might not be in the expected state for an interrupted OS, which pre-
cludes recoverability but permit logging machine checks.

2. There are some provisions for recursive calls to RTAS error handling functions. Therefore, RTAS should set
the MSRRI bit to 0 if SRR0/SRR1 or any other RTAS resource is in a state where information could be lost
and prohibit recovery.

3. Requirement R1–7.2.1–6 implies that RTAS must be able to be instantiated in 64-bit mode on platforms that
can support 64-bit execution.

7.2.2 Register Usage

R1–7.2.2–1. Except as required by a specific function, registers SPRG2, R0, R3 through R12, CTR, XER, LR, and
fields CR2-CR4 of the CR, RTAS must preserve all OS visible register state.

R1–7.2.2–2. RTAS must not modify the DEC and registers SPRG0, SPRG1, and SPRG3.

7.2  RTAS Environment 109

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Notes:

1. RTAS is entered in real mode (with address translation turned off). In this mode, all data accesses are as-
sumed to be cached in copy back mode with memory coherence required. Since these settings may not be
appropriate for all accesses, RTAS is free to transparently use the processor specific facilities required to ac-
cess platform hardware resources. The OS machine check handler can only depend on those registers that
are required to be unchanged (see Requirement R1–7.2.2–1).

2. RTAS must not change the preserved registers, or must first save them and restore the original contents be-
fore returning to the OS.

3. The SRR0-SRR1, LR, CTR, XER registers, as well as any reservations made via the load and reserve in-
structions, need not be preserved.

7.2.3 RTAS Critical Regions

The OS, when using RTAS, is responsible for protecting RTAS and devices used by RTAS from any simultaneous ac-
cesses that could corrupt memory or device registers. Such corruption could be caused by simultaneous execution of
RTAS code, or by a device driver accessing a control register that is also modified by RTAS. In a single processor sys-
tem, since the MSREE bit is 0 when entering RTAS, a call to RTAS while it is in execution is prevented except for the
machine check handler. This handler may need to call various RTAS services such as check-exception or system-reboot
even if the error was detected while in an RTAS service.

The OS and RTAS must co-exist on the same platform. RTAS must not change device registers that are used by the OS,
nor may the OS change device registers on devices used by RTAS. With the advent of more and more integration into
common super parts, some of these registers may physically reside on the same component. In this section, device im-
plies the collection of common registers that together perform a function. Each device must be represented in the OF
device tree.

R1–7.2.3–1. Except as noted in Requirement R1–7.2.3–7 and R1–7.2.3–8, the OS must ensure that RTAS is not
called while RTAS is in execution and that RTAS is not simultaneously called from different processors in a
multi-processor system.

R1–7.2.3–2. Any RTAS access to device or I/O registers specified in this document must be made in such a way as
to be transparent to the OS.

R1–7.2.3–3. Any device that is used to implement the RTAS abstracted services must have the property
“used-by-rtas” in the OF device tree. However, if the device is only used by the power-off, and sys-
tem-reboot calls, the property should not be set. The rtas-display-device must be marked with the property
“used-by-rtas” if it is a specialized device only to be accessed via the RTAS display-character call and
not otherwise shared with the OS

Software Implementation Note: Table 15‚ “Use of “used-by-rtas”‚” on page 109 clarifies when a device should be
marked with the “used-by-rtas” property, based on whether it has any interaction with RTAS and/or the
OS (with the exception of the calls listed in Requirement R1–7.2.3–1).

Table 15. Use of “used-by-rtas”

Normal Device (1) rtas-display-device

Only used by OS not marked N/A (2)

Only used by RTAS marked marked

OS and RTAS shared marked (3) not marked (4)

110 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

1. A device which is not normally to be used by the OS must meet one of the following rules.

a. It must not be included in the OF device tree.

b. It must be defined as a “reserved” device node.

c. It must be marked with the “used-by-rtas” property in the OF device tree.

2. It is assumed that an rtas-display-device is used by RTAS.

3. It is assumed that there are no devices other than the rtas-display-device which are used by both RTAS and an “un-
aware” OS. To allow an aware OS to share a device with RTAS, the device should be marked.

4. It is assumed that the rtas-display-device is used by both RTAS and the OS (as coordinated by the OS via dis-
play-character) unless it is marked. See also Requirement R1–7.3.5.3–14.

R1–7.2.3–4. Platforms must be designed such that accesses to devices that are marked “used-by-rtas” have no
side effects on other registers in the system.

R1–7.2.3–5. Any OS access to devices specified as “used-by-rtas” must be made in such a way as to be trans-
parent to RTAS.

R1–7.2.3–6. RTAS must not generate any exceptions (for example, no alignment exceptions, page table walk ex-
ceptions, etc.).

R1–7.2.3–7. The OS machine check and soft reset handlers must be able to call the RTAS services:

 nvram-fetch

 nvram-store

 check-exception

 display-character

 system-reboot

 set-power-level(0,0)

 power-off

 ibm,set-eeh-option

 ibm,set-slot-reset

 ibm,read-slot-reset-state2

R1–7.2.3–8. The stop-self service need only be serialized with calls to the stop-self, start-cpu, and set-power-level
services. The OS must be able to call RTAS services on other processors while a processor is stopped or being
stopped.

Virtual N/A N/A

Table 15. Use of “used-by-rtas”

Normal Device (1) rtas-display-device

7.2  RTAS Environment 111

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Notes:

1. While RTAS must not generate any exceptions, it is still possible that a machine check interrupt may occur
during the execution of an RTAS function. In this case, the machine check handler may be entered prior to
the normal termination of the RTAS function.

2. It is permissible for the OS exception handler to make an RTAS call as long as Requirements R1–7.2.2–1
and R1–7.2.3–1 are met. In particular, it is expected that the RTAS check-exception is called from the OS
exception handler.

7.2.4 Resource Allocation and Use

During execution, RTAS requires memory for both code and data. This memory may be in RAM, in a private memory
area only known by the system firmware, or in memory allocated by the OS for RTAS use. RTAS should use this mem-
ory for its stack and any state savings. This memory is subsequently called the “RTAS private data area.”

R1–7.2.4–1. The OS must allocate “rtas-size” bytes of contiguous real memory as RTAS private data area.
This memory must be aligned on a 4096 byte boundary and may not cross a 256 MB boundary.

R1–7.2.4–2. The RTAS private data area must not be accessed by the OS.

R1–7.2.4–3. Except for the RTAS private data area, the argument buffer, System Memory pointed to by any refer-
ence parameter in the argument buffer, and any other System Memory areas explicitly permitted in this chap-
ter, RTAS must not modify any System Memory. RTAS may, however, modify System Memory during error
recovery provided that such modifications are transparent to the OS.

R1–7.2.4–4. RTAS calls may not sleep in any fashion nor busy wait for more than a very short period of time, ex-
cept for power-off, ibm,power-off-ups, set-power-level (0,0), system-reboot, ibm,update-flash-64-and-reboot,
and ibm,os-term.

Software Implementation Note: An RTAS call should take the same amount of time to perform a service that it would
take the OS to perform the same function. A specific goal is that RTAS primitives should take less than a few tens
of microseconds.

R1–7.2.4–5. For RTAS calls which do not allow the Status of -2 (Busy), there may be “rare” instances where an
anomaly may occur and the call may take longer than a “very short period of time.” In these cases, the call
must complete within 250 microseconds. Otherwise, a hardware error response must be given.

7.2.5 Instantiating RTAS

RTAS is instantiated by an explicit client interface service call into OF. The OF device tree contains a property
(“rtas-size”, under the /rtas node) which defines how much real memory RTAS requires from the OS. The
OS allocates “rtas-size” bytes of real memory, and then invokes the instantiate-rtas or instanti-
ate-rtas-64 method of the /rtas node, passing the real address of the private data area (or zero, if
“rtas-size” is zero) as the rtas-base-address input argument. Firmware binds RTAS to that address, binds the ad-
dresses of devices that RTAS uses, performs any RTAS initialization, and returns the address of the rtas-call function
that is appropriate.

R1–7.2.5–1. The instantiate-rtas or instantiate-rtas-64 OF method must have the arguments
specified in Table 16‚ “instantiate-rtas or instantiate-rtas-64 Argument Call Buffer‚” on page 112.

112 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.2.5–2. The RTAS code bound and initialized by the instantiate-rtas method on a 64-bit capable plat-
form, must be able to handle platform resources that are accessed using 64-bit addresses.

7.2.6 RTAS Device Tree Properties

The OF device tree contains a /rtas device node that describes the implemented RTAS features and the output de-
vice supported by RTAS. Within this device node are properties that describe the RTAS functions implemented by the
firmware. For every implemented RTAS function, the /rtas node contains an OF property whose name is the same
as the RTAS function. The value of this property is the token argument passed into the rtas-call function when making
that specific RTAS call. Note that some RTAS functions are optional and some are required. This is defined in
Table 17‚ “RTAS Tokens for Functions‚” on page 112.

R1–7.2.6–1. The OF device tree must contain a device node named /rtas which describes the RTAS implemen-
tation.

R1–7.2.6–2. The /rtas device node must have a property for each implemented RTAS function in Table 17‚
“RTAS Tokens for Functions‚” on page 112. The value of this property is a token that is passed into the
rtas-call function to indicate which RTAS function to invoke.

Table 16. instantiate-rtas or instantiate-rtas-64 Argument Call Buffer

Parameter Type Name Values

In rtas-base-address Real Address of RTAS area or zero, if “rtas-size” is zero

Out rtas-call Real address used to invoke RTAS functions

Table 17. RTAS Tokens for Functions

RTAS property/function Required? Notes

“nvram-fetch”
7.3.1.1 on page 120

Required Execution time proportional to amount of data

“nvram-store”
7.3.1.2 on page 121

Required Execution time proportional to amount of data

“get-time-of-day”
7.3.2.2 on page 122

Required

“set-time-of-day”
7.3.2.3 on page 123

Required

“set-time-for-power-on”
7.3.2.4 on page 124

“event-scan”
7.3.3.1 on page 125

Required

“check-exception”
7.3.3.2 on page 127

Required

“rtas-last-error”
7.3.3.3 on page 128

Required

“ibm,platform-dump”
7.3.3.4.1 on page 129

If the Platform Dump option is
implemented

7.2  RTAS Environment 113

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,read-pci-config”
7.3.4.1 on page 134

Required
“ibm,write-pci-config”

7.3.4.2 on page 135

“display-character”
7.3.5.3 on page 140

“set-indicator”
7.3.5.4 on page 142

Required Some specific indicators are required, and some are optional

“get-sensor-state”
7.3.5.5 on page 145

”ibm,set-system-parameter”
7.3.16.2 on page 212

“ibm,get-system-parameter”
7.3.16.1 on page 211

“set-power-level”
7.3.6.1 on page 151

Required for DR operations
(see Chapter 13, “Dynamic

Reconfiguration (DR)
Architecture,” on page 355)

“get-power-level”
7.3.6.2 on page 152

“power-off”
7.3.6.3 on page 153

Provided for platforms with software controlled power off
capability

“ibm,power-off-ups”
7.3.6.4 on page 154

If there may be a platform
controlled UPS.

For power off control in a platform which may have power
backed up with an Uninterruptible Power Supply (UPS).

“system-reboot”
7.3.7.1 on page 155

Required

“ibm,update-flash-64-and-reboot”
7.3.7.2 on page 156

“ibm,manage-flash-image”
7.3.7.4 on page 158

“ibm,validate-flash-image”
7.3.7.5 on page 159

“ibm,activate-firmware”
7.3.7.6 on page 161

“stop-self”
7.3.8.1 on page 162

See Note
“start-cpu”

7.3.8.2 on page 162

“query-cpu-stopped-state”
7.3.8.3 on page 164

“ibm,os-term”
7.3.9.1 on page 165

“ibm,exti2c”
7.3.9.2 on page 166

Table 17. RTAS Tokens for Functions (Continued)

RTAS property/function Required? Notes

114 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,get-xive”
7.3.10.1 on page 169

Required for the PowerPC
External Interrupt option

“ibm,set-xive”
7.3.10.2 on page 170

“ibm,int-off”
7.3.10.3 on page 170

“ibm,int-on”
7.3.10.4 on page 171

“ibm,configure-connector”
13.5.3.5 on page 369

Required for all DR options
See Chapter 13, “Dynamic Reconfiguration (DR) Architecture,”
on page 355

“ibm,set-eeh-option”
7.3.11.1 on page 180

Required for EEH option
“ibm,set-slot-reset”

7.3.11.2 on page 182

“ibm,read-slot-reset-state”
Being replaced by

ibm,read-slot-reset-state2
See Section 7.3.11.3‚ “ibm,read-slot-reset-state2‚” on page 184.

“ibm,read-slot-reset-state2”
7.3.11.3 on page 184

 Required for all platforms

“ibm,get-config-addr-info2”
7.3.11.4 on page 187

Required on all platforms

“ibm,slot-error-detail”
7.3.11.5 on page 188

Required for the EEH option

“ibm,open-errinjct”
7.3.13 on page 197

Required for ERRINJCT
option

“ibm,errinjct”
7.3.13 on page 197

“ibm,close-errinjct”
7.3.13 on page 197

“ibm,nmi-register”
7.3.14 on page 204

Required for FWNMI option
“ibm,nmi-interlock”

7.3.14 on page 204

”ibm,configure-bridge”
7.3.12.1 on page 193

Required for the EEH option

”ibm,configure-pe”
7.3.12.2 on page 195

Required for the EEH option

“ibm,get-indices”
7.3.16.21–4 on page 234

Sometimes (see Chapter 16,
“Service Indicators,” on

page 511)

“ibm,get-vpd”
7.4.3 on page 238

Required for the Dynamic VPD
option

“ibm,manage-storage-preservation”
7.4.4 on page 240

Required for the Storage
Preservation option

Table 17. RTAS Tokens for Functions (Continued)

RTAS property/function Required? Notes

7.2  RTAS Environment 115

LoPAPR, Version 1.1 (March 24, 2016)

Note: These commands are required in SMP platforms if dynamic reconfiguration is required of the processors. Similarly,
a degraded mode may need these, or similar commands in the case of detection of excessive errors. In the case of
a processor deconfigured by dynamic reconfiguration or due to excessive errors, the returned CPU_status from
the query-cpu-stopped-state RTAS call is 2 (The processor thread is not in the RTAS stopped state) since the
deconfigured processor cannot be started.

R1–7.2.6–3. The OF properties listed in Table 18‚ “OF Device Tree Properties‚” on page 115 must be in the
/rtas device tree node prior to booting the OS.

“ibm,get-dynamic-sensor-state”
7.4.2 on page 237

See Requirement R1–7.4.2–1

“ibm,set-dynamic-indicator”
7.4.1 on page 236

See Requirement R1–7.4.1–1

“ibm,change-msi”
7.3.10.5.1 on page 172

Required for the MSI option.
Required if any PCI Express

HB in the platform.

“ibm,suspend-me”
7.4.6 on page 243

Required for the Partition
Suspension option

“ibm,update-nodes”
7.4.7 on page 246

Required for the Update OF
Tree option

“ibm,update-properties”
7.4.8 on page 249

Required for the Update OF
Tree option

“ibm,configure-kernel-dump”
7.4.9 on page 255

Required for the Configure
Platform Assisted Kernel

Dump option

“ibm,query-pe-dma-window”
7.4.10.1 on page 260

Required for the Dynamic
DMA Window (DDW) option

“ibm,create-pe-dma-window”
7.4.10.2 on page 261

“ibm,remove-pe-dma-window”
7.4.10.3 on page 262

“ibm,reset-pe-dma-windows”
7.4.10.3 on page 262

Required for the LoPAPR
version l of the Dynamic DMA

Window (DDW) option

Table 18. OF Device Tree Properties

name value

“rtas-size” integer size of RTAS private data area or zero if allocation is not required

“rtas-version” An integer encoding of the RTAS interface version. This document describes version 1.

“rtas-event-scan-rate”
The rate, in calls per minute, at which rtas-event-scan should be called by the OS. See
Section 7.3.3.1‚ “event-scan‚” on page 125.

“rtas-display-device” The phandle of the device node used by the RTAS call, display-character

“rtas-error-log-max” The maximum size of an extended error log.

Table 17. RTAS Tokens for Functions (Continued)

RTAS property/function Required? Notes

116 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.2.6–4. All RTAS functions listed as “Required” in Table 17‚ “RTAS Tokens for Functions‚” on page 112 must
be implemented in RTAS.

R1–7.2.6–5. For the Symmetric Multiprocessor option: The functions listed as “Required in SMP Platforms” in
Table 17‚ “RTAS Tokens for Functions‚” on page 112 must be implemented in RTAS.

Software Implementation Notes:

1. It is permitted for RTAS not to implement those optional functions that are not appropriate or not needed on
a particular platform.

2. Vendors may introduce private RTAS calls of their own. If they do, the property names should be of the
form “vendor,property” where vendor is a company name string as defined by OF. Future ver-
sions of this architecture will not choose RTAS property names that include a comma.

7.2.6.1 RTAS Device Tree Properties for Indicators and Sensors

Indicators and sensors may be static or dynamic. Each indicator or sensor type is identified by its token; a number
which is associated with the functionality of the indicator or sensor. A specific indicator token is static in a particular
platform if the number of indicators of that type do not change with Dynamic Reconfiguration (DR) operations, and
dynamic otherwise. Certain sensors and indicators associated with DR1 are static since they represent the base hard-
ware, others are dynamic coming and going with extensions to the base hardware. Indices for DR indicators and sen-
sors are obtained from the DRC index for the DRC connector. Information about static non-DR indicators and sensors
(like indices and location codes) are specified in the OF device tree at boot time and do not change. Information about
non-DR dynamic indicators and sensors, needs to be gathered via the ibm,get-indices RTAS call (see
Section 7.3.16.21–4‚ “For the UUID option with the System Parameters option: For the UUID system parameter, the
ibm,set-system-parameter RTAS call must always return a Status of -9002 (Setting not allowed/authorized).‚” on
page 234), and sensors, instead of being represented in the device tree.

Indicators and sensors within a platform generally have location codes associated with them. Location code informa-
tion for static indicators and sensors, except DR indicators and sensors, are placed in the “<vendor>,indica-
tor-<token>” and “<vendor>,sensor-<token>” properties, respectively, in the /rtas node, where
“<vendor>” is defined in the column marked “<vendor>” in Table 40‚ “Defined Indicators‚” on page 143 and
Table 42‚ “Defined Sensors‚” on page 147, respectively. Location code information for dynamic indicators and sen-
sors, except DR indicators and sensors, for the most part come in via the ibm,get-indices call.

Information (index, location code) about a particular indicator or sensor token, except DR indicators and sensors, are in
the /rtas node properties or are available via the ibm,get-indices call, but not both. When indices are provided via
the “rtas-sensors” or “rtas-indicators” properties, it is expected that there exists a sensor/indicator for
each index between 0 and maxindex. When indices are provided via the ibm,get-indices call, the indices may not be
contiguous, and any of the indices between 0 and maxindex may be missing.

The formats for location codes are defined in Section 12.3‚ “Hardware Location Codes‚” on page 327. For indicators
and sensors, these location codes are for the location of the device being manipulated or measured, not the location of
the specific controller or sensor. The location code for an abstracted indicator or sensor is a NULL string.

1.DR indicators include isolation-state (9001), DR indicator (9002), and allocation-state (9003). DR sensors include dr-entity-sense (9003). DR indica-
tors and sensors are required to be there based on the DR entity being supported. Their indices are specified by the DR index for the DR entity. See
Table 166‚ “get-sensor-state Defined Sensors for All DR Options‚” on page 366 and Table 168‚ “set-indicator Defined Indicators for all DR Options‚”
on page 368 for more information.

7.2  RTAS Environment 117

LoPAPR, Version 1.1 (March 24, 2016)

7.2.6.1.1 Indicators

For static indicators, except DR indicators, OF provides for paired integers (token maxindex) for each indicator token
under the property “rtas-indicators” in the /rtas node. With this information, the OS can determine which
types of indicators, and the maximum number (maxindex) of each type, that the platform provides.

For static indicators, except DR indicators, the extension property, “<vendor>,indicator-<token>” (see
Section B.6.3.1‚ “RTAS Node Properties‚” on page 690), provides an array of strings containing the FRU location
codes associated with each indicator. See Section 12.3‚ “Hardware Location Codes‚” on page 327. Here, “<vendor>”
corresponds to the “<vendor>” column of Table 40‚ “Defined Indicators‚” on page 143 and “<token>” corresponds to
the token of the “rtas-indicators” type. The index of a specific indicator token is used to index into the array
up to maxindex.

Indices and location codes for dynamic indicators are obtained via the ibm,get-indices RTAS call and do not appear in
the static properties in the /rtas node.

Indices for DR indicators 9001, 9002, and 9003 are obtained from the DRC index for the DRC connector. See Require-
ment R1–13.5.3.4–2.

R1–7.2.6.1.1–1. For all static indicators, except DR indicators 9001, 9002, and 9003, OF must provide the exten-
sion property, “<vendor>,indicator-<token>”, in the /rtas node, unless the indicator is part of an
extension which has its own set of appropriate properties for the indicator, where “<vendor>” must be as de-
fined in the column labeled “<vendor>” in Table 40‚ “Defined Indicators‚” on page 143 for the specific indi-
cator token value.

R1–7.2.6.1.1–2. For all static indicators for which there is an associated “<vendor>,indicator-<token>”
property and for which there is not a physical realization, the location code string must be NULL.

R1–7.2.6.1.1–3. Indices and location codes for any indicator token, except DR indicators 9001, 9002, and 9003, for
which the number of such indicators in the platform may change dynamically, must be obtained via the
ibm,get-indices RTAS call and the indicator token must not appear in the “<vendor>,indicator-<to-
ken>” or “rtas-indicators” in the /rtas node.

R1–7.2.6.1.1–4. The indicator token of 4 must not exist in a platform when a Error Log (token 9006) is imple-
mented.

7.2.6.1.2 Sensors

For static sensors, except DR sensors, OF currently provides for paired integers (token maxindex) for each sensor token
under the property “rtas-sensors” in the /rtas node. With this information, the OS can determine which
types of sensors, and how many of each type, that the platform provides.

For static sensors, except DR sensors, the extension property, “<vendor>,sensor-<token>” (see Section B.6.3.1‚
“RTAS Node Properties‚” on page 690), provides an array of strings containing the FRU location codes associated with
each sensor. See Section 12.3‚ “Hardware Location Codes‚” on page 327. Here, “<vendor>” corresponds to the
“<vendor>” column of Table 42‚ “Defined Sensors‚” on page 147 and “<token>” corresponds to the token in the
“rtas-sensors” property. The index of a specific sensor is used to index into the array up to maxindex.

Indices and location codes for dynamic sensors, except DR sensors, are obtained via the ibm,get-indices RTAS call and
do not appear in the static properties in the /rtas node.

Indices for DR sensors 9003 are obtained from the DRC index for the DRC connector. See Requirement R1–13.5.3.3–
4.

R1–7.2.6.1.2–1. For all static sensors, except DR sensor 9003, OF must provide the extension property, “<ven-
dor>,sensor-<token>”, in the /rtas node, unless the sensor is part of an extension which has its own

118 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

set of appropriate properties for the sensor, where “<vendor>” must be as defined in the column labeled
“<vendor>” in Table 42‚ “Defined Sensors‚” on page 147 for the specific sensor token value.

R1–7.2.6.1.2–2. For all static sensors for which there is an associated “<vendor>,sensor-<token>” property
and for which there is not a physical realization, the location code string must be NULL.

R1–7.2.6.1.2–3. Indices and location codes for any sensor token, except DR sensor 9003, for which the number of
such sensors in the platform may change dynamically, must be obtained via the ibm,get-indices RTAS call
and the sensor token must not appear in the “<vendor>,sensor-<token>” or “rtas-sensors” in the
/rtas node.

R1–7.2.6.1.2–4. The following sensor tokens must not be implemented if the number of them may be changed by a
DR operation (that is, they can only be used when static): 3, 9001, and 9002.

7.2.7 Calling Mechanism and Conventions

RTAS is called through a mechanism similar to the OF client interface service. An argument buffer is constructed
which describes the desired RTAS call. This description includes an indication of the RTAS call that is being invoked,
the number and value of the input parameters, the number of result values, and space for each of the result values.

R1–7.2.7–1. In order to make an RTAS call, the OS must construct an argument call buffer aligned on an eight byte
boundary in physically contiguous real memory as described by Table 19‚ “RTAS Argument Call Buffer‚” on
page 118.

R1–7.2.7–2. If the system is a 32-bit system, or if RTAS was instantiated by instantiate-rtas, then all cells
in the RTAS argument buffer must be 32-bit sign extended values that are aligned to 4 byte boundaries.

R1–7.2.7–3. If the system is a 64 bit system and if RTAS was instantiated by instantiate-rtas-64, then all
cells in the RTAS argument buffer must be 64-bit sign extended values that are aligned to 8 byte boundaries.

Table 19. RTAS Argument Call Buffer

Cell Number Use

1 Token Specifying which RTAS Call

2 Number of Input Parameters

3 Number of Output Parameters

4 First Input Parameter

... Other Input Parameters

4 + Number of Inputs -1 Last Input Parameter

4 + Number of Inputs First Output Parameter

... Other Output Parameters

4 + Number of Inputs
+ Number of Outputs -1

Last Output Parameter

7.2  RTAS Environment 119

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.2.7–4. RTAS functions must be invoked by branching to the rtas-call address which is returned by the in-
stantiate-rtas or instantiate-rtas-64 OF method (see Table 16‚ “instantiate-rtas or instanti-
ate-rtas-64 Argument Call Buffer‚” on page 112).

R1–7.2.7–5. Register R3 must contain the argument buffer’s real address when rtas-call is invoked.

R1–7.2.7–6. Register R4 must contain the real address of the RTAS private data area when rtas-call is invoked (see
Requirement R1–7.2.4–1).

R1–7.2.7–7. The Link Register must contain the return address when rtas-call is invoked.

Software Implementation Notes:

1. RTAS is not required to perform sanity checking of its input parameters. Using invalid values for any pa-
rameter in an RTAS argument buffer gives undefined results. However, when such checks are made, the ap-
propriate return code for invalid parameters is -3.

2. The token that specifies the RTAS call is obtained by looking up the desired call from the /rtas node of
the OF device tree.

3. The OS must be aware that the effective address range for RTAS is 4 GB when instantiated in 32-bit mode
and the OS should not pass RTAS addresses or blocks of data which might fall outside of this range.

7.2.8 Return Codes

R1–7.2.8–1. The first output value of all the RTAS functions must be a Status word which denotes the result of the
call. The Status word takes on one of the values in Table 20‚ “RTAS Status Word Values‚” on page 119.
Non-negative values indicate success.

Table 20. RTAS Status Word Values

Values Status Word Meanings

0 RTAS function call succeeded.

-1 RTAS function call encountered a hardware error.

-2
A necessary hardware device was busy, and the requested
function could not be performed. The operation should be
retried at a later time.

-3

Parameter Error.
In some cases, specific parameter errors are enumerated.
However, other parameter errors may be reported using
this return code in addition to those enumerated.

-7 Unexpected state change.

9000-9899 Reserved for vendor specific success codes.

990x Extended delay - where x is a number in the range of 0-5

-9000
Multi-level isolation error (see Section 13.7.4.1.3‚
“Isolation of PHBs and Slots‚” on page 381).

-9004 - (-9999) Reserved for vendor specific error codes.

Additional Negative Numbers
An error was encountered. The meaning of this error is
specific to the RTAS function that was invoked.

120 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Table 20‚ “RTAS Status Word Values‚” on page 119 indicates a summation of all possible Status word values. A given
RTAS function cannot yield all of the possible Status words. For the specific Status words which apply to a specific
RTAS function, see the semantics for that function.

Software Implementation Notes:

1. A return code of -2 or 990x may either mean that the operation was initiated but not completed, or may
mean that the operation was not initiated at all.

2. When the extended delay (990x) is returned, it is suggested that software delay for 10 raised to the x milli-
seconds, where x is the last digit of the 990x return code, before calling the function again.

7.3 RTAS Call Function Definition

This section specifies the semantics of all the RTAS calls. It specifies the RTAS function name, the contents of its argu-
ment call buffer (its token, input parameters, and output values) and semantics.

7.3.1 NVRAM Access Functions

This architecture requires an area of non-volatile memory (NVRAM) to hold OF options, RTAS information, machine
configuration state, OS state, diagnostic logs, etc. The type and size of NVRAM is specified in the OF device tree. The
format of NVRAM is detailed in Chapter 8, “Non-Volatile Memory,” on page 265.

In order to give the OS the ability to access NVRAM on different platforms that may use different implementations or
locations for NVRAM, a layer of abstraction is provided to the OS. The functions in this section provide an interface
for reading and writing NVRAM with byte level operations with no boundary requirements.

7.3.1.1 nvram-fetch

The RTAS function nvram-fetch copies data from a given offset in NVRAM into the user specified buffer.

R1–7.3.1.1–1. RTAS must implement an nvram-fetch function that returns data from NVRAM using the argument
call buffer defined by Table 21‚ “nvram-fetch Argument Call Buffer‚” on page 121.

Additional Positive Numbers
The function succeeded. The meaning of the Status word
is specific to the RTAS function that was invoked.

Table 20. RTAS Status Word Values

Values Status Word Meanings

7.3  RTAS Call Function Definition 121

LoPAPR, Version 1.1 (March 24, 2016)

7.3.1.2 nvram-store

The RTAS function nvram-store copies data from the user specified buffer to a given offset in NVRAM.

R1–7.3.1.2–1. RTAS must implement an nvram-store function that stores data in NVRAM using the argument call
buffer defined by Table 22‚ “nvram-store Argument Call Buffer‚” on page 121.

R1–7.3.1.2–2. If the nvram-store operation succeeded, the contents of NVRAM must have been updated to the user
specified values. The contents of NVRAM are undefined if the RTAS call failed.

Platform Implementation Note: The platform may keep the NVRAM data cached in volatile memory as long as the
cache is implemented as a store-through cache and not a store-in cache. That is, changed data is written to

Table 21. nvram-fetch Argument Call Buffer

Parameter Type Name Values

In

Token Token for nvram-fetch

Number Inputs 3

Number Outputs 2

Index Byte offset in NVRAM

Buffer Real address of data buffer

Length Size of data buffer (in bytes)

Out
Status

0: Success
-1: Hardware Error
-3: Parameter out of range

Num Number of bytes successfully copied

Table 22. nvram-store Argument Call Buffer

Parameter Type Name Values

In

Token Token for nvram-store

Number Inputs 3

Number Outputs 2

Index Byte number in NVRAM

Buffer Real address of data buffer

Length Size of data buffer (in bytes)

Out
Status

0: Success
-1: Hardware Error
-3: Parameter out of range

Num Number of bytes successfully copied

122 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

NVRAM as soon as possible. Return from the nvram-store call with a “success” Status is permissible after placing
the data into a store-through cache and prior to the actual writing to the NVRAM.

R1–7.3.1.2–3. The caller of the nvram-store RTAS call must maintain the NVRAM partitions as specified in
Chapter 8, “Non-Volatile Memory,” on page 265.

7.3.2 Time of Day

The minimum system requirements include a non-volatile real time clock which maintains the time of day even if
power to the machine is removed. Minimum requirements for this clock are described in Requirement R1–2.9–7.

7.3.2.1 Time of Day Inputs/Outputs

The OS maintains the clock in UTC. This allows the OS and diagnostics to co-exist with each other and provide uni-
form handling of time.

R1–7.3.2.1–1. The date and time inputs and outputs to the RTAS time of day function calls are specified with the
year as the actual value (for example, 1995), the month as a value in the range 1-12, the day as a value in the
range 1-31, the hour as a value in the range 0-23, the minute as a value in the range 0-59, and the second as a
value in the range 0-59. The date must also be a valid date according to common usage: the day range being
restricted for certain months, month 2 having 29 days in leap years, etc.

R1–7.3.2.1–2. OSs must account for local time, for daylight savings time when and where appropriate, and for leap
seconds.

R1–7.3.2.1–3. RTAS must account for leap years.

7.3.2.2 get-time-of-day

R1–7.3.2.2–1. RTAS must implement a get-time-of-day call using the argument call buffer defined by Table 23‚
“get-time-of-day Argument Call Buffer‚” on page 122.

Table 23. get-time-of-day Argument Call Buffer

Parameter Type Name Values

In

Token Token for get-time-of-day

Number Inputs 0

Number Outputs 8

7.3  RTAS Call Function Definition 123

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling again. However, software may
issue the call again either earlier or later than this.

R1–7.3.2.2–2. RTAS must read the current time and set the output values to the best resolution provided by the plat-
form.

7.3.2.3 set-time-of-day

R1–7.3.2.3–1. RTAS must implement a set-time-of-day call using the argument call buffer defined by Table 24‚
“set-time-of-day Argument Call Buffer‚” on page 123.

Out

Status

990x: Extended Delay where x is a number 0-5 (see text below)
0: Success
-1: Hardware Error
-2: Clock Busy, Try again later

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanoseconds 0-999999999

Table 24. set-time-of-day Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-time-of-day

Number Inputs 7

Number Outputs 1

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanosecond 0-999999999

Table 23. get-time-of-day Argument Call Buffer (Continued)

Parameter Type Name Values

124 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling again. However, software may
issue the call again either earlier or later than this.

R1–7.3.2.3–2. RTAS must set the time of day to the best resolution provided by the platform.

R1–7.3.2.3–3. RTAS must return a Status of -3 (Parameter Error) to the set-time-of-day RTAS call when the speci-
fied date is outside the range supported by the platform.

Software Implementation Note: The OS maintains the clock in UTC. This allows the OS and diagnostics to co-exist
with each other and provide uniform handling of time. Refer to Requirement R1–2.9–7 for further details on the
time of day clock.

7.3.2.4 set-time-for-power-on

Some platforms provide the ability to set a time to cause the platform power on. The set-time-for-power-on call pro-
vides the interface to the OS for setting this timer.

R1–7.3.2.4–1. RTAS must implement the set-time-for-power-on call using the argument call buffer defined by Table 25‚
“set-time-for-power-on Argument Call Buffer‚” on page 124.

Out Status

990x: Extended Delay where x is a number 0-5 (see text below)
0: Success
-1: Hardware Error
-3: Parameter Error

Table 25. set-time-for-power-on Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-time-for-power-on

Number Inputs 7

Number Outputs 1

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanosecond 0-999999999

Out Status

990x: Extended Delay where x is a number 0-5 (see text below)
0: Success
-1: Hardware Error
-2: Clock Busy, Try again later
-3: Parameter Error

Table 24. set-time-of-day Argument Call Buffer (Continued)

Parameter Type Name Values

7.3  RTAS Call Function Definition 125

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling again. However, software may
issue the call again either earlier or later than this.

R1–7.3.2.4–2. Hardware must support power on times of up to four weeks into the future, at a minimum.

R1–7.3.2.4–3. RTAS must schedule the time for power on as close as it can approach to the desired time.

Software Implementation Note: Hardware limitations on the duration of the power-on timer may result in power-on
sooner than requested by software. If present in the /rtas node, the OF property
“power-on-max-latency” gives in days the maximum power-on duration capability of the hardware. If the
property is not present, software should expect the default of a maximum of 28 days. A “day” is defined as 24 hour
increments from the current time.

R1–7.3.2.4–4. If the system is in a powered down state at the time scheduled by set-time-for-power-on (within the
accuracy of the clock), then power must be reapplied and the system must go through its power on sequence.

R1–7.3.2.4–5. RTAS must return a Status of -3 (Parameter Error) to the set-time-for-power-on RTAS call when the
specified date is outside the range supported by the platform (such as before current TOD).

7.3.3 Error and Event Reporting

The error and event reporting RTAS calls are designed to provide an abstract interface into hardware registers in the
system that may contain correctable or non-correctable errors and to provide an abstract interface to certain platform
events that may be of interest to the OS. Such errors and events may be detected either by a periodic scan or by an ex-
ception trap.

These functions are not intended to replace the normal error handling in the OS. Rather, they enhance the OS’s abilities
by providing an abstract interface to check for, report, and recover from errors or events on the platform that are not
necessarily known to the OS.

The OS uses the error and event RTAS calls in two distinct ways:

1. Periodically, the OS calls event-scan to have the system firmware check for any errors or events that have oc-
curred.

2. Whenever the OS receives an interrupt or exception that it cannot fully process, it calls check-exception.

The first case covers all errors and events that do not signal their occurrence with an interrupt or exception. The second
case covers those errors and events that do signal with an interrupt or exception. It is platform dependent whether any
specific error or event causes an interrupt on that platform.

R1–7.3.3–1. RTAS must return the event generated by a particular interrupt or event source by either check-excep-
tion or event-scan, but not both.

R1–7.3.3–2. check-exception and event-scan, on a 64-bit capable platform, must be able to handle platform re-
sources that are accessed using 64-bit addresses when instantiated in 32-bit mode.

7.3.3.1 event-scan

R1–7.3.3.1–1. RTAS must implement an event-scan call using the argument call buffer defined by Table 26‚
“event-scan Argument Call Buffer‚” on page 126.

126 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.3.1–2. The event-scan call must fill in the error log with a single error log formatted as specified in
Section 10.3.2‚ “RTAS Error/Event Return Format‚” on page 289. If necessary, the data placed into the error
log must be truncated to length bytes.

R1–7.3.3.1–3. RTAS must only check for errors or events that are within the classes defined by the Event mask.
Event mask is a bit mask of error and event classes. Refer to Table 134‚ “Error and Event Classes with RTAS
Function Call Mask‚” on page 282 for the definition of the bit positions.

R1–7.3.3.1–4. If Critical is non-zero, then RTAS must perform only those operations that are required for continued
operation. No extended error information is returned.

R1–7.3.3.1–5. The event-scan call must return the first found error or event and clear that error or event so it is only
reported once.

R1–7.3.3.1–6. The OS must continue to call event-scan while a Status of “New Error Log returned” is returned.

R1–7.3.3.1–7. The event-scan call must be made at least “rtas-event-scan-rate” times per minute for each
error and event class and must have the Critical parameter equal to 0 for this periodic call.

R1–7.3.3.1–8. The platform must not return more than two error logs during the first sequence of event-scan RTAS
calls after boot of an OS image, and must not return more than one error log to that OS image during any se-
quence of event-scan RTAS calls after the first time a non-zero Status is returned.

Software Implementation Notes:

1. In a multiprocessor system, each processor should call event-scan periodically, not always the same one.
The event-scan function needs to be called a total of “rtas-event-scan-rate” times a minute.

2. The maximum size of the error log is specified in the OF device tree as the “rtas-error-log-max”
property of the /rtas node.

3. This call does not log the error in NVRAM. It returns the error log to the OS. It is the responsibility of the
OS to take appropriate action.

4. For best system performance, the requested “rtas-event-scan-rate” should be as low as possible,
and as a goal should not exceed 120 scans per minute. Maximum system performance is obtained when no
scans are required.

Table 26. event-scan Argument Call Buffer

Parameter Type Name Values

In

Token Token for event-scan

Number Inputs 4

Number Outputs 1

Event Mask Mask of event classes to process

Critical
Indicates whether this call is
required to complete quickly

Buffer Real address of error log

Length Length of error log buffer

Out Status
1: No Errors Found
0: New Error Log returned
-1: Hardware Error

7.3  RTAS Call Function Definition 127

LoPAPR, Version 1.1 (March 24, 2016)

7.3.3.2 check-exception

R1–7.3.3.2–1. RTAS must implement a check-exception call using the argument call buffer defined by Table 27‚
“check-exception Argument Call Buffer‚” on page 127.

R1–7.3.3.2–2. The OS must provide the value specified in Table 28‚ “Additional Information Provided to check-ex-
ception call‚” on page 127 in the Additional Information parameter in the call to check-exception, with the
Number Inputs parameter set to 6. If the value (e.g., SRR1) is too large to fit in this cell, the lower 32-bits
must be provided here, the upper 32-bits provided in the Extended Information parameter, and the Number In-
puts parameter set to 7.

R1–7.3.3.2–3. The check-exception call must fill in the error log with a single error log formatted as specified in
Section 10.3.2‚ “RTAS Error/Event Return Format‚” on page 289. The data in the error log must be truncated
to length bytes.

Table 27. check-exception Argument Call Buffer

Parameter Type Name Values

In

Token Token for check-exception

Number Inputs
6 (without Extended Information)
7 (with Extended Information)

Number Outputs 1

Vector Offset The vector offset for the exception. See Power ISA [1].

Additional
Information

Information which RTAS may need to determine the cause of the
exception, but which may be unavailable to it in hardware registers.
See Table 28‚ “Additional Information Provided to check-exception
call‚” on page 127 for details.

Event Mask Mask of event classes to process

Critical Indicates whether this call is required to complete quickly

Buffer Real address of error log

Length Length of error log

Extended
Information

See Requirement R1–7.3.3.2–2

Out Status
1: No Errors Found
0: New Error Log returned
-1: Hardware Error

Table 28. Additional Information Provided to check-exception call

Source of Interrupt Value of “Additional Information” Variable

External Interrupt Interrupt number

Machine check exception Value of register SRR1 at entry to machine check handler

System Reset exception Value of register SRR1 at entry to system reset handler

Other exception Value of register SRR1 at entry to exception handler

128 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.3.2–4. If Critical is non-zero, then RTAS must perform only those operations that are required for continued
operation. No extended error information is returned.

R1–7.3.3.2–5. The check-exception call must return the first found error or event and clear that error or event so it is
only reported once.

R1–7.3.3.2–6. RTAS must only check for errors or events that are within the classes defined by the Event mask.
Event mask is a bit mask of error and event classes. Refer to Table 134‚ “Error and Event Classes with RTAS
Function Call Mask‚” on page 282 for the definition of the bit positions.

Software Implementation Notes:

1. All OS reserved exception handlers should call check-exception to process any errors that are unknown to
the OS.

2. The interrupt number for external device interrupts is provided in the OF device tree as specified in
Appendix B, “LoPAPR Binding,” on page 661.

3. Software, with knowledge of the class of event it seeks, matches the data in the Vector Offset, Additional In-
formation, and Extended Information with the Event Mask such that ambiguity does not result.

7.3.3.3 rtas-last-error

R1–7.3.3.3–1. RTAS must implement an rtas-last-error call using the argument call buffer defined in Table 29‚
“rtas-last-error Argument Call Buffer‚” on page 128.

R1–7.3.3.3–2. The rtas-last-error call must fill in the error log with a single error log formatted as specified in
Section 10.3.2‚ “RTAS Error/Event Return Format‚” on page 289. If necessary, the data placed into the error
log must be truncated to ‘length” bytes.

R1–7.3.3.3–3. RTAS must only check for hardware errors that occurred during a prior call to some other RTAS
function, resulting in a -1 (Hardware Error) return Status.

Software Note: This function is intended to provide the OS with more detailed failure information after an RTAS call
returns with a -1 (Hardware Error) Status, and should not be called except for this purpose. If rtas-last-error itself

Table 29. rtas-last-error Argument Call Buffer

Parameter Type Name Values

In

Token Token for rtas-last-error

Number Inputs 2

Number Outputs 1

Buffer Real address of error log

Length Length of error log buffer

Out Status
1: No Errors Found
0: New Error Log Returned
-1: Hardware Error (cannot create log)

7.3  RTAS Call Function Definition 129

LoPAPR, Version 1.1 (March 24, 2016)

returns a -1 Status, then it could not create the error log data because of a further error, and the OS should not try
to call it again.

7.3.3.4 Platform Dump Option

The architectural intent of the Platform Dump option is to allow a mechanism for the platform to communicate a vari-
ety of dump data used to debug problems within the platform firmware or hardware.

7.3.3.4.1 ibm,platform-dump

This RTAS call is used to transfer dump data from the platform to the OS. It is expected that this routine will have to be
called several times to complete the transfer of the diagnostic dump data. It is also anticipated that multiple dumps
could be in the process of completion at the same time. Individual dumps are identified by a dump tag passed by the
OS. The OS may interleave calls to ibm,platform-dump with different RTAS calls. Other standard RTAS locking rules
apply (for example, only one processor may call RTAS at a time).

The OS only makes the ibm,platform-dump RTAS call when an event scan returns an error log with an Event Type of
“Dump Notification” as described in Version 6 or later of the RTAS General Extended Error Log Format.

R1–7.3.3.4.1–1. For the Platform Dump option: The RTAS function ibm,platform-dump must be implemented
and must implement the argument call buffer as defined by Table 30‚ “ibm,platform-dump Argument Call
Buffer‚” on page 129.

Table 30. ibm,platform-dump Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,platform-dump

Number of Inputs 6

Number of Outputs 5

Dump_Tag_Hi
Most-significant 32 bits of a Dump_Tag representing an id of the dump
being processed

Dump_Tag_Lo
Least-significant 32 bits of a Dump_Tag representing an id of the dump
being processed

Sequence_Hi

Most-significant 32 bits of the Sequence, a value indicating what portion
of a dump to be returned by the call. Sequence of 0 returns the beginning
of the Dump. The value in all subsequent call as needed, should be set to
the value of the Next_Sequence returned from each previous call.

Sequence_Lo Least-significant 32 bits of the Sequence

Buffer Address of dump buffer (NULL indicates completion of processing)

Length Length of the buffer in bytes (min. 1024)

130 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling ibm,platform-dump again.
However, software may issue the ibm,platform-dump call again either earlier or later than this.

R1–7.3.3.4.1–2. For the Platform Dump option: On the first call to ibm,platform-dump of a platform dump se-
quence for a given Dump_Tag, the Sequence value must be initialized to zero and on subsequent calls for the
same tag, the Dump_Sequence must be set to Next_Sequence of the previous call made with the same
Dump_Tag or else set to zero to restart the entire dump sequence.

R1–7.3.3.4.1–3. For the Platform Dump option: The dump tag passed to any call to ibm,platform-dump must be a
value specified by the platform and communicated to the OS by an event-scan error log entry.

R1–7.3.3.4.1–4. For the Platform Dump option: Once a Status of 0 (Dump complete) or -1 (Hardware error” is
returned for the ibm,platform-dump call with a particular dump tag, the dump is considered complete from a
platform standpoint, but for the “Dump complete” case the OS must signal to the platform that the processing
of the dump has been completed by a final call for the Dump_Tag with the Buffer address set to NULL.

R1–7.3.3.4.1–5. For the Platform Dump option: If at any time a partition receives a -9002, Not Authorized, return
code for an ibm,platform-dump RTAS, the partition must cease attempting to acquire the dump information it
was in process of acquiring and discard any portion already acquired.

Programming Note: It is expected that a platform generally only transmits a dump to a single partition. However, the
above requirement makes provision for the platform abandoning the transmission of a dump to a partition after it
has been initiated, presumably to re-initiate transmission to a different partition or to a Hardware Management
Console (HMC).

R1–7.3.3.4.1–6. For the Platform Dump option: The contents of dump information returned through the sequence
of calls to ibm,platform-dump, must follow a dump directory structure as defined in Section 7.3.3.4.2‚ “Plat-
form Dump Directory Structure‚” on page 131.

R1–7.3.3.4.1–7. For the Platform Dump option: Collectively the dump data returned from a sequence of
ibm,platform-dump calls for a given Dump_tag must consist of one dump file directory entry as described in
Table 31‚ “Platform Dump File Directory Entry Format‚” on page 131 followed by one or more dump section
directory entries as described in Table 32‚ “Dump Section Directory Entry Format‚” on page 132 followed by
a dump data section for each dump section directory entry earlier included.

Out

Status

-1: Hardware error
-2: Busy, try again later
-9002: Not Authorized
0: Dump complete
1: Continue dump
990x: Extended Delay where x is a number 0-5

Next_Sequence_Hi

Most-significant 32 bits of the Next_Sequence value indicating the
portion of the dump to be retrieved on the next call if needed. (If Status is
returned as 0, then the dump is complete and there is no next call required.
The value of Next_Sequence in this case is undefined.)

Next_Sequence_Lo Least-significant 32 bits of the Next_Sequence value

Bytes_Returned_Hi
Most-significant 32 bits of the Bytes_Returned value indicating the
number of valid bytes returned in the Buffer

Bytes_Returned_Lo
Least-significant 32 bits of the Bytes_Returned value indicating the
number of valid bytes returned in the Buffer

Table 30. ibm,platform-dump Argument Call Buffer (Continued)

Parameter Type Name Values

7.3  RTAS Call Function Definition 131

LoPAPR, Version 1.1 (March 24, 2016)

Programming Notes:

1. As required in Section 7.3.16.10‚ “Platform Dump Max Size Parameter‚” on page 224, the OS can deter-
mine the maximum size of a copy of each dump that can be returned by issuing an ibm,get-system-parame-
ter for the platform-dump-max-size. In addition, in the case of any change in the value of this parameter, the
platform may generate a Platform Event Log entry announcing the change in the maximum size, and speci-
fying the new size in the IO Events Section. This entry, when generated, is then returned by the event-scan
RTAS call.

2. The Dump_Tag is taken from the Dump Locator Section of the Platform Error/Event Log Format, Version 6
or later. Specifically, Dump_Tag_Hi is composed of the 8 bit Dump Type as found in the Dump Locator
Section, padded with 24 bits on the left to make a 32 bit quantity. The Dump_Tag_Lo is the Dump ID found
in the Dump Locator Section of the Error log entry.

3. If the ibm,platform-dump RTAS routine returns with the Status of 1 (Continue dump), the transfer is pro-
ceeding but had to be suspended to maintain the short execution time requirement of RTAS routines or be-
cause more data was available than the Buffer could contain.

4. The Bytes_Returned value indicates how many bytes of dump data (if any) were returned on a call and OS
must be prepared to handle the case of no bytes returned. When Continue dump Status (1) is returned, this
indicates that there is more dump data available then was returned in the buffer. A subsequent call with the
same Dump_tag and the Sequence value being set to the Next_Sequence returned from the previous call re-
turns additional dump data.

5. When a dump has been successfully transmitted, the Status of 0 (Dump complete) is returned. If there is a
hardware error preventing a dump from being successfully transmitted, as Status of -1 (Hardware error) is
returned. In either case, the Dump sequence is completed. It should be noted that the final Next_Sequence
value returned is undefined. After the sequence is completed, the OS should make one final call for the
given Dump_Tag using a NULL buffer pointer. (The value of the Sequence parameter for this call is unde-
fined although it is acceptable for the platform to make the value equal to the last Next_Sequence value re-
turned.) This call tells the platform that the OS has completed processing of the dump and will not attempt
to restart the sequence.

6. If the platform used system memory to hold dump data, the platform at this point is permitted to free the as-
sociated logical memory blocks (LMBs) reserved for the dump. Successful return from the ibm,plat-
form-dump RTAS call with a NULL buffer pointer indicates to the OS that one or more logical memory
blocks (LMBs) may now be acquired by the OS. A get-sensor-state RTAS call for these LMBs returns with
a state of “DR entity available for recovery (4)” after the successful return from this ibm,platform-dump
RTAS call.

7. If a platform does not receive the NULL buffer pointer call dump for a given Dump_Tag but subsequently
boots the partition, the platform may report the presence of the dump again on an event-scan after the boot.

7.3.3.4.2 Platform Dump Directory Structure

The entire dump contents returned over a sequence of ibm,platform-dump RTAS calls for a given Dump_Tag follows a
directory/data structure as illustrated in Table 31‚ “Platform Dump File Directory Entry Format‚” on page 131 and
Table 32‚ “Dump Section Directory Entry Format‚” on page 132 where a dump consists of one File Directory Entry,
one or more Section Directory Entries and one data section for each Section Directory entry.

Table 31. Platform Dump File Directory Entry Format

Field Name Length Values Discussion

Entry Header 8 Bytes “FILE”
Identifies the type of entry that follows. The value is ASCII consisting
of the characters “FILE” and 4 ASCII blanks.

Entry Length 2 Bytes
Number of bytes of the entire

file directory entry
This length includes the Entry Header and Entry Length fields.

132 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

The two previous tables refer to a set of flags used to describe information related to a dump section. The options are
stored in a single 32 bit value which is the bit-wise OR'ing of each option value defined in Table 33‚ “Dump File For-
mat Directory Options‚” on page 133.

Reserved 6 Bytes

Flags 4 Bytes
See Table 33‚ “Dump File

Format Directory Options‚” on
page 133.

Entry Type 2 Bytes 0x0001 0x0001signifies a file entry.

Prefix Length 2 Bytes
Number of bytes of the Dump

File Base Name that is
considered to be a prefix.

Dump File Base Name

Length in bytes
computed as “Entry

length” - 24, but not to
exceed 46 characters
including the ASCII

NULL string
termination.

NULL terminated ASCII String
consisting of ASCII characters
in the ranges of a-z, A-Z, 0-9,

and the ASCII “.”

Gives a base name for the dump file to be created from the dump data.
This base name is composed of a prefix followed by additional data
(e.g. dumptype.serialnumber.dumpID.timestamp where
dumptype.serialnumber is the prefix)

Table 32. Dump Section Directory Entry Format

Field Name Length Values Discussion

Entry Header 8 Bytes “SECTION”
Identifies the type of entry that follows. The
value is ASCII consisting of the characters
“SECTION” and 1 ASCII blank.

Entry Length 2 Bytes
Number of bytes of the entire

section directory entry
This length includes the Entry Header and
Entry Length fields.

Priority 2 Bytes Unsigned integer
See programming note after Table 33‚ “Dump
File Format Directory Options‚” on page 133.

Reserved 4 Bytes

Flags 4 Bytes
See Table 33‚ “Dump File

Format Directory Options‚” on
page 133.

Entry Type 2 Bytes 0x0002 0x0002 signifies a section entry.

Reserved 2 Bytes

Section Length 8 Bytes
Length in bytes of the section of
the dump that this entry is the

directory for

Section Name

Length in bytes computed as
“Entry length” - 32, but not to
exceed 46 characters including

the ASCII NULL string
termination.

NULL terminated ASCII String.
Gives a name to the dump section for which
this entry is a directory.

Table 31. Platform Dump File Directory Entry Format

Field Name Length Values Discussion

7.3  RTAS Call Function Definition 133

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Notes:

1. Platforms supporting the ibm,platform-dump call may have several unique dump types. All dumps of the
same type on a partition have the same “prefix” to the name of the dump file as indicated in the dump file di-
rectory entry in an error log.

2. The priority in the priority field of the section directory entries allow an application transmitting a dump to
a remote support center to decide what sections of data to transmit when the connection bandwidth is lim-
ited. Zero is the highest priority. All sections at the same priority shall be transmitted if any at that priority
are transmitted. It is intended that all directory entries be transmitted with the section length set to zero and
their not_transmitted Dump File Format Directory Options flag set to a 1 if the section data cannot be trans-
mitted.

7.3.4 PCI Configuration Space

Device drivers and system software need access to PCI configuration space. Chapter 3, “Address Map,” on page 59 de-
fines system address spaces for PCI memory and PCI I/O spaces. It does not define an address space for PCI configu-
ration. Different PCI bridges may implement the mechanisms for accessing PCI configuration space in different ways.
The RTAS calls in this section provide an abstract way of reading and writing PCI configuration spaces.

The PCI access functions take a config_addr input parameter which is similar to the Type 1 PCI configuration space
address. For conventional PCI and PCI-X Mode 1, this address is a 24-bit quantity composed of bus, device, function,
and register numbers. This allows the configuration of up to 256 buses (including sub-bridges), 32 IOAs per bus, 8
functions per IOA, and 256 bytes of register space per function. PCI-X Mode 2 and PCI Express define an extended
configuration space with an additional 4-bit quantity which specifies an extended register number allowing for 4096
bytes of register space per function. Refer to the PCI-X Protocol Addendum to the PCI Local Bus Specification [21] or
the PCI Express Base Specification [22] for more details. The config_addr for an IOA is derived from the OF device
tree, and is defined in Table 34‚ “Config_addr Definition‚” on page 134.

The ibm,read-pci-config and ibm,write-pci-config RTAS calls allow for the specification of the PHB Bus Unit ID, and
therefore allow for up to 256 unique config_addr bus numbers per PHB. Note that for each pci connector, there may be
multiple PCI bus numbers, because plug-in PCI cards may contain PCI to PCI bridges, which create other PCI buses.

The PCI Local Bus Specification requires that unimplemented or reserved register space read as 0’s, and that reads of
the Vendor ID register of IOAs or functions which aren’t present should be unambiguously reported (reading 0xFFFF
is sufficient). Writes to unimplemented or reserved register space are specified as no-ops. Writes to IOAs or functions
which aren’t present are undefined. These operations are undefined if a bus is specified which doesn’t exist.

R1–7.3.4–1. For the RTAS PCI configuration space and EEH functions where the parameter config_addr is re-
quested as input, the config_addr parameter must be as specified by the hi cell of the physical address in

Table 33. Dump File Format Directory Options

Name Bit Position(s) of Option Definition Discussion

last_flag 0x00000001
Binary value set to 1 if the last

directory entry.

Flag is never set for the File Directory entry
since at least one Section Directory entry
follows.

not_transmitted 0x00000002

If set to 1, indicates that the data
for the block has not been

transmitted during some process
of dump transfer.

Platform always sets this value to 0. The bit
may be set to 1 by applications transmitting
a dump. See Software implementation note
item 2: in this section below.

Reserved
All but bit positions shown

above
All other values reserved

134 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Open Firmware Working Group proposal number 516 Ver 1.8 (see Table 34‚ “Config_addr Definition‚” on
page 134), with the upper register address bits added for PCI-X Mode 2 and PCI Express, in order to access
past the first 256 bytes of configuration space.

R1–7.3.4–2. All RTAS PCI Read/Write functions must follow the appropriate PCI specification.

R1–7.3.4–3. RTAS must follow the rules of Table 10‚ “Big-Endian Mode Load and Store Programming Consider-
ations‚” on page 79 when accessing PCI configuration space.

Software Implementation Notes:

1. Since PCI Configuration space is defined to be Little-Endian, RTAS accesses this area using the byte-re-
versed forms of the Load and Store instructions. In this fashion, the values passed are defined Big-Endian.

2. Prior to accessing the extended configuration address space of PCI-X Mode 2 and PCI Express devices, an
IOA device driver is responsible for checking if the “ibm,pci-config-space-type” property (see
Section B.6.5.1.1‚ “PCI Host Bridge Properties‚” on page 701) of the IOA's node exists and is set to a
non-zero value.

7.3.4.1 ibm,read-pci-config

R1–7.3.4.1–1. For Platforms which may have greater than 256 PCI Buses: RTAS must implement an
ibm,read-pci-config call using the argument call buffer defined by Table 35‚ “ibm,read-pci-config Argument
Call Buffer‚” on page 135.

Table 34. Config_addr Definition

Bit Definition

0:3

Upper bits of the Register Number, when applicable, otherwise 0. Set to 0 when the
PCI extended configuration space is not available, due to lack of support somewhere
from the PHB to the IOA. When a value of this field can be something other than 0,
the “ibm,pci-config-space-type” property will exist in the IOA's node
with a value indicating that the extended space is supported.

4:7 Reserved (set to 0)

8:15 Bus Number

16:20 Device Number

21:23 Function Number, when applicable, otherwise 0

24:31 Lower bits of the Register Number, when applicable, otherwise 0

7.3  RTAS Call Function Definition 135

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.4.1–2. The ibm,read-pci-config call must return the value from the configuration register which is at the lo-
cation specified by the PHB Unit ID and config_addr in PCI configuration space.

R1–7.3.4.1–3. The ibm,read-pci-config call must perform a 1-byte, 2-byte, or 4-byte configuration space read de-
pending on the value of the size input argument.

R1–7.3.4.1–4. The config_addr must be aligned to a 2-byte boundary if size is 2 and to a 4-byte boundary if size is
4.

R1–7.3.4.1–5. The ibm,read-pci-config call of IOAs or functions which are not present or which are not available to
the caller must return Success with all ones as the output value.

7.3.4.2 ibm,write-pci-config

R1–7.3.4.2–1. For Platforms which may have greater than 256 PCI Buses: RTAS must implement an
ibm,write-pci-config call using the argument call buffer defined by Table 36‚ “ibm,write-pci-config Argu-
ment Call Buffer‚” on page 136.

Table 35. ibm,read-pci-config Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,read-pci-config

Number Inputs 4

Number Outputs 2

 Config_addr Configuration Space Address

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit
ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit
ID of the PHB that corresponds to the config_addr

Size
Size of Configuration Cycle in bytes, value can be
1, 2, or 4

Out

Status
0: Success
-1: Hardware Error
-3: Parameter Error

Value
Value Read from the location specified by the PHB
Unit ID and config_addr

136 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.4.2–2. The ibm,write-pci-config call must store the value to the configuration register which is at the loca-
tion specified by the PHB Unit ID and config_addr in PCI configuration space.

R1–7.3.4.2–3. The ibm,write-pci-config call must perform a 1-byte, 2-byte, or 4-byte configuration space write de-
pending on the value of the size input argument.

R1–7.3.4.2–4. The config_addr must be aligned to a 2-byte boundary if size is 2 and to a 4-byte boundary if size is
4.

R1–7.3.4.2–5. The ibm,write-pci-config call of IOAs or functions which are not present or which are not available
to the caller must be ignored and a Status of 0 (Success) must be returned.

R1–7.3.4.2–6. For the LPAR option: The Status of -3 (Parameter or device enablement error) must be returned if
all the following are true:

a. The OS attempts an ibm,write-pci-config to enable Memory or I/O for an IOA, without first calling
ibm,set-eeh-option to enable EEH for the IOA

b. Enabling the IOA could expose other partitions to errors from the partition which is enabling the IOA

c. The hypervisor is enforcing EEH mode

Platform Implementation Note: In Requirement R1–7.3.4.2–6c, cross-partition errors could be caused due to error
domains which are shared between the partitions. However, it is acceptable to share error domains when the IOA

Table 36. ibm,write-pci-config Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,write-pci-config

Number Inputs 5

Number Outputs 1

Config_addr Configuration Space Address

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of
the PHB that corresponds to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of
the PHB that corresponds to the config_addr

Size
Size of Configuration Cycle
in bytes,
can be 1, 2, or 4

Value
Value to be written to the location specified by the PHB
Unit ID and config_addr

Out Status
0: Success
-1: Hardware Error
-3: Parameter or device enablement error

7.3  RTAS Call Function Definition 137

LoPAPR, Version 1.1 (March 24, 2016)

and its device driver and the partition's OS cannot (through error or maliciously) cause errors which affect another
partition.

7.3.5 Operator Interfaces and Platform Control

The RTAS operator interface and platform control functions provide the OS with the ability to perform platform ser-
vices in a portable manner. The RTAS operator interface provides the ability for the OS to notify the user about OS
events during boot, to notify the user of abnormal events, and to obtain information from the platform. The platform
control functions give the OS the ability to obtain platform-specific information and to control platform features.

These calls are all “best effort” calls. RTAS should make its best effort to implement the intent of the call. If the Plat-
form Hardware does not implement some optional feature, it is permitted for RTAS to either return an error, or to virtu-
alize the service in some way and return “Operation Succeeded.”

Software Implementation Notes:

1. For example, a keyswitch could be virtualized by storing a keyswitch value in NVRAM and by providing a
user interface to modify this value. The RTAS call get-sensor-state on the keyswitch returns the value stored
in NVRAM.

2. If these services are only called prior to the use of any of the underlying devices by the OS, for example,
during boot time, or only after the OS has finished using the devices, for example, during a crash, then the
OS can avoid mutual exclusion and sharing concerns. Otherwise, synchronization per Section 7.2.3‚ “RTAS
Critical Regions‚” on page 109, must be performed.

7.3.5.1 Op Panel Display

R1–7.3.5.1–1. Platform Implementation: All servers must implement an operator panel display mechanism by
supporting the display-character RTAS call.

Implementation Note: The operator display mechanism in Requirement R1–7.3.5.1–1 may be a physical alphanumeric
display with a special purpose LCD device marked “used by RTAS”, or it may be some other virtualized display
which is accessible through some method not defined by this architecture.

R1–7.3.5.1–2. Platform Implementation: Servers which provide display-character must provide a line length of
at least 16 characters.

Software Implementation Notes:

1. There are currently four uses for the op panel display. The first is for display of an error code, if needed,
from the Built-In-Self-Test (BIST) or Power-On-Self-Test (POST). This display is machine dependent.
(These tests are executed prior to loading the OS or the operation of OF. Any display requirements are han-
dled within the hardware.) The second is for progress indication during initialization and boot. This display
is four digits and is updated as boot proceeds. The third is for display after a failure running diagnostics. In
this case, a service request number (SRN) is displayed along with a FRU location code list of possible de-
vices needing service. These numbers and locations can be longer than four characters. The SRN may be
over 12 characters and a FRU location code list is one or more items, typically three, of 2 to 32 characters.
The fourth is a crash code from the OS which is 12 characters indicating cause and dump status.

2. The RTAS set-indicator call with token #6 specifies 4 hex digits. The display-character call requires a min-
imum display size of one line of 4 characters, but a larger display may be made known to the OS using the
“ibm,” extension properties defined in Section 7.3.5.3‚ “display-character‚” on page 140. When the mes-
sage to be displayed is larger than the OS believes the display to be, the OS should perform appropriate trun-
cation, scrolling, or otherwise meaningfully display the message using the platform’s display resource.

138 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

3. Some servers implement a display larger than the default. For these servers, the “ibm,dis-
play-line-length” property and the “ibm,display-number-of-lines” property are set ap-
propriately.

4. If the OS assumes the default display, the 2X16 display still works. It appears to be working in the bottom
line and scrolling through the top line as long as only CR and LF are issued for control. The OF device tree
properties indicate what is supported.

7.3.5.2 Service Processor

A service processor is not a platform requirement. Larger servers tend to be implemented with service processors.
When implemented, the service processor is not seen directly as a device by software. All of its services which are vis-
ible to the OS, are abstracted with RTAS. The service processor may support the operator panel, manage sensors and
indicators, run diagnostics, monitor the platform environment and save error logs. There is clearly an interface between
RTAS and the service processor, but that interface is not intended to be used by the OS.

The service processor, in those platforms which choose to use one, is key in the initialization of the platform and has
interfaces with the OF code. It is also involved with VPD collection and NVRAM access during initialization. It can
also provide a serial port for a remote service capability. The service processor is also a significantly slower processor
than the primary PA processor. Therefore, in the implementation of RTAS functions which use the service processor,
care should be taken to avoid interlocks with the service processor which could significantly impair performance.

7.3.5.2.1 Surveillance

Platforms which include a service processor have the needed mechanism for a surveillance function; that is, the OS and
the service processor can monitor each other. For example, if the OS crashes or hangs, or if the service processor has
failures, a failure notification could occur. Notification could also occur if the platform fails during the boot process, or
if it cannot complete a boot successfully. The notification can be sent to a service center or to a customer administrator,
as determined by the customer setup of configuration parameters. The firmware provides notification to the OS by re-
porting exceptions through event-scan. The service processor can provide dial-out notification if the OS stops, or if a
boot process fails.

In the implementation of surveillance, the service processor monitors the OS by tracking the issuance of heartbeats
generated by calls to the event-scan RTAS service. If a service processor time-out occurs prior to receiving another
heartbeat, an action based on user defined call out policy occurs. This action could be to reboot, call service or
power-down. The policy may be different depending on whether the time-out occurs during a boot process or during a
period of normal OS operation. The default policy and time-out period, kept in NVRAM, can be changed from a ser-
vice processor menu or from software. The platform can be configured such that surveillance is either enabled or dis-
abled immediately after boot. After boot, temporary changes to the surveillance state can be made by issuing a
set-indicator call to indicator 9000 (see Section 7.3.5.4‚ “set-indicator‚” on page 142).

The following system parameters define the default behavior of surveillance mode (see also, Table 93‚ “Defined Pa-
rameters‚” on page 207 for more information about these parameters and for their default values).

 The sp-sen system parameter defines whether the default state of surveillance by the service processor is enabled
(=on) or disabled (=off).

 The sp-sti system parameter defines the period of time (1-255 minutes) that the service processor should wait be-
tween heartbeats from event-scan. If the time-out period expires without the service processor receiving another
heartbeat, the service processor initiates recovery and reporting actions as defined by the user.

 The sp-sdel system parameter defines the period of time (1-120 minutes) that the service processor should wait
before starting surveillance after control passes to the OS. This value is set to allow enough time for the OS to boot
and initialize to the point where it can start calling event-scan on a regular periodic basis.

7.3  RTAS Call Function Definition 139

LoPAPR, Version 1.1 (March 24, 2016)

Architecture Note: Surveillance times out if the time of the parameter, sp-sdel, plus the time of the parameter,
sp-sti, passes prior to receiving the first heartbeat. In effect, the first event-scan can be considered the signal
for boot complete.

The platform may perform surveillance on the service processor using event-scan to trigger checking as well as for re-
porting any errors found.

Software Implementation Note: The surveillance here is for keeping an eye on the overall functioning of the OS. If a
specific process gets hung and the OS is still functioning, it is the responsibility of the OS to detect and not the
surveillance discussed here.

OF Implementation Note: The OS is expected to call the event-scan RTAS service (with the internal-errors mask bit on)
at the rate defined by the property “rtas-event-scan-rate” in the OF device tree. If an
“rtas-event-scan-rate” of zero (0) is placed in the OF device tree and surveillance is initialized as
‘active’, a surveillance time-out occurs after the time-out period since the heartbeats are triggered by the
event-scan call. If there is reason to operate with the rate = 0, the default state of surveillance (sp-sen parameter
in NVRAM) should be disabled, and the surveillance sensor and indicator should not be placed in the OF device
tree.

R1–7.3.5.2.1–1. Platform Implementation: The default surveillance policy must be defined by the sp-sen,
sp-sti and sp-sdel system parameters, as set by the service processor or by software.

R1–7.3.5.2.1–2. Platform Implementation: Heartbeats to the service processor must only be sent as the result of a
call to the event-scan RTAS service with the internal-errors bit (bit 0) set to 1 in the call buffer Event Mask
parameter.

R1–7.3.5.2.1–3. Platform Implementation: In platforms which implement surveillance, the event-scan RTAS ser-
vice may be called more than once per minute, but the heartbeat to the service processor must be sent at the
rate of at least once per minute.

R1–7.3.5.2.1–4. Platform Implementation: In platforms which implement surveillance, the ibm,os-term RTAS
call must be implemented.

Software Note: Requirement R1–7.3.5.2.1–4 provides a mechanism for the OS to release control of the platform without
being aware of the state of surveillance. With the definition of a default platform state for surveillance, the OS may
not be aware of the function, yet surveillance may be used. Platforms may not have a dependency on the OS to
turn off surveillance during normal shutdown (a shutdown not including immediate reboot).

7.3.5.2.2 Surveillance on SMP Systems

Each running processor in an SMP system should be covered by surveillance. The following requirements assure this
coverage.

R1–7.3.5.2.2–1. Each processor which is running, that is, not stopped by the stop-self RTAS call or not stopped due
to BIST testing at bring-up, must issue the event-scan RTAS call. The rate of issue is the
“rtas-event-scan-rate” times per minute divided by the number of processors. This is the minimum
rate.

R1–7.3.5.2.2–2. The system must allow for all processors to cycle through their event-scan calls. The timeout pe-
riod for a surveillance event, which is sp-sti, must be greater than n time t, where n is the number of pro-
cessors and t is the “rtas-event-scan-rate”.

R1–7.3.5.2.2–3. The surveillance event must be signaled if after the surveillance interval, sp-sti, one or more
processors has not issued an event-scan call.

140 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Care is required in the assignment of the surveillance interval and the
“rtas-event-scan-rate” such that a surveillance event is not signaled prematurely. The default values are
not meant for a system with a large number of processors.

7.3.5.3 display-character

The display-character function allows the display of both alphabetic and numeric information. The display for this
function requires at least one line of four (4) characters. Also specified are the control characters carriage-return (CR)
(0x0D) and line-feed (LF) (0x0A).

The following OF properties are defined in Section B.6.3.1‚ “RTAS Node Properties‚” on page 690:

 “ibm,display-line-length”

 “ibm,display-number-of-lines”

 “ibm,display-truncation-length”

 “ibm,form-feed”

R1–7.3.5.3–1. If display-character is implemented on a platform, the property “ibm,dis-
play-line-length” in the /rtas node must be provided if greater than the required minimum default
of 4 characters.

R1–7.3.5.3–2. If display-character is implemented on a platform, the property “ibm,display-num-
ber-of-lines” in the /rtas node must be provided if greater than the required minimum default of 1
line.

R1–7.3.5.3–3. If the “ibm,display-number-of-lines” is greater than one, the platform must support
form-feed (FF) (0x0C).

R1–7.3.5.3–4. If form-feed is implemented, it must clear the display and position the display pointer to line 1
column 1.

R1–7.3.5.3–5. The platform must include the property “ibm,form-feed” in the /rtas node.

R1–7.3.5.3–6. For the display-character RTAS call, when the truncation length as specified in the “ibm,dis-
play-truncation-length” property, when it exists, is less than the length of the line being displayed
on that particular line, then the firmware must truncate the requested line to be displayed to the length speci-
fied in the “ibm,display-truncation-length” property for that line.

R1–7.3.5.3–7. For the display-character RTAS call, when the truncation length as specified in the “ibm,dis-
play-truncation-length” property, when it exists, is greater than the length specified of the line as
specified in “ibm,display-line-length” then the platform must provide a platform-dependent
method of displaying the line to the user.

R1–7.3.5.3–8. For platforms that use converged location codes, the platform must provide scrolling for the dis-
play-character RTAS call, on the second line of the display, and must provide the “ibm,display-trun-
cation-length” property and specify a truncation length of no less than 80 characters for that line.

Platform and Software Implementation Note: In implementing Requirements R1–7.3.5.3–6 and R1–7.3.5.3–7, it is
permissible to have a separate buffer for any of the lines of the display and not display that line until a button is
pressed.

The RTAS call display-character can be used by the OS to display informative messages during boot, or to display er-
ror messages when an error has occurred and the OS cannot depend on its display drivers. This call is intended to dis-
play the alpha-numeric characters on an LCD panel, graphics console, or attached tty. The precise implementation is
platform vendor specific.

7.3  RTAS Call Function Definition 141

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.5.3–9. RTAS must implement a display-character call using the argument call buffer defined by Table 37‚
“display-character Argument Call Buffer‚” on page 141 to place a character on the output device.

R1–7.3.5.3–10. The OS must serialize all calls to display-character with any other use of the rtas-display-device.

R1–7.3.5.3–11. If a physical output device is used for the output of the RTAS display-character call, then it must
have at least one line and 4 characters.

R1–7.3.5.3–12. Certain ASCII control characters must have their normal meanings with respect to position on out-
put devices which are capable of cursor positioning. In particular, ^M (0x0D) must position the cursor at col-
umn 0 in the current line, and ^J (0x0A) must move the cursor to the next line. If on the bottom line, move to
column 0 and scroll old data off the top.

R1–7.3.5.3–13. The ASCII characters which must be displayed are generally those coded from 0x20 to 0x7E as
shown in Table 38‚ “Display ASCII Characters‚” on page 141. SP indicates a space and ND is not defined

Table 37. display-character Argument Call Buffer

Parameter Type Name Values

In

Token Token for display-character

Number Inputs 1

Number Outputs 1

Value Character to be displayed

Out Status
0: Success
-1: Hardware error
-2: Device busy, try again later

Table 38. Display ASCII Characters

Hex Disp Hex Disp Hex Disp Hex Disp Hex Disp Hex Disp

20 SP 30 0 40 @ 50 P 60 ‘ 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 “ 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ‘ 37 7 47 G 57 W 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 x

29) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B + 3B ; 4B K 5B [6B k 7B {

2C , 3C < 4C L 5C \ 6C l 7C |

142 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: Care should be taken in using the full character set for all systems as some characters
may not be available or may display in a different fashion. For instance, the currency symbol, $ (0x24), may be
modified to a national currency symbol. Other currently known differences occur for the reverse slant, \ (0x5C),
and the tilde, ~(0x7E).

R1–7.3.5.3–14. RTAS must not output characters to the rtas-display-device except for explicit calls from the OS to
the display-character function except for the following conditions.

a. The rtas-display-device is marked “used-by-rtas”.

b. The RTAS call is power-off, ibm,power-off-ups, set-power-level (0,0), or system-reboot.

Software Implementation Notes:

1. RTAS should try to produce output to the user. This could be to the system console, to an attached terminal,
or to some other device. It could be implemented using a diagnostic processor or network. RTAS could also
implement this call by storing the messages in a buffer in NVRAM so the user could determine the reason
for a crash upon reboot.

2. This call modifies the registers associated with the rtas-display-device. The OS may also access this device,
being aware that calls to display-character change the state of the device.

7.3.5.4 set-indicator

The RTAS set-indicator function provides the OS with an abstraction for controlling various lights, indicators, and
other resources on a platform. If multiple indicators of a given type are provided by the platform, this function permits
addressing them individually.

R1–7.3.5.4–1. RTAS must implement a set-indicator call which sets the value of the indicator of type Indicator and
index Indicator-index using the argument call buffer defined by Table 39‚ “set-indicator Argument Call Buf-
fer‚” on page 142 and indicator types defined by Table 40‚ “Defined Indicators‚” on page 143.

2D - 3D = 4D M 5D] 6D m 7D }

2E . 3E > 4E N 5E ^ 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o 7F ND

Table 39. set-indicator Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-indicator

Number Inputs 3

Number Outputs 1

Indicator Token defining the type of indicator

Indicator-index Index of specific indicator (0, 1,...)

State Desired new state

Table 38. Display ASCII Characters (Continued)

Hex Disp Hex Disp Hex Disp Hex Disp Hex Disp Hex Disp

7.3  RTAS Call Function Definition 143

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.5.4–2. For indicators in the “rtas-indicators” property, the indices for indicators must start at zero (0)
and increment sequentially up to the maximum index; that is, all of the integers and only those integers from 0 to
the maximum index are valid.

Architecture Note: Indicator indices that are obtained via the ibm,get-indices RTAS call are not necessarily contiguous
(that is, any of the indices between 0 and the maxindex, inclusive, may be missing).

R1–7.3.5.4–3. Of the indicator types defined by Table 40‚ “Defined Indicators‚” on page 143, RTAS must imple-
ment at least Tone Frequency and Tone Volume.

R1–7.3.5.4–4. The set-indicator RTAS call must not return a busy indication (-2 or 990x) for any indicator in
Table 40‚ “Defined Indicators‚” on page 143 which is marked with a “yes” in the “Fast?” column of that ta-
ble.

R1–7.3.5.4–5. The platform may, but is not required to, turn off a tone automatically after 5 minutes or more dura-
tion (that is, automatically set the Tone Volume to zero), and therefore a user of the Tone must call set-indica-
tor Tone Volume with a volume value of non-zero, if a tone is to be sustained longer than 5 minutes, and if the
platform is going to automatically terminate the tone, the platform must reset its automatic turn-off timer
when it receives a set-indicator call for the Tone Volume with a non-zero tone volume value.

Out Status

990x: Extended Delay
0: Success
-1: Hardware Error
-2: Hardware busy, try again later
-3: No such indicator implemented
-9000: Multi-level isolation error
-9001: Valid outstanding translation

Table 40. Defined Indicators

Indicator Name
Token
Value

Defined Values
Default
Value

Fast? Required? <vendor>a Examples/Comments

Tone Frequency 1
Unsigned Integer

(units are Hz)
1000 yes

When tone is required.
See Requirement R1–

2.9–6
ibm

Generate an audible tone using the tone generator
hardware. RTAS selects the closest implemented
audible frequency to the requested value.

Tone Volume 2
0-100 (units are

percent),
0 = OFF

0 yes
When tone is required.
See Requirement R1–

2.9–6
ibm

Set the percentage of full volume of the tone generator
output, scaled approximately logarithmically. RTAS
should select the closest implemented volume for
values between zero (off) and 100 (full on).

- 3-6 - - - - - Reserved.

- 7 - - - - - Reserved. Was (deprecated) Battery Warning Time.

- 8 - - - - -
Reserved. Was (deprecated) Condition Cycle
Request.

Surveillance 9000
0-disabled

1-255-timeout
sp-sti yes

When the platform
implements the

surveillance function.
ibm

Initialized with value from the sp-sti system
parameter.

Table 39. set-indicator Argument Call Buffer

Parameter Type Name Values

144 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Isolation-state 9001
Isolate = 0

Unisolate = 1
1 no For all DR options -

Isolate refers to the DR action to logically disconnect
from the platform and/or OS (for example, for PCI,
isolate from the bus and from the OS). See
Section 13.5.3.4‚ “set-indicator‚” on page 367 for
more details.

DR 9002

Inactive = 0
Active = 1
Identify = 2
Action = 3

0 if
Inactive

1 if Active
no For all DR options -

Indicator index may refer to a single indicator that
combines Power/Active indicator and Identify/Action
indications or just an Identify/Action indicator.
Identify and Action may map to the same visual state
(for example, the same blink rate). See Chapter 16,
“Service Indicators,” on page 511 and Table 171‚
“Visual Indicator Usage‚” on page 371 for more
information.

Allocation-state 9003

unusable (0)
usable (1)

exchange (2)
recover (3)

no For all DR options -

Allows an OS image to assign (usable, exchange, or
recover) resources from the firmware or, release
resources from the OS to the firmware. See
Section 13.5.3.4‚ “set-indicator‚” on page 367 for
more details.

- 9004 - - - - - Reserved.

Global Interrupt
Queue Control

9005
Disable = 0
Enable = 1

1 yes
See Requirement R1–

7.3.5.4.1.2–1
ibm

Enable and Disable the processor as Global Interrupt
Queue Server

Error Log
or

FRU Fault
9006

Normal (off) = 0
Fault (on) = 1

0 no

Yes
See Chapter 16,

“Service Indicators,”
on page 511

ibm

This indicator is combined with the Identify indicator
for the Primary Enclosure drawer/enclosure (that is, is
the same physical indicator). Off indicates that the
system is working normally. On indicates that the
system hardware, firmware and/or diagnostics
detected a fault (failure) in the system or a partition
requires operator intervention for another reason. The
Error Log indicator is located only on the Primary
Enclosure. See Chapter 16, “Service Indicators,” on
page 511 and Table 171‚ “Visual Indicator Usage‚”
on page 371 for more information.

Identify
(Locate)

9007
Normal (off) = 0

Identify (blink) = 1
0 no

Yes
See Chapter 16,

“Service Indicators,”
on page 511

ibm

Note that a 9002 indicator also has an Identify state,
and in the case where the 9002 indicator is
implemented with two physical indicators (one for
Power and one for Identify/Action), the same physical
indicator must be used for both a 9002 Identify/Action
indicator and 9007 Identify indicator. This
architecture does not specify any mechanism for
protecting against the simultaneous use by the user of
an indicator that is both a 9002 and 9007 indicator, nor
does it protect against the use of multiple 9007
indicators simultaneously or multiple uses of the same
9007 indicator simultaneously. See Chapter 16,
“Service Indicators,” on page 511 and Table 171‚
“Visual Indicator Usage‚” on page 371 for more
information.

- 9008 - - - - - Reserved.

- 9009 - - - - - Reserved.

Vendor Specific
9100-9

999
<vendor>b Indicator values reserved for platform vendor use.

a. Values in the “<vendor>” column are used to replace the “<vendor>” field of the “<vendor>,indicator-<token>” property, when that property is
presented. See Requirement R1–7.2.6.1.1–1.

Table 40. Defined Indicators (Continued)

Indicator Name
Token
Value

Defined Values
Default
Value

Fast? Required? <vendor>a Examples/Comments

7.3  RTAS Call Function Definition 145

LoPAPR, Version 1.1 (March 24, 2016)

7.3.5.4.1 Indicators

7.3.5.4.1.1 Indicator 9000 Surveillance

An indicator is defined with the token value 9000 to allow temporary modification of the state of the surveillance func-
tion (further described in Section 7.3.5.2.1‚ “Surveillance‚” on page 138).

To enable monitoring of heartbeats from the event-scan RTAS call, the surveillance indicator is set with a value of 1 to
255, indicating the number of minutes for the surveillance time-out value. If monitoring is already enabled, the
time-out value can be modified by setting this indicator. To disable monitoring, the surveillance indicator should be set
to a value of zero (0). The set-indicator call is used to modify the state of surveillance (overriding the default system
parameter values) only for the current session. The surveillance state returns to the default values when the system is
rebooted.

The default surveillance configuration may be modified by changing the system parameters. For more information on
these parameters, refer to Section 7.3.5.2.1‚ “Surveillance‚” on page 138.

R1–7.3.5.4.1.1–1. Platforms with the surveillance function must implement a sensor and an indicator, with the to-
ken value of 9000, with defined state input values of on (= 1-255, which enables surveillance with specified
time-out value in minutes) and off (= 0, which disables surveillance).

Firmware Implementation Note: The requirement above results in the creation of the properties
“ibm,indicator-9000” and “ibm,sensor-9000” in the /rtas node.

Hardware Implementation Note: The action that the service processor takes in the case of a timeout is determined by
the configuration setup policy in the system parameters.

7.3.5.4.1.2 Indicator 9005 Global Interrupt Queue Control

The 9005 indicator controls the global interrupt server queue logic of the interrupt presentation controllers for the pro-
cessor making the call (Available Processor Mask (APM) for the PowerPC interrupt presentation controller). This is
used when bringing a processor online and taking a processor offline.

R1–7.3.5.4.1.2–1. Platforms that allow processors to be brought online or be taken offline dynamically must imple-
ment the global interrupt queue control indicator with a value of 9005 as specified in Table 40‚ “Defined In-
dicators‚” on page 143.

R1–7.3.5.4.1.2–2. The index value for global interrupt queue control indicator (9005) must be
(2ibm,interruptserver#-size) - 1 - the gserver# of the global server to be controlled as given in the
“ibm,ppc-interrupt-gserver#s” property.

7.3.5.5 get-sensor-state

The RTAS call get-sensor-state is used by the OS to read the current state of various sensors on any Platform. If multi-
ple sensors of a given type are provided by the platform, this function permits addressing them individually.

R1–7.3.5.5–1. RTAS must implement a get-sensor-state call which reads the value of the sensor of type Sensor
which has index Sensor-index using the argument call buffer defined by Table 41‚ “get-sensor-state Argu-
ment Call Buffer‚” on page 146 and the sensor types defined by Table 42‚ “Defined Sensors‚” on page 147.

R1–7.3.5.5–2. If a platform tests sensor values against limits, then RTAS must return the result of these tests using
the Status output parameter.

b. The vendor specific company representation, as used on other OF properties specified by that vendor.

146 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling get-sensor-state again.
However, software may issue the get-sensor-state call again either earlier or later than this.

R1–7.3.5.5–3. For sensors in the “rtas-sensors” property, the indices for sensors must start at zero (0) and incre-
ment sequentially up to the maximum index; that is, all of the integers and only those integers from 0 to the maxi-
mum index are valid.

Architecture Note: Sensor indices that are obtained via the ibm,get-indices RTAS call are not necessarily contiguous (that
is, any of the indices between 0 and the maxindex, inclusive, may be missing).

R1–7.3.5.5–4. The get-sensor RTAS call must not return a busy indication (-2 or 990x) for any indicator in
Table 42‚ “Defined Sensors‚” on page 147 which is marked with a “yes” in the “Fast?” column of that table.

Hardware Implementation Note: Some platforms may compare the value of environmental sensors (such as the Battery
Voltage or Thermal Sensor) to some limits. When the value of the sensor meets or exceeds a limit, the platform
may take some action. RTAS makes the OS aware of the relationship of the sensor values to the limit by using the
Status code to return this information.

Software and Hardware Implementation Notes: The meaning of these limits is as follows:

 Critical High - The sensor value is greater than or equal to this limit. The platform may take some action and
may initiate an EPOW (see Section 10.2.2‚ “Environmental and Power Warnings‚” on page 287). The OS may
take some action to correct this situation or to perform an orderly shutdown.

 Warning High - The sensor value is greater than or equal to this limit, but less than the critical high limit. The
platform may initiate a warning EPOW. The OS may take some action to bring this reading back into the nor-
mal range.

 Normal - RTAS is aware of the limits and the value is within these operating limits.

Table 41. get-sensor-state Argument Call Buffer

Parameter Type Name Values

In

Token Token for get-sensor-state

Number Inputs 2

Number Outputs 2

Sensor Token defining the sensor type

Sensor-index Index of specific sensor (0, 1,...)

Out Status

990x: Extended Delay where x is a number 0-5 (see text below)
13: Sensor value >= Critical high
12: Sensor value >= Warning high
11: Sensor value normal
10: Sensor value <= Warning low
9: Sensor value <= Critical low
0: Success
-1: Hardware Error
-2: Hardware Busy, Try again later
-3: No such sensor implemented
-9000: DR Entity isolated (Chapter 13, “Dynamic
Reconfiguration (DR) Architecture,” on page 355)

State
Current value as defined in the Defined Values column of
Table 42‚ “Defined Sensors‚” on page 147

7.3  RTAS Call Function Definition 147

LoPAPR, Version 1.1 (March 24, 2016)

 Warning Low - The sensor value is less than or equal to this limit, but greater than the critical low limit. The
platform may initiate a warning EPOW. The OS may take some action to bring this reading back into the nor-
mal range.

 Critical Low - The sensor value is less than or equal to this limit. The platform may take some action and may
initiate an EPOW. The OS may take some action to correct this situation or to perform an orderly shutdown.

Where:

 A ‘critical’ state is defined as a condition where the sensor value of the measured item indicates that it is out-
side the allowable operating parameters of the system, and that a failure is imminent unless some immediate
action is taken.

 A ‘warning’ state is defined as a condition where the sensor value of the measured item indicates that it is out-
side the expected operating parameters for normal operation, but has not yet reached a critical state. The vari-
ance is significant enough that either system software or an operator may want to take some action to bring the
parameter back into the normal range.

Platform Implementation Note: The existence of this sensor state reporting capability should not be construed as a
requirement to have any limits on sensors or to always have all four limits.

Table 42. Defined Sensors

Sensor Name
Token
Value

Defined Values Fast? Required? <vendor>a Description

Key Switch 1

Off (0),
Normal (1),
Secure (2),

Maintenance (3)

yes No ibm

Key switch modes are tied to OS security
policy. Suggested meanings: Maintenance
mode permits booting from floppy or other
external, non-secure media. Normal mode
permits boot from any attached device.
Secure mode permits no manual choice of
boot device, and may restrict available
functionality which is accessed from the
main operator station. Off completely
disables the system.

- 2 - - - - Reserved.

Thermal 3
Temperature

(in Degrees Celsius)
no No ibm

If implemented, returns the internal
temperature of the specified thermal sensor.

- 4 - - - - Reserved. Was (deprecated) Lid Status.

- 5 - - - - Reserved.

- 6 - - - -
Reserved. Was (deprecated) Current battery
output voltage.

- 7 - - - -
Reserved. Was (deprecated) Battery
Capacity Remaining.

- 8 - - - -
Reserved. Was (deprecated) Battery
Capacity Percentage.

Environmental
and

Power State
(EPOW)

9

EPOW_Reset(0)
Warn_Cooling(1)
Warn_Power(2)

System_Shutdown(3)
System_Halt(4)

EPOW_Main_Enclosure(5)
EPOW_Power_Off(7)

yes Yes ibm
RTAS assessment of the environment and
power state of the platform.

148 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.5.5.1 Sensors

The current state of surveillance, as described in Section 7.3.5.2.1‚ “Surveillance‚” on page 138, is queried with a call
to get-sensor-state with a token value of 9000. Fan speed is queried with the token value of 9001 and an index specify-
ing the desired fan. Similarly, voltage is sensed with a token value of 9002 and an index specifying the desired voltage
source.

- 10 - - - -
Reserved. Was (deprecated) Battery
Condition Cycle State.

- 11 - - - -
Reserved. Was (deprecated) Battery
Charging State.

Surveillance 9000 1-255 and 0 yes
When the platform

implements the
surveillance function

ibm Current state of surveillance.

Fan speed 9001 fan - rpm no No ibm

Voltage 9002 voltage - mv no No ibm

DR-entity-sense 9003

DR connector empty = 0
DR entity present = 1

DR entity unusable (2)
DR entity available for exchange (3)
DR entity available for recovery (4)

no For all DR options -

Used in Dynamic Reconfiguration
operations to determine if connector is
available and whether the user performed a
particular DR operation correctly. See
Chapter 13, “Dynamic Reconfiguration
(DR) Architecture,” on page 355 and
Section 13.5.3.3‚ “get-sensor-state‚” on
page 366.

Power Supply 9004 no No ibm
Sense presence and status of power
supplies.

Global Interrupt
Queue Control

9005
Disabled = 0
Enabled = 1

yes
See Requirement R1–

7.3.5.4.1.2–1
ibm Global interrupt queue server control state.

Error Log
or

FRU Fault
9006

Normal (off) = 0
Fault (on) = 1

no

Yes
See Chapter 16,

“Service Indicators,”
on page 511

ibm

Off indicates that the system is working
normally.
On indicates that the system hardware,
firmware and/or diagnostics detected a fault
in the system.

Identify 9007
Normal (off) = 0

Identify (blink) = 1
no

Yes
See Chapter 16,

“Service Indicators,”
on page 511

ibm

Identify (locate) indicator (FRU, connector,
or drawer/unit).
Off is the default State.
On indicates the Identify State.

- 9008 - - - ibm Reserved.

- 9009 - - - ibm Reserved.

Vendor Specific
9100-9

999
<vendor>b Reserved for use by platform vendors.

a. Values in the “<vendor>” column are used to replace the “<vendor>” field of the “<vendor>,sensor-<token>” property, when that property is
presented. See Requirement R1–7.2.6.1.2–1.

b. The vendor specific company representation, as used on other OF properties specified by that vendor.

Table 42. Defined Sensors (Continued)

Sensor Name
Token
Value

Defined Values Fast? Required? <vendor>a Description

7.3  RTAS Call Function Definition 149

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.5.5.1–1. Platforms which implement the surveillance function must implement a single defined RTAS sen-
sor with the token value of 9000, which returns values of on (= 1-255 minutes) and off (= 0) to show the cur-
rent state of surveillance during this session.

R1–7.3.5.5.1–2. Platforms with software visible fan speed sensors must implement them as defined RTAS sensors
with the token value of 9001, which returns a sensor value in revolutions per minute (RPM).

R1–7.3.5.5.1–3. Platforms with software visible voltage sensors must implement them as defined RTAS sensors
with the token value of 9002, which returns a sensor value in millivolts.

Hardware Implementation Note: The notion of a delay, due to the sensor data acquisition time, may make it desirable
to cache sensor data to avoid interlocking with the service processor.

Software Implementation Note: Software should not assume that sensor data returned is a real time reading.

7.3.5.5.1.1 Example Implementation of Sensors

An example implementation of a platform with a service processor and four fans and four voltage sensors is repre-
sented by the paired integers (token maxindex) in the OF device tree as shown in Table 43‚ “Example - Contents of
“rtas-sensors” property‚” on page 149.

This requires sensors such as those shown in Table 44‚ “Example - Sensor Definitions‚” on page 149.

Table 43. Example - Contents of “rtas-sensors” property

token maxindex

(Any sensors with
Standard

Sensor Tokens)
...

(Associated max
index values)

...

9000 (surveillance) 0000

9001 (fan-speed) 0003

9002 (voltage) 0003

Table 44. Example - Sensor Definitions

sensor token index value

surveillance 9000 0000 0 / 1-255

fan#1 fan speed 9001 0000 fan rpm

fan#2 fan speed 9001 0001 fan rpm

fan#3 fan speed 9001 0002 fan rpm

fan#4 fan speed 9001 0003 fan rpm

voltage-level #1 9002 0000 voltage - mv

voltage-level #2 9002 0001 voltage - mv

voltage-level #3 9002 0002 voltage - mv

150 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

In addition, the properties “ibm,sensor-9000”, “ibm,sensor-9001” and “ibm,sensor-9002” in the
/rtas node that each contain an array of strings. Each entry in the array contains the location code for the matching
sensor. For example, the first entry of “ibm,sensor-9001” contains the location code for fan#1. Location codes
are shown in Section 12.3‚ “Hardware Location Codes‚” on page 327. Of course, since it is an abstracted sensor, the
entry for “ibm,sensor-9000” is NULL.

7.3.5.5.1.2 Power Supply Sensors

R1–7.3.5.5.1.2–1. Platforms with multiple software visible power supply sensors must implement them as defined
RTAS sensors with the token value of 9004, which returns the values defined in Table 45‚ “Power Supply
Sensor Values‚” on page 150.

For static 9004 sensors, the maxindex in the “rtas-sensors” property for the token 9004 indicates the number of
power supplies supported by the platform. In this case, the property “ibm,sensor-9004” in the /rtas node
contains the location code for each index.

For dynamic 9004 sensors, the platform provides the information about the 9004 indicators as it would for other dy-
namic sensors. That is, the platform does not provide the “ibm,sensor-9004” property and instead provides the
9004 location code information through the ibm,get-indices RTAS call, and if the ibm,get-indices RTAS call returns an
index of all-1's for a 9004 indicator, then the ibm,get-dynamic-sensor-state RTAS call is used to get the sensor state, in-
stead of the get-sensor RTAS call.

7.3.5.5.1.3 Environmental Sensors

R1–7.3.5.5.1.3–1. Platforms which want to allow an application to analyze their environmental sensors must pro-
vide the property “ibm,environmental-sensors” in the /rtas node (see Section B.6.3.1‚ “RTAS
Node Properties‚” on page 690).

The values for this property is a list of integers that are the token values (token) for the defined environmental sensors
and the number of sensors (maxindex) for that token which are implemented on the platform.

voltage-level #4 9002 0003 voltage - mv

Table 45. Power Supply Sensor Values

Value Status

0 Not present

1 Present and Not operational

2 Status unknown

3 Present and operational

Table 44. Example - Sensor Definitions (Continued)

sensor token index value

7.3  RTAS Call Function Definition 151

LoPAPR, Version 1.1 (March 24, 2016)

Architecture Note: When a sensor is in the “ibm,environmental-sensors” property and when the sensor token
indices are obtained via the ibm,get-indices RTAS call, the indices may not be contiguous for that sensor token
(that is, any of the indices between 0 and the maxindex, inclusive, may be missing).

7.3.5.5.1.4 Sensor 9005 Global Interrupt Queue Control State

The 9005 sensor reports the state of the global interrupt server queue logic of the interrupt presentation controller for
the specific processor making the call (Available Processor Mask (APM) for the PowerPC interrupt presentation con-
troller). This is used when varying the processor on and off line.

R1–7.3.5.5.1.4–1. Platforms that allow processors to be brought online or be taken offline dynamically must imple-
ment the global interrupt queue control sensor with a value of 9005 as specified in Table 42‚ “Defined Sen-
sors‚” on page 147.

R1–7.3.5.5.1.4–2. The index value for global interrupt queue control state sensor (9005) must be
(2ibm,interrupt-server#-size) - 1- the gserver# of the global queue to be sensed as given in the
“ibm,ppc-interrupt-gserver#s” property.

Note: on platforms that do not report “ibm,interrupt-server#-size” property, the assumed value of the size
of the interrupt server number is 8.

7.3.6 Power Control

7.3.6.1 set-power-level

This RTAS call is used to set the power level of a power domain to either on or off.

R1–7.3.6.1–1. RTAS must implement the set-power-level call using the argument call buffer defined by Table 46‚
“set-power-level Argument Call Buffer‚” on page 151.

R1–7.3.6.1–2. Power_domain must be a power domain identified in the OF device tree.

R1–7.3.6.1–3. Level must be 100 for full power and 0 for off.

Table 46. set-power-level Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-power-level

Number Inputs 2

Number Outputs 2

Power_domain Token defining the power domain

Level Token for the desired level for this domain

Out
Status

0: Success
-1: Hardware Error
-2: Busy, Try again later
990x:Extended Delay

where x is a number 0-5 (see text below)

Actual_level The power level actually set

152 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.6.1–4. The set-power-level call must return the power level actually set in the Actual_level output parame-
ter.

Software Implementation Notes:

1. The set-power-level(0,0) call, if implemented, removes power from the root domain, turning off power to all
domains. The external events which can turn power back on are platform specific. The RTAS primitive
power-off also removes power from the system, but permits specifying the events which can turn power
back on.

2. The implemented values for the Level parameter for each power domain are defined in the OF device tree.

R1–7.3.6.1–5. The set-power-level RTAS call, when implemented, must return either a -2 or a 990x return code if
the set-power-level operation specified in the RTAS call is going to exceed 1 millisecond in duration (where
value of x gives a hint as to the duration of the busy; see text).

A single set-power-level operation may require an extended period of time for execution. Following the initiation of
the hardware operation to change the power level, if the set-power-level call returns prior to successful completion of
the operation, the call returns either a Status code of -2 or 990x. A Status code of -2 indicates that RTAS may be capa-
ble of doing useful processing immediately. A Status code of 990x indicates that the platform requires an extended pe-
riod of time, and hints at how much time is required. Neither the 990x nor the -2 Status codes implies that the platform
has initiated the operation, but it is expected that the 990x Status is used only if the operation had been initiated.

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling set-power-level with the same power domain token. However, soft-
ware may issue the set-power-level call again either earlier or later than this.

Software Implementation Note: In Requirement R1–7.3.6.1–5, a return code of -2 or 990x may either mean that the
operation was initiated but not completed, or may mean that the operation was not initiated at all.

Firmware Implementation Notes:

1. If the RTAS initiates and returns before successful completion of the operation, then it needs to handle the
split of a set-power-level operation across multiple calls.

2. It is the firmware’s responsibility to not return a Status of 0 (success) until the operation is complete, and
that may require performing an operation such as a delay operation or querying the hardware for power
good status. In the former case, the firmware needs to save state between the calls to the same power domain
number, until the operation is complete.

3. The set-power-level RTAS call may be called to set the power level of other power domains after the initia-
tion to other domains and before the operation to those other domains are complete. If necessary, the
set-power-level call may return a -2 or 990x Status to those calls without initiating the operation, if multiple
simultaneous operations are not feasible.

7.3.6.2 get-power-level

R1–7.3.6.2–1. RTAS must implement the get-power-level call using the argument call buffer defined by Table 47‚
“get-power-level Argument Call Buffer‚” on page 153.

7.3  RTAS Call Function Definition 153

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.6.2–2. Power_domain must be a power domain identified in the OF device tree.

Software Implementation Note: The get-power-level call only returns information about power levels whose state is
readable in hardware. It does not need to remember the last set state and return that value.

7.3.6.3 power-off

This primitive turns power off on a system which is equipped to perform a software-controlled power off function.

R1–7.3.6.3–1. If software controlled power-off hardware is present, the power-off function must turn off power to
the platform, using the argument call buffer described in Table 48‚ “power-off Argument Call Buffer‚” on
page 153.

R1–7.3.6.3–2. If software controlled power-off hardware is present, Power_on_mask, which is passed in two parts
to permit a possible 64 events even on 32-bit implementations, must be a bit mask of power on triggers, or if
the “power-on-triggers” property is absent from the /rtas node, a value of 0 must be used for
Power_on_mask_hi and Power_on_mask_lo.

R1–7.3.6.3–3. Platforms must omit the “power-on-triggers” property from the /rtas node.

Table 47. get-power-level Argument Call Buffer

Parameter Type Name Values

In

Token Token for get-power-level

Number Inputs 1

Number Outputs 2

Power_domain Token defining the power domain

Out
Status

0: Success
-1: Hardware Error
-2: Busy, try again later
-3: Can’t determine current level

Level The current power level for this domain

Table 48. power-off Argument Call Buffer

Parameter Type Name Values

In

Token Token for power-off

Number Inputs 2

Number Outputs 1

Power_on_mask_hi
Mask of events that can cause a power on event - event mask
values [0:31] (right-justified if the cell size is 64 bits)

Power_on_mask_lo
Mask of events that can cause a power on event - event mask
values [32:63] (right-justified if the cell size is 64 bits)

Out Status
On successful operation, does not return
-1: Hardware error

154 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: The power on triggers, which were removed from this architecture, are documented in the
Table 49‚ “Defined Power On Triggers‚” on page 154, for legacy reasons.

R1–7.3.6.3–4. For the System Parameters option: If software controlled power-off hardware is present, the
power-off function must prevent reboot in the event of a later external power recovery with the
platform_auto_power_restart system parameter enabled.

7.3.6.4 ibm,power-off-ups

This RTAS call manages the system power-off function in systems which may have power backed up with an Uninter-
ruptible Power Supply (UPS).

R1–7.3.6.4–1. For platforms that support a platform controlled Uninterruptible Power Supply (UPS), the
ibm,power-off-ups function must be implemented, whether a platform controlled UPS is present or not, using
the argument call buffer described in Table 50‚ “ibm,power-off-ups Argument Call Buffer‚” on page 154.

Table 49. Defined Power On Triggers

Bit Event

0 Power Switch On

2 Lid Open

5 Wake Button

8 Switch to Battery

9 Switch to AC

10 Keyboard or mouse activity

12 Enclosure Closed

13 Ring Indicate

14 LAN Attention

15 Time Alarm

16 Configuration change

17 Service Processor

Table 50. ibm,power-off-ups Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,power-off-ups

Number Inputs 0

Number Outputs 1

Out Status
On successful operation, does not return
-1: Hardware error

7.3  RTAS Call Function Definition 155

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.6.4–2. If a platform controlled UPS is present, then the ibm,power-off-ups RTAS call must turn off system
power while enabling platform auto restart upon restoration of system power, according to the
platform_auto_power_restart policy described in Section 7.3.16.5.2‚ “platform_auto_power_restart Parame-
ter‚” on page 221, and must not return, otherwise, the call must not turn off system power and must not re-
turn.

R1–7.3.6.4–3. If a platform controlled UPS is not present, then the ibm,power-off-ups RTAS call must turn off sys-
tem power while enabling platform auto restart upon restoration of system power, according to the
platform_auto_power_restart policy described in Section 7.3.16.5.2‚ “platform_auto_power_restart Parame-
ter‚” on page 221, and must not return, otherwise, the call must not turn off system power and must not re-
turn.

Software Implementation Notes:

1. Supporting ibm,power-off-ups, allows a system to be shutdown due to a report that the system was running
under UPS power for systems with a platform managed UPS. As opposed to power-off, ibm,power-off-ups,
permits the operating system to be restarted when power is restored after a loss of external power.

2. The report that a system needs to be shutdown due to running under a UPS would be given by the platform
as an EPOW event with EPOW event modifier being given as, 0x02 = Loss of utility power, system is run-
ning on UPS/Battery, as described in section Section 10.3.2.2.8‚ “Platform Event Log Format, EPOW Sec-
tion‚” on page 308.

3. If the RTAS ibm,power-off-ups call is supported by the platform, it will also allow a shutdown with a subse-
quent restart when power is restored for systems running with a UPS that is not under platform control. This
presumes that the OS has some external means of recognizing when running under UPS power to initiate the
ibm,power-off-ups call.

7.3.7 Reboot and Flash Update Calls

During execution, it may become necessary to shut down processing and reboot the system in a new mode. For exam-
ple, a different OS level may need to be loaded, or the same OS may need to be rebooted with different settings of Sys-
tem Environment Variables.

7.3.7.1 system-reboot

R1–7.3.7.1–1. RTAS must implement a system-reboot call which resets all processors and all attached devices. Af-
ter reset, the system must be booted with the current settings of the System Environment Variables (refer to
Section 8.4.1‚ “System (0x70)‚” on page 267 for more information).

R1–7.3.7.1–2. The RTAS system-reboot call must be implemented using the argument call buffer defined by
Table 51‚ “system-reboot Argument Call Buffer‚” on page 155.

Table 51. system-reboot Argument Call Buffer

Parameter Type Name Values

In

Token Token for system-reboot

Number Inputs 0

Number Outputs 1

Out Status
On successful operation, does not return
-1: Hardware error

156 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Hardware Implementation Note: The platform must be able to perform a system reset and reboot. On a multiprocessor
system, this should be a hard reset to the processors.

7.3.7.2 ibm,update-flash-64-and-reboot

The ibm,update-flash-64-and-reboot function is described in this section. It does not return to the OS if successful.
This call supports RTAS instantiated in 32 bit mode to access storage at addresses above 4GB. In an exception to the
LPAR Requirement R1–14.6–6 this call supports block lists being outside of the Real Mode Area (RMA) as long as the
initial block list is at an address below the limits of the cell size of the Block_list argument.

R1–7.3.7.2–1. The argument call buffer for the ibm,update-flash-64-and-reboot RTAS call must correspond to the
definition in Table 52‚ “ibm,update-flash-64-and-reboot Argument Call Buffer‚” on page 156.

R1–7.3.7.2–2. The RTAS ibm,update-flash-64-and-reboot call Block_list on platforms that do not present the
“ibm,flash-block-version” property in the OF /rtas node must conform to the definition shown
in Table 53‚ “Format of Block List‚” on page 156.

Table 52. ibm,update-flash-64-and-reboot Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,update-flash-64-and-reboot

Number Inputs 1

Number Outputs 1

Block_list A real pointer to a block list of 64 bit entries

Out Status

-1: Hardware error
-3: Image unacceptable to update program
-4: Programming failed when partially complete, and the flash is now corrupted - reboot may fail
-9002: Not authorized

The Status of 0 is never returned, because this RTAS call does not return if successful.

The -1 return is to cover the case where some condition prevents RTAS from being able to program the flash at this time. For example, the
flash programming power supply is disconnected, a low-level security check (for instance a switch or jumper) fails, or a test programming probe
fails for an unknown reason or the case where the flash has been successfully updated, but the reboot fails for some reason.

The -3 return is to cover the case where embedded vendor/platform specific information in the image failed to conform to the required format
or content for this platform, such as the firmware revision number or a CRC or some other check which was intended to ensure the integrity of
the image.

The -4 return is to cover the case where the update failed before the image was fully updated. In this case, the OS has the responsibility for
reporting the failure.

The -9002 return code is used to indicate that the partition at the time the call was made was not authorized to update the flash image.

Table 53. Format of Block List

Length of Block_list in bytes

Address of memory area 1

Length of memory area 1

. . .

7.3  RTAS Call Function Definition 157

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.7.2–3. The ibm,update-flash-64-and-reboot RTAS call Block_list must be a sequence of 64 bit cells.

R1–7.3.7.2–4. Memory blocks referenced in the ibm,update-flash-64-and-reboot RTAS call Block_list must reside
in System Memory outside that reserved for firmware (both the RTAS data area and OF’s memory defined by
real-base and real-size).

R1–7.3.7.2–5. The block list referenced by the Block_list argument to the ibm,update-flash-64-and-reboot RTAS
call must be in System Memory below the maximum address supported by the RTAS instantiated cell size.

R1–7.3.7.2–6. The addresses of memory blocks referenced by the ibm,update-flash-64-and-reboot RTAS call
Block_list must align tn a 4 KB boundary.

R1–7.3.7.2–7. A memory block, included in the ibm,update-flash-64-and-reboot RTAS call Block_list, must not
cross a 256MB boundary.

R1–7.3.7.2–8. The ibm,update-flash-64-and-reboot call must test the image to make sure it has the right format and
is not damaged, update the flash from the Block_list and then perform a system reset and reboot, as for the
system-reboot call.

Hardware and Software Implementation Note: Platform specific information should be embedded in the flash images
to identify the firmware unambiguously and to ensure that the firmware operates correctly on the platform. Such
information might include platform board model and revision numbers covered by the firmware, manufacturer ID,
and firmware revision number used for external display. This information should include a CRC or other check
which ensures the integrity of the data.

Software Implementation Notes:

1. The execution time for this calls may be in the order of seconds, rather than “a few tens of microseconds” as
noted on page 111.

2. The RTAS flash update programs should display progress, completion, and error information while the flash
update is underway, if possible.

3. The OS does not expect a return from the ibm,update-flash-64-and-reboot call other than for cases where
the hardware cannot be accessed, the flash image is unacceptable to the RTAS flash update program, the re-
sult of the update corrupted the flash, or the platform could not be rebooted.

7.3.7.3 Flash Update with Discontiguous Block Lists

The property “ibm,flash-block-version” (see Section B.6.3.1‚ “RTAS Node Properties‚” on page 690) is de-
fined to describe the following definition and operation of the Block_list shown in Table 54‚ “Format of Discontiguous
Block_list‚” on page 157.

Address of memory area n

Length of memory area n

Table 54. Format of Discontiguous Block_list

VER Length of Block_list in bytes

Address of Block_list extension

Address of memory area 1

Table 53. Format of Block List

158 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Where:

 VER (1 byte in length) indicates the version of the Block_list.

 Length of the Block_list in bytes indicates the size of this Block_list, including the header cell and the cell with the
address of the Block_list extension.

 Address of the Block_list extension indicates the location of the next Block_list. 0x00 indicates no additional
Block_list extension.

 Address of memory area 1 (2 . . . n) indicates the location of this portion of the flash image.

 Length of memory area 1 (2 . . . n) indicates the length of this portion of the flash image.

R1–7.3.7.3–1. If VER is 0x01, the Block_list must be formatted as in Table 54‚ “Format of Discontiguous
Block_list‚” on page 157.

R1–7.3.7.3–2. If VER is 0x01, the Block_list parameter in the function call or the Address of the Block_list exten-
sion, if not 0x00, must point to a Block_list cell containing VER and Length of the Block_list.

R1–7.3.7.3–3. If VER is 0x01, the Address of the Block_list extension parameter must be 0x00 to indicate that there
are no further extensions.

R1–7.3.7.3–4. The VER byte must exist in the Block_list and in each Block_list extension.

R1–7.3.7.3–5. If the platform supports the property “ibm,flash-block-version” with value 0x01, it must
also support the default value 0x00.

The Block_list format allows flexibility in the size and page requirements for the block lists. Page alignment is not re-
quired for the lists or extensions. They may run across contiguous pages with the control being the length of each list or
extension and with the end being the 0x00 pointer.

7.3.7.4 ibm,manage-flash-image

The ibm,manage-flash-image RTAS call supports systems having a “temporary” and “permanent” flash image areas. It
allows the user to commit the temporary flash image by copying it to the permanent image area. It also allows the user
to reject the temporary flash image by overwriting it with the permanent flash image.

R1–7.3.7.4–1. The RTAS ibm,manage-flash-image call must be implemented using the argument call buffer defined
by Table 55‚ “ibm,manage-flash-image Argument Call Buffer‚” on page 159.

Length of memory area 1

Address of memory area 2

Length of memory area 2

- - -

Address of memory area n

Length of memory area n

Table 54. Format of Discontiguous Block_list

7.3  RTAS Call Function Definition 159

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.7.4–2. The ibm,manage-flash-image RTAS call must not change the system flash and must return a Status of
value -9001 when called with a request to reject the temporary firmware image when not running on the per-
manent firmware image.

R1–7.3.7.4–3. The ibm,manage-flash-image RTAS call must not change the system flash and must return a Status of
value -9001 when called with a request to commit the temporary firmware image when not running on the
temporary firmware image.

Platform Implementation Note: In platforms supporting two firmware image areas, platforms always apply updates to
the temporary image area. The RTAS call ibm,manage-flash-image is the normal means by which a temporary
image is committed to the permanent side. However, if a platform is running from a temporary image when an
update is to be applied, then the platform may automatically commit the current temporary image to the permanent
side to allow the new image to be updated to the temporary image area. The ibm,validate-flash-image RTAS call
is used to determine what would result from an attempt to update a FLASH image taking in to account the image
to be updated and the current image being executed.

7.3.7.5 ibm,validate-flash-image

The ibm,validate-flash-image RTAS call allows OS service code to determine if a candidate flash image is valid, if the
partition has authority to update the flash image, and what the resulting flash levels will be after performing the update.

R1–7.3.7.5–1. The ibm,validate-flash-image RTAS call must be implemented using the argument call buffer de-
scribed in Table 56‚ “ibm,validate-flash-image Argument Call Buffer‚” on page 160.

Table 55. ibm,manage-flash-image Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,manage-flash-image

Number of Inputs 1

Number of Outputs 1

Image to Commit
0: Reject “temporary” firmware image
1: Commit “temporary” firmware image

Out Status

0: Success
-1: Hardware Error
-2: Busy
-3: Parameter Error
-9001: Cannot Overwrite the Active Firmware Image Error
-9002 Not Authorized
990x: Extended Delay

160 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.7.5–2. The ibm,validate-flash-image RTAS call Buffer Ptr parameter must be a real address representing the
starting address of a minimum 4 K buffer, contiguous in real memory.

R1–7.3.7.5–3. On input, the ibm,validate-flash-image RTAS call buffer pointed to by the Buffer Ptr parameter must
contain the first 4 KB of the candidate flash image to be validated.

R1–7.3.7.5–4. For the LPAR option: The ibm,validate-flash-image RTAS call buffer described in Requirement
R1–7.3.7.5–2 must be in the partition's RMA.

R1–7.3.7.5–5. On exit from the ibm,validate-flash-image RTAS call, RTAS must place the following data in the buf-
fer, starting at the address in the Buffer Ptr parameter:

 “MI” <sp> current-T-image <sp> current-P-image <0x0A>

 “MI” <sp> new-T-image <sp> new-P-image <0x00>

 “ML” <sp> current-T-image <sp> current-P-image <0x0A>

 “ML” <sp> new-T-image <sp> new-P-image <0x00>

In Requirement R1–7.3.7.5–5, current-T-image and current-P-image are the fixpack microcode image names currently
on the Temporary and Permanent sides, respectively, and new-T-image and new-P-image are the fixpack microcode
image names that will exist in flash after a successful flash update with the candidate image.

If the current flash image level is not known, the value provided for current-T-image and/or current-P-image is “UN-
KNOWN”.

If the flash update function would not succeed, the values of new-T-image and new-P-image are the same as cur-
rent-T-image and current-P-image, respectively.

R1–7.3.7.5–6. On exit from the ibm,validate-flash-image RTAS call, the Update Results Token output must be up-
dated with one of the values in Table 57‚ “Update Results Token Values‚” on page 161. This list is in order;
firmware must provide the first value in the list which would be true if an update is attempted:

Table 56. ibm,validate-flash-image Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,validate-flash-image

Number of Inputs 2

Number of Outputs 2

Buffer Ptr
Real address of minimum 4 K buffer, contiguous in real
memory

Buffer Size Size in bytes of Buffer

Out

Status

990x: Extended Delay
0: Success
-1: Hardware Error
-2: Busy
-3: Parameter Error
-9002: Not authorized

Update Results Token
Token to identify what will happen if update is attempted
with this token, described in Requirement R1–7.3.7.5–6.

7.3  RTAS Call Function Definition 161

LoPAPR, Version 1.1 (March 24, 2016)

7.3.7.6 ibm,activate-firmware

The ibm,activate-firmware allows an OS to activate a new version of firmware that has been updated in the platform
flash memory after the partition was started.

R1–7.3.7.6–1. The ibm,activate-firmware RTAS call must be implemented using the argument call buffer described
in Table 58‚ “ibm,activate-firmware Argument Call Buffer‚” on page 161.

Software implementation Note: The OS should expect that a number of calls may be required to accomplish firmware
activation, with “Busy, try again later” or “Extended Delay” return codes from all but the last call. The new version
of firmware is not in use until a “Success” return. The OS may interleave calls to other RTAS functions between
calls to this function.

7.3.8 SMP Support

In a Symmetric Multiprocessor (SMP) system, the platform needs the ability to synchronize the clocks on all the pro-
cessors. The timebase registers are synchronized by the platform before CPUs are given to the OS.

R1–7.3.8–1. (Merged into Requirement R1–11.1–9)

Table 57. Update Results Token Values

Token Description

1 No update done, partition does not have authority to perform flash update

2 No update done, the candidate image is not valid for this platform

3
Current fixpack level is unknown, the new-T-image and new-P-image identifies show
what will exist in flash after update with this image

4
Current T side will be committed to P side before being replace with new image, and the
new image is downlevel from current image

5 Current T side will be committed to P side before being replaced with new image

6 T side will be updated with a downlevel image

0 T side will be updated with a newer or identical image

Table 58. ibm,activate-firmware Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,activate-firmware

Number of Inputs 0

Number of Outputs 1

Out Status

990x: Extended Delay
0: Success
-1: Hardware Error
-2: Busy, try again later
-3: Parameter Error
-9001: No valid FW available to activate

162 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.8–2. (Merged into Requirement R1–11.1–9)

7.3.8.1 stop-self

The stop-self primitive causes a processor thread to stop processing OS or user code, and to enter a state in which it is
only responsive to the start-cpu RTAS primitive. This is referred to as the RTAS stopped state.

R1–7.3.8.1–1. A stop-self RTAS call must place the calling processor thread in the RTAS stopped state. This call
must be implemented using the argument call buffer defined by Table 59‚ “stop-self Argument Call Buffer‚”
on page 162.

R1–7.3.8.1–2. RTAS must insure that a processor thread in the RTAS stopped state does not checkstop or otherwise
fail if a machine check or soft reset exception occurs. Processor threads in this state receive the exception, but
must perform a null action and remain in the RTAS stopped state.

Software Implementation Note: If this call succeeds, it does not return. The CPU thread waits for some other processor
thread to issue a start-cpu targeted to this processor thread.

Firmware Implementation Note: In an LPAR environment the state of the interrupt sub-system associated with this
processor on entry to this call cannot be trusted. Although interrupts are masked as part of the RTAS call protocol,
the caller may have left the processor configured as an interrupt server. Therefore, interrupt signals may be
pending within the processor’s interrupt management area. These conditions need to be cleared prior to allocating
this processor to another partition.

R1–7.3.8.1–3. Platforms which support the enhanced stop-self RTAS behavior must include the name only
“ibm,integrated-stop-self” OF property, under the /rtas node, and prior to placing a processor
in the stopped state, flush and disable any caches/memory exclusively used by the issuing processor.

Architecture Note: In Requirement R1–7.3.8.1–3, an exclusively used cache means that no other running processor
currently needs the cache for normal operation, even if the cache could potentially be shared with other processors.
An exclusively used memory means any main memory allocated local to the processor thread and thus not
accessible by other processor threads.

R1–7.3.8.1–4. Execution of the stop-self call by the last active processor thread must cause the firmware to recover
all the resources owned by the executing OS image for use per platform policy.

7.3.8.2 start-cpu

The start-cpu primitive is used to cause a processor thread which is currently in the RTAS stopped state to start pro-
cessing at an indicated location.

Table 59. stop-self Argument Call Buffer

Parameter Type Name Values

In

Token Token for stop-self

Number Inputs 0

Number Outputs 1

Out Status
If successful, this call does not return
-1: Hardware Error

7.3  RTAS Call Function Definition 163

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.8.2–1. A start-cpu RTAS call must remove the processor thread specified by the CPU_id parameter from
the RTAS stopped state. This call must be implemented using the argument call buffer defined by Table 60‚
“start-cpu Argument Call Buffer‚” on page 163.

R1–7.3.8.2–2. The processor thread specified by the CPU_id parameter must be in the RTAS stopped state entered
because of a prior call by that processor to the stop-self primitive.

R1–7.3.8.2–3. When a processor thread exits the RTAS stopped state, it must begin execution in real mode, with the
MSR in the same state as from a system reset interrupt (except for the MSRHV bit which is on if not running
under a hypervisor and off if running under a hypervisor) at the real location indicated by the Start_location
parameter, with register R3 set to the value of parameter Register_R3_contents and the MSR as defined in
Table 61‚ “Machine State Register (MSR) State in Started Processor‚” on page 163. All other register con-
tents are indeterminate.

Note: Requirement R1–5.2.6–2 applies to the start-cpu RTAS call. At the completion of start-cpu, the caches to be used
by the specified processor must have been initialized and the state bits made accurate prior to beginning execution
at the start address.

Table 60. start-cpu Argument Call Buffer

Parameter Type Name Values

In

Token Token for start-cpu

Number Inputs 3

Number Outputs 1

Cpu_id

Token identifying the processor thread to be started, obtained
from the value of the
“ibm,ppc-interrupt-server#s” property for the
CPU in the OF device tree

Start_location Real address at which the designated CPU begins execution

Register_R3_contents
Value which is loaded into Register R3 before beginning
execution at Start_location

Out Status
0: Success
-1: Hardware Error

Table 61. Machine State Register (MSR) State in Started Processor

Bit Number Name Initial Value upon start by start-cpu Bit Number Name Initial Value upon start by start-cpu

0 SF
0 if RTAS instantiated in 32 bit mode
1 if RTAS instantiated in 64 bit mode 53 SE 0

1 Reserved 0 54 BE 0

2 Reserved 0 55 FE1 Implementation Dependent

3 HV
0 if running under hypervisor
firmware, 1 if running in “SMP”
mode

56 US 0

4:46 Reserved 0 57 Reserved 0

47 ILE 0 58 IR 0

164 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.8.3 query-cpu-stopped state

The query-cpu-stopped-state primitive is used to query a different processor thread to determine its status with respect
to the RTAS stopped state.

R1–7.3.8.3–1. A query-cpu-stopped-state RTAS call must return the CPU_status of the processor thread specified
by the Cpu_id parameter. This call must be implemented using the argument call buffer defined by Table 62‚
“query-cpu-stopped-state Argument Call Buffer‚” on page 164.

Firmware Implementation Note: RTAS serialization may be required between the stop-self and the
query-cpu-stopped-state calls.

Software Implementation Note: The OS performs a stop-self on the desired processor thread, then periodically calls
query-cpu-stopped-state on another processor thread until the desired processor thread is stopped. Before calling

48 EE 0 59 DR 0

49 PR 0 60 Reserved 0

50 FP Implementation Dependent 61 PMM 0

51 ME 1 62 RI 0

52 FE0 Implementation Dependent 63 LE 0

Table 62. query-cpu-stopped-state Argument Call Buffer

Parameter
Type

Name Values

In

Token Token for query-cpu-stopped-state

Number Inputs 1

Number Outputs 2

Cpu_id

Token identifying the processor thread to be queried,
obtained from the value of the
“ibm,ppc-interrupt-server#s” property for the
CPU in the OF device tree

Out

Status
0: Success
-1: Hardware Error
-2: Hardware Busy, Try again later

CPU_status
0: The processor thread is in the RTAS stopped state
1: stop-self is in progress
2: The processor thread is not in the RTAS stopped state

Table 61. Machine State Register (MSR) State in Started Processor

Bit Number Name Initial Value upon start by start-cpu Bit Number Name Initial Value upon start by start-cpu

7.3  RTAS Call Function Definition 165

LoPAPR, Version 1.1 (March 24, 2016)

set-power-level to power off the desired processor, or isolate the logical CPU, the platform requires that all
processor threads be in the RTAS stopped state.

7.3.9 Miscellaneous RTAS Calls

7.3.9.1 ibm,os-term

This RTAS call is provided for the OS to indicate to the platform that it has terminated normal operation. A string of in-
formation is passed to the platform.

A call to the ibm,os-term RTAS function implies the following to the platform:

 Any platform reporting and recovery policies may now take effect.

 The OS may no longer be issuing periodic event-scan requests, so surveillance monitoring does not continue.

 All devices not marked “used-by-rtas” are released by the OS (including, for example, native serial ports used
by a service processor).

 The OS no longer responds to any EPOW events, so it is up to the platform to take any appropriate actions for such
events.

Due to the above implications, the platform may take actions (for example, a service processor “call home”) that could
conflict with normal processing of further RTAS requests. However, since the OS has entered a “live halt” state, the list
of RTAS functions that it still needs is relatively small. The list of RTAS functions that the platform might expect to see
after ibm,os-term includes:

 nvram-fetch

 nvram-store

 display-character

 power-off

 ibm,power-off-ups

 system-reboot

 check-exception for machine checks (Although the OS may still react normally to a machine check condition by
calling check-exception, it might not process a returned error log. It is allowable for check-exception to not return an
extended log when in this state.)

If a platform has a service processor, and a policy has been established for actions to be taken by the service processor
upon receiving notice of OS termination, the service processor may complete those actions and a return to the CPU
from this call may never occur. If the call does return, the OS performs its own termination policy.

When the platform supports extended ibm,os-term behavior, the return to the RTAS will always occur unless there is a
kernel assisted dump active as initiated by an ibm,configure-kernel-dump call.

Platforms capable of supporting this extended ibm,os-term behavior will so indicate by presenting the “ibm,ex-
tended-os-term” RTAS property in the OF device tree.

R1–7.3.9.1–1. RTAS must implement an ibm,os-term call using the argument call buffer defined by Table 63‚
“ibm,os-term Argument Call Buffer‚” on page 166 to receive a termination string from the OS.

166 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Platform Implementation Note: The string should be maintained in an error log which could be made accessible to a
service location or saved in the platform for later remote access.

R1–7.3.9.1–2. The ibm,os-term call must disable surveillance.

R1–7.3.9.1–3. During the machine check and soft reset handlers, the platform must support access to the
ibm,os-term RTAS function.

R1–7.3.9.1–4. If the ibm,os-term call does not return to the caller, the platform must honor the partition_auto_restart
system parameter value.

R1–7.3.9.1–5. For platforms supporting extended ibm,os-term behavior, the ibm,os-term call must always return un-
less there is an active kernel assisted dump configured as specified by an ibm,configure-kernel-dump RTAS
call.

Platform implementation note: The ibm,os-term RTAS call allows for the case where the OS and platform may share
an I/O device such as a TTY where the OS would have use of the device normally, and the platform use when the
OS has terminated, such as to implement an error reporting call home function both in the OS and the platform.
For proper sharing in such a case where extended behavior is supported, when the primary partition console is also
used for the call-home by the platform, the platform should not initiate the call home until after the partition shuts
down.

7.3.9.2 Ibm,exti2c

For support of platforms which require an external I2C bus, a special port to the service processor is required. The
EXTI2C option is designed to control specific external devices. Designers cannot assume that an arbitrary I2C device
may be substituted.

The ibm,exti2c call provides a single channel to the I2C bus. Through this channel, software can read or write up to 256
bytes from/to an addressed resource within an address space between X’000000 and X’FFFFFF. Reference the specifi-
cation for the specific I2C device to determine what effect such operations may have.

The Buffer Pointer argument is used to manage this channel across multiple ibm,exti2c RTAS calls. If the input Buffer
Pointer value on a call is zero, the state of the channel is reset and any outstanding I2C operation is aborted. If the input
Buffer Pointer has a different value from that of the last call, a new operation is started, with any previous operation be-
ing aborted. An input Buffer Pointer value that is the same as that used on the previous call indicates a continuation of
the last operation, given that the Status of the last call was not 0 (success) or -1 (hardware error). These terminating sta-
tuses reset the channel.

Using software must manage serialization to the ibm,exti2c channel across multiple calls for the same I2C operation.

Table 63. ibm,os-term Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,os-term

Number Inputs 1

Number Outputs 1

Pointer to String NULL terminated string

Out Status
0:success
-1:hardware error
-2:hardware busy, try again later

7.3  RTAS Call Function Definition 167

LoPAPR, Version 1.1 (March 24, 2016)

A single ibm,exti2c operation may require an extended period of processing by background hardware. During this time,
RTAS returns either a Status code of -2 or 990x. A Status of -2 indicates that RTAS may be capable of doing useful pro-
cessing immediately.

A Status code of 990x indicates that the platform requires an extended period of time to perform the operation. It is
suggested that software delay for 10 raised to the x milliseconds before calling ibm,exti2c with the same Buffer Pointer
value, however, software may call again earlier or later.

A Status code of -1 indicates either a general error associated with the local I2C hardware (service processor) or that the
channel has been corrupted due to other error conditions not associated with the I2C operation. If the buffer is changed,
as when an error code is returned, the RTAS Status code is 0 (success).

R1–7.3.9.2–1. For the EXTI2C option: RTAS must implement an ibm,exti2c call using the argument call buffer
defined by Table 64‚ “ibm,exti2c Argument Call Buffer‚” on page 167 to allow communications with special
hardware.

R1–7.3.9.2–2. For the EXTI2C option: The Buffer Pointer must point to a contiguous real storage area large
enough to contain the I2C command and any associated data (maximum of 261 bytes).

R1–7.3.9.2–3. For the EXTI2C option: The Buffer format for the write operation must be as defined in Table 65‚
“EXTI2C Buffer Write Operation Format‚” on page 167.

Table 64. ibm,exti2c Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,exti2c

Number Inputs 1

Number Outputs 1

Buffer Pointer Real Address of data buffer

Out Status

0:Success
-1:hardware error
-2:hardware busy, try again later
-3: Parameter error
990x:Extended delay where x is a number 0-5

Table 65. EXTI2C Buffer Write Operation Format

Condition Byte # Content

On Call

0 0x00

1-3 Address of I2C resource

4 Length of op. (1-255 with 0 specifying 256)

5... Data

On Return - I2C OK

0

Buffer unmodified
1-3

4

5...

168 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Firmware and Software Implementation Note: When the ibm,exti2c RTAS call write operation returns after the
operation has been enqueued by the firmware but prior to completion by the hardware (therefore the operation
status is truly not known), the ibm,exti2c RTAS call can return a Status of 0 (success) with the buffer unmodified.

R1–7.3.9.2–4. For the EXTI2C option: The Buffer format for a read operation, if supported, must be as defined in
Table 66‚ “EXTI2C Buffer Read Operation Format (Optional)‚” on page 168.

R1–7.3.9.2–5. For the EXTI2C option: If read operations are not supported and a read operation is attempted, then
the platform must return a Status of -3.

R1–7.3.9.2–6. For the EXTI2C option: The maximum total Extended Delay imposed by the ibm,exti2c command
for a single I2C operation must be less than 2 seconds.

R1–7.3.9.2–7. For the EXTI2C option: When the ibm,exti2c RTAS call returns an EXTI2C buffer containing an
I2C operation error code, the RTAS Status code must be 0 (success).

On Return - I2C error

0 0x01

1-3 Address of I2C resource

4 I2C operation error code

Table 66. EXTI2C Buffer Read Operation Format (Optional)

Condition Byte # Content

On Call

0 0x80

1-3 Address of I2C resource

4 Length of op. (1-255 with 0 specifying 256)

5... Data

On Return - I2C OK

0 0x80

1-3 Address of I2C resource

4 Length of op. (1-255 with 0 specifying 256)

5... Data

On Return - I2C error

0 0x81

1-3 Address of I2C resource

4 I2C operation error code

Table 65. EXTI2C Buffer Write Operation Format (Continued)

Condition Byte # Content

7.3  RTAS Call Function Definition 169

LoPAPR, Version 1.1 (March 24, 2016)

Firmware and Software Implementation Note: When the ibm,exti2c RTAS call returns after the operation has been
enqueued by the firmware but prior to completion by the hardware (therefore the operation status is truly not
known), the ibm,exti2c RTAS call can return a Status of 0 (success) with the buffer unmodified.

7.3.10 PowerPC External Interrupt Option

The RTAS calls used to access the facilities of the PowerPC External Interrupt option need not be serialized by the call-
ing OS. Other RTAS rules such as being called in real mode with interrupts disabled still apply.

Note: These RTAS calls make the PowerPC External Interrupt option Logical Partition (LPAR) ready.

7.3.10.1 ibm,get-xive

R1–7.3.10.1–1. For the PowerPC External Interrupt option: RTAS must implement an ibm,get-xive call using
the argument call buffer defined by Table 67‚ “ibm,get-xive Argument Call Buffer‚” on page 169

R1–7.3.10.1–2. For the PowerPC External Interrupt option: The ibm,get-xive call must be reentrant to the num-
ber of processors on the platform.

R1–7.3.10.1–3. For the PowerPC External Interrupt option: The ibm,get-xive argument call buffer for each si-
multaneous call must be physically unique.

R1–7.3.10.1–4. For the PowerPC External Interrupt option: The ibm,get-xive call must return the current values
of the server number and priority fields, as set by the last ibm,set-xive call (priority initialized to least favored
level by firmware at boot), of the External Interrupt Vector Entry associated with the interrupt number pro-
vided as an input argument unless prevented by Requirement R1–14.10–22.

R1–7.3.10.1–5. For the PowerPC External Interrupt option: The ibm,get-xive call must return the Status of -3
(Argument Error) for an unimplemented Interrupt # (not reported via an “interrupt-ranges” prop-
erty).

R1–7.3.10.1–6. For the PowerPC External Interrupt option combined with the Platform Reserved Interrupt
Priority Level option: The ibm,get-xive call must return the Status of -3 (Argument Error) for an platform
reserved interrupt priority (reported via an the “ibm,plat-res-int-priorities” property).

Table 67. ibm,get-xive Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,get-xive

Number Inputs 1

Number Outputs 3

Interrupt # From “interrupt-ranges” property

Out

Status
0: Success
-1: Hardware Error
-3: Argument Error (Optional)

Server # 0x0 - 2“ibm,interrupt-server#-size”

Priority 0x0 - 0xff

170 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.10.2 ibm,set-xive

R1–7.3.10.2–1. For the PowerPC External Interrupt option: RTAS must implement an ibm,set-xive call using
the argument call buffer defined by Table 68‚ “ibm,set-xive Argument Call Buffer‚” on page 170

R1–7.3.10.2–2. For the PowerPC External Interrupt option: The ibm,set-xive call must be reentrant to the num-
ber of processors on the platform.

R1–7.3.10.2–3. For the PowerPC External Interrupt option: The ibm,set-xive argument call buffer for each si-
multaneous call must be physically unique.

R1–7.3.10.2–4. For the PowerPC External Interrupt option: The ibm,set-xive call must set values of the
server number and priority fields of the External Interrupt Vector Entry (XIVE) and/or firmware saved
priority value (if the interrupt source controller does not use an interrupt Enable Register and the inter-
rupt source is masked off, either due to a previous ibm,int-off call or because the interrupt source was
never enabled with an ibm,int-on call since boot), associated with the interrupt number provided as an
input argument unless prevented by Requirement R1–14.10–20.

R1–7.3.10.2–5. For the PowerPC External Interrupt option: The ibm,set-xive call must return the Status of -3
(Argument Error) for an unimplemented Interrupt number.

R1–7.3.10.2–6. For the PowerPC External Interrupt plus the Platform Reserved Interrupt Priority Level op-
tion: The ibm,set-xive call must return the Status of -3 (Argument Error) for an reserved Priority value (as re-
ported via an “ibm,plat-res-int-priorities” property).

7.3.10.3 ibm,int-off

R1–7.3.10.3–1. For the PowerPC External Interrupt option: RTAS must implement an ibm,int-off call using the
argument call buffer defined by Table 69‚ “ibm,int-off Argument Call Buffer‚” on page 171

R1–7.3.10.3–2. For the PowerPC External Interrupt option: The ibm,int-off call must be reentrant to the number
of processors on the platform.

R1–7.3.10.3–3. For the PowerPC External Interrupt option: The ibm,int-off argument call buffer for each simul-
taneous call must be physically unique.

Table 68. ibm,set-xive Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,set-xive

Number Inputs 3

Number Outputs 1

Interrupt #
Interrupt number from appropriate OF
device tree property

Server # 0x00 - 2“ibm,interrupt-server#-size”

Priority 0x00 - 0xFF

Out Status
0: Success
-1: Hardware Error
-3 Argument Error (Optional)

7.3  RTAS Call Function Definition 171

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.10.3–4. For the PowerPC External Interrupt option: The ibm,int-off call must disable interrupts from the
interrupt source associated with the interrupt number provided as an input argument unless prevented by Re-
quirement R1–14.10–24.

R1–7.3.10.3–5. For the PowerPC External Interrupt option: If the interrupt source controller uses an Interrupt
Enable Register, the ibm,int-off call must reset the mask bit associated with the specified interrupt num-
ber; or if the interrupt source controller does not use an interrupt Enable Register, the ibm,int-off call
must save the priority value of the XIVE for later restoration by the ibm,int-on call, or presentation by
the ibm,get-xive call and set the priority value of the XIVE to the least favored priority value (0xFF),
unless prevented by Requirement R1–14.10–24.

R1–7.3.10.3–6. For the PowerPC External Interrupt option: The ibm,int-off call must return the Status of -3 (Ar-
gument Error) for an unimplemented Interrupt number.

7.3.10.4 ibm,int-on

R1–7.3.10.4–1. For the PowerPC External Interrupt option: RTAS must implement an ibm,int-on call using the
argument call buffer defined by Table 70‚ “ibm,int-on Argument Call Buffer‚” on page 172.

R1–7.3.10.4–2. For the PowerPC External Interrupt option: The ibm,int-on call must be reentrant to the number
of processors on the platform.

R1–7.3.10.4–3. For the PowerPC External Interrupt option: The ibm,int-on argument call buffer for each simul-
taneous call must be physically unique.

R1–7.3.10.4–4. For the PowerPC External Interrupt option: The ibm,int-on call must enable interrupts from the
interrupt source associated with the interrupt number provided as an input argument unless prevented by Re-
quirement R1–14.10–23.

R1–7.3.10.4–5. For the PowerPC External Interrupt option: If the interrupt source controller uses an Interrupt
Enable Register, the ibm,int-on call must set the mask bit associated with the specified interrupt num-
ber; or if the interrupt source controller does not use an interrupt Enable Register, the ibm,int-on call
must restore the XIVE priority value saved by the previous ibm,int-off call (initialized by the firmware
to the least favored level at boot) unless prevented by Requirement R1–14.10–24.

R1–7.3.10.4–6. For the PowerPC External Interrupt option: The ibm,int-on call must return the Status of -3 (Ar-
gument Error) for an unimplemented Interrupt number.

Table 69. ibm,int-off Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,int-off

Number Inputs 1

Number Outputs 1

Interrupt #
Interrupt number from appropriate OF
device tree property

Out Status
0: Success
-1: Hardware Error
-3 Argument Error (Optional)

172 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.10.5 MSI Support

This section describes the RTAS calls required when the MSI option is implemented. See Section 6.2.3‚ “MSI Option‚”
on page 103 for other platform requirements for the MSI option.

The Message Signaled Interrupt (MSI) and Enhanced MSI (MSI-X) capability of PCI IOAs in many cases allows for
greater flexibility in assignment of external interrupts to IOAs than the predecessor Level Sensitive Interrupt (LSI) ca-
pability, and in some cases allows the treatment of MSIs1 as a resource pool that is reassigned based on availability of
MSIs and the need of an IOA function for more interrupts than initially assigned. Platforms that implement the MSI
option implement the ibm,change-msi and ibm,query-interrupt-source-number RTAS calls.

7.3.10.5.1 ibm,change-msi

The OS uses the ibm,change-msi RTAS call to query the initial number of MSIs assigned to a PCI configuration ad-
dress (that is, to an IOA function) and to request a change in the number of MSIs assigned, when the platform allows
for dynamic reassignment of MSIs for the IOA function. The ibm,change-msi RTAS call allows the caller to allow the
platform to select MSI or MSI-X, to specifically select MSI or MSI-X or, if LSIs are allocated by the firmware for the
IOA function, to change to LSI (by removal of the MSIs assigned). The interrupt source numbers assigned to an IOA
function are queried via the ibm,query-interrupt-source-number RTAS call. The ibm,query-interrupt-source-number
RTAS call is called iteratively, once for each interrupt assigned to the IOA function. The interrupt source numbers re-
turned by the ibm,query-interrupt-source-number RTAS call are the numbers used to control the interrupt as in the
ibm,get-xive, ibm,set-xive, ibm,int-on, and ibm,int-off RTAS calls.

If a device driver is willing to live with the platform-assigned initial number of MSIs, then the device driver does not
need to use the ibm,change-msi RTAS call, and can instead use the ibm,query-interrupt-source-number RTAS call to
determine the number of interrupts assigned to each IOA function.

An OS may abandon the effort to change the MSIs for a given configuration address after the first call to
ibm,change-msi and prior to a call which gets a status back indicating completion, by calling again with the same PCI
configuration address but with a Function number of 2 (set to default number of interrupts) and a Sequence Number of
1. RTAS never returns a Status of -2 or 990x when the call is made with a Function number of 2.

If an OS successfully changes the number of interrupts, then it should consider removing the increase when it decon-
figures the IOA function, especially if it starts with zero and wants to be backward compatible with older device driv-
ers that may not understand MSIs. To remove all MSIs, set the Requested Number of Interrupts to zero. But it should
be noted, that once set to zero, there is no guarantee that on a future request there will be any MSIs available to assign

Table 70. ibm,int-on Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,int-on

Number Inputs 1

Number Outputs 1

Interrupt #
Interrupt number from appropriate
OF device tree property

Out Status
0: Success
-1: Hardware Error
-3 Argument Error (Optional)

1.This architecture will refer generically to the MSI and MSI-X capabilities as simply “MSI,” except where differentiation is required.

7.3  RTAS Call Function Definition 173

LoPAPR, Version 1.1 (March 24, 2016)

from the pool. Adding MSIs to an IOA function which has LSIs assigned disables those LSIs but does not remove
them, and then removing the MSIs that replaced the LSIs re-uses the same (previously removed) LSIs (mapped to the
same LSI source numbers as the previous LSI source numbers).

The presence of the “ibm,change-msix-capable” property specifies that the platform implements the version
of this RTAS call that allows Number Outputs equal to 4 and Functions 3 and 4.

If the ibm,change-msi RTAS call is made with Number Outputs equal to 4 or with Function equal to 3 or 4 when the
“ibm,change-msix-capable” property does not exist in the /rtas node, then the call will return a Status of -3
(Invalid Parameter). Specifying Function 3 (MSI) also disables MSI-X for the specified IOA function, and likewise
specifying Function 4 (MSI-X) disables MSI for the IOA function. It is unnecessary to specify a Requested Number of
Interrupts of zero when switching between MSI and MSI-X. Specifying the Requested Number of Interrupts to zero for
either Function 3 or 4 removes all MSI & MSI-X interrupts from the IOA function. It is permissible to use LSI, MSI
and MSI-X on different IOA functions.

The default (initial) assignment of interrupts is defined in Section 6.2.3‚ “MSI Option‚” on page 103.

R1–7.3.10.5.1–1. For the MSI option: The platform must implement the ibm,change-msi call using the argument
call buffer defined by Table 71‚ “ibm,change-msi Argument Call Buffer‚” on page 173.

Table 71. ibm,change-msi Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,change-msi.

Number Inputs 6

Number Outputs 3 or 4, when the “ibm,change-msix-capable” property is present, 3 otherwise.

 Config_addr Configuration Space Address (Register field set to 0)

PHB_Unit_ID_Hi Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

Function

Determines action of this call:
0: Query only (only return actual number of MSI or MSI-X interrupts assigned to the PCI configuration
address).
1: If Number Outputs is equal to 3, request to set to a new number of MSIs (including set to 0).
If the “ibm,change-msix-capable” property exists and Number Outputs is equal to 4, request is to
set to a new number of MSI or MSI-X (platform choice) interrupts (including set to 0).
2: Request to set back to the default number of interrupts (also aborts a change in progress; that is, one that
has previously returned a Status of -2 or 990x)
3: (Only valid if “ibm,change-msix-capable” exists): Request to set to a new number of MSIs
(including set to 0)
4: (Only valid if “ibm,change-msix-capable” exists): Request to set to a new number of MSI-X
interrupts (including set to 0)

Requested Number of
Interrupts

The total number of MSIs being requested for the PCI configuration address. A value of 0 is specified in
order to remove all MSIs for the PCI configuration address. This input parameter is ignored by RTAS for
Function values other than 1, 3, or 4.

Sequence Number
Integer representing the sequence number of the call. First call in sequence starts with 1, following calls (if
necessary) use the Next Sequence Number returned from the previous call.

174 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.10.5.1–2. For the MSI option: The Final number of Interrupts and Type of Interrupts must be valid when
the platform returns a Status of 0 (Success), regardless of whether the original number and final number of in-
terrupts assigned is different and regardless of whether or not the platform allows MSI resources to be reas-
signed for the specified PCI configuration address.

R1–7.3.10.5.1–3. For the MSI option: The platform must return a Status of -3 (Parameter error) from
ibm,change-msi, with no change in interrupt assignments if the PCI configuration address does not support
MSI and Function 3 was requested (that is, the “ibm,req#msi” property must exist for the PCI configura-
tion address in order to use Function 3), or does not support MSI-X and Function 4 is requested (that is, the
“ibm,req#msi-x” property must exist for the PCI configuration address in order to use Function 4), or if
neither MSIs nor MSI-Xs are supported and Function 1 is requested.

R1–7.3.10.5.1–4. For the MSI option: If there are zero MSIs assigned to the target IOA function but there is one or
more LSIs assigned, then a call to ibm,change-msi which successfully changes the number of MSIs assigned
to non-zero must also disable the LSIs in the IOA function’s configuration space and must keep the LSI plat-
form resources available to the IOA function in the case the MSIs are removed (see Requirement R1–
7.3.10.5.1–5).

R1–7.3.10.5.1–5. For the MSI option: If there are a non-zero number of MSIs assigned to the target IOA function
and if that IOA function originally had some LSIs assigned, then a call to ibm,change-msi which successfully
changes the number of MSIs assigned to zero must also reassign any LSIs that were originally assigned to
that IOA function, using the same interrupt number that was originally assigned (that is, the platform must re-
serve an originally assigned LSI for a IOA function in case it needs to reassign it), and must enable the LSIs
in the IOA function’s configuration space.

R1–7.3.10.5.1–6. For the MSI option: If the platform supports the changing of MSIs, then it must support the re-
duction in the number of interrupts by the ibm,change-msi call, including setting the number of MSIs to 0.

R1–7.3.10.5.1–7. For the MSI option: On the first call of ibm,change-msi, the Sequence Number must be a 1.

R1–7.3.10.5.1–8. For the MSI option: If ibm,change-msi returns a Status of -2 (Call again) or 990x (Extended De-
lay), then the caller must provide on the next call to ibm,change-msi, one of the following:

 All input parameters the same as the initial call except with the Sequence Number set to the value in Next
Sequence Number returned from the previous ibm,change-msi call.

 All input parameters the same as the initial call except with Function set to 2 and the Sequence Number set
to 1, if the caller is wanting to abort the previously started ibm,change-msi operation.

Out

Status

-3: Parameter error
-2: Call again
-1: Hardware error
0: Success
990x: Extended Delay

Final Number of
Interrupts

Number of interrupts assigned to the PCI configuration address at the successful completion of this call
(Status of 0). For Function 1, 3, or 4, if a greater number was requested than what was previously assigned,
the final number may be less than what was requested, even though a Status of 0 is returned.

Next Sequence Number
Integer to be returned as the Sequence Number parameter on the next call. This output is only valid if a
Status of -2 or 990x is returned.

Type of Interrupts
This field is only valid when the Final Number of Interrupts is non-zero.
1: MSI
2: MSI-X

Table 71. ibm,change-msi Argument Call Buffer (Continued)

Parameter Type Name Values

7.3  RTAS Call Function Definition 175

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.10.5.1–9. For the MSI option: If the ibm,change-msi RTAS call returns something other than 0 for the Fi-
nal Number of Interrupts, then the ibm,query-interrupt-source-number RTAS call must be used to get the cur-
rent interrupt source numbers, even if the ibm,change-msi call has returned the same number of interrupts as
before the call.

R1–7.3.10.5.1–10. For the MSI option: Firmware must not return a Status of -2 or 990x when the Requested Num-
ber of Interrupts is set to 0 or for Function 0 (query only) or for Function 2 (set back to default number).

R1–7.3.10.5.1–11. For the MSI option: When the set-indicator RTAS call is made to isolate an IOA (for both DL-
PAR and PCI Hot Plug operations), the platform must release any additional MSI numbers that were obtained
through the ibm,change-msi RTAS call and make them available for use by other ibm,change-msi calls.

R1–7.3.10.5.1–12. For the MSI option: An OS or device driver that is calling ibm,change-msi for the purpose of
changing the number or type of interrupts for the IOA function must assure that the IOA function cannot be
actively performing operations that will generate interrupts during the process of changing the number or
type of interrupts.

R1–7.3.10.5.1–13. For the MSI option: The platform must restore the IOA’s MSI configuration space after a reset
operation which occurs following boot, to what it was previous to the reset operation, and provide the same
MSI assignments through the reset operation, unless a DR isolate/unisolate operation has been performed (in
which case the IOA's MSI configuration space is set as it would at boot time).

Software Implementation Notes:

1. Interrupt source numbers for MSIs are not necessarily be assigned contiguously.

2. MSIs and MSI source numbers are not shared (see Requirement R1–6.2.3–5).

3. For a multi-function IOA, the ibm,change-msi call is called for each function for which the number of MSIs
is to be changed.

4. When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds
(where x is the last digit of the 990x return code), before calling ibm,change-msi again. However, software
may issue the ibm,change-msi call again either earlier or later than this.

5. During a sequence of calls which return -2 or 990x, software may abort at any time by setting the Function
equal to 2 and the Sequence Number to 1.

6. When there is a non-zero number of MSI or MSI-X interrupts assigned, and when software attempts to
change the type of interrupts (MSI to MSI-X interrupt or MSI-X to MSI) at the same time as changing the
number of interrupts, the platform may return the same number of interrupts as previously assigned, even
though a greater number is available. In this case a second call to ibm,change-msi to increase the number of
interrupts may produce a greater number of interrupts.

7.3.10.5.2 ibm,query-interrupt-source-number

The ibm,query-interrupt-source-number RTAS call is used to query the interrupt source number and type (level sensi-
tive for LSIs, edge triggered for MSIs) for a specific PCI IOA function’s interrupt, if one exists. That is, for a given
PCI configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr) and function interrupt number.
This call is issued once for each interrupt of each IOA function, in order to obtain the interrupt source number and type
for that interrupt. For example, if the ibm,change-msi RTAS call has previously returned a value of “n” interrupts for
the IOA function, then the call is made “n” times for that function (with a relative interrupt number of 0 to n-1).

R1–7.3.10.5.2–1. For the MSI option: The platform must implement the ibm,query-interrupt-source-number
RTAS call using the argument call buffer defined by Table 72‚ “ibm,query-interrupt-source-number Argu-
ment Call Buffer‚” on page 176.

176 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.10.5.2–2. For the MSI option: The interrupt source numbers returned by the ibm,query-inter-
rupt-source-number RTAS call must be the numbers used to control the interrupt as in the ibm,get-xive,
ibm,set-xive, ibm,int-on, and ibm,int-off RTAS calls.

R1–7.3.10.5.2–3. For the MSI option: The ibm,query-interrupt-source-number RTAS call must return a Status of
1 (no interrupt assigned) if the inputs specify a valid PCI configuration address and the PCI configuration ad-
dress does not have an interrupt assigned for the specified IOA Function Interrupt Number.

Software and Firmware Implementation Note: Software may use the ibm,query-interrupt-source-number RTAS call
for all IOA Function Interrupt Number values starting at 0 until a Status of 1 is returned, rather than using
ibm,change-msi Function 0 (query). That is, the ibm,query-interrupt-source-number RTAS call works even when
the “ibm,req#msi” property does not exist for the IOA (that is even when the IOA is not requesting one or
more MSIs), This might be desirable, for example, if software never plans on using the capability to change the
number of MSIs, and therefore does not have any other use for the ibm,change-msi call.

7.3.11 Enhanced I/O Error Handling (EEH) Option Functions

The EEH option requires several additional RTAS calls. In addition, the Error Injection option RTAS calls are required
to be implemented, in order to be able to test device driver code that implements recovery based on the EEH option.

See also, Appendix H, “EEH Error Processing,” on page 835, for additional information about implementing EEH er-
ror recovery.

R1–7.3.11–1. For the EEH option: The IOA bus error injection function of the Error Injection option RTAS call
must be implemented concurrently with the EEH option (that is, the ioa-bus-error token must exist in the
“ibm,errinjct-tokens” property).

Table 72. ibm,query-interrupt-source-number Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,query-interrupt-source-number

Number Inputs 4

Number Outputs 3

 Config_addr Configuration Space Address (Register field set to 0)

PHB_Unit_ID_Hi Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

IOA Function Interrupt
Number

The relative number of the interrupt within the PCI configuration address, with a value of 0 being the
first interrupt of the PCI configuration address.

Out

Status

-3: Parameter error
-1: Hardware error
0: Success
1: No interrupt assigned for the given PCI configuration address and IOA Function Interrupt Number.

Interrupt Source Number
The interrupt source number corresponding to the PCI configuration address and IOA Function
Interrupt Number, when a Status of 0 is returned. Undefined for other Status values.

Interrupt Source Trigger

The interrupt source trigger corresponding to the PCI configuration address and IOA Function
Interrupt Number, when a Status of 0 is returned. Undefined for other Status values.
0: Level sensitive
1: Edge triggered

7.3  RTAS Call Function Definition 177

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11–2. For the EEH option: If the EEH option is implemented for the specified PE configuration address,
then calls to the ibm,set-eeh-option, ibm,set-slot-reset, and ibm,slot-error-detail RTAS calls must be governed
by Table 73‚ “PE State Transition Table‚” on page 178, otherwise if one of the invalid transitions in Table 73‚
“PE State Transition Table‚” on page 178 is attempted, then return a Status as defined by Table 74‚ “PE State
Control‚” on page 179.

R1–7.3.11–3. If the EEH option is not implemented for the specified PE configuration address and a call is made to
one of the ibm,set-eeh-option, ibm,set-slot-reset, or ibm,slot-error-detail RTAS calls, then return a Status of
-3 (parameter error).

Software Implementation Note: Some transitions in Table 73‚ “PE State Transition Table‚” on page 178 are made
asynchronously to the OS by the platform (in exceptional cases; see table for details). If software receives a Status
of -7 (Unexpected state change) on an RTAS call which is attempting to change state in Table 73‚ “PE State
Transition Table‚” on page 178, then software should read the state again via the ibm,read-slot-reset-state2 RTAS
call, in order to obtain the current state. Some legacy implementations may return a -1 instead of a -7.

R1–7.3.11–4. For the EEH option: If the platform activates the reset to a PE (for example, as part of a recovery ac-
tion above the PE), including the case where the platform has temporarily deactivated and then reactivated
the reset, then the platform must hide such PE state transition(s) from the OS by returning a Status of 5 (PE is
unavailable) with PE Unavailable Info indicating a non-zero value (temporarily unavailable) for the
ibm,read-slot-reset-state2 RTAS call, until which time the required minimum reset active hold time for the
hardware within the PE has been met.

Software Implementation Note: Relative to the platform automatically resetting the PE as part of error recovery, as
mentioned in Requirement R1–7.3.11–4, the PE Recovery Info output of the ibm,read-slot-reset-state2 RTAS call
is provided to enable the software to determine that such a reset has occurred.

R1–7.3.11–5. For the EEH option: If the platform deactivates the reset to a PE, except in the case where the OS
has instructed it to do so with the ibm,set-slot-reset Function 0, then the platform must do all the following:

a. Hide such a deactivation from the OS during the time that the PE reset is deactivated by returning a Status
of 5 (PE is unavailable) with PE Unavailable Info indicating a non-zero value (temporarily unavailable)
for the ibm,read-slot-reset-state2 RTAS call.

b. Force OS MMIO accesses to the PE during the deactivation time to look like the PE is reset.

c. Prevent the PE from introducing errors into the system (for example, from DMA or due to the reset being
deactivated prior to the proper active hold time).

d. Reactivate the reset, hiding the reset active hold time as required by Requirement R1–7.3.11–4, or force
the PE into the permanently unavailable state (return a Status of 5 (PE is unavailable) with PE Unavail-
able Info indicating a zero value for the ibm,read-slot-reset-state2 RTAS call).

R1–7.3.11–6. For the EEH option: The Bridged-I/O EEH option must be implemented concurrently with the EEH
option.

R1–7.3.11–7. For the EEH option: The 64 bit IOA bus error injection function of the Error Injection option RTAS
call must be implemented concurrently with the EEH option (that is, the ioa-bus-error-64 token must exist in
the “ibm,errinjct-tokens” property).

R1–7.3.11–8. For the EEH option: The platform must implement the ibm,configure-pe RTAS call.

178 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Table 73. PE State Transition Table

Initial PE Statea

a. The state as would be returned from ibm,read-slot-reset-state2, when no asynchronous platform transition has occurred.

Final PE Statea

0
Not Reset

Load/Store Allowedb

DMA Allowedc

(Normal Operations)

b. Load/Store allowed means the Loads or Stores channel is open to the PE, and not necessarily that the PE itself has its MMIO space enabled. The components
within the PE also contain enable/disable bits (for example, the PCI configuration space Memory Space and IO Space enable bits in the PCI header Device
Control register).

c. DMA allowed means the DMA channel is open to the PE, if the PE itself has its DMA enabled. The components within the PE also contain enable/disable
bits (for example, the PCI configuration space Bus Master enable bit in the PCI header Device Control register).

1
Resetd

Load/Store Disablede

DMA Disabledf

d. Reset may mean that the PE is being held in the reset state by a reset signal or Hot Reset (PCI Express), or that it may have been put into this state by the
platform via a PCI Express Function Level Reset (FLR) in response to the ibm,set-slot-reset RTAS call. In the case of FLR, the platform makes the pulse of
the FLR look like the Hot Reset case to the OS in terms of the Reset state (See Section 7.3.11.2‚ “ibm,set-slot-reset‚” on page 182 for more information).
Note that the platform does not monitor writes to the FLR bit of an IOA, and so OS or Device Driver writes directly to the FLR bit on an IOA will not affect
the PE State as shown in Table 73.

e. Load/Store disabled means that either the PE is in the MMIO Stopped state or that the PE is reset, the latter giving the appearance of being MMIO Stopped.
f. DMA disabled means that either the PE is in the DMA Stopped state or that the PE is reset, the latter giving the appearance of being DMA Stopped.

2
Not Resetg

Load/Store Disabledh

DMA Disabledi

g. Although the current state is “Not Reset”, the PE may have been reset by the platform in the process of getting to this state. The PE Recovery Info output of
the ibm,read-slot-reset-state2 RTAS call will indicate if the platform has done such a reset.

h. In the MMIO Stopped state.
i. In the DMA Stopped state.

4
Not Reset

Load/Store Allowedb

DMA Disabledi

5
Temporarily
Unavailablej

j. Temporarily unavailable is signaled by a non-zero value returned in the PE Unavailable Info of the ibm,read-slot-reset-state2 RTAS calls.

5
Permanently
Unavailablek

k. Permanently unavailable is signaled by a zero value returned in the PE Unavailable Info of the ibm,read-slot-reset-state2 RTAS calls.

0
Not Reset

Load/Store Allowedb

DMA Allowedc

(Normal Operations)

ibm,set-slot-reset
Function 1 or 3, or via
a hardware initiated

actionl

Hardware causes this
state transition when

EEH is enabled and an
error occurs or

firmware may cause
due to higher level

error recovery action

Not a valid
transition

Platform initiated
action

ibm,slot-error-detail
Function 2, or

platform detected
permanent error

1
Reset

Load/Store Disabled
DMA Disabledf

ibm,set-slot-reset
Function 0m

ibm,set-slot-reset
Function 1 or 3

Not a valid
transition

Not a valid
transition

Platform initiated
action

ibm,slot-error-detail
Function 2, or

platform detected
permanent error

2
Not Reset

Load/Store Disablede

DMA Disabledi

Not a valid
transition

Must go through
state 4 or state 1

ibm,set-slot-reset
Function 1 or 3, or via
a hardware initiated

actionl

ibm,set-eeh-option
Function 2

Platform initiated
action

ibm,slot-error-detail
Function 2, or

hardware detected
permanent error

4
Not Reset

Load/Store Allowedb

DMA Disabledi

ibm,set-eeh-option
Function 3

See Requirement
R1–7.3.11.1–4

ibm,set-slot-reset
Function 1 or 3, or via
a hardware initiated

actionl

Hardware causes this
state transition when

EEH is enabled and an
error occurs or

firmware may cause
due to higher level

error recovery action

Platform initiated
action

ibm,slot-error-detail
Function 2, or

platform detected
permanent error

5
Temporarily
Unavailablej

Not a valid
transition

Platform initiated
action

Platform initiated
actionn

Not a valid
transition

ibm,slot-error-detail
Function 2, or

platform detected
permanent error

5
Permanently
Unavailablek

Power cycle,
Partition reboot,

or DLPAR
re-assignment

Not a valid
transition

Not a valid
transition

Not a valid
transition

Not a valid
transition

7.3  RTAS Call Function Definition 179

LoPAPR, Version 1.1 (March 24, 2016)

Table 73‚ “PE State Transition Table‚” on page 178 depicts the four main functions for controlling a PE’s state:

 ibm,set-eeh-option Function 2 for releasing a PE from the MMIO Stopped State, when the PE is in State 2 (MMIO
Stopped State and DMA Stopped State both active).

 ibm,set-eeh-option Function 3 for releasing a PE from the DMA Stopped State, when the PE is in State 3 (MMIO
Stopped State not active and DMA Stopped State active).

 ibm,set-slot-reset Function 0 for releasing a PE’s reset.

 ibm,set-slot-reset Function 1for activating a PE’s reset.

Implementation Note: In the last two bullets, above, for the case of the platform’s use of FLR for resetting the PE, the
meaning of “activating” and “deactivating” the PE’s reset has slightly different meaning, but the platform makes
the EEH recovery model transparent. See Section 7.3.11.2‚ “ibm,set-slot-reset‚” on page 182 for more details.

Table 74‚ “PE State Control‚” on page 179 is a summary of the expected results of the above four operations. The -7
Status returns generally will occur for the cases where the PE state has been changed asynchronously to the OS by the
platform. In these cases, software should read the state again (via the ibm,read-slot-reset-state2 RTAS call) in order to
determine the current hardware state.

l. The hardware would not normally initiate this transition; such implementation would only exist where the platform only implements EEH Stopped State via
a reset (always) of the PE (that is, only implements states 0, 1, and 5 of this table), which is not applicable for IBM LoPAPR Compliant platforms.

m. The platform also removes the PE from the EEH Stopped state, if applicable, on the transition from state 1 to state 0.
n. This transition cannot occur if the PE was in the reset state prior to the platform transition to the temporarily unavailable state. See Requirement

R1–7.3.11–5.

Table 74. PE State Control

R
T

A
S

 C
al

l

Function
Result and

Status

Initial PE Statea

a. The state as would be returned from ibm,read-slot-reset-state2, when no asynchronous platform transition has occurred.

0
Not Reset

Load/Store Allowedb

DMA Allowedc

(Normal Operations)

b. Load/Store allowed means the Loads or Stores channel is open to the PE, and not necessarily that the PE itself has its MMIO space enabled. The components
within the PE also contain enable/disable bits (for example, the PCI configuration space Memory Space and IO Space enable bits in the PCI header Device
Control register).

1
Resetd

Load/Store
Disablede

DMA Disabledf

2
Not Reset
Load/Store
Disabledg

DMA Disabled

4
Not Reset

Load/Store Allowedb

DMA Disabledh

5
Temporarily
Unavailablei

5
Permanently
Unavailablej

ib
m

,s
et

-e
eh

-o
pt

io
n

Function 2
Release PE for

Load/Store

Result no-op no-op
Transition from state

2 to 4
no-op no-op no-op

Statusk -3 -7 0 -3 -7 -7

Function 3
Release PE for

DMA

Result no-op no-op no-op
Transition from state

4 to 0
no-op no-op

Statusk -3 -7 -7 0 -7 -7

ib
m

,s
et

-s
lo

t-
re

se
t

Function 0
Deactivate the
reset to the PEl

Result no-op
Transition from state

1 to 0m no-op no-op no-op no-op

Statusk 0 0 -7 -3 -7 -7

Function 1 or 3
Activate the

reset to the PE

Result n
Transition from state

0 to 1
no-op

Transition from state
2 to 1

Transition from state
4 to 1

no-op no-op

Statusk, n 0 0 0 0 -7 -7

180 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

The PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr) for the domain is the PCI
configuration address for the PE primary bus and is the same format as used for the ibm,read-pci-config and
ibm,write-pci-config calls (see Requirement R1–7.3.4–1), except that the Register field is set to 0. The PE configura-
tion address is obtained as indicated in Table 9‚ “Conventional PCI Express PE Support Summary‚” on page 72.

7.3.11.1 ibm,set-eeh-option

This call is used to enable and disable the EEH domain of a PE, to remove a PE from the MMIO Stopped state to con-
tinue Load and Store operations to the domain, and to remove a PE from the DMA Stopped state to continue DMA op-
erations to the domain. The PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr) for
the PE is obtained as defined in Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Functions‚” on page 176.

R1–7.3.11.1–1. For the EEH option: RTAS must implement an ibm,set-eeh-option call using the argument call
buffer defined by Table 75‚ “ibm,set-eeh-option Argument Call Buffer‚” on page 181.

c. DMA allowed means the DMA channel is open to the PE, if the PE itself has its DMA enabled. The components within the PE also contain enable/disable
bits (for example, the PCI configuration space Bus Master enable bit in the PCI header Device Control register).

d. Reset may mean that the PE is being held in the reset state by a reset signal or Hot Reset (PCI Express), or that it may have been put into this state by the
platform via a PCI Express Function Level Reset (FLR) in response to the ibm,set-slot-reset RTAS call. In the case of FLR, the platform makes the pulse of
the FLR look like the Hot Reset case to the OS in terms of the Reset state (See Section 7.3.11.2‚ “ibm,set-slot-reset‚” on page 182 for more information).
Note that the platform does not monitor writes to the FLR bit of an IOA, and so OS or Device Driver writes directly to the FLR bit on an IOA will not affect
the PE State as shown in Table 73.

e. Load/Store disabled means that either the PE is in the MMIO Stopped state or that the PE is reset, the latter giving the appearance of being MMIO Stopped.
f. DMA disabled means that either the PE is in the DMA Stopped state or that the PE is reset, the latter giving the appearance of being DMA Stopped.
g. In the MMIO Stopped state.
h. In the DMA Stopped state.
i. Temporarily unavailable is signaled by a non-zero value returned in the PE Unavailable Info of the ibm,read-slot-reset-state2 RTAS calls.
j. Permanently unavailable is signaled by a zero value returned in the PE Unavailable Info of the ibm,read-slot-reset-state2 RTAS calls.
k. A Status of -3 is returned instead of 0 or -7 if an invalid PCI configuration address is used. An invalid PCI configuration address is generally one which is

not a PE address or which is not assigned to the OS. However, some platforms may allow resetting within the PE or outside the PE, providing this does not
violate other requirements defined by this architecture. Also, some legacy implementations may return a -1 or -3 instead of a -7, but all implementations are
required to implement the -7 Status, where appropriate.

l. In the case of the use of FLR by the platform to reset the PE, the “activate” and “deactivate” of the reset has a different meaning than for the Hot Reset case.
For FLR, the platform makes the pulse of the FLR look like the Hot Reset case to the OS in terms of the Reset state (See Section 7.3.11.2‚
“ibm,set-slot-reset‚” on page 182 for more information).

m. The platform also removes the PE from the EEH Stopped state, if applicable, on the transition from state 1 to state 0.
n. For Function 3, if Function 3 is not implemented, then a Status of -3 is returned. For Function 3, if implemented in the RTAS call, but not implemented for

the specified PCI configuration address, then a Status of -8 is returned. In either of these cases, the PE state is not changed. If Function 3 is implemented,
then the platform indicates this by the “ibm,reset-capabilities” property in the OF device tree.

7.3  RTAS Call Function Definition 181

LoPAPR, Version 1.1 (March 24, 2016)

Software and Platform Implementation Note: For platforms that enable EEH by default, ibm,set-eeh-option Function
0 (disable EEH) is a no-op. However, ibm,set-eeh-option Function 1 (enable EEH) is still required as a signalling
method from the device driver to the platform that the device driver is at least EEH aware (see Requirement R1–
4.4.1.1–18).

R1–7.3.11.1–2. For the EEH option: Software must use the ibm,get-config-addr-info2 RTAS call, when supported,
to get the EEH domain span of the PE, otherwise software must use the ibm,read-slot-reset-state2 RTAS call
in order to determine the span, and then software should attempt to perform all ibm,set-slot-reset and
ibm,set-eeh-option RTAS calls appropriately, based on the EEH capabilities and as governed by Table 73‚
“PE State Transition Table‚” on page 178.

R1–7.3.11.1–3. For the EEH option: If the EEH option is implemented for the specified PE configuration address,
on a call to the ibm,set-eeh-option with a Function of 0 (disable EEH) the platform must do one of the follow-
ing:

 If any IOA in the PE is enabled (if any of the Bus Master, Memory Space or I/O Space bits in the Com-
mand Register of the IOA’s configuration space are 1), then do nothing and return a Status of 0 (Success).

 If the platform allows disabling of EEH and the disabling of EEH for the PE violates another requirement
relative to LPAR, then the platform must not disable the EEH option for the specified PE configuration ad-
dress and must return a -7 (unexpected state change) or a -1 (hardware error), with -7 preferred.

 If the platform allows disabling of EEH and the disabling of EEH for the PE does not violate the other re-
quirements relative to LPAR, then clear the MMIO Stopped State and DMA Stopped State, and disable the
EEH option, for the specified PE configuration address.

 If the default for the platform is EEH enabled, then do nothing and return a Status of 0 (Success).

R1–7.3.11.1–4. For the EEH option: If the OS allows the DMA to be enabled for a PE that is in the DMA Stopped
state without the use of a reset operation (that is, the use of the ibm,set-eeh-option with a Function of 3), the

Table 75. ibm,set-eeh-option Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,set-eeh-option

Number Inputs 4

Number Outputs 1

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that
corresponds to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that
corresponds to the config_addr

Function

0: Disable EEH option for the PE (no-op for PEs with PCI Express IOAs)
1: Enable EEH option for the PE
2: Release the PE for Load/Store operations
3: Release the PE for DMA operations
4: Enable EEH io-event interrupt for this PE
5: Disable EEH io-event interrupt for this PE

Out Status

0: Success
-1: Hardware Error
-3: Parameter Error
-7 Unexpected state change

182 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

device driver must first do all necessary cleanup of its IOA to prevent the IOA from doing anything destruc-
tive when it starts DMA again.

R1–7.3.11.1–5. For the EEH option: If a device driver is going to enable EEH and the platform has not defaulted
to EEH enabled, then it must do so before it does any operations with its IOA, including any configuration
cycles or Load or Store operations.

R1–7.3.11.1–6. For the EEH option: If an EEH domain is enabled for a PE via the ibm,set-eeh-option RTAS call
and if there are multiple IOAs or one or more multi-function IOAs in that PE, and if these functions are sup-
ported by multiple device drivers, then all of the device drivers for all the functions in that PE must be EEH
enabled and be capable of coordinating EEH recovery procedures.

Software implementation Note: Protection against startup errors (configuration cycles, etc.), are every bit as important
as protection against errors during normal operations. Although the quantity of operations is not as great, there is
more of a chance of latent errors showing up during the startup phase.

R1–7.3.11.1–7. For the EEH option: If the Slot Level EEH Event Interrupt option is not implemented for the PE,
then return a Status of -3 if Function 4 or 5 is attempted.

R1–7.3.11.1–8. For the EEH with the Slot Level EEH Event Interrupt option: Function 4 and 5 must be imple-
mented for all PE under nodes that contain the “ibm,io-events-capable” property.

7.3.11.2 ibm,set-slot-reset

This call is used to reset a PE. The PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and
config_addr) for the PE is obtained as defined in Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Func-
tions‚” on page 176. All PEs have the capability of being reset independently. Resets outside or within the PE are not
architected, but may be allowed by the platform implementation, providing that it does not violate other requirements
of this architecture.

The platform may use one of two methods to reset a PCI Express PE, when the ibm,set-slot-reset RTAS call is made
with the Function 1/Function 0 (activate the reset/deactivate the reset).

 If the PE is a single function of a multi-function IOA, then the Function Level Reset (FLR) option is required to be
implemented by the function, and the platform uses FLR to reset the function. When the platform uses FLR instead
of Hot Reset to reset a PCI Express PE, the platform provides the “ibm,pe-reset-is-flr” property in the
function’s OF Device Tree node, and provides the same EEH recovery model to the software, as in the Hot Reset
case, and as defined by Table 73‚ “PE State Transition Table‚” on page 178. The property is provided in the case
where there may be slightly different device-specific reset recoveries by the software for the FLR case.

Software Implementation Note: The platform does not monitor writes to the FLR bit of an IOA, and so OS or Device
Driver writes directly to the FLR bit on an IOA will not affect the PE State as shown in Table 73‚ “PE State
Transition Table‚” on page 178.

 Otherwise, a PCI Express Hot Reset is used.

R1–7.3.11.2–1. For the EEH option: The ibm,set-slot-reset call must be implemented using the argument call buf-
fer defined by Table 76‚ “ibm,set-slot-reset Argument Call Buffer‚” on page 183.

7.3  RTAS Call Function Definition 183

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11.2–2. For the EEH option: After activation of the reset (Function 1 or 3), software must delay the deac-
tivation of the reset (Function 0) to that PE via the ibm,set-slot-reset call, until the minimum reset signal ac-
tive time has elapsed, as designated by the bus specifications for the particular type bus or buses involved
(100 millisecond for PCI).

Software Implementation Notes:

1. The device driver is responsible for any additional clean up required beyond that provided by a reset to the
IOA. For PCI Express, the clean up may be slightly different based on whether the platform used FLR or
Hot Reset to reset the PE. When FLR is used, the platform provides the “ibm,pe-reset-is-flr”
property in the function’s OF Device Tree node.

2. The software is responsible for quiescing (stopping) any MMIO Load and Store activities to the PE prior to
resetting the PE.

3. If the platform uses FLR to implement the PE reset, software may need to understand that this is a pulse and
not a solid level, such that the adapter is not held at reset during the time from the call with Function 1 and
the call with Function 0.

R1–7.3.11.2–3. For the EEH option: After deactivation of the reset (Function 0), software must delay access to
that PE until the minimum time after reset that is required for the PE to be come stable has elapsed, as desig-
nated by the bus specifications for the particular type bus or buses involved (for example, 1.5 seconds for PCI
Express).

Software Implementation Notes:

1. Different implementations of PCI Express may require different amounts of delay in order to traverse the
I/O fabric since individual component delays are plug-in card specific.

2. The ibm,read-slot-reset-state2 RTAS call returns a PE Reset State of 5 (PE is unavailable) while any reset
delay time is happening for hardware outside the PE.

Table 76. ibm,set-slot-reset Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,set-slot-reset

Number Inputs 4

Number Outputs 1

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to
the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to
the config_addr

Function

0: Deactivate the reset to the PE
1: Activate the reset to the PE (for PCI Express, if the platform uses FLR to reset the
PE, the platform provides the “ibm,pe-reset-is-flr” property in the
function’s OF Device Tree node)
3: (optional) Activate the reset to the PE, using a PCI Express Fundamental Reset

Out Status

0: Success
-1: Hardware Error
-3: Parameter Error
-7: Unexpected state change
-8: Fundamental Reset not defined for this configuration address

184 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11.2–4. For the EEH option: If the ibm,set-slot-reset call is called with a Function of 0 (deactivate) and
any reset to the reset domain specified by the PE configuration address is active, then the RTAS call must
de-activate all resets to that PE configuration address.

R1–7.3.11.2–5. For the EEH option: If the ibm,set-slot-reset call is called with a Function of 0 (deactivate) and
there is no operation to be performed (for example, the reset to the reset domain specified by the PE configu-
ration address is not active), then the RTAS call must return a Status of 0 (success).

R1–7.3.11.2–6. For the EEH option: When the ibm,set-slot-reset call is called with a Function of 1 or 3 (activate)
with a valid PHB Unit ID and config_addr and it is the case that FLR is not being used by the platform to re-
set the PE, then the RTAS call must activate the reset to the reset domain as designated by the PE configura-
tion address, if not already activated.

R1–7.3.11.2–7. For the EEH option: When the ibm,set-slot-reset RTAS call implements Function 3, the platform
must also provide the “ibm,reset-capabilities” property in the RTAS node of the OF device tree.

R1–7.3.11.2–8. For the EEH option: When the ibm,set-slot-reset call is called with a Function of 0 (deactivate)
with a valid PHB Unit ID and config_addr and if the corresponding PE is in the MMIO Stopped or DMA
Stopped state, then the RTAS call must bring that PE as designated by the PE configuration address out of the
MMIO Stopped and DMA Stopped states and clear any applicable platform EEH status state.

R1–7.3.11.2–9. For the EEH option: When the platform uses FLR to reset a PCI Express PE (ibm,set-slot-reset
call with a Function of 1(activate) followed by a call with Function 0 (deactivate)), then the platform must
provide the “ibm,pe-reset-is-flr” property in the function’s OF Device Tree node, and the platform
must always use FLR to reset a PE which contains this property in the OF Device Tree.

R1–7.3.11.2–10. For the EEH option: For a PCI Express PE, the platform must provide the EEH recovery model
to the software, as defined by Table 73‚ “PE State Transition Table‚” on page 178, regardless of whether Hot
Reset or FLR is used to reset the PE.

7.3.11.3 ibm,read-slot-reset-state2

This call queries the state of a PE, and dynamically determines whether a PCI configuration address corresponds to a
PE primary bus (that is, if it is the PE configuration address). In addition, when the PE Reset State parameter is a 5 (PE
is unavailable), then the PE Unavailable Info indicates an approximate amount of time for which the PE might be un-
available. The PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr) for the PE is ob-
tained as defined in Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Functions‚” on page 176.

When the ibm,get-config-addr-info2 RTAS call is implemented, that call can be used instead of this one to determine
the PE configuration address. See Section 7.3.11.4‚ “ibm,get-config-addr-info2‚” on page 187 and Table 9‚ “Conven-
tional PCI Express PE Support Summary‚” on page 72.

R1–7.3.11.3–1. The ibm,read-slot-reset-state2 call must be implemented using the argument call buffer defined by
Table 77‚ “ibm,read-slot-reset-state2 Argument Call Buffer‚” on page 185.

7.3  RTAS Call Function Definition 185

LoPAPR, Version 1.1 (March 24, 2016)

Table 77. ibm,read-slot-reset-state2 Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,read-slot-reset-state2 (see Firmware Implementation note, below)

Number Inputs 3

Number Outputs

4: Always allowed.
5: May be allowed, depending on the value of the “ibm,read-slot-reset-state-functions”
property in the RTAS node of the device tree (See Section B.6.3.1‚ “RTAS Node Properties‚” on page
690).

 Config_addr Configuration Space Address (Register fields set to 0)

PHB_Unit_ID_Hi Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

186 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Firmware Implementation Note: The argument call buffer structure and requirements for this call are the same as for
the old (removed from this architecture) ibm,read-slot-reset-state call, except for the last output parameter.
Therefore, it is possible for platforms that still require the old ibm,read-slot-reset-state RTAS call to implement

Out

Status
0: Success
-3: Parameter Error

PE Reset State

Except for a PE Reset State of 5, this output is not valid unless the Config_addr Capabilities output is a 1
and the Status is a 0.
0: Reset deactivated and the PE is not in the MMIO Stopped or DMA Stopped state
1: Reset activated and the PE is not in the MMIO Stopped or DMA Stopped states
2: The PE is in the MMIO Stopped and DMA Stopped states with the reset deactivated and the Load/Store
path is disabled
4: The PE is in the DMA Stopped state with the reset deactivated and the Load/Store path is enabled
5: PE is unavailable

Config_addr
Capabilities

This output is not valid if the PE Reset State is a 5.
0: EEH not supported for the Config_addr
1: EEH supported for the Config_addr

 PE Unavailable Info

This output is not valid unless the Config_addr Capabilities output is a 1 and the PE Reset State is a 5 and
the Status is a 0, in which case the value of this parameter is a 0 if the PE is permanently unavailable, and
non-zero if a recovery is in progress and there is an expected availability after the recovery; the non-0
value in this case is the number of milliseconds that the recovery is expected to take.

PE Recovery Info

This output is only valid if the “ibm,read-slot-reset-state-functions” property in the
RTAS node of the device tree indicates that it is implemented and the call is made with a Number Outputs
of at least 5 and the PE Reset State is a value of 2. This is a 32-bit field with bit significance, as follows:

Bits 0:27 - Reserved

Bits 28:29 - PE platform reset type. Only valid when bit 31 of this field is a value of 1.
Bits 28:29 = 0b00: Firmware does not implement these bits. Reset type is most likely a Hot Reset.
Bits 28:29 = 0b01: Platform used a Hot Reset to reset the PE.
Bits 28:29 = 0b10: Platform used a Fundamental Reset to reset the PE.
Bits 28:29 = 0b11: Platform used an FLR to reset the PE.

Bit 30 - Retry Count Hint
Bit 30 = 0: Either the PE associated with the Config_addr was the source of this PE entering the PE Reset
State of 2, or the platform has not determined whether this PE was the source or not.
Bit 30 = 1: The platform has determined that the PE associated with the Config_addr was not the source
of this PE entering the PE Reset State of 2. That is, setting this bit indicates that this PE entered the PE
Reset State of 2 as a side-effect of some error outside of this PE’s domain. Software may use this hint to
not count this occurrence of the PE Reset State of 2 as part of any EEH error recovery retry count that it
might be keeping for this PE.

Bit 31 - Reset Status
Bit 31 = 0: PE was not reset as a result of the platform transition to PE Reset State of 2.
Bit 31 = 1: PE was reset as a result of the platform transition to PE Reset State of 2. If the PE is not below
a node marked with the special value of the “status” property of “reserved”, then after
deactivation of the platform-initiated PE reset, the platform is required to delay access to that PE until the
minimum time after reset that is required for the PE to be come stable has elapsed, as designated by the
bus specifications for the particular type bus or buses involved (for example, 1.5 seconds for PCI Express),
by returning PE Reset State of 5 with PE Unavailability Info non-zero (temporarily unavailable) until that
time has elapsed). If the PE is below a node marked with the special value of the “status” property of
“reserved”, then after deactivation of the platform-initiated PE reset, the firmware immediately
(without delay) transitions the PE to the PE Reset State of 2, and it is the controlling software that is
required to do the bus-specific delays.

Table 77. ibm,read-slot-reset-state2 Argument Call Buffer (Continued)

Parameter Type Name Values

7.3  RTAS Call Function Definition 187

LoPAPR, Version 1.1 (March 24, 2016)

the ibm,read-slot-reset-state and ibm,read-slot-reset-state2 calls with the same RTAS token and use the number
of output parameters to determine whether or not to implement the PE Unavailable Info parameter.

Platform Implementation Notes:

1. The ibm,read-slot-reset-state2 RTAS call only returns a PE Reset State of 1 (Reset activated and the PE is
not in the MMIO Stopped or DMA Stopped state) when the reset may be removed by software; that is, if the
error is potentially recoverable. If the firmware has detected a hardware error that is such that the reset to the
device cannot be removed or is not safe to remove, the ibm,read-slot-reset-state2 does not return a PE Reset
State of 1, but instead returns a PE Reset State of 5 (PE is unavailable) along with PE Unavailable Info of 0
(PE is permanently unavailable).

2. The ibm,read-slot-reset-state2 RTAS call should never return a -1 (hardware error), but should instead re-
turn a PE Reset State of 5 (PE is unavailable) with a PE Unavailable Info of 0 (PE is permanently unavail-
able).

R1–7.3.11.3–2. The ibm,read-slot-reset-state2 RTAS call must return a Reset State value of 5 (PE is unavailable)
under any of the following conditions:

a. Firmware has determined that communications with the PE is not available or the path to the PE cannot be
traversed at the current time

b. The ibm,slot-error-detail RTAS call has been called with a Function of 2, and none of the resetting condi-
tions specified in Requirement R1–7.3.11.5–12 have been met.

Software Implementation Notes:

1. The condition under Requirement R1–7.3.11.3–2a may be temporary, with a recovery time in the range of
seconds (for example, as little as 3 seconds or up to couple of minutes). Software may chose to delay the
time indicated in the PE Unavailable Info and issue the ibm,read-slot-reset-state2 call again when a tempo-
rary condition exists. The condition may also be clearable with a power cycle of the PE, in which case the
firmware may return a Status of 990x to the set-power-level RTAS call, to delay long enough to clear the
temporary condition.

2. Config_addr Capabilities may be indeterminate when the PE Reset State of 5 (PE is unavailable) is re-
turned. Software should ignore the Config_addr Capabilities return when the PE Reset State of 5 is re-
turned.

R1–7.3.11.3–3. If the ibm,read-slot-reset-state2 RTAS call must return a PE Reset State value of 5 (PE is unavail-
able) then it must indicate in the PE Unavailable Info parameter one of the following:

a. A value of zero, if there is no error recovery in progress that makes the PE available in any predictable
amount of time (that is, the PE is “permanently” unavailable; for example, until a power cycle or until a
repair action).

b. A non-zero value, indicating the approximate time in milliseconds after which the path to the PE is ex-
pected to become available again.

R1–7.3.11.3–4. The ibm,read-slot-reset-state2 RTAS call must return a Config_addr Capabilities of 1 (EEH sup-
ported for the Config_addr) for every Config_addr within a PE and for the PE configuration address.

R1–7.3.11.3–5. The ibm,read-slot-reset-state2 RTAS call must comply with the state transitions defined in
Table 73‚ “PE State Transition Table‚” on page 178.

7.3.11.4 ibm,get-config-addr-info2

This call is used obtain information about fabric configuration addresses, given the PCI configuration address. See
Section 4.1‚ “I/O Topologies and Endpoint Partitioning‚” on page 71 for more information on PEs and determining PE
configuration addresses.

188 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

The PCI configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr) for the call is defined by
Table 34‚ “Config_addr Definition‚” on page 134.

R1–7.3.11.4–1. The ibm,get-config-addr-info2 call must be implemented using the argument call buffer defined by
Table 78‚ “ibm,get-config-addr-info2 Argument Call Buffer‚” on page 188.

R1–7.3.11.4–2. The ibm,get-config-addr-info2 RTAS call must return the Data output as per Table 79‚
“ibm,get-config-addr-info2 Function Input and Info Output‚” on page 188

7.3.11.5 ibm,slot-error-detail

This call combines device driver information, as gathered by the device driver prior to this call, with information de-
rived by firmware from the platforms I/O infrastructure to create a detailed event log concerning a recoverable EEH
event. In this way, both OS and platform maintenance applications have access to all the information about a given
event. In addition, the OS can mark a PE configuration address as being in an unavailable state due to excessive errors.

Table 78. ibm,get-config-addr-info2 Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,get-config-addr-info2 (see Firmware Implementation note, below)

Number Inputs 4

Number Outputs 2

 Config_addr Configuration Space Address (Register fields set to 0)

PHB_Unit_ID_Hi Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

Function
See Table 79‚ “ibm,get-config-addr-info2 Function Input and Info Output‚” on page 188 for available
functions.

Out
Status

0: Success
-3: Parameter Error

Info See Table 79‚ “ibm,get-config-addr-info2 Function Input and Info Output‚” on page 188 for values.

Table 79. ibm,get-config-addr-info2 Function Input and Info Output

Function
Input

Definition Info Output

0 Get PE configuration address

PE configuration address (as defined by Table 34‚ “Config_addr Definition‚” on page 134).
Result returned in Info output is:

 Equal to the Config_addr input if there is no bridge or switch between the IOA function
(endpoint) and the PE primary bus.

 Equal to the Config_addr of the PE primary bus if there is a bridge or switch between the
IOA function and the PE primary bus.

 Undefined if Config_addr is not in a PE (query for PE state by using Function 1 first or by
ibm,read-slot-reset-state2 RTAS call). A Status of -3 (Parameter Error) is returned in this
case, also.

1 Query shared PE state
0: Config_addr is not in a PE (EEH not supported for the Config_addr).
1: Not shared (Only one IOA function in the PE).
2: Shared (More than one IOA function in the PE).

7.3  RTAS Call Function Definition 189

LoPAPR, Version 1.1 (March 24, 2016)

The caller supplies the device driver information, referenced by the Device_Driver_Error_Buffer argument. The
Returned_Error_Buffer argument points to a buffer that this call fills with valid error log data as defined in the error log for-
mat section. Different platforms log using different versions of the error logging format. The error log data may include plat-
form specific data as well as device driver data passed in the Device_Driver_Error_Buffer. Regardless of the error log version
used, the data in the Returned_Error_Buffer is in an extended log format as defined in Section 10.3.2‚ “RTAS Error/Event
Return Format‚” on page 289. When the call returns data for version 6 or greater, the device driver error buffer data is in-
cluded as the last User Data section. The device driver data in the return buffer may be truncated from what is passed by the
device driver or completely eliminated as necessary to ensure that the returned buffer length is not exceeded.

The Config_addr supplied is the PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low, and config_addr)
for the PE, obtained as defined in Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option Functions‚” on
page 176, or a configuration address within the PE. The I/O fabric information that is captured by the platform consists
of useful PCI configuration state at and above the supplied Config_addr.

This RTAS call supports both plug-in PCI cards and built-in PCI IOAs.

In this section, the term unavailable, when applied to a PE, means that ibm,read-slot-reset-state2 would return a PE Re-
set State of 5 (PE is unavailable) at the current time.

R1–7.3.11.5–1. For the EEH option: The argument call buffer for the ibm,slot-error-detail call must correspond to
the definition given in Table 80‚ “ibm,slot-error-detail Argument Call Buffer‚” on page 189.

R1–7.3.11.5–2. The Returned_Error_Buffer format must be the same as implemented by event-scan on the plat-
form.

Table 80. ibm,slot-error-detail Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,slot-error-detail

Number Inputs 8

Number Outputs 1

 Config_addr Configuration address (Register numbers set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

Device_Driver_Error_Buffer
Real address of an error log buffer containing device driver debug data. This data
is integrated into the final error log

Device_Driver_Error_Buffer_Length Length of the Device_Driver_Error_Buffer

Returned_Error_Buffer
Real address of an error log buffer to contain a compliant error log entry composed
by the RTAS

Returned_Error_Buffer_Length Length of the Returned_Error_Buffer

Function
1: Temporary Error
2: Permanent Error

Out Status
1: No Error Log Returned
0: Success
-1: Hardware Error (cannot create log)

190 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11.5–3. To prevent standard error log record truncation, the Returned_Error_Buffer_Length must equal
the value of the OF device tree property “rtas-error-log-max”.

R1–7.3.11.5–4. If the PE corresponding to the Config_addr is in the MMIO Stopped or DMA Stopped state, then
the ibm,slot-error-detail RTAS call must return a Status of 0 and an error log that defines the FRU or FRUs to
which the error is isolated.

R1–7.3.11.5–5. If the communications with the Config_addr is not available, the path to the Config_addr cannot be
traversed at the current time, or this call has previously made with a Function of 2 and none of the conditions
that reset this state have been met (that is the PE is unavailable), then the ibm,slot-error-detail RTAS call
must return a Status of 0 and an error log that defines the FRU or FRUs to which the error is isolated.

R1–7.3.11.5–6. If the conditions in Requirements R1–7.3.11.5–4 and R1–7.3.11.5–5 are not met, then the
ibm,slot-error-detail RTAS call must return a Status of 1, no error found, with no error log entry returned.

Software and Platform Implementation Note: In some cases, the platform may return an information-only error log to
meet Requirements R1–7.3.11.5–4 and R1–7.3.11.5–5. For example, in some implementations this might be
appropriate if the actual error was already logged via another RTAS call or this call was previously made with a
Function of 2 and none of the conditions that reset this state have been met.

R1–7.3.11.5–7. Once a PE is unavailable and in the absence of any state-resetting action by the OS that clears the
corresponding PE configuration address EEH error (for example, reset or power cycle), the platform must re-
turn an error log in response to the ibm,slot-error-detail RTAS call.

R1–7.3.11.5–8. Once a PE has experienced a state-resetting action by the OS that clears the corresponding PE con-
figuration address EEH error (for example, reset or power cycle), that makes the PE available, the platform
must return a Status of 1, no error found, with no error log entry in response to the ibm,slot-error-detail RTAS
call.

R1–7.3.11.5–9. If the ibm,slot-error-detail RTAS call Device_Driver_Error_Buffer_Length argument is
non-zero, indicating the existence of optional device driver error data, the referenced buffer must contain an
extended event log as defined in Section 10.3.2‚ “RTAS Error/Event Return Format‚” on page 289.

R1–7.3.11.5–10. (Requirement Number Reserved For Compatibility)

R1–7.3.11.5–11. When the ibm,slot-error-detail RTAS call returns an extended log debug record in the buffer spec-
ified by the Returned_Error_Buffer argument as mandated by Requirements R1–7.3.11.5–4 and R1–
7.3.11.5–5 it must truncate the record at the length specified by the Returned_Error_Buffer_Length argument.

R1–7.3.11.5–12. If a Function of 2 is passed to the ibm,slot-error-detail RTAS call, RTAS must unconditionally set
the state of the PE corresponding to the Config_addr to permanently unavailable; that is, any subsequent calls
to ibm,read-slot-reset-state2 return a PE Reset State of 5 (PE is unavailable) with the PE Unavailable Info ar-
gument set to zero.

R1–7.3.11.5–13. RTAS must not change a PE Reset state of permanently unavailable unless one of the following
occur:

a. A PCI Hot Plug condition for the slot is encountered (as determined by the power being turned off and then
on for the slot)

b. The power domain is power cycled for another reason (for example, a power down of the OS image that
owns the IOA)

c. The state is cleared by a partition reboot or a dynamic LPAR reassignment of the PCI configuration ad-
dress.

7.3  RTAS Call Function Definition 191

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11.5–14. After a PE enters the MMIO and DMA Stopped States due to an error, the platform must keep
cached error information relative to that error, for reporting via the ibm,slot-error-detail RTAS call, until any
one of the following events occurs:

a. The ibm,slot-error-detail RTAS call is called and the error information is returned.

b. The reset to the PE is activated via the ibm,set-slot-reset RTAS call.

c. The removal of the PE from the DMA Stopped State via Function 3 of the ibm,set-eeh-option RTAS call.

d. The start of a DR operation as signalled by the calling of set-indicator with isolation-state set to isolate.

R1–7.3.11.5–15. Prior to calling the ibm,slot-error-detail RTAS call, the PE which includes the Config_addr must
not be in the MMIO Stopped State, if the maximum amount of useful information is to be captured, as de-
fined by Requirement R1–7.3.11.5–16.

R1–7.3.11.5–16. The firmware implementing the ibm,slot-error-detail is responsible for gathering the PCI fabric
configuration space registers, including those at the specified Config_addr, and also any other non-PCI I/O
fabric registers that might be useful for debug purposes (for example, internal PHB registers), with the sug-
gested appropriate minimum set of PCI configuration registers captured for each PCI device being as indi-
cated in Table 81‚ “Suggested Minimum PCI Configuration Registers to Capture for ibm,slot-error-detail‚”
on page 191.

Table 81. Suggested Minimum PCI Configuration Registers to Capture for ibm,slot-error-detail

Data Structure
Offset within the
Data Structure

Register

Base PCI Configuration Space Header
(for all PCI devices)

0x00 Vendor ID

0x02 Device ID

0x04 Command

0x06 Status

0x08 Revision ID

0x09 Class Code

Type 0 Configuration Space Header
(for non-PCI bridges only)

0x2C Subsystem Vendor ID

0x2E Subsystem ID

Type 1 Configuration Space Header
(for PCI bridges only)

0x1E Secondary Status

PCI-X Capabilities List
(for all PCI-X devices)

0x02
PCI-X Command (Type 0 Configuration Header)
PCI-X Secondary Status (Type 1 Configuration Header)

0x04
PCI-X Status (Type 0 Configuration Header)
PCI-X Bridge Status (Type 1 Configuration Header)

192 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.11.5–17. If the ibm,slot-error-detail RTAS call is made with the PE in the PE state of 2 (as defined by
Table 73‚ “PE State Transition Table‚” on page 178), then the platform must not remove the PE from that
state in order to probe the PCI fabric.

R1–7.3.11.5–18. If the ibm,slot-error-detail RTAS call is made with the PE in the PE state of 4 (as defined by
Table 73‚ “PE State Transition Table‚” on page 178), then the ibm,slot-error-detail RTAS call must return
with the PE in the PE state of 4, except that if an error occurs in the course of probing the PCI fabric that re-
quires a reset of the PE by the platform, then discontinue probing, return a Status of 0 or 1 (as appropriate),
and return the PE in the PE state of 2.

PCI Express Capabilities Structure
(for all PCI Express devices)

0x02 PCI Express Capabilities

0x04 Device Capabilities

0x08 Device Control

0x0A Device Status

0x0C Link Capabilities

0x10 Link Control

0x12 Link Status

0x14 Slot Capabilities

0x18 Slot Control

0x1A Slot Status

0x1C Root Control

0x1E Root Capabilities

0x20 Root Status

Advanced Error Reporting Capability
(for all devices implementing AER)

0x00 PCI Express Enhanced Capability Header

0x04 Uncorrectable Error Status

0x08 Uncorrectable Error Mask

0x0C Uncorrectable Error Severity

0x10 Correctable Error Status

0x14 Correctable Error Mask

0x18 Advanced Error Capabilities and Control

0x1C Header Log

0x2C Root Error Command (Root Ports only)

0x30 Root Error Status (Root Ports only)

0x34 Correctable Error Source Identification (Root Ports only)

0x36 Error Source Identification (Root Ports only)

Table 81. Suggested Minimum PCI Configuration Registers to Capture for ibm,slot-error-detail (Continued)

Data Structure
Offset within the
Data Structure

Register

7.3  RTAS Call Function Definition 193

LoPAPR, Version 1.1 (March 24, 2016)

Software and Platform Implementation Notes:

1. In Requirement R1–7.3.11.5–18, it is possible, as a part of the firmware probing the fabric, that the PE will
transition temporarily to a PE state of 2, in the case where another EEH event occurs as part of the firmware
probing the fabric. If the EEH event does not require a reset of the PE for these subsequent EEH events, then
the firmware may transition the PE back to the PE state of 4, to continue probing. Several of these PE state
4->2->4 events may occur as a result of probing the fabric.

2. In Requirement R1–7.3.11.5–18 if an EEH event occurs as a result of probing that fabric that results in a re-
set of the PE, the returned PE state of 2 does not necessarily need to be checked for by the software on re-
turn from the call. The case where this occurs is expected to be rare, and probably signals a non-transient
error. In this case the software can continue on with the recovery phase of the EEH processing, and will
eventually hit the same event on further processing.

7.3.12 Bridged-I/O EEH Support Option

The Bridged-I/O EEH Support Option provides RTAS calls for restoring the boot time configuration of EEH error do-
mains that contain multiple IOAs or multi-function IOAs (for example, mult-function I/O cards which are constructed
by placing multiple IOAs beneath a PCI to PCI bridge or PCI Express switch). During EEH recovery, the IOA is sub-
ject to a full hardware reset. These calls recreate any configuration changes, from full hardware reset, that the firmware
normally makes during platform boot prior to turning the IOA over to the client program plus any subsequent changes
made via ibm,change-msi. Once these calls restore the IOA initial configuration plus interrupts changes, it is the re-
sponsibility of the device driver, as part of its EEH recover procedure, to finish the configuration restoration with any
non interrupts changes it makes to the IOA.

Bridge types supported by these calls include PCI to PCI bridges (for example, a PCI to PCI bridge on an I/O plug-in
card) and PCI Express bridges and switches.

This option does not address the initialization of bridges and switches which are outside of all PEs. Those are the plat-
form’s responsibility.

If there is no supported bridge or switch at the PE configuration address specified by the input parameters, then these
calls return a “success” without configuring anything, and therefore these calls can be made for all EEH recovery
events, regardless of the type of I/O present. The PE configuration address (PHB_Unit_ID_Hi, PHB_Unit_ID_Low,
and config_addr) for the PE is obtained as defined in Section 7.3.11‚ “Enhanced I/O Error Handling (EEH) Option
Functions‚” on page 176

Software Implementation Note: Neither ibm,configure-bridge nor ibm,configure-pe restores changes to an IOA’s post
boot configuration registers except as made through the ibm,change-msi RTAS call (for example, to the point of
being able to issue PCI memory space MMIO operations to the IOA, or perform DMA operations from the IOA).
It is the software’s responsibility to restore any post boot non interrupt changes it made to the IOA’s PCI
configuration space registers after calling one of these two RTAS calls.

7.3.12.1 ibm,configure-bridge

R1–7.3.12.1–1. For the Bridged-I/O EEH Support option: The ibm,configure-bridge call must implement the ar-
gument call buffer defined by Table 82‚ “ibm,configure-bridge Argument Call Buffer‚” on page 194.

194 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling ibm,configure-bridge again.
However, software may issue the ibm,configure-bridge call again either earlier or later than this.

Firmware Implementation Note:

1. This call needs to limit the long busy to 9900-9902 with at most a total of 1/5 second before the ibm,config-
ure-bridge succeeds. Any longer delays may cause subsequent hardware or application failures.

2. For hardware errors, return a Status of 0 (Success). Hardware errors are subsequently discovered by further
accesses to the PE and additional EEH events.

R1–7.3.12.1–2. The caller of ibm,configure-bridge must provide the PE configuration address, otherwise the RTAS
call returns a -3, “Parameter Error”.

R1–7.3.12.1–3. The ibm,configure-bridge call must set up all the PCI to PCI bridges, PCI Express bridges, and PCI
Express switches within the PE, the way they were delivered at boot time with any modifications made to it
via RTAS calls after boot, and must do so with a single sequence of calls to ibm,configure-bridge.

R1–7.3.12.1–4. The ibm,configure-bridge call must only return a Status of 990x if one of the following conditions is
true:

a. The operation was not started.

b. Firmware is able to restart the same call for this PE even when other intervening calls to ibm,config-
ure-bridge have occurred (That is, OSs are not required to serialize calls to ibm,configure-bridge).

R1–7.3.12.1–5. Software must complete all MMIO operations to the IOAs within a PE prior to calling the ibm,con-
figure-bridge RTAS call for a PE and must not issue new MMIO operations to the IOAs within the specified
PE until after the RTAS call is complete.

R1–7.3.12.1–6. On return from the ibm,configure-bridge RTAS call, the platform must have the PE in the same
EEH state (as defined by Table 73‚ “PE State Transition Table‚” on page 178) as when the call was made, ex-
cept that if an error occurs in the course of probing the PCI fabric that requires a reset of the PE by the plat-
form, then discontinue probing, return a Status of 0 or 1 (as appropriate), and return the PE in the PE state of
2.

Table 82. ibm,configure-bridge Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,configure-bridge

Number Inputs 3

Number Outputs 1

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

Out Status

990x: Extended delay where x is a number 0-5 (see Software Implementation note
below)
0: Success

-3: Parameter Error

7.3  RTAS Call Function Definition 195

LoPAPR, Version 1.1 (March 24, 2016)

Software and Platform Implementation Note:

1. Given Requirements R1–7.3.12.1–5 and R1–7.3.12.1–6, it is permissible for the platform to temporarily
transition the PE from a PE state of 2 to PE state of 4, if the call is made with a PE state of 2 but the hard-
ware requires a PE state of 4 to get access to the PCI fabric. It is also permissible for the platform to go
through several of these state changes during the execution of the call if there are errors that occur during
the course of probing the PCI fabric that put the PE back into the PE state of 4.

2. In Requirement R1–7.3.12.1–6 if an EEH event occurs as a result of probing that fabric that results in a reset
of the PE, the returned PE state of 2 does not necessarily need to be checked for by the software on return
from the call. The case where this occurs is expected to be rare, and probably signals a non-transient error.
In this case the software can continue on with the recovery phase of the EEH processing, and will eventually
hit the same event on further processing.

7.3.12.2 ibm,configure-pe

This call has about the same semantics as the ibm,configure-bridge RTAS call, except that it:

1. Has the additional semantics of bypassing the configuration process if the PE has previously not been reset by the
platform as a result of entering the EEH Stopped State.

2. Configures all the configurations spaces within the PE, including those of the endpoint devices within the PE (see
Requirement R1–7.3.12.2–3).

Thus, this RTAS call can be made at the beginning of any EEH processing.

R1–7.3.12.2–1. For the Bridged-I/O EEH Support option: The ibm,configure-pe call must implement the argu-
ment call buffer defined by Table 83‚ “ibm,configure-pe Argument Call Buffer‚” on page 195.

Table 83. ibm,configure-pe Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,configure-pe

Number Inputs 3

Number Outputs 1

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds
to the config_addr

Out Status

990x: Extended delay where x is a number 0-5 (see Software Implementation note
below)
0: Success

-3: Parameter Error

196 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: When the 990x Status is returned, it is suggested that software delay for 10 raised to
the x milliseconds (where x is the last digit of the 990x return code), before calling ibm,configure-pe again.
However, software may issue the ibm,configure-pe call again either earlier or later than this.

Firmware Implementation Note:

1. This call needs to limit the long busy to 9900-9902 with at most a total of 1/5 second before the ibm,config-
ure-pe succeeds. Any longer delays may cause subsequent hardware or application failures.

2. For hardware errors, return a Status of 0 (Success). Hardware errors are subsequently discovered by further
accesses to the PE and additional EEH events.

R1–7.3.12.2–2. The caller of ibm,configure-pe must provide the PE configuration address, otherwise the RTAS call
returns a -3, “Parameter Error”.

R1–7.3.12.2–3. If the specified PE has been configured after the last platform or OS initiated reset to the specified
PE with ibm,configure-connector, ibm,configure-bridge, or ibm,configure-pe, then the call must return with a
Status of 0 (Success) without doing any bridge or switch configuration, otherwise the call must set up the
configuration spaces of all the PCI to PCI bridges, PCI Express bridges, PCI Express switches, and endpoint
functions within the PE, the way they were delivered at boot time except with all sticky error bits left intact,
any changes made by calls to ibm,change-msi retained, and must do so with a single sequence of calls to
ibm,configure-pe.

Software Implementation Notes:

1. The configuration of endpoint functions (the “and endpoint functions” part) in Requirement R1–7.3.12.2–3
was added to the architecture after the firmware without that functionality in the ibm,configure-pe RTAS
call was shipping. Therefore, any device driver that might run legacy implementations needs to be prepared
to restore all endpoint function config spaces, since the ibm,configure-pe RTAS call might not.

2. The ibm,configure-pe RTAS call does not restore non-interrupts configuration space changes that were
made after boot (that is, under direction of the device driver or OS). Therefore, use of the ibm,configure-pe
RTAS call does not absolve the device driver or OS from the restoration of non-interrupts the PCI configu-
ration space for changes that were made to the configuration space after boot (see Requirement R1–9.1.8–
1).

R1–7.3.12.2–4. The ibm,configure-pe call must only return a Status of 990x if one of the following conditions is
true:

a. The operation was not started.

b. Firmware is able to restart the same call for this PE even when other intervening calls to ibm,configure-pe
have occurred (That is, OSs are not required to serialize calls to ibm,configure-pe).

R1–7.3.12.2–5. Software must complete all MMIO operations to the IOAs within a PE prior to calling the ibm,con-
figure-pe RTAS call for a PE and must not issue new MMIO operations to the IOAs within the specified PE
until after the RTAS call is complete.

R1–7.3.12.2–6. On return from the ibm,configure-pe RTAS call, the platform must have the PE in the same EEH
state (as defined by Table 73‚ “PE State Transition Table‚” on page 178) as when the call was made, except
that if an error occurs in the course of probing the PCI fabric that requires a reset of the PE by the platform,
then discontinue probing, return a Status of 0 or 1 (as appropriate), and return the PE in the PE state of 2.

Software and Platform Implementation Note:

1. Given Requirements R1–7.3.12.2–5 and R1–7.3.12.2–6, it is permissible for the platform to temporarily
transition the PE from a PE state of 2 to PE state of 4, if the call is made with a PE state of 2 but the hard-
ware requires a PE state of 4 to get access to the PCI fabric. It is also permissible for the platform to go

7.3  RTAS Call Function Definition 197

LoPAPR, Version 1.1 (March 24, 2016)

through several of these state changes during the execution of the call if there are errors that occur during
the course of probing the PCI fabric that put the PE back into the PE state of 2.

2. In Requirement R1–7.3.12.2–6 if an EEH event occurs as a result of probing that fabric that results in a reset
of the PE, the returned PE state of 2 does not necessarily need to be checked for by the software on return
from the call. The case where this occurs is expected to be rare, and probably signals a non-transient error.
In this case the software can continue on with the recovery phase of the EEH processing, and will eventually
hit the same event on further processing.

7.3.13 Error Injection Option

The Error Injection option (ERRINJCT) allows testing software to check out the OS’s error paths. This architecture de-
fines the following abstract error categories:

Fatal: Platform Architectural state has been corrupted to an unknown extent. Further valid processing
is not possible.

Recovered Random Event: The Central Electronics Complex (CEC) experienced an anomaly. However, platform archi-
tectural state has been preserved/restored. The OS should log the event and continue processing.

Recovered Special Event: The CEC has experienced a statistically significant anomaly. While platform architectural
state has been preserved/restored, the OS should log the event and discontinue the use of this
processor as soon as possible to avoid a fatal situation.

Corrupted Page: The System Memory page (Up to 4 KB) contains uncorrectable errors. The OS should log the
event and avoid accessing this page in the future. The OS recovery is possible given that it can
either recover the page from backing storage or isolate the error from unaffected processes.

Corrupted SLB: The processor’s Segment Look-aside Buffer is corrupted. The OS should log the event and can
recover if it can repopulate the SLB from internal tables.

Translator Failure: The processor’s virtual to real translation hardware has failed. The processor’s architectural
state has been preserved in System Memory. The OS may be able to continue the failed proces-
sor’s program and log the event on an alternate processor in the future.

IOA Bus Error An error has occurred on the I/O bus on which an I/O Adapter (IOA) is attached. IOA or Device
driver recovery from the error is possible if the error is such that it is reported to the IOA. Device
driver recovery of the IOA’s operations is possible when the error is not reported to the IOA, if
the EEH option is implemented and enabled.

The ERRINJCT option RTAS call performs a platform dependent accurate simulation of the abstract error requested.
In some cases, the platform hardware actually injects an error into the hardware. In others cases, the platform may sim-
ply report the anomaly without generating an error. Additionally, the ERRINJCT option provides access to platform
specific error injection logic for the benefit of platform aware test software.

R1–7.3.13–1. For the ERRINJCT option: RTAS must implement the ibm,open-errinjct call using the argument
buffer defined by Table 84‚ “ibm,open-errinjct Argument Call Buffer‚” on page 197.

Table 84. ibm,open-errinjct Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,open-errinjct

Number Inputs 0

Number Outputs 2

198 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling with the same parameters. However, software may issue the call again
either earlier or later than this.

Architecture Note: The output buffer is intentionally reversed from what it should be, according to Requirement R1–
7.2.8–1 (that is, Status not first output), due to code that was implemented and shipped as defined, above.

R1–7.3.13–2. For the ERRINJCT option: On successful completion of the ibm,open-errinjct call, Firmware must
return an Open Token which uniquely identifies the caller on following ibm,close-errinjct and ibm,errinjct
calls (Firmware may also need to keep around other information about the caller that uniquely identifies the
caller when correlated with the Open Token) and must allocate the ERRINJCT facilities to this caller until
this same user calls ibm,close-errinjct.

R1–7.3.13–3. For the ERRINJCT option: If the ERRINJCT facility has been previously opened, a call to
ibm,open-errinjct call, must return a -4.

R1–7.3.13–4. For the ERRINJCT option: RTAS must implement the ibm,close-errinjct call using the argument
buffer defined by Table 85‚ “ibm,close-errinjct Argument Call Buffer‚” on page 198.

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling with the same parameters. However, software may issue the call again
either earlier or later than this.

R1–7.3.13–5. For the ERRINJCT option: If the ERRINJCT facility is not open or was not previously allocated to
the user via an ibm,open-errinjct call (that is, the Open Token along with any other pertinent data does not

Out

Open Token
If Status is 0, then use this Open Token for corresponding
ibm,errinjct and ibm,close-errinjct calls

Status

990x: Extended delay, where x is a number 0-5 (see text)
0: Success
-1: Hardware Error
-2: Busy, try again later
-4: Already open
-5: PCI Error Injection is not enabled (not available)

Table 85. ibm,close-errinjct Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,close-errinjct

Number Inputs 1

Number Outputs 1

Open Token
Open Token that was returned on the corresponding
ibm,open-errinjct calls

Out Status

990x: Extended delay where x is a number 0-5 (see text)
0: Success
-1: Hardware Error
-2: Busy, try again later
-4: Close Error (User is not the one that opened the
ERRINJCT facility or facility not open)

Table 84. ibm,open-errinjct Argument Call Buffer (Continued)

Parameter Type Name Values

7.3  RTAS Call Function Definition 199

LoPAPR, Version 1.1 (March 24, 2016)

correspond with the user that opened the facility via the ibm,open-errinjct call), then a call to ibm,close-errin-
jct call, must return a -4 and the facility must remain open for use by the user that originally opened the facil-
ity.

R1–7.3.13–6. For the ERRINJCT option: RTAS must implement the ibm,errinjct call using the argument buffer
defined by Table 86‚ “ibm,errinjct Argument Call Buffer‚” on page 199.

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling with the same parameters. However, software may issue the call again
either earlier or later than this.

R1–7.3.13–7. For the ERRINJCT option: If the ERRINJCT facility is not open or was not previously allocated to
the user via an ibm,open-errinjct call (that is, the Open Token along with any other pertinent data does not
correspond with the user that opened the facility via the ibm,open-errinjct call), then a call to ibm,errinjct
call, must return a -4 and the facility must remain open for use by the user that originally opened the facility.

R1–7.3.13–8. For the ERRINJCT option: The platform must include the “ibm,errinjct-tokens” property
as defined below in the /rtas node (see Section B.6.3.1‚ “RTAS Node Properties‚” on page 690) of the OF
device tree with a specification for each implemented error injection class.

R1–7.3.13–9. For the ERRINJCT option: The errinjct-token-names must be taken from the list provided in
Table 87‚ “Errinjct-token-names‚” on page 199.

Table 86. ibm,errinjct Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,errinjct

Number Inputs 3

Number Outputs 1

Errinjct Token
Token for the specific error injection class see Requirement R1–
7.3.13–8

Open Token
The Open Token that was returned on the corresponding
ibm,open-errinjct call

Working Buffer Real address of a 1 KB buffer on a 1 KB boundary

Out Status

990x: Extended delay where x is a number 0-5
0: Success
-1: Hardware Error
-2: Busy, try again later
-3 Argument Error (Optional)
-4: Call Error (User is not the one that opened the ERRINJCT facility
or facility not open)

Table 87. Errinjct-token-names

Errinjct-token-name Errinjct function

fatal Simulate a platform fatal error.

recovered-random-event Simulate a recovered random event

recovered-special-event Simulate a recovered special (statistically significant) event

200 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.13–10. For the ERRINJCT option: For the errinjct-tokens implemented RTAS must use the work buffer
format specified in Table 88‚ “Errinjct Work Buffer Formats‚” on page 200.

corrupted-page Corrupt the specified location (and potentially surrounding locations up to the containing page)

corrupted-slb Corrupt the SLB entry associated with a specific effective address.

translator-failure Simulate a translator failure.

ioa-bus-error Simulate an error on an IOA bus - 32 bit address specification only.

ioa-bus-error-64 Simulate an error on an IOA bus - 64 bit address specification.

platform-specific Request the firmware perform a platform specific error injection.

corrupted-dcache-start Start causing a L1 data cache error

corrupted-dcache-end Stop causing a L1 data cache error

corrupted-icache-start Start causing an instruction cache error

corrupted-icache-end Stop causing an instruction cache error

corrupted-tlb-start Start corrupting TLB

corrupted-tlb-end Stop corrupting TLB

upstream-IO-error Inject I/O error above the IOA

Table 88. Errinjct Work Buffer Formats

Errinjct-token-name Errinjct work buffer format

fatal Undefined

recovered-random-event Undefined

recovered-special-event
“1” for a non-persistent cpu recoverable error
“2” for a persistent CPU recoverable error

corrupted-page
The first cell contains the upper 32 bits of the real address to corrupt. The second cell contains the lower
32 bits of the real address to corrupt.

corrupted-slb The first cell contains the effective address associated with the SLB entry to corrupt

translator-failure Undefined

ioa-bus-error

The first word contains I/O bus address, word aligned, at which to inject the error. The second word is a
mask used to mask off up to 24 of the least significant bits of the address which are not to be used in the
comparison of address for error injection (a 0 in a bit position masks off the bit, a 1 in the bit position
enables the bit to be used in the compare). The third word is the config_addr on the bus which is to receive
the injected error. The fourth word is the PHB_Unit_ID_Hi of the PHB that corresponds to the
config_addr. The fifth word is the PHB_Unit_ID_Low of the PHB that corresponds to the config_addr.
The sixth word defines the specifics of when and what to inject, as follows:

See Table 89‚ “ioa-bus-error Semantics for ioa-bus-error Sixth Word and ioa-bus-error-64 Eighth Word
Values 0-19‚” on page 202 for values 0 through 19.
20: (Optional) Disable PCI error injection for the specified bus
21: Obtain current error inject values. When RTAS returns SUCCESS in the Status field the work buffer
field values are populated with the current error injected.

Table 87. Errinjct-token-names

Errinjct-token-name Errinjct function

7.3  RTAS Call Function Definition 201

LoPAPR, Version 1.1 (March 24, 2016)

Programming Note: Options having a “-start” and corresponding “-end” must be called in pairs on the same processor.
The corresponding “-end” option should be called after the injected error has been noticed and processed by the
caller. On the same processor, other error inject options should not be called between a “-start” and “-end”
sequence. However, it is possible to inject the same type of error multiple times by calling “-start” on that CPU as
long as the “nature of error” is “single”. The buffer contents should be the same for a “-start” and corresponding
“-end”. While not recommended -end can be replaced with a call to ibm,close-errinjct, but improper cleanup the
machine may result, with the machine left in an unknown state.

R1–7.3.13–11. For the ERRINJCT option: If the platform notifies the OS of a specific CEC error using the ma-
chine check interrupt in response to an ibm,errinjct RTAS call, the platform must do so only when the proces-

ioa-bus-error-64

The first and second words contain the I/O bus address, double word aligned, at which to inject the error.
The third and fourth words are a mask used to mask off up to 64 of the least significant bits of the address
which are not to be used in the comparison of address for error injection (a 0 in a bit position masks off
the bit, a 1 in the bit position enables the bit to be used in the compare). The fifth word is the config_addr
of an IOA on the bus which is to receive the injected error. The sixth word is the PHB_Unit_ID_Hi of
the PHB that corresponds to the config_addr. The seventh word is the PHB_Unit_ID_Low of the PHB
that corresponds to the config_addr. The eighth word defines the specifics of when and what to inject, as
follows:

See Table 89‚ “ioa-bus-error Semantics for ioa-bus-error Sixth Word and ioa-bus-error-64 Eighth Word
Values 0-19‚” on page 202 for values 0 through 19.
20: (Optional) Disable PCI error injection for the specified bus
21: Obtain current error inject values. When RTAS returns SUCCESS in the Status field the work buffer
field values are populated with the current error injected.

platform-specific
See platform firmware documentation (RTAS component specifications) for working buffer format for
any particular platform.

corrupted-dcache-start
corrupted-dcache-end

The first cell defines the specific action to take:
0: Parity error
1: D-ERAT parity error
2: tag parity error
The second cell defines the nature of the error:
0: single
1: solid
2: hang
Supported injection modes are hardware specific and all modes may not be supported on all hardware.
The first supported injection mode in the above list will be used if an unsupported mode is specified (that
is, first single, then solid, then hang-pulse). If none of the above modes are available, then the injection
option most similar to single in functionality will be used.

corrupted-icache-start
corrupted-icache-end

The first cell defines the specific action to take:
0: parity error
1: I-ERAT parity error
2: cache directory 0 parity error
3: cache directory 1 parity error
The second cell defines the nature of the error:
0: single
1: solid
2: hang

corrupted-tlb-start
corrupted-tlb-end

The first cell defines the nature of the error:
0: single
1: solid
2: hang
Supported injection modes are hardware specific and all modes may not be supported on all hardware.
The first supported injection mode in the above list will be used if an unsupported mode is specified (that
is, first single, then solid, then hang-pulse). If none of the above modes are available, then the injection
option most similar to single in functionality will be used.

Table 88. Errinjct Work Buffer Formats

Errinjct-token-name Errinjct work buffer format

202 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

sor’s MSRRI bit is active, unless said error is fatal or involves accessing a storage location that has itself been
corrupted or is accessed through a corrupted SLB entry.

R1–7.3.13–12. For the ERRINJCT option with the LPAR option: Hypervisor RTAS must allow a partition to
only corrupt its own memory pages.

R1–7.3.13–13. For the ERRINJCT option with the LPAR option: Hypervisor RTAS must allow a partition to in-
ject IOA bus errors only if all of the following are true:

a. The IOA bus is not shared with other partitions.

b. The EEH option is implemented and enabled for the bus on which the error injection is requested.

R1–7.3.13–14. For the ERRINJCT option with the LPAR option: The platform must allow at most one partition
to issue platform-specific errinjct calls.

R1–7.3.13–15. For the SPLPAR option: The platform must either implement actual hardware error injection with
these interfaces, or must fabricate appropriate partition behavior (machine check, error logs, etc.) as if the
hardware error had happened.

R1–7.3.13–16. For the Multi-threading Processor option: All threads on the processor on which the error is in-
jected must be prepared to handle the error.

R1–7.3.13–17. For the Error Injection option: The software using the ibm,errinjct call must be prepared to re-
ceive a -3 for non-implemented errinjct work buffer formats.

R1–7.3.13–18. For the ioa-bus-error and ioa-bus-error-64 functions of the ERRINJCT option: For each
ibm,errinjct RTAS call invocation, the platform must inject the error specified in the working buffer at most
once.

Table 89. ioa-bus-error Semantics for ioa-bus-error Sixth Word and ioa-bus-error-64 Eighth Word Values 0-19

Operation Address Space
Cell

Value

Conventional PCI
PCI-X Mode 1
PCI-X Mode 2

PCI Express

Load

PCI Memory
0 Inject an Address Parity Error

Inject a TLP ECRC Errora

1 Inject a Data Parity Error

PCI I/O
2 Inject an Address Parity Error

3 Inject a Data Parity Error

PCI Configuration
4 Inject an Address Parity Error

5 Inject a Data Parity Error

Store

PCI Memory
6 Inject an Address Parity Error

Inject a TLP ECRC Error
(optional)

7 Inject a Data Parity Error

PCI I/O
8 Inject an Address Parity Error

9 Inject a Data Parity Error

PCI Configuration
10 Inject an Address Parity Error

11 Inject a Data Parity Error

7.3  RTAS Call Function Definition 203

LoPAPR, Version 1.1 (March 24, 2016)

Platform Implementation Notes:

 Platforms that implement LPAR normally do not allow any partition to be configured to perform platform-spe-
cific errinjct calls since they are capable of crashing the entire complex. However, the should provide special
hidden overrides for laboratory testing purposes.

Software and Firmware Implementation Notes:

 When a call to ibm,errinjct results in an error injected into a processor, then the error is injected on the same
processor as the one that called the ibm,errinjct RTAS call, not the processor that called the ibm,open-errinjct.
The OS could call ibm,open-errinjct, ibm,errinjct, and ibm,close-errinjct from three different processors.

 For usability reasons, the ibm,close-errinjct RTAS call should do a reasonable amount of cleanup; turning off
error injection where it can. However, since the ERRINJCT option is intended for internal use (that is, not in-
tended to be productized) and since software is allowed to basically set unlimited error injections between the
calls to ibm,open-errinjct and ibm,close-errinjct, the firmware may vary by implementation as to what is
cleaned up and what is not. An example of something that might be very difficult to clean up is injection of
memory errors. Something that might be easier is to turn off the error injection in all bridges to which the
caller has access. Users of the ERRINJCT option should consult the implementation documentation for a par-
ticular platform to learn about the level of cleanup that is done in the ibm,close-errinjct call for that implemen-
tation. In the severe case, a reboot may even be necessary after the ibm,close-errinjct in order to clear the
error. In other cases it may be possible for the caller to partially disable an error that it has set by setting a be-
nign error (for example, in the PCI error injection case, by setting the error injection for a bus that was previ-
ously set to inject an error to an address that will never occur to that IOA).

 Test developers are encouraged not to extensively use the platform-specific option to this function. In general,
platform-specific implementation options are not carried forward to new platforms.

DMA read PCI Memory

12 Inject an Address Parity Error
Inject a TLP ECRC Error

13 Inject a Data Parity Error

14
Inject a Master Abort (no
response to IOA) Error

--

15 Inject a Target Abort
Inject a Completer Abort or

Unsupported Requestb

DMA write PCI Memory

16 Inject an Address Parity Error
Inject a TLP ECRC Error

17 Inject a Data Parity Error

18
Inject a Master Abort (no
response to IOA) Error

--

19 Inject a Target Abort Not Applicable

a. For PHB implementations that do not allow injection of a TLP ECRC error into the request, or for the case where the injection
would be in violation of Requirement R1–4.4.2.1–5 due to the hardware configuration, the platform should emulate the error by
setting the appropriate error state in the PHB when EEH is enabled.

b. Inject the error that is injected on a TCE Page Fault.

Table 89. ioa-bus-error Semantics for ioa-bus-error Sixth Word and ioa-bus-error-64 Eighth Word Values 0-19 (Continued)

Operation Address Space
Cell

Value

Conventional PCI
PCI-X Mode 1
PCI-X Mode 2

PCI Express

204 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.14 Firmware Assisted Non-Maskable Interrupts Option (FWNMI)

The FWNMI option provides firmware support for System Reset interrupts and platform dependent error recovery for
recoverable machine checks. The firmware gets control on a non-maskable interrupt (NMI), analyses the condition,
and, if the processor was not running inside the hypervisor, reports its findings to the OS. The OS registers system reset
and machine check handlers by issuing either the ibm,nmi-register or ibm,nmi-register-2 RTAS call. In addition, with
these calls the OS permanently relinquishes to firmware the Machine State Register’s Machine Check Enable bit, the
two hundred fifty six (256) bytes of the System Reset Interrupt vector starting at real location 0x100, the two hundred
fifty six (256) bytes of the Machine Check Interrupt vector starting at real location 0x200, as well as the storage page
starting at real location 0x7000. The RTAS firmware records the entry points of the OS notification routines to call to
report the results of the firmware’s analysis and any attempted recovery should the hardware signal a machine check or
system reset interrupt. The results of an error analysis are reported via a standard error log structure as defined in
Table 137‚ “RTAS Event Return Format (Fixed Part)‚” on page 292. The storage containing the error log structure is
subsequently released back to firmware use by the OS after it has completed its event handling by the issuance, from
the interrupted processor, of the ibm,nmi-interlock RTAS call. Multiple processors of the same OS image may experi-
ence fatal events at, or about, the same time. The first processor to enter the machine check handling firmware reports
the fatal error. Subsequent processors serialize waiting for the first processor to issue the ibm,nmi-interlock call. These
subsequent processors report “fatal error previously reported”. If, after the firmware makes a Machine Check call back,
and before the OS issues the ibm,nmi-interlock call, the same processor that is currently holding the storage containing
the error log structure receives another Machine Check NMI, the firmware has no choice but to declare the condition
fatal, log the result and execute the partition’s reboot policy.

When the OS gets control after a machine check, at its registered machine check notification routine, all architected
processor registers have been restored to the values they contained when the firmware was notified of the interrupt, ex-
cept for register R3 which contains a real address that points to a 16 byte structure. The first 8 bytes of this area con-
tains the original contents of R3 and the second 8 bytes contains the fixed portion of the standard error log structure. If
firmware is able to immediately make a repair determination, the fixed portion indicates that an additional variable part
is present and follows the fixed part per the standard error log structure. For some other errors, the determination of the
repair action is delayed, and the firmware reports these determinations asynchronously to handling the machine check.
The repair action log is queued in the NVRAM and is reported either in a subsequent event-scan if the OS image re-
mains operational, or on a subsequent boot. In no case, does the OS call check-exception in its machine check notifica-
tion routine.

The difference between ibm,nmi-register and ibm,nmi-register-2 is that ibm,nmi-register allocates the error reporting
structure in RTAS space while ibm,nmi-register-2 places the error reporting structure in real page 7. New OS designs
should use ibm,nmi-register since support for ibm,nmi-register-2 will be terminated at some future date.

As with all first level interrupt service routines, the SPRG-2 register is used to save the state of one general purpose
register while the processor computes the location of its state save area.

Implementation Note: An acceptable non-LPAR firmware implementation for the NMI check handlers saves one
register in an SPRG-2. Then, using the processor number register, determines an offset into a page 7 table of
addresses to the start of a per processor RTAS save area (only need a single register saved per processor), and
acquires a lock located in page 7 to serialize the use of the RTAS state save area among potentially competing
processors. The MSRME bit then prevents single processor Machine Check stacking in the interval between the
Machine Check call back and the ibm,nmi-interlock call. LPAR implementations should minimize potential effects
to innocent partitions due to Machine Check Interrupts affecting other partitions.

If the NMI was taken inside the hypervisor, then, if the firmware determines that the condition is recoverable, the hy-
pervisor recovery routine is invoked. If the condition is not recoverable, hypervisor clean up routines establish a safe
state and mark the hypervisor return routine to invoke the proper OS registered NMI routine rather than doing the stan-
dard hypervisor return.

R1–7.3.14–1. All platforms must implement the FWNMI option.

7.3  RTAS Call Function Definition 205

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.14–2. For the FWNMI option: The platform must include the “ibm,nmi-register” RTAS function
property name in the OF /rtas node.

R1–7.3.14–3. For the FWNMI option: The platform must include the “ibm,nmi-register-2” RTAS func-
tion property name in the OF /rtas node if the platform requires support from interim OS versions.

R1–7.3.14–4. For the FWNMI option: RTAS must implement the ibm,nmi-register and/or ibm,nmi-register-2,
calls as appropriate per Requirements R1–7.3.14–2 and R1–7.3.14–3 using the argument buffer defined by
Table 90‚ “ibm,nmi-register or ibm,nmi-register-2 Argument Call Buffer‚” on page 205.

R1–7.3.14–5. For the FWNMI option: Once the OS has registered for NMI notification, it must not change the
contents of the two hundred fifty six (256) bytes of the NMI interrupt vectors at real locations 0x100 or 0x200
or the memory page starting at real location 0x7000.

R1–7.3.14–6. For the FWNMI option: The Real/Logical address of the registered OS Machine Check and System
Reset routines must be in the first 32 MB of the OS’s memory address space.

Software Implementation Note: Requirement R1–7.3.14–6 ensures that the registered OS Machine Check and System
Reset routines are within the code’s RMA.

R1–7.3.14–7. For the FWNMI option: If the OS registered with ibm,nmi-register, firmware must not store the
state of the processor at the time of interrupt in interrupt vectors at locations 0x100 or 0x200 or the memory
page starting at real location 0x7000. Firmware may use RTAS space to store such state data.

R1–7.3.14–8. For the FWNMI option: Once the OS has registered for NMI notification, the platform firmware
must intercept all System Reset Interrupts on all of the OS’s processors.

R1–7.3.14–9. For the FWNMI option: The platform firmware, for those intercepted System Reset interrupts
which platform policy dictate are to be forwarded to the OS, must invoke the OS registered System Reset In-
terrupt notification point with translate off and all other architected processor registers restored to their state
at the time of the System Reset.

R1–7.3.14–10. For the FWNMI option: Once the OS has registered for NMI notification, the platform firmware
must intercept all Machine Check Interrupts on all of the OS’s processors.

Table 90. ibm,nmi-register or ibm,nmi-register-2 Argument Call Buffer

Parameter Type Name Values

In

Token
Token for ibm,nmi-register
or nmi-register-2

Number of Inputs 2

Number of Outputs 1

System Reset Notification
Routine

Real/Logical address of OS routine to call
on a System Reset (in the first 32 MB of
memory).

Machine Check a
Notification Routine

Real/Logical address of OS routine to call
on a Machine Check (in the first 32 MB of
memory).

Out Status
0: Success
-1: Hardware Error
-3: Parameter Error

206 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.14–11. or the FWNMI option: The platform must provide a mechanism for the firmware to signal a
non-maskable interrupt to each processor in a partition.

R1–7.3.14–12. For the FWNMI option: The platform firmware must analyze all intercepted Machine Check Inter-
rupts, determine if the OS may safely continue using the platform, attempt to recover any corrupted architec-
tural state, and report the results of the recovery attempt to the OS.

R1–7.3.14–13. For the FWNMI option: If the platform firmware, on analyzing an intercepted Machine Check In-
terrupt, determines that the OS may safely continue using the platform, it must invoke the OS registered Ma-
chine Check Interrupt notification point with translate off but all other architected processor registers restored
to their state at the time of the Machine Check except that General Purpose Register (GPR) R3 contains the
real address of a 16 byte memory buffer containing the original contents of GPR R3 in the first 8 bytes and
the RTAS Error Log (fixed part) (per Table 137‚ “RTAS Event Return Format (Fixed Part)‚” on page 292) in
the second 8 bytes.

R1–7.3.14–14. For the FWNMI option: The maximum time for the platform’s processing of a non-fatal machine
check interrupt must be on the order of that taken by the check-exception critical call.

R1–7.3.14–15. For the FWNMI option: Once the firmware has reported a “fatal” machine check event to an OS
image it must only report “fatal error previously reported” (see Chapter 10, “Error and Event Notification,”
on page 281) in response to machine checks on any processor belonging to that image.

R1–7.3.14–16. For the FWNMI option: If the platform firmware, on analyzing an intercepted Machine Check In-
terrupt, determines that the OS may not safely continue using the processor (for example a check stop will
certainly result), it must select one of the implementation options given in Table 91‚ “Unsafe Processor Re-
covery Options‚” on page 206.

R1–7.3.14–17. For the FWNMI option: RTAS must implement the ibm,nmi-interlock call using the Argument
buffer defined in Table 92‚ “ibm,nmi-interlock Argument Call Buffer‚” on page 207 which causes the release
of the machine check work and reporting area in page 7.

Table 91. Unsafe Processor Recovery Options

Option Number Implementation Option for handling an unsafe processor.

1

Invoke the registered Machine Check Interrupt notification point on a spare processor which platform firmware
substitutes for the offending processor.
Note: Firmware must adjust all interrupt XIVT entries and APM registers, etc., so that the OS need not be aware of
the processor substitution. The VPD of the new and old processors are different, the dynamic VPD collection RTAS
call can be used to determine the new values. Since the results of this substitution are indicated as a non-fatal error
to the OS, the substitution may take no more than 10 times the length of time of a critical check exception process.
The firmware makes a best effort to load the decrementer with a value that represents the value in the failed processor
at
the time of the machine check minus a value that represents the time taken by the substitution process.

2

Mark the processor unsafe, do not return to the OS on that processor and notify the OS to at the next event scan time
with a fatal return message.
Note: This action may cause the OS to “hang” due to locks held by the failing processor etc. that may cause a
surveillance time out. The NVRAM firmware error log retains a trail of this condition for reading and logging at the
subsequent OS boot. However, in those cases where a hang does not happen, the OS can select some other processor
to pick up the thread of execution.

7.3  RTAS Call Function Definition 207

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.14–18. For the FWNMI option: The ibm,nmi-interlock RTAS call must not require serialization with re-
spect to any other RTAS or hypervisor calls.

R1–7.3.14–19. For the FWNMI option: The processor receiving the nmi signal must, after it has processed the
buffer pointed to by its R3 register, call the ibm,nmi-interlock RTAS call.

7.3.15 Memory Statistics

Depending upon the platform configuration, various portions of installed platform memory are in one of several states.
Some memory may be mapped out of the address space due to an error in one or more locations. Other memory is used
by the platform firmware. What is left is allocated to one or more logical partitions or held in reserve. The usage of
memory is a first order platform management parameter, and is needed by platform managers. However, it may also
become a covert channel between logical partitions. Therefore, the memory usage information that is surfaced to an OS
image by firmware is restricted to total platform memory installed, plus three sub-divisions which total to the total
memory installed. These three sub-divisions are the total memory the platform mapped out due to hardware failure, to-
tal memory reserved for platform firmware and other partitions, and the memory allocated to the calling OS image.
LPAR machines can provide a more detailed memory usage report via their Hardware Management Console. The total
memory allocated to the calling OS image is obtained through the device tree (potentially modified by post boot dy-
namic reconfiguration).

7.3.16 System Parameters Option

The system parameters which are defined are shown in Table 93‚ “Defined Parameters‚” on page 207.

Table 92. ibm,nmi-interlock Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,nmi-interlock

Number of Inputs 0

Number of Outputs 1

Out Status
0: Success
-1: Hardware Error

Table 93. Defined Parameters

Parameter token Parameter Description Values Notes

0 HMC 0

1 HMC 1

2 thru 15 HMC 2 thru 15

16 Reserved

17 Reserved

18 Processor CoD Capacity Card Info
See Section 7.3.16.4.1‚ “CoD

Capacity Card Info‚” on page 213
1

208 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

19 Memory CoD Capacity Card Info
See Section 7.3.16.4.1‚ “CoD

Capacity Card Info‚” on page 213
1

20 SPLPAR Characteristics
Opaque ASCII NULL terminated

string
1, 2

21 partition_auto_restart
See Section 7.3.16.5‚ “Restart

Parameters‚” on page 221

22 platform_auto_power_restart
See Section 7.3.16.5‚ “Restart

Parameters‚” on page 221

23 sp-remote-pon

Remote Power On
(see Section 7.3.16.6‚ “Remote Serial

Port System Management
Parameters‚” on page 222)

One byte decimal
0 (for off)
1 (for on)
Default 0

24 sp-rb4-pon

Number of rings until power on
(see Section 7.3.16.6‚ “Remote Serial

Port System Management
Parameters‚” on page 222)

One byte decimal

25 sp-snoop-str
Snoop sequence string

(see Section 7.3.16.7‚ “Surveillance
Parameters‚” on page 222)

26 sp-serial-snoop
Serial snoop enable/disable

(see Section 7.3.16.7‚ “Surveillance
Parameters‚” on page 222)

0 (for off)
1 (for on)
Default 0

27 sp-sen
Surveillance enable/disable

(see Section 7.3.16.7‚ “Surveillance
Parameters‚” on page 222)

0 (for off)
1 (for 0n)
Default 0

28 sp-sti
Surveillance time interval in minutes
(see Section 7.3.16.7‚ “Surveillance

Parameters‚” on page 222)

1-255
Default 5

29 sp-sdel
Surveillance delay in minutes

(see Section 7.3.16.7‚ “Surveillance
Parameters‚” on page 222)

1-120
Default 10

30 sp-call-home
See Section 7.3.16.8‚ “Call Home

Parameter‚” on page 222

31 sp-current-flash-image
See Section 7.3.16.9‚ “Current Flash

Image Parameter‚” on page 224
0 (for perm)
1 (for temp)

32 platform-dump-max-size
See Section 7.3.16.10‚ “Platform

Dump Max Size Parameter‚” on page
224

64-bit integer

The value consists of a
32-bit high value followed
by a 32-bit low value. The

resulting 64-bit value is
unsigned.

33 epow3-quiesce-time
See Section 7.3.16.11‚ “Storage

Preservation Option System
Parameters‚” on page 225

0-65535 seconds
Default 0

34 memory-preservation-boot-time
See Section 7.3.16.11‚ “Storage

Preservation Option System
Parameters‚” on page 225

0-65535 seconds
Default 0

Table 93. Defined Parameters

Parameter token Parameter Description Values Notes

7.3  RTAS Call Function Definition 209

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. These system parameters are defined for the ibm,get-system-parameter RTAS call only. An attempt to set
them using the ibm,set-system-parameter RTAS call results in a return Status of -9002 (Setting not al-
lowed/authorized).

2. The format of the SPLPAR string is beyond the scope of this architecture. See also, Appendix A, “SPLPAR
Characteristics Definitions,” on page 657.

35 SCSI Initiator Identifier
See Section 7.3.16.12‚ “SCSI Initiator

Identifier System Parameters‚” on
page 225

36 AIX support

37
Enhanced Processor CoD Capacity

information
See Section 7.3.16.4.3‚ “Enhanced
CoD Capacity Info‚” on page 214

1

38
Enhanced Memory CoD Capacity

information
1

39 CoD options
See Section 7.3.16.13‚ “CoD

Options‚” on page 228.
1

40 Platform Error Classification
See Section 7.3.16.14‚ “Platform

Error Classification‚” on page 228.

41 Firmware Boot Options
See Section 7.3.16.15‚ “Firmware

Boot Options‚” on page 228

42
platform-processor-diagnostics-run-mo

de

See Section 7.3.16.16‚ “Platform
Processor Diagnostics Options‚” on

page 229

One byte decimal
0=disabled
1=staggered
2=immediate
3=periodic

43 Processor Module Information
See Section 7.3.16.17‚ “Processor
Module Information‚” on page 230

1

44
Cooperative Memory Over-commitment

Definitions
Opaque ASCII NULL terminated

string
1, 3

45 Cede Latency Settings Information
See Section 7.3.16.18‚ “Cede Latency

Settings Information‚” on page 230

46
Target Active Memory Compression

Factor

See Section 7.3.16.19‚ “Target Active
Memory Compression Factor‚” on

page 231

Field length: 2 bytes
Format: binary

Range: 100 -- 1000

47 Performance boost modes vector
See Section 7.3.16.20‚ “Performance
Boost Modes Vector‚” on page 231

From
ibm,get-system-parameter
the field length is 96 bytes
consisting of 3 32 byte bit
vectors. To
ibm,set-system-parameter
the field is a single 32 byte
bit vector

48 UUID 16 Byte String
See Section 7.3.16.21‚
“Universally Unique

IDentifier‚” on page 233

>48 Reserved

Table 93. Defined Parameters

Parameter token Parameter Description Values Notes

210 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

3. See Appendix I, “CMO Characteristics Definitions,” on page 839.

Further parameters will be defined as required.

R1–7.3.16–1. All platforms must support the System Parameters option.

R1–7.3.16–2. (Requirement Number Reserved For Compatibility)

R1–7.3.16–3. For the System Parameters option: If the length of the data for a parameter in Table 93‚ “Defined
Parameters‚” on page 207 is less than what is specified in the requirements for a parameter or if the data value
in an ibm,set-system-parameter RTAS call is other than what is allowed by the requirements for the parame-
ter, the platform must return a -9999 indicating a parameter error.

R1–7.3.16–4. For the System Parameters option: The default values defined for parameters sp-sen, sp-sti and
sp-sdel in the Table 93‚ “Defined Parameters‚” on page 207 must apply to the platform prior to any
ibm,set-system-parameter RTAS call.

R1–7.3.16–5. For the System Parameters option: The ibm,get-system-parameter RTAS call must implement the
argument call buffer defined by Table 94‚ “ibm,get-system-parameter Argument Call Buffer‚” on page 211.
If the ibm,set-system-parameter RTAS call is implemented, it must use the argument call buffer defined by
Table 95‚ “ibm,set-system-parameter Argument Call Buffer‚” on page 212.

R1–7.3.16–6. For the System Parameters option: If the platform implements the ibm,set-system-parameter RTAS
call it must also implement the ibm,get-system-parameter RTAS call.

R1–7.3.16–7. For the System Parameters option: A system parameter, which is not supported by the system,
must return a Status of -3 (System parameter not supported) from the RTAS call.

R1–7.3.16–8. For the System Parameters option: A system parameter for which access is not authorized, must re-
turn a Status of -9002 (Not authorized) from the RTAS call.

R1–7.3.16–9. For the System Parameters option: When a platform implements a system parameter, it must meet
the definition in Table 93‚ “Defined Parameters‚” on page 207 including applicable descriptions and notes.

R1–7.3.16–10. For the System Parameters option: An ibm,get-system-parameter RTAS call with a buffer length
of zero (0) must return a Status of 0 (success) if the parameter is supported and authorized, a Status of -3 if
not supported, or a Status of -9002 if not authorized.

R1–7.3.16–11. For the System Parameters option: An ibm,set-system-parameter RTAS call with a parameter
length of zero (0) must return a Status of 0 (success) if the parameter is supported and authorized, a Status of
-3 if not supported, or a Status of -9002 if not authorized.

Programming Note: A partition may lose or gain authority for an ibm,get-system-parameter or
ibm,set-system-parameter call dynamically. For instance, three consecutive calls with the same parameters could
return Status of success, not authorized, and success.

R1–7.3.16–12. For the System Parameters option: The platform must enforce the length of system parameter strings
as follows: input strings to ibm,set-system-parameters not to exceed 1024 bytes in length else the platform returns a
Status of -9999 (parameter error) from the RTAS call; output strings from ibm,get-system-parameters not to ex-
ceed 4000 bytes.

R1–7.3.16–13. For the System Parameter option with the SPLPAR option: The Platform must implement pa-
rameter token 20 as defined in Table 93‚ “Defined Parameters‚” on page 207 for ibm,get-system-parameter.

7.3  RTAS Call Function Definition 211

LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Of course the OS is allowed to provide and specify a buffer that is larger than the maximum
system parameter length.

7.3.16.1 ibm,get-system-parameter

The ibm,get-system-parameter RTAS call fetches the data for the selected parameter and places it at the address speci-
fied in the buffer operand. The first two (2) bytes of the data in the buffer are the length of the returned data, not count-
ing these first two (2) bytes. The length of string data includes the length of the NULL but excludes the length field. If
the buffer length is less than the returned data length, the data is truncated at the end of the buffer. The maximum length
of the input parameter data string for ibm,set-system-parameter is architecturally limited to 1024 bytes of data and 2
bytes of length, totaling 1026 bytes. The maximum length of the output parameter data string for ibm,get-system-parame-
ter is architecturally limited to 4000 bytes of data and 2 bytes of length, totaling 4002 bytes. The only currently valid
parameters are as specified in Table 93‚ “Defined Parameters‚” on page 207.

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling ibm,get-system-parameter with the same parameter index. However,
software may issue the ibm,get-system-parameter call again either earlier or later than this.

Table 94. ibm,get-system-parameter Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,get-system-parameter

Number Inputs 3

Number Outputs 1

Parameter Token of system parameter to retrieve

buffer Real address of data buffer

length length of data buffer

Out Status

0: Success
-1: Hardware Error
-2: Busy, Try again later
-3: System parameter not supported
-9002: Not authorized
-9999: Parameter Error
990x: Extended delay where x is a number 0-5 (see text below)

212 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.16.2 ibm,set-system-parameter

The ibm,set-system-parameter RTAS call fetches the data from the address specified in the buffer operand and sets it
into the system parameter specified by the Parameter operand. The first two (2) bytes of the data in the buffer are the
length of the data, not counting these first two (2) bytes. The length of string data includes the length of the NULL but
excludes the length field. The only currently valid parameters are as specified in Table 93‚ “Defined Parameters‚” on
page 207.

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling ibm,set-system-parameter with the same parameter index. However,
software may issue the ibm,set-system-parameter call again either earlier or later than this.

7.3.16.3 HMC Parameter

The full HMC parameter data string is returned when the ibm,get-system-parameter RTAS call is issued.

HMC parameter contents are:
length - two byte binary length of data string associated with the HMC.
System Parameter Data - string of semicolon delimited ASCII data.

The ibm,set-system-parameter is not required to support the HMC parameter since the HMC parameter data is set only
by the HMC through an out-of-band path. The ibm,get-system-parameter RTAS call is provided for reading the param-
eter data. The RTAS call is available in both LPAR mode and non-LPAR mode.

R1–7.3.16.3–1. For the HMC Parameter: If the ibm,set-system-parameter RTAS call is provided, the use of the
HMC parameters, 0-15, must always return not authorized Status, -9002.

R1–7.3.16.3–2. For the HMC Parameter: The format of each HMC system parameter supported by this system
must consist of a two byte binary length field describing the full length of the parameter data, followed by a
series of variables where each variable is of the form “keyword” followed by “=” followed by “value” and
terminated by “;”. The order of the variables is undefined and the total number of variables is undefined. The
platform must provide the “HscIPAddr” keyword1, and the “RMCKey” keyword. The data after the equal
sign (=) may or may not have content. The value of the “HscIPAddr” keyword is the IP address of that HMC.
The value of the “RMCKey” keyword is either null or is the RMC key for that system or partition. The value

Table 95. ibm,set-system-parameter Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,set-system-parameter

Number Inputs 2

Number Outputs 1

Parameter Token number of the target system parameter

buffer Real address of data buffer

Out Status

0: Success
-1: Hardware Error
-2: Busy, Try again later
-3: System parameter not supported
-9002: Setting not allowed/authorized
-9999: Parameter Error
990x:Extended delay where x is a number 0-5 (see text below)

7.3  RTAS Call Function Definition 213

LoPAPR, Version 1.1 (March 24, 2016)

of a keyword is null if there is nothing between the “=” and the “;”. The update state of keyword values of an
HMC system parameter are uncertain when the HMC stops talking to the managed system.

R1–7.3.16.3–3. For the HMC Parameter: All HMC system parameter data must be printable ASCII characters,
excluding the two byte binary length field.

R1–7.3.16.3–4. For the HMC Parameter: The lowest valued HMC system parameter which returns a -3 Status
must have no higher valued HMC system parameter which is supported. That is, a scan of HMC system pa-
rameters from 0 until the first -3 Status must indicate all supported HMC system parameters.

R1–7.3.16.3–5. For the HMC Parameter: If there is no HMC control of this platform, the platform must return a
null response, zero length data, to requests for all supported HMC system parameters.

Implementation Note: Since the system is not necessarily to be HMC controlled, it is shipped with the HMC parameter
set to the zero (0) length. If the system is HMC controlled, the HMC passes the parameter values to the system at
boot time so that the ibm,get-system-parameters RTAS call indicates HMC control. If there is deconfigured the
HMC can write the zero (0) length data to the system. If that is not done, the system can write the parameter to
zero length on a hard reset and the HMC, if present, then initializes the data.

R1–7.3.16.3–6. For the HMC Parameter: The platform must truncate the HMC system parameter data at the buf-
fer length if the buffer length is less than the data length plus 2.

7.3.16.4 Capacity on Demand (CoD) Option

Platforms may optionally provide mechanisms for securely licensing a subset of the platform’s physically installed re-
sources for use. The CoD option includes system parameters relating to the CoD Capacity “smart card” which is used
to securely store and validate the license information. Dynamically adding memory and cpu resources to running parti-
tions requires the CoD option combined with the Logical Resource Dynamic Reconfiguration option.

Additionally platforms may provide a provisional CoD activation mode known as “Trial CoD”. This mode provides
immediate availability of resources while the permanent license is on order. The CoD resources are made available for
a platform dependent period of power on hours.

If the platform implements the CoD sparing option and the platform predicts the failure of a CoD resource, given that
there is spare capacity of that resource, the platform makes available a spare resource so that the OS can migrate work
off the failing resource and return the failing resource to the OS. If the OS takes advantage of this sparing, by actually
using the available resource the OS is using resources in excess of the permanently licensed entitlement until the fail-
ing CoD resource is returned to the platform.

R1–7.3.16.4–1. For the CoD option: The platform must support the System Parameter option (ibm,get-system-pa-
rameter) along with Parameter tokens 18 and 19 as described in Table 93‚ “Defined Parameters‚” on
page 207.

7.3.16.4.1 CoD Capacity Card Info

Software Note: System parameters 18 and 19 present only permanently activated capacity. These parameters will be
removed at some point in the future. OSs should begin using the enhanced CoD Capacity parameters.

These two read only system parameters (one for memory and another for processors) are ASCII hexadecimal strings
representing the current licensed entitlement of CoD resources of their respective types. These strings contains 9
packed fields as presented in Table 96‚ “CoD Capacity Card Info String Packed Fields‚” on page 214.

1.The acronym “HSC” was replaced by “HMC” but this keyword was retained with “Hsc” so as to not invalidate code already created using the key-
word.

214 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.4.1–1. For the CoD option: The platform’s ibm-get-system-parameter RTAS call, specifying the CoD
Capacity Card Info, must, upon successful completion, return the ASCII representation of the information de-
fined in Table 96‚ “CoD Capacity Card Info String Packed Fields‚” on page 214 for the managed CoD re-
source type specified by the system parameter token.

R1–7.3.16.4.1–2. For the CoD option: The platform’s ibm,set-system-parameter RTAS call specifying the CoD
Capacity Card Info, must not return a Status of 0 (success); the expected return is a Status of -9002 (Setting
not allowed/authorized), however, under special cases a Status of -1 (Hardware error), or one of the Busy or
Extended Delay return Status return values is allowed.

7.3.16.4.2 Predictive Failure Sparing with Free Resources

A platform may optionally provide an unused resource to a partition that is notified of a predictive failure. This allows
the partition’s OS to transparently substitute the spare resource for the failing one in some situations. To take advantage
of this situation, the partition’s OS queries the free DR slot(s) of the resource type to determine if a spare resource is
available, and if so uses the other DR RTAS calls to acquire the resource. In some cases resources are free because they
have not been assigned to partitions.

A platform may optionally provide an unused CoD resource to a partition as a predictive failure spare. In such cases,
the result of an get-sensor-state (entity-sense) for the DR slot returns the state of “exchange”. Between the time that the
OS takes ownership, via set-indicator (allocation-state, exchange), of the spare CoD resource available and the OS
gives up the failing resource, the platform exceeds the licensed entitlement for that resource.

R1–7.3.16.4.2–1. For the Predictive Failure Sparing option: The platform, upon provisionally making available
a spare CoD resource in response to a predictive failure, must set the CoD Resource Provisional Activation
timer, to time out the use of the provisionally activated excess resources.

7.3.16.4.3 Enhanced CoD Capacity Info

These two read only system parameters (one for processor and one for memory) return ASCII hexadecimal strings rep-
resenting the current licensed CoD resources.

The strings are constructed with a fixed “base” section followed by zero or more optional sections. The definitions be-
low show all optional sections. The caller should not expect the presence or order of all optional sections. Each op-
tional section starts with the following 3 members:

Table 96. CoD Capacity Card Info String Packed Fields

Field Number Definition

1 System type (4 ASCII characters) (4 bytes)

2 System serial number (8 ASCII characters: pp-sssss) (8 bytes)

3 CoD capacity card Custom Card Identification Number (CCIN) (4 ASCII characters) (4 bytes)

4 CoD capacity card serial number (10 ASCII characters: pp-sssssss) (10 bytes)

5 CoD capacity card unique ID (16 ASCII characters) (16 bytes)

6 CoD resource identifier (4 ASCII characters) (4 bytes)

7 Quantity of Activated CoD resource (4 characters ASCII) (4 bytes)

8 CoD sequence number (4 numeric ASCII characters) (4 bytes)

9
CoD activation code entry check (1 byte hex check sum, two ASCII characters - based on EBCDIC
representation of items: 1, 2, 3, 4, 5, 6, 7, and 8) (2 bytes)

7.3  RTAS Call Function Definition 215

LoPAPR, Version 1.1 (March 24, 2016)

 Offset to next section (zero for last section)

 Size in bytes of the section (including these three members)

 Name of the section

The specific meaning of the members of each section is beyond the scope of this architecture; refer to the specific plat-
form design documents.

All data in these tables are composed of printable ASCII characters. There are no NULLs or other non-printable char-
acters.

Programming Note: On a platform where the base processor capacity is a fraction of a full processor, the data in the
BaseProc section below is rounded up to the next larger whole number.

R1–7.3.16.4.3–1. For the CoD option: The platform's ibm,get-system-parameter RTAS call, specifying the En-
hanced CoD Processor Capacity Info, must, upon successful completion, return the ASCII representation of
the information defined in Table 97‚ “Enhanced CoD Processor Capacity Info, Version 1‚” on page 215 for
managed CoD processor resources.

Table 97. Enhanced CoD Processor Capacity Info, Version 1

Offset Size in Bytes Section Description Format

0 4 Meta Table version indicator 4 ASCII characters “V1 “

4 4 Meta Decimal number of optional sections 4 ASCII numeric characters

8 4 Base

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member
to the first byte of the next section). Zero if
the last section

4 ASCII numeric characters

12 4 Base
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “78 “

16 8 Base Section Name 8 ASCII characters “BASE “

24 4 Base system type 4 ASCII characters

28 10 Base System serial number 10 ASCII characters: “pp-ssssss “

38 4 Base CoD capacity card CCIN 4 ASCII characters

42 10 Base CoD capacity card serial number 10 ASCII characters “hh-hssssss”

52 16 Base CoD capacity card unique ID 16 ASCII characters

68 4 Base CoD resource identifier 4 ASCII characters

72 4 Base Quantity of permanently activated resources 4 ASCII characters

76 4 Base CoD sequence number 4 numeric ASCII characters

80 2 Base CoD activation code entry check
1 byte hex check sum, 2 ASCII characters --
based on EBCDIC representation of previous
8 entries.

82 4 Base Total CoD resources installed in system 4 numeric ASCII characters

216 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

On/Off Processor Resources

0 4 OnOffPrc

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member
to the first byte of the next section). Zero if
the last section.

4 ASCII numeric characters

4 4 OnOffPrc
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “66 “

8 8 OnOffPrc Section Name 8 ASCII characters “ONOFFPRC”

16 1 OnOffPrc On/Off CoD enabled 1 ASCII character '0' or '1'

17 1 OnOffPrc On/Off CoD active 1 ASCII character '0' or '1'

18 4 OnOffPrc On/Off CoD feature 4 ASCII characters

22 4 OnOffPrc On/Off CoD activated resources 4 ASCII numeric characters

26 4 OnOffPrc On/Off CoD sequence number 4 ASCII numeric characters

30 2 OnOffPrc On/Off CoD checksum 2 ASCII characters

32 4 OnOffPrc On/Off CoD resources requested 4 ASCII numeric characters

36 4 OnOffPrc On/Off CoD days requested 4 ASCII numeric characters

40 4 OnOffPrc On/Off CoD resource days expired 4 ASCII numeric characters

44 4 OnOffPrc On/Off CoD resource days remaining 4 ASCII numeric characters

48 4 OnOffPrc On/Off CoD counter 4 ASCII numeric characters

52 4 OnOffPrc On/Off standby resources available 4 ASCII numeric characters

56 1 OnOffPrc On/Off reserved byte 1 ASCII blank

57 4 OnOffPrc On/Off history of requested resource days 4 ASCII characters

61 1 OnOffPrc On/Off reserved byte 1 ASCII blank

62 4 OnOffPrc On/Off history of unreturned resource days 4 ASCII characters

Debit Processor Resources

0 4 DebitPrc

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member
to the first byte of the next section). Zero if
the last section.

4 ASCII numeric characters

4 4 DebitPrc
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “82 “

8 8 DebitPrc Section Name 8 ASCII characters “DEBITPRC”

16 1 DebitPrc Debit CoD enabled 1 ASCII character '0' or '1'

17 1 DebitPrc Debit CoD active 1 ASCII character '0' or '1'

18 4 DebitPrc Debit CoD feature 4 ASCII characters

Table 97. Enhanced CoD Processor Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

7.3  RTAS Call Function Definition 217

LoPAPR, Version 1.1 (March 24, 2016)

22 4 DebitPrc Debit CoD activated resources 4 ASCII numeric characters

26 4 DebitPrc Debit CoD sequence number 4 ASCII numeric characters

30 2 DebitPrc Debit CoD checksum 2 ASCII characters

32 4 DebitPrc Debit CoD resources requested 4 ASCII numeric characters

36 12 DebitPrc Debit Reserved 12 ASCII blanks

48 4 DebitPrc Debit counter 4 ASCII characters

52 4 DebitPrc Debit standby resources available 4 ASCII numeric characters

56 1 DebitPrc Debit reserved byte 1 ASCII blank

57 4 DebitPrc Debit history of expired resource days 4 ASCII numeric characters

61 1 DebitPrc Debit reserved byte 1 ASCII blank

62 4 DebitPrc Debit history of unreturned resource days 4 ASCII characters

66 8 DebitPrc
Extended total history of requested On/Off
Processor days

8 ASCII characters

74 8 DebitPrc
Extended total history of unreturned On/Off
Processor days

8 ASCII characters

Trial Processor Resources

0 4 TrialPrc

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member
to the first byte of the next section). Zero if
the last section.

4 ASCII numeric characters

4 4 TrialPrc
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “66 “

8 8 TrialPrc Section Name 8 ASCII characters “TRIALPRC”

16 1 TrialPrc Trial CoD enabled 1 ASCII character '0' or '1'

17 1 TrialPrc Trial reserved 1 ASCII blank

18 4 TrialPrc Trial CoD feature 4 ASCII characters

22 4 TrialPrc Trial CoD activated resources 4 ASCII numeric characters

26 4 TrialPrc Trial CoD sequence number 4 ASCII numeric characters

30 2 TrialPrc Trial CoD checksum 2 ASCII characters

32 8 TrialPrc Trial reserved bytes 8 ASCII blanks

40 4 TrialPrc Trial days expired 4 ASCII numeric characters

44 4 TrialPrc Trial days remaining 4 ASCII numeric characters

48 14 TrialPrc Trial reserved bytes 14 ASCII blanks

62 4 TrialPrc Trial unreturned resources 4 ASCII numeric characters

Table 97. Enhanced CoD Processor Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

218 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.4.3–2. For the CoD option: The platform's ibm,get-system-parameter RTAS call, specifying the En-
hanced CoD Memory Capacity Info, must, upon successful completion, return the ASCII representation of
the information defined in Table 98‚ “Enhanced CoD Memory Capacity Info, Version 1‚” on page 218 for the
managed CoD memory resources.

Base Processor Resources

0 4 BaseProc

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member
to the first byte of the next section). Zero if
the last section.

4 ASCII numeric characters

4 4 BaseProc
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “20 “

8 8 BaseProc Section Name 8 ASCII characters “BASEPROC”

16 4 BaseProc

Number of Non-CoD “Base” processors on
this system. NOTE: If this section is not
present, there are no “base” processors and
all processors are CoD activated.

4 ASCII numeric characters

Table 98. Enhanced CoD Memory Capacity Info, Version 1

Offset Size in Bytes Section Description Format

0 4 Meta Table version indicator 4 ASCII characters “V1 ”

4 4 Meta Decimal number of optional sections 4 ASCII numeric characters

8 4 Base

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member to
the first byte of the next section). Zero if the
last section.

4 ASCII numeric characters

12 4 Base
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “78 ”

16 8 Base Section Name 8 ASCII characters “BASE ”

24 4 Base system type 4 ASCII characters

28 10 Base System serial number 10 ASCII characters: “pp-ssssss ”

38 4 Base CoD capacity card CCIN 4 ASCII characters

42 10 Base CoD capacity card serial number 10 ASCII characters “hh-hssssss”

52 16 Base CoD capacity card unique ID 16 ASCII characters

68 4 Base CoD resource identifier 4 ASCII characters

72 4 Base Quantity of permanently activated resources 4 ASCII characters

76 4 Base CoD sequence number 4 numeric ASCII characters

Table 97. Enhanced CoD Processor Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

7.3  RTAS Call Function Definition 219

LoPAPR, Version 1.1 (March 24, 2016)

80 2 Base CoD activation code entry check
 1 byte hex check sum, 2 ASCII characters --
based on EBCDIC representation of previous
8 entries.

82 4 Base Total CoD resources installed in system 4 numeric ASCII characters

On/Off Memory Resources

0 4 OnOffMem

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member to
the first byte of the next section). Zero if the
last section.

4 ASCII numeric characters

4 4 OnOffMem
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “67 “

8 8 OnOffMem Section Name 8 ASCII characters “ONOFFMEM”

16 1 OnOffMem On/Off CoD enabled 1 ASCII character '0' or '1'

17 1 OnOffMem On/Off CoD active 1 ASCII character '0' or '1'

18 4 OnOffMem On/Off CoD feature 4 ASCII characters

22 4 OnOffMem On/Off CoD activated resources 4 ASCII numeric characters

26 4 OnOffMem On/Off CoD sequence number 4 ASCII numeric characters

30 2 OnOffMem On/Off CoD checksum 2 ASCII characters

32 4 OnOffMem On/Off CoD resources requested 4 ASCII numeric characters

36 4 OnOffMem On/Off CoD days requested 4 ASCII numeric characters

40 4 OnOffMem On/Off CoD resource days expired 4 ASCII numeric characters

44 4 OnOffMem On/Off CoD resource days remaining 4 ASCII numeric characters

48 4 OnOffMem On/Off CoD counter 4 ASCII numeric characters

52 4 OnOffMem On/Off standby resources available 4 ASCII numeric characters

56 1 OnOffMem On/Off reserved byte 1 ASCII blank

57 4 OnOffMem On/Off history of requested resource days 4 ASCII characters

61 1 OnOffMem On/Off reserved byte 1 ASCII blank

62 4 OnOffMem On/Off history of unreturned resource days 4 ASCII characters

66 1 OnOffMem On/Off Memory Multiplier 1 ASCII numeric characters

Debit Memory Resources

0 4 DebitMem

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member to
the first byte of the next section). Zero if the
last section.

4 ASCII numeric characters

4 4 DebitMem
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “83 “

Table 98. Enhanced CoD Memory Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

220 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

8 8 DebitMem Section Name 8 ASCII characters “DEBITMEM”

16 1 DebitMem Debit CoD enabled 1 ASCII character '0' or '1'

17 1 DebitMem Debit CoD active 1 ASCII character '0' or '1'

18 4 DebitMem Debit CoD feature 4 ASCII characters

22 4 DebitMem Debit CoD activated resources 4 ASCII numeric characters

26 4 DebitMem Debit CoD sequence number 4 ASCII numeric characters

30 2 DebitMem Debit CoD checksum 2 ASCII characters

32 4 DebitMem Debit CoD resources requested 4 ASCII numeric characters

36 12 DebitMem Debit Reserved 12 ASCII blanks

48 4 DebitMem Debit counter 4 ASCII characters

52 4 DebitMem Debit standby resources available 4 ASCII numeric characters

56 1 DebitMem Debit reserved byte 1 ASCII blank

57 4 DebitMem Debit history of expired resource days 4 ASCII numeric characters

61 1 DebitMem Debit reserved byte 1 ASCII blank

62 4 DebitMem Debit history of unreturned resource days 4 ASCII characters

66 8 DebitMem
Extended total history of requested On/Off
Memory GB days

8 ASCII characters

74 8 DebitMem
Extended total history of unreturned On/Off
Memory GB days

8 ASCII characters

82 1 DebitMem Debit reserved byte 1 ASCII blank

Trial Memory Resources

0 4 TrialMem

Decimal offset in bytes from the start of this
section to the start of the next section (that is,
the offset from the first byte of this member to
the first byte of the next section). Zero if the
last section.

4 ASCII numeric characters

4 4 TrialMem
Section Length -- The length of this section in
bytes (including offset member above)

4 ASCII numeric characters “67 ”

8 8 TrialMem Section Name 8 ASCII characters “TRIALMEM”

16 1 TrialMem Trial CoD enabled 1 ASCII character '0' or '1'

17 1 TrialMem Trial reserved 1 ASCII blank

18 4 TrialMem Trial CoD feature 4 ASCII characters

22 4 TrialMem Trial CoD activated resources 4 ASCII numeric characters

26 4 TrialMem Trial CoD sequence number 4 ASCII numeric characters

30 2 TrialMem Trial CoD checksum 2 ASCII characters

Table 98. Enhanced CoD Memory Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

7.3  RTAS Call Function Definition 221

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.4.3–3. For the CoD option: The platform's ibm,set-system-parameter RTAS call specifying the En-
hanced CoD Capacity Info, must not return a Status of 0 (Success); the expected return is a Status of -9002
(setting not allowed/authorized), however, under special cases a Status of -1 (Hardware Error) or one of the
Busy or Extended Delay return Status values is allowed.

7.3.16.5 Restart Parameters

This section and its subsections describe parameters that govern the actions that the platform firmware takes upon a re-
start (that is, reboot) after an unintended termination.

7.3.16.5.1 partition_auto_restart Parameter

The partition_auto_restart parameter governs whether or not platform firmware attempts to restart a partition after an
error which causes an abnormal partition termination. Neither a loss of external power without a UPS, nor a loss of ex-
ternal power and battery power with a UPS are examples of an error which causes abnormal partition termination. For
terminations that involve only a specific partition (for example, a machine check), the partition_auto_restart parameter
governs whether the partition restarts. For terminations that span the entire platform (for example, a checkstop), the
platform may separately govern whether or not the entire platform restarts. If the platform does restart, however,
partition_auto_restart determines whether or not an individual partition restarts.

R1–7.3.16.5.1–1. For the LPAR option with the System Parameters option: If the platform supports the
partition_auto_restart system parameter, the platform must establish and maintain across boot (unless explic-
itly altered by a user) for each partition the one (1) byte parameter, the initial value (depending upon platform
policy) is one of the following binary values:
0 - Do not automatically restart the partition
1 - Automatically restart the partition

R1–7.3.16.5.1–2. For the SMP option (non-LPAR) with the System Parameters option: If the platform supports
the partition_auto_restart system parameter, the platform must establish and maintain across boot (unless ex-
plicitly altered by a user) one and only one (1) byte parameter, the initial value (depending upon platform pol-
icy) is one of the following binary values:
0 - Do not automatically restart the OS
1 - Automatically restart the OS

7.3.16.5.2 platform_auto_power_restart Parameter

The platform_auto_power_restart parameter governs whether or not platform firmware attempts to restart after power
is restored following a power outage.

32 8 TrialMem Trial reserved bytes 8 ASCII blanks

40 4 TrialMem Trial days expired 4 ASCII numeric characters

44 4 TrialMem Trial days remaining 4 ASCII numeric characters

48 14 TrialMem Trial reserved bytes 14 ASCII blanks

62 4 TrialMem Trial unreturned resources 4 ASCII numeric characters

66 1 TrialMem Trial reserved byte 1 ASCII blank

Table 98. Enhanced CoD Memory Capacity Info, Version 1 (Continued)

Offset Size in Bytes Section Description Format

222 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.5.2–1. For the System Parameters option: If the platform supports the platform_auto_power_restart
system parameter, the platform must maintain across boot (unless explicitly altered by a user) one and only
one platform wide value of the one (1) byte parameter having one of the following binary values:
0 - Do not automatically restart
1 - Automatically restart partitions that were active when external power was lost.

R1–7.3.16.5.2–2. For the LPAR option with the System Parameters option: If the platform supports the
platform_auto_power_restart system parameter, the platform must provide the authority to set and read the
platform_auto_power_restart system parameter to, at most, one partition at a time.

7.3.16.6 Remote Serial Port System Management Parameters

R1–7.3.16.6–1. For the LPAR option with the System Parameters option: If the platform supports any of the
following system parameters: sp-remote-pon, sp-rb4-pon, sp-snoop-str, and sp-serial-snoop; the platform
must grant authority to set and read the single platform wide values of the respective system parameters to
only the partition owning the resource required to implement the function, such as a serial port, where the
valid data for the parameters are specified in Table 93‚ “Defined Parameters‚” on page 207.

R1–7.3.16.6–2. For the System Parameters option: The platform must support the sp-rb4-pon system parameter
if and only if the sp-remote-pon system parameter is supported and implemented by using “Ring Indicate” of
a serial port.

R1–7.3.16.6–3. For the LPAR option with the System Parameters option: Platforms that supports the
sp-snoop-str system parameter must maintain one and only one platform wide NULL terminated ASCII
string value of the parameter; granting authority to set and read the sp-snoop-str system parameter to, at most,
one partition at a time.

R1–7.3.16.6–4. For the System Parameters option: To prevent return data truncation of the returned sp-snoop-str
system parameter from the ibm,get-system-parameter RTAS call the caller must supply a buffer length suffi-
cient to contain the two string length bytes plus the ASCII string and the terminating ASCII NULL.

R1–7.3.16.6–5. For the System Parameters option: The caller of the ibm,get-system-parameter RTAS call must
supply a buffer length sufficient to contain the two string length bytes plus the ASCII string and the terminat-
ing ASCII NULL to prevent return data truncation of the returned sp-snoop-str system parameter.

R1–7.3.16.6–6. For the System Parameters option: The platform must supports both the sp-snoop-str and sp-se-
rial-snoop system parameters if it supports either.

7.3.16.7 Surveillance Parameters

For the definition of the sp-sen, sp-sti, and sp-del parameters, see Section 7.3.5.2.1‚ “Surveillance‚” on page 138.

R1–7.3.16.7–1. For the LPAR option with the System Parameters option: If the platform supports any of the
following system parameters: sp-sen, sp-sti, or sp-del; the platform must grant authority to set and read the
single platform wide one (1) byte values, where the decimal representation is defined in Table 93‚ “Defined
Parameters‚” on page 207, of the respective system parameters to only one partition at a time.

R1–7.3.16.7–2. For the System Parameters option: If the platform supports any of the sp-sen, sp-sti or sp-del sys-
tem parameters, it must support then all.

7.3.16.8 Call Home Parameter

This parameter is used to provide input concerning certain call home values used when a call home function is pro-
vided. The data for the parameter is an ASCII string which provides additional information

7.3  RTAS Call Function Definition 223

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.8–1. For the LPAR option with the System Parameters option: If the platform supports the
sp-call-home parameter, platform must grant authority to set and read the single platform wide value of the
system parameter at any time to only one partition; where the data for the parameter is an ASCII string in the
form <String_name1>=<string><ASCII NULL><String_name2>=<string><ASCII
NULL>....<String_nameN>=<string><ASCII NULL><ASCII NULL> with string names defined as per
Table 99‚ “sp-call-home Strings‚” on page 223.

R1–7.3.16.8–2. For the System Parameters option: The caller of the ibm,get-system-parameter RTAS call must
supply a buffer length sufficient to contain the maximum possible ASCII string returned, including the two
ASCII NULLs where Table 99‚ “sp-call-home Strings‚” on page 223 indicates the maximum length of the
data for each substring that comprises the sp-call-home data, to prevent return data truncation of the returned
sp-call-home system parameter.

R1–7.3.16.8–3. For the System Parameters option: If the platform supports the sp-call-home parameter, the plat-
form must provide the sp-call-home parameter value defaults listed in Table 99‚ “sp-call-home Strings‚” on
page 223 prior to any ibm,set-system-parameter RTAS call.

Table 99. sp-call-home Strings

String_Name Default Range
Maximum Characters in

String Data
Description

sp-rt-s<N> NULL 20 Retry string for serial port <N>

sp-ic-s<N> NULL 12 Protocol interdata block delay (*IC) for serial port <N>

sp-to-s<N> NULL 12 Protocol time out (*DT) for serial port <N>

sp-cd-s<N> NULL 12 Call Delay (*CD) for serial port <N>

sp-connect-s<N> NULL 12 Connect (*CX) for serial port <N>

sp-disconnect-s<N> NULL 12 Disconnect (*DX) for serial port <N>

sp-condout-s<N> NULL 12 Call-out condition (*C0) for serial port <N>

sp-condwait-s<N> NULL 12 Call-wait (*C0) for serial port <N>

sp-condin-s<N> NULL 12 Call-in condition (*C1) for serial port <N>

sp-waitcall-s<N> NULL 12 Wait call (*WC) for serial port <N>

sp-page-s<N> NULL 20 Describes how to Page a beeper for serial port <N>

sp-diok-s<N> off on,off 4 Serial Port <N> Call-in (Dial in authorized on the port)

sp-dook-s<N> off on,off 4 Serial Port <N> Call-out (Dial out authorized on the port)

sp-dookc off on,off 4
Call-out before restart (Dial out for system crash using
authorized serial port)

sp-ls-s<N> 9600

300, 600, 1200,
2000, 2400, 3600,
4800, 7200, 9600,

19200, 38400

6 S<N> line speed

sp-modemf-s<N> NULL 120
Filename of the last modem file used to configure modem
parameters

sp-phsvc 20 blank characters 20 characters max 20 Service Center Telephone Number (*PS)

sp-phadm 20 blank characters 20 characters max 20 Customer Administration Center Telephone Number (*PH)

224 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. <N> is substituted with a modem number, i.e. 1 or 2.

2. NULL as a default indicates that the string is given a name, but no value, e.g. sp-modemf-s=

7.3.16.9 Current Flash Image Parameter

In systems with storage for more than one Flash image, the sp-current-flash-image parameter indicates which Flash im-
age is currently being used by the service processor. This is typically the Flash image used at the last boot.

R1–7.3.16.9–1. For the LPAR option with the System Parameters option: Platforms that supports the sp-cur-
rent-flash-image system parameter, must authorize all partitions to get the single platform wide one (1) byte
value of the system parameter, whose decimal representation is defined in Table 93‚ “Defined Parameters‚”
on page 207.

R1–7.3.16.9–2. For the System Parameters option: Platforms that supports the sp-current-flash-image system pa-
rameter must support the ibm,manage-flash-image RTAS call.

7.3.16.10 Platform Dump Max Size Parameter

This parameter indicates the size (in bytes) needed for dumps returned from the ibm,platform-dump RTAS function.

R1–7.3.16.10–1. For the Platform Dump option: If the ibm,platform-dump RTAS call is authorized for the parti-
tion, the platform must authorize the partition to get the platform-dump-max-size system parameter; where
the value returned must indicate the sum (in bytes) of the maximum size of each unique platform dump type
that the ibm,platform-dump RTAS call could return.

Programming Note: The intent of platform-dump-max-size is for the platform to specify, in advance, the sum of the
maximum sizes of all the unique dump types that it can generate. This is to allow the OS to reserve space for one
log of each type. In the case of any change in the value of this parameter, the platform may generate a Platform

sp-pager 20 blank characters 20 characters max 20 Digital Pager Telephone Number

sp-phsys 20 blank characters 20 characters max 20 Customer System Telephone number (*PY)

sp-vox 20 blank characters 20 characters max 20 Customer Voice telephone number (*PO)

sp-acct 12 blank characters 12 characters max 12 Customer Account Number (*CA)

sp-cop first first, all 6 Call-out policy (first/all) - numbers to call in case of failure

sp-retlogid 12 blank characters 12 characters max 12 Customer RETAIN Login Userid (*LI)

sp-retpw 16 blank characters 16 characters max 12 Customer RETAIN Login password (*PW)

sp-rto 120 >1 12 Remote Timeout (in seconds) (*RT)

sp-rlat 2 > 1 12 Remote Latency (in seconds) (*RL)

sp-rn 2
0 or any positive

number
12 Number of retries (while busy (*RN))

sp-sysname 15 blank characters 15 characters max 15 System Name (system administrator aid)

Table 99. sp-call-home Strings

String_Name Default Range
Maximum Characters in

String Data
Description

7.3  RTAS Call Function Definition 225

LoPAPR, Version 1.1 (March 24, 2016)

Event Log entry announcing the change in the maximum size, and specifying the new size in the IO Events
Section. This entry, when generated, is then returned by the event-scan RTAS call.

7.3.16.11 Storage Preservation Option System Parameters

The epow3-quiesce-time system parameter contains the time granted to the current instance of a client program to per-
form quiesce activities in preparation for a memory preservation boot. This quiesce time is the time used by the client
program to do such things as quiesce and power off I/O not needed for memory preservation boot processing, in order
to conserve batteries. A client program utilizing the Storage Preservation option, upon completion of quiesce activities,
requests a reboot. The platform, upon seeing an EPOW class 3 condition, and if both the memory-preserva-
tion-boot-time and epow3-quiesce-time system parameters are non-zero, starts a timer with an initial value equal to the
epow3-quiesce-time. If the timer expires before the client program performs a reboot, the platform forces a reboot of
the client program.

The memory-preservation-boot-time system parameter contains the time granted to the rebooted instance of the parti-
tion to perform the saving of preserved memory. The client program, upon completion of the saving of preserved mem-
ory, requests a shutdown. The platform, upon initiation of a memory preservation boot starts a timer with an initial
value equal to the memory-preservation-boot-time, providing the value of the memory-preservation-boot-time parame-
ter is non-zero. If the timer expires before the client program performs a shutdown, the platform forces a shutdown of
the client program.

Thus, the platform uses the memory-preservation-boot-time system parameter as a policy attribute. If the client pro-
gram has set the value of this parameter to a non-zero value, then the memory preservation boot timers are enabled. If
the memory-preservation-boot-time parameter is zero (independent of the epow3-quiesce-time setting), the platform
does not initiate the memory preservation boot timers.

To use the memory preservation boot timers, the client program registers its LMBs for preservation and sets the mem-
ory-preservation-boot-time via the ibm,set-system-parameter RTAS call. If an EPOW class 3 is sent to a client program
and the client program has set its memory-preservation-boot-time parameter, then the platform starts the timer for
epow3-quiesce-time. The client program on reboot uses the get-sensor RTAS call (to detect EPOW condition) and the
“ibm,preserved-storage” property in the device tree to drive memory preservation processing as necessary.
The values of memory-preservation-boot-time and epow3-quiesce-time prior to being set for a client program are 0.
These system parameters are persisted, as are all system parameters.

R1–7.3.16.11–1. For the Storage Preservation option: The platform must implement the memory-preserva-
tion-boot-time and epow3-quiesce-time system parameters and must set their initial values to 0.

R1–7.3.16.11–2. For the Storage Preservation option: If the memory-preservation-boot-time system parameter is
non-zero for a client program and if the platform delivers an EPOW class 3 indication to the client program,
the platform must do all of the following:

a. Upon delivering the EPOW class 3 to the client program, if the epow3-quiesce-time system parameter is
non-zero, then set a timer based on the client program’s epow3-quiesce-time system parameter and force
a reboot of the client program on timer expiration, if the client program does not request a reboot itself
before the timer expires.

b. Upon initiation of the memory preservation boot, set a timer based on the client program’s memory-preser-
vation-boot-time system parameter and on timer expiration, force a shutdown of the client program if the
client program does not request a shutdown itself before the timer expires.

7.3.16.12 SCSI Initiator Identifier System Parameters

Certain physical SCSI IOAs maintain their previous settings for SCSI initiator identifier, while others require that the
platform set this value during I/O adapter initialization. Since the initialization of I/O adapters in the boot path is done
by firmware, a method is required for the OS to inform the platform firmware of such settings. Given that an OS owns

226 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

a slot, and that slot contains a supported SCSI I/O adapter, the OS may use the ibm,set-system-parameter RTAS call
specifying SCSI Initiator Identifier system parameters to instruct the firmware how to initialize the I/O adapter to en-
sure that it does not conflict with other SCSI initiators on the same bus. The ibm,get-system-parameter RTAS call is
used to verify the SCSI Initiator Identifier system parameters value for any OS owned slot.

When ibm,set-system-parameter is called specifying SCSI Initiator Identifier system parameters, the buffer contains
the standard two byte length field plus two NULL terminated strings. The first string contains the location code of an
I/O Adapter's SCSI bus connector, and the second string contains one of the decimal values 0-15 representing the value
of the SCSI Initiator Identifier that the platform's firmware is to use to initialize the SCSI controller for that bus.

When ibm,get-system-parameter is called specifying SCSI Initiator Identifier system parameters, the buffer contains
the standard two byte length field plus a NULL terminated string that contains the location code of an I/O Adapter's
SCSI bus connector. Upon successful return, the buffer contains the standard two byte length field plus two NULL ter-
minated strings. The first string contains the location code of the I/O Adapter's SCSI bus connector, and the second
string contains one of the decimal values 0-15 representing the value of the SCSI Initiator Identifier that the platform's
firmware is to use to initialize the SCSI controller for that bus.

Implementation Note: For IOAs that have multiple connectors per bus, the location code specifies the connector for the
external bus.

Interaction between SCSI Initiator Identifier system parameters and DR operations produce unique situations. The
platform maintains only the latest SCSI Initiator Identifier set for any given location code. On DR operations, the value
is normally retained until the IOA owner explicitly changes it. If a DR operation replaces the original IOA with a dif-
ferent type of IOA, such that the previously set SCSI Initiator Identifier system parameters no longer make sense (IOA
is not a supported SCSI adapter or the connector location codes do not match), the platform firmware clears the SCSI
Initiator Identifier system parameters for the location code and performs the platform default IOA initialization.

R1–7.3.16.12–1. For the SCSI Initiator Identifier System Parameters option: When ibm,set-system-parameter
is called specifying SCSI Initiator Identifier system parameters, RTAS must return Status of -3 (Parameter er-
ror) on any of the following conditions:

a. The binary value of the first two bytes in the buffer, plus 2, is greater than the buffer length parameter.

b. The buffer length parameter is greater than 1026.

c. The N bytes of buffer contents (N being the binary value of the first two buffer bytes) does not contain two
NULL terminated strings.

d. The contents of the first NULL terminated buffer string does not match the format of a valid platform loca-
tion code.

e. The contents of the second NULL terminated buffer string does not contain a decimal value in the range of
0 to 15.

R1–7.3.16.12–2. For the SCSI Initiator Identifier System Parameters option: When ibm,set-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–1, the first NULL terminated buffer string must contain a valid formatted plat-
form location code for a currently installed slot owned by the calling OS, or the platform must return “Not
authorized” Status.

R1–7.3.16.12–3. For the SCSI Initiator Identifier System Parameters option: When ibm,set-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–2, the first NULL terminated buffer string must contain a valid formatted plat-
form location code for a SCSI bus connector of a supported SCSI I/O adapter currently installed in a slot
owned by the calling OS, or the platform must return “Parameter Error” Status.

7.3  RTAS Call Function Definition 227

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.12–4. For the SCSI Initiator Identifier System Parameters option: When ibm,set-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–3, the firmware must record the value supplied in the second NULL terminated
buffer string for use in initializing the SCSI initiator identifier of the SCSI I/O adapter contained in the slot
specified by the first NULL terminated buffer string and return a Status of 0 (success) (except in the case of
hardware errors or busy conditions).

R1–7.3.16.12–5. For the SCSI Initiator Identifier System Parameters option: When ibm,get-system-parameter
is called specifying SCSI Initiator Identifier system parameters, RTAS must return a Status of -3 (Parameter
error) on any of the following conditions:

a. The binary value of the first two bytes in the buffer, plus 2, is greater than the buffer length parameter.

b. The buffer length parameter is greater than 1026.

c. The N bytes of buffer contents (N being the binary value of the first two buffer bytes) does not contain one
NULL terminated string.

d. The contents of the NULL terminated buffer string does not match the format of a valid platform location
code.

R1–7.3.16.12–6. For the SCSI Initiator Identifier System Parameters option: When ibm,get-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–5, the NULL terminated buffer string must contain a valid formatted platform
location code for a currently installed slot owned by the calling OS, or the platform must return “Not autho-
rized” Status.

R1–7.3.16.12–7. For the SCSI Initiator Identifier System Parameters option: When ibm,get-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–6, the NULL terminated buffer string must contain a valid formatted platform
location code for a SCSI bus connector of a supported SCSI I/O adapter currently installed in a slot owned by
the calling OS, or the platform must return a Status of -3 (parameter error).

R1–7.3.16.12–8. For the SCSI Initiator Identifier System Parameters option: When ibm,get-system-parameter
is called specifying SCSI Initiator Identifier system parameters, and the request successfully passes the Re-
quirements of R1–7.3.16.12–7, the firmware must:

a. Increase the value contained in the first two bytes of the buffer to cover both the length of the location code
NULL terminated string and a NULL terminated string representing the decimal value that the platform
uses to initialize the SCSI initiator identifier of the SCSI I/O adapter contained in the slot specified by
the first NULL terminated buffer string.

b. If there is room in the buffer, append the NULL terminated string representing the decimal value that the
platform uses to initialize the SCSI initiator identifier of the SCSI I/O adapter contained in the slot spec-
ified by the first NULL terminated buffer string.

c. Return a Status of 0 (success) (except in the case of hardware errors or busy conditions).

R1–7.3.16.12–9. For the SCSI Initiator Identifier System Parameters option: When the platform firmware ini-
tializes an IOA and a SCSI Initiator Identifier system parameter is set for that IOA's slot location code, and
the SCSI Initiator Identifier system parameter is incompatible with the currently installed IOA (IOA is not a
supported SCSI adapter or the connector location codes do not match a SCSI bus connector for that IOA), the
platform must clear the incompatible SCSI Initiator Identifier system parameter and proceed to initialize the
IOA using platform default behaviors.

228 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.3.16.13 CoD Options

The CoD Options system parameter allows specification of various CoD options.

R1–7.3.16.13–1. When ibm,get-system-parameter is called specifying the CoD Options system parameter, the first
two bytes of the value returned must contain the full length of the parameter data, including the length of the
NULL. The two byte binary length field is followed by a variable of the form “keyword” followed by “=” fol-
lowed by “value” and terminated by a semicolon (“;”), where the contents of “value” must be an ASCII print-
able character string.

R1–7.3.16.13–2. The corresponding keyword and values for the CoD Options parameter are defined in Table 100‚
“CoD Options System Parameter Keyword and Values‚” on page 228.

7.3.16.14 Platform Error Classification

The Platform Error Classification system parameter specifies whether the OS should process platform reported errors
as informational errors as opposed to service actionable events.

R1–7.3.16.14–1. When ibm,get-system-parameter is called specifying the Platform Error Classification system pa-
rameter, the platform must return a value of “1” if all errors returned in event-scan, check-exception,
rtas-last-error and ibm,slot-error-detail calls should be treated as informational errors in the sense that they
not be reported by service applications as service actionable events and otherwise must return a value of
“0”.

Programming Note: Service applications within an operating system may obtain information about platform errors and
take service actions (such as reporting the errors to a call center or other error aggregation point) based on errors
logged. Service applications running in multiple partitions, each receiving platform error events, may all report
the same error to an aggregation point causing duplicated error reports. To eliminate this duplication, a platform
might choose to log errors to only one partition in a system. That, however, would leave an incomplete error record
in individual partition and eliminate notifications that each partition OS should be aware of (such as EPOW
events).

To allow platform errors to be reported to an OS, but prevent the forwarding of the errors as service actionable events
to an error aggregation point, the Platform Error Classification system parameter may be set to a value of 1.

The OS should not change how it logs an error based on this parameter, nor should the OS change any error severity as-
sociated with the log based on the parameter. Rather it is left to service applications to query the system parameter and
take actions based on it.

7.3.16.15 Firmware Boot Options

The Firmware Boot Options system parameter allows specification of various firmware boot settings.

R1–7.3.16.15–1. When ibm,get-system-parameter is called specifying the Firmware Boot Options system parame-
ter, the first two bytes of the value returned must be binary and must contain the full length of the parameter
data, including the length of the NULL, and the field following length field must be a variable of the form:

Table 100. CoD Options System Parameter Keyword and Values

Keyword Permitted Values Definition

LPoptions yes, no
no: The platform does not support the Low Priced adapters and devices.
yes: The platform supports the Low Priced adapters and devices.
Absence of the keyword is the same as the keyword with the value of “yes”.

7.3  RTAS Call Function Definition 229

LoPAPR, Version 1.1 (March 24, 2016)

“keyword” followed by “=” followed by “value” and terminated by a semicolon (“;”), where the contents of
“value” must be an ASCII printable character string.

R1–7.3.16.15–2. When ibm,set-system-parameter is called specifying the Firmware Boot Options system parame-
ter, the first two bytes of the buffer must be binary and must contain the full length of the parameter data, in-
cluding the length of the NULL, and the field following length field must be a variable of the form:
“keyword” followed by “=” followed by “value” and terminated by a semicolon (“;”), where the contents of
“value” must be an ASCII printable character string, and if the caller is not authorized to adjust at least one of
the specified keywords, the call must return with a status of -9002.

R1–7.3.16.15–3. Keyword and values for the Firmware Boot Options parameter must be as defined in Table 101‚
“Firmware Boot Options System Parameter Keywords and Values‚” on page 229.

7.3.16.16 Platform Processor Diagnostics Options

The platform-processor-diagnostics-run-mode system parameter allows the operating system to query or control how
platform run-time processor diagnostics are executed by the platform. Provision is made by this parameter for the plat-
form to execute run-time diagnostic tests to verify various processor functions. These diagnostics tests typically would
be performed by the hypervisor against each processor in the system.

R1–7.3.16.16–1. When ibm,get-system-parameter is called with the platform-processor-diagnostics-run-mode to-
ken, the platform must return a one-byte parameter indicating the current run-mode of platform processor di-
agnostics as one of the following:

a. 0 = disabled: indicates that the platform will not run processor run-time diagnostics.

b. 1 = staggered: indicates that the platform is set to run processor diagnostics on each processor on a periodic
basis, but not attempt to schedule the tests for all processors at the same time. The frequency at which the
tests will run are defined by the platform.

c. 2 = immediate: indicates that the platform is currently in the processor of running diagnostics against the
processors in a system on a non-staggered basis, either as a result of an “immediate” or “periodic” set-
ting.

d. 3 = periodic: indicates that the platform is scheduled to run diagnostics against all the processors in the sys-
tem at a specific time scheduled by the platform.

R1–7.3.16.16–2. When ibm,set-system-parameter is called specifying the platform-processor-diagnostics-run-mode
token, the one-byte parameter passed must indicate the run-mode of platform periodic diagnostics desired as
one of the following:

a. 0 = disabled: indicates that the platform should not run any processor run-time diagnostics. Any currently
running diagnostics will be terminated.

b. 1 = staggered: indicates that the platform should run diagnostics periodically against each processor in the
system, but not attempt to schedule the tests for all processors at the same time. The frequency at which
the tests will run are defined by the platform.

Table 101. Firmware Boot Options System Parameter Keywords and Values

Keyword Permitted Values Definition

PlatformBootSpeed fast, slow
fast: The platform will perform a minimal set of hardware tests before loading the OS.
slow: The platform will perform a comprehensive set of hardware tests before loading the OS.
Absence of the keyword implies the platform does not support an alterable boot speed.

230 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

c. 2 = immediate: indicates that the platform should immediately begin the process of running processor diag-
nostics on all of the processors in the system, This setting only temporarily overrides the setting of “dis-
abled”, “staggered” or “periodic” and the platform will revert to the last setting of “disabled”,
“staggered” or “periodic” once the immediately run diagnostics are complete.

Implementation Notes: To prevent conflicts in the setting of the run-mode, the platform should only support this
parameter for one partition in a running system. The options may also be set by the platform. The last value set
will take precedent over any previous settings.

7.3.16.17 Processor Module Information

The Processor Module Information system parameter allows transferring of certain processor module information from
the platform to the OS. The information in the parameter is global for the platform and encompasses all resources on
the platform, not just those available to the partition, and the ibm,get-system-parameter will never return a Status of
-9002 (Not Authorized). This parameter is read-only.

R1–7.3.16.17–1. For the LPAR option with the System Parameters option: If the platform supports the Proces-
sor Module Information system parameter, then it must provide the following information in the parameter,
and the information returned for every partition must be the same, with all the resources of the platform en-
compassed:

2 byte binary number (N) of module types followed by N module specifiers of the form:
2 byte binary number (M) of sockets of this module type
2 byte binary number (L) of chips per this module type
2 byte binary number (K) of cores per chip in this module type.

R1–7.3.16.17–2. For the LPAR option with the System Parameters option: For the Processor Module Informa-
tion system parameter, the ibm,get-system-parameter RTAS call must never return a Status of -9002 (Not Au-
thorized), and the ibm,set-system-parameter RTAS call must always return a Status of -9002 (Setting not
allowed/authorized).

7.3.16.18 Cede Latency Settings Information

The Cede Latency Settings Information system parameter informs the OS of the maximum latency to wake up from the
various platform supported processor sleep states that it might employ for idle processors. The information in the pa-
rameter is global for the platform and encompasses all processors on the platform, and the ibm,get-system-parameter
will never return a Status of -9002 (Not Authorized). This parameter is read-only. As the architecture evolves, the num-
ber of fields per record are likely to increase, calling software should be written to handle fewer fields (should it find it-
self running on a platform supporting an older version of the architecture) and ignore additional fields (should it find
itself running on a platform supporting a newer version of the architecture). Due to partition migration, the support for
the cede latency setting system parameter, the number of supported cede latency settings (and thus the number of re-
ported records) and the number of fields reported per record might change from call to call; calling software should be
written to handle this variability

R1–7.3.16.18–1. For the PEM option with the System Parameters option: If the platform supports the cede la-
tency settings information system parameter it must provide the following information in the NULL termi-
nated parameter string:

a. The first byte is the binary length “N” of each cede latency setting record minus one (zero indicates a
length of 1 byte)

b. For each supported cede latency setting a cede latency setting record consisting of: The first “N” bytes of
Table 102‚ “Byte definitions within a cede latency setting record‚” on page 231.

7.3  RTAS Call Function Definition 231

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.18–2. For the PEM option with the System Parameters option: For the cede latency specifier system
parameter, the ibm,get-system-parameter RTAS call must never return a Status of -9002 (Not Authorized),
and the ibm,set-system-parameter RTAS call must always return a Status of -9002 (Setting not allowed/autho-
rized).

7.3.16.19 Target Active Memory Compression Factor

The target active memory compression factor system parameter informs the OS of the target memory capacity increase
the customer expects to achieve due to active memory compression. The factor is expressed in whole percentage with
the minimum value of 100 and the maximum value of 1000.

The ibm,get-system-parameter for parameter token 46 will never return a Status of -9002 (Not Authorized). This pa-
rameter is read-only.

R1–7.3.16.19–1. For the Active Memory Compression option with the System Parameters option: For the Tar-
get Active Memory Compression Factor system parameter, the ibm,get-system-parameter RTAS call must
never return a Status of -9002 (Not Authorized).

R1–7.3.16.19–2. For the Active Memory Compression option with the System Parameters option: If the Ac-
tive Memory Compression option is enabled for the partition, the platform must provide in response to the
ibm,get-system-parameter for parameter token 46 the two byte target active memory compression factor in
binary format in the range (0x0064 -- 0x03E8) (equivalent to 100 -- 1000 decimal).

R1–7.3.16.19–3. For the Active Memory Compression option with the System Parameters option: If the Ac-
tive Memory Compression option is disabled for the system/partition, the platform must provide in response
to the ibm,get-system-parameter for parameter token 46 the two byte value 0x0000.

R1–7.3.16.19–4. For the Active Memory Compression option with the System Parameters option: For the target ac-
tive memory compression factor system parameter, the ibm,set-system-parameter RTAS call must always return a
Status of -9002 (Setting not allowed/authorized).

7.3.16.20 Performance Boost Modes Vector

A variety of platform dependent configuration modes might result in a boost in platform computational capacity. The
ibm,get-system-parameter through the performance boost modes vector system parameter communicates to the client
program which of these modes are available on the specific platform, which of these modes the client program may en-
able/disable, and which ones are active.

The performance boost mode vectors are 32 bytes (256 bits) long. Each bit position within the performance boost mode
vector corresponds to a specific function as specified in Table 103‚ “Performance Boost Modes Vector Bits Defini-

Table 102. Byte definitions within a cede latency setting record

Order of fields within a record Field Length Values Comments

Cede Latency Specifier Value 1 Binary Values 0-255
Records in ascending cede

latency specifier value order
with no holes.

Maximum wakeup latency in
time base ticks

8
0x0000000000000000 –
0xFFFFFFFFFFFFFFFF

Responsive to external
interrupts

1 Binary True/False

232 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

tions‚” on page 232. The first defined boost mode is assigned to the highest order bit position. As new boost modes are
defined, they are assigned to sequential lower order vector bit positions.

Given that the second version of the vector from the ibm,get-system-parameter RTAS call (specifying which modes
may be enabled/disabled by the client program) is non-zero, the platform supports calling the ibm,set-system-parame-
ter RTAS call specifying the performance boost modes vector token. The ibm,set-system-parameter RTAS call specify-
ing the performance boost modes vector token takes a single vector as input.

R1–7.3.16.20–1. For the Performance Boost Modes option: The platform must implement the System Parame-
ters option.

R1–7.3.16.20–2. For the Performance Boost Modes option: The 96 byte report returned by ibm,get-system-pa-
rameter for parameter token 47 must consist of three 32 byte bit vectors as defined by Table 103‚ “Perfor-
mance Boost Modes Vector Bits Definitions‚” on page 232.

R1–7.3.16.20–3. For the Performance Boost Modes option: The first 32 byte bit vector returned by ibm,get-sys-
tem-parameter for parameter token 47 must contain 1s in the bit positions define by Table 103‚ “Performance
Boost Modes Vector Bits Definitions‚” on page 232 for the performance boost modes that are both supported
by the platform and authorized for the caller (by means outside of the scope of LoPAPR).

R1–7.3.16.20–4. For the Performance Boost Modes option: The second 32 byte bit vector returned by
ibm,get-system-parameter for parameter token 47 must contain 1s in the bit positions define by Table 103‚
“Performance Boost Modes Vector Bits Definitions‚” on page 232 for the performance boost modes that are
both represented in the first vector and may be enabled/disabled by the caller through the ibm,set-system-pa-
rameter using parameter token 47.

R1–7.3.16.20–5. For the Performance Boost Modes option: The third 32 byte bit vector returned by ibm,get-sys-
tem-parameter for parameter token 47 must contain 1s in the bit positions define by Table 103‚ “Performance
Boost Modes Vector Bits Definitions‚” on page 232 for the performance boost modes that are both repre-
sented in the first vector and are enabled either by default or by the caller through the ibm,set-system-param-
eter using parameter token 47.

R1–7.3.16.20–6. For the Performance Boost Modes option: If the ibm,get-system-parameter for parameter token
47 communicated that the client program has the ability to enable/disable one or more of the boost modes,
then the platform must support the performance boost modes vector token for ibm,set-system-parameter.

R1–7.3.16.20–7. For the Performance Boost Modes option: If no boost modes can be enabled/disabled then a call
to ibm,set-system-parameter specifying the boost modes vector token must return either:

 “System parameter not supported” as indeed the implementation need not code support for the token if no
mode setting is supported.

 “Setting not allowed/authorized” if the implementation supports setting boost modes but the caller is not
authorized to do so.

R1–7.3.16.20–8. For the Performance Boost Modes option: If any input vector to the ibm,set-system-parameter
RTAS for parameter token 47 is a one and does not correspond to a bit that is a one in the second version of

Table 103. Performance Boost Modes Vector Bits Definitions

Bit Position (1 based ordinal) Definition

1 Extended Cache Option

2-- 256 Reserved

7.3  RTAS Call Function Definition 233

LoPAPR, Version 1.1 (March 24, 2016)

the vector returned by the ibm,get-system-parameter RTAS for parameter token 47 the ibm,set-system-pa-
rameter RTAS must return parameter error.

R1–7.3.16.20–9. For the Performance Boost Modes option: If the corresponding bit that was a one in the second
version of the vector returned by the ibm,get-system-parameter RTAS for parameter token 47 is a one in the
input vector to the ibm,set-system-parameter RTAS for parameter token 47 then upon successful return that
corresponding boost mode must be enabled.

R1–7.3.16.20–10. For the Performance Boost Modes option: If the corresponding bit that was a one in the second
version of the vector returned by the ibm,get-system-parameter RTAS for parameter token 47 is a zero in the
input vector to the ibm,set-system-parameter RTAS for parameter token 47 then upon successful return that
corresponding boost mode must be disabled.

R1–7.3.16.20–11. For the Performance Boost Modes option: To properly awake from partition suspension and
handle dynamic reconfiguration, the client program must be prepared to handle changes in the bit settings
within the bit vectors reported by the ibm,get-system-parameter RTAS for parameter token 47.

R1–7.3.16.20–12. For the Performance Boost Modes option: Since it is expected that bit positions define by
Table 103‚ “Performance Boost Modes Vector Bits Definitions‚” on page 232 will expand over time, to avoid
firmware level compatibility issues, the client program must ignore bit settings within the bit vectors reported
by the ibm,get-system-parameter RTAS for parameter token 47 beyond those defined when the client pr gram
was designed.

7.3.16.21 Universally Unique IDentifier

The Universally Unique IDentifier (UUID) option provides each partition with a Universally Unique Identifier that is
persisted by the platform across partition reboots, reconfigurations, OS reinstalls, partition migration, hibernation etc.
The UUID is a 16 byte string of format fields and random bits as defined in Table 104‚ “UUID Format‚” on page 233.
The random bits are generated in an implementation dependent manner to achieve a projected probability of collision
of not greater than one in 2**60.

R1–7.3.16.21–1. For the UUID option with the System Parameters option: For the UUID system parameter, the
ibm,get-system-parameter RTAS call must never return a Status of -9002 (Not Authorized).

R1–7.3.16.21–2. For the UUID option with the System Parameters option: If the UUID option is enabled for the
partition, the platform must provide in response to the ibm,getsystem-parameter for parameter token 48 the
calling partition unique 16 byte sting as described in Table 104‚ “UUID Format‚” on page 233.

Table 104. UUID Format

Field Byte:Bit Size (Bits) Values

Version 0:0 1
0: Initial Version
1: Reserved

Random Bits 0:1 thru 5:7 47 Random Bits

Generation Method 6:0-3 4
0b0000 Never Used
0b0100 Random Generated
All other values are reserved

Random Bits 6:4 - 7:7 12 Random Bits

Variant 8:0-1 2
0b10 DCE Variant UUID
All other values are reserved

Random Bits 8:2 - 15:7 62 Random Bits

234 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.3.16.21–3. For the UUID option with the System Parameters option: If the UUID option is disabled for
the system/partition, the platform must provide in response to the ibm,get-system-parameter for parameter to-
ken 48 the two byte value 0x0000.

R1–7.3.16.21–4. For the UUID option with the System Parameters option: For the UUID system parameter, the
ibm,set-system-parameter RTAS call must always return a Status of -9002 (Setting not allowed/authorized).

7.4 ibm,get-indices RTAS Call

The RTAS function ibm,get-indices is used to obtain the indices and location codes for a specified indicator or sensor
token. It allows for obtaining the list of indicators and sensors dynamically and therefore assists in any Dynamic Re-
configuration operation that involves indicators and sensors being added or deleted from the platform (unlike the
/rtas node “<vendor>,indicator-<token>”, “<vendor>,sensor-<token>”, and “ibm,environmen-
tal-sensor” properties). This call also allows discontiguous indices for a particular indicator or sensor type (unlike
the “rtas-indicators”, “rtas-sensors”, and “ibm,environmental-sensor” properties).

This RTAS call is not used for DR indicators (9001, 9002, and 9003) or DR sensors (9003). See the following sections
in the DR chapter for more information: Section 13.5.3.3‚ “get-sensor-state‚” on page 366 and Section 13.5.3.4‚
“set-indicator‚” on page 367.

It may require several calls to the ibm,get-indices RTAS routine to get the entire list of indicators or sensors of a partic-
ular type. Each call may specify a different work area.

The OS may not interleave calls to ibm,get-indices for different indicator or sensor types. Other standard RTAS locking
rules apply.

R1–7.4.0–1. For all DR options: The RTAS function ibm,get-indices must implement the argument call buffer de-
fined by Table 105‚ “ibm,get-indices Argument Call Buffer‚” on page 234.

Table 105. ibm,get-indices Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,get-indices

Number Inputs 5

Number Outputs 2

Indicator or Sensor
0: indicator of given type
1: sensor of given type

Indicator Type Indicator or sensor type (for example, 9006, 9007)

Work Area Address Address of work area

Work Area Size Size of work area

Starting Number Integer representing first indicator number to return

Out

Status

-1: Hardware error
-3: Indicator type not supported
-4: Optional: Indicator list changed, start again
0: Success
1: More data available; call again
990x:Extended Delay where x is a number 0-5 (see text below)

Next Starting Number
Integer to use as the Starting Number parameter on the next call,
or 1 if no more calls are required

7.4  ibm,get-indices RTAS Call 235

LoPAPR, Version 1.1 (March 24, 2016)

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling ibm,get-indices with the same Starting Number and Indicator Type.
However, software may issue the ibm,get-indices call again either earlier or later than this.

R1–7.4.0–2. The OS must not interleave calls to ibm,get-indices for different indicator or sensor types.

R1–7.4.0–3. On the first call to get a particular Indicator Type, the caller must provide a Starting Number of 1
(32-bit integer)

R1–7.4.0–4. When ibm,get-indices is called with a Starting Number of 1, firmware must refresh any stale data in
previously cached firmware buffers for that indicator (for example, data made stale by a Dynamic Reconfigu-
ration operation).

R1–7.4.0–5. When calling ibm,get-indices with a Starting Number of 1, a previously returned Next Starting Number
value must be discarded.

R1–7.4.0–6. Optionally, if firmware detects a change in the indicator list before the entire list is returned, the
ibm,get-indices call must return a -4 and the caller must start again with a Starting Number of 1.

R1–7.4.0–7. The return data format in the work area for all sensors and indicators must be as follows:

 Number Returned: 32-bit integer representing the number of indicator indices returned on this call

 Sets of (32-bit integer index, 32-bit integer length of location code including NULLs, location code string
(NULL terminated and padded to nearest 4 byte boundary)), one set per indicator or sensor, with the num-
ber of sets indicated by the first integer in this work buffer

R1–7.4.0–8. If the Status returned is 1 (more data available, call again), then the caller must call ibm,get-indices
again with the Starting Number parameter set to the Next Starting Number integer from the previously re-
turned buffer.

R1–7.4.0–9. The ibm,get-indices RTAS call must return the Status value of -3 for the following conditions:

a. Indicator type not supported

b. No indicators of specified Indicator Type available to caller

R1–7.4.0–10. If the ibm,get-indices RTAS call returns a Status of anything other than 0 or 1 is returned, the caller
must consider that the contents of the work area is not defined.

R1–7.4.0–11. The work area specified in the ibm,get-indices RTAS call argument buffer must be contiguous in log-
ical real memory and must reside below 4GB.

R1–7.4.0–12. The ibm,get-indices RTAS call must only return the indicator or sensor indices to which the caller has
authorized access at the time of the call.

R1–7.4.0–13. The ibm,get-indices RTAS call must make no assumptions about the contents of the work area on the
beginning of the call.

R1–7.4.0–14. When the platform supports the ibm,get-indices RTAS call, the device tree must include the
“ibm,get-indicator-indices-types” property in the /rtas node if the call is to be used for get-
ting indicator information and must include the “ibm,get-sensor-indices-types” property in the
/rtas node if the call is to be used for getting sensor information.

R1–7.4.0–15. When an indicator token is provided in the “ibm,get-indicator-indices-types” prop-
erty, it must not be included in the “<vendor>,indicator-<token>” property and must not be in-
cluded in the “rtas-indicators” property.

236 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.0–16. When a sensor token is provided in the “ibm,get-sensor-indices-types” property, it must
not be included in the “<vendor>,sensor-<token>” property and must not be included in the
“rtas-sensors” property.

R1–7.4.0–17. When an environmental sensor token is provided in the “ibm,get-sensor-indices-types”
property, users of data in the “ibm,environmental-sensors” property for that sensor token must
not assume that the indices are contiguous for that sensor token (that is, any of the indices between 0 and the
maxindex, inclusive, may be missing).

R1–7.4.0–18. When the value of any index returned is 0xFFFFFFFF, the OS must use the ibm,get-dynamic-sen-
sor-state and ibm,set-dynamic-indicator RTAS functions for this sensor or indicator, using the location code
to identify the sensor or indicator.

R1–7.4.0–19. The OS must not call get-sensor-state or get-indicator with an index value of 0xFFFFFFFF.

7.4.1 ibm,set-dynamic-indicator RTAS Call

This RTAS call behaves as the RTAS set-indicator call, except that the instance of the indicator is identified by a loca-
tion code instead of a index.

R1–7.4.1–1. Platforms that implement any indicators that are identified by location code instead of index (see Re-
quirement R1–7.4.0–18) must implement the ibm,set-dynamic-indicator RTAS function.

R1–7.4.1–2. The RTAS function ibm,set-dynamic-indicator must implement the argument call buffer defined by
Table 106‚ “ibm,set-dynamic-indicator Argument Call Buffer‚” on page 236.

When 990x Status is returned, it is suggested that software delay for 10 raised to the power x milliseconds (where x is
the last digit of the 990x return code), before calling ibm,set-dynamic-indicator with the same indicator type and loca-
tion code. However, software may call ibm,set-dynamic-indicator again either earlier or later than this.

Table 106. ibm,set-dynamic-indicator Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,set-dynamic-indicator

Number Inputs 3

Number Outputs 1

Indicator
Token defining the indicator
9006: Error Log
9007: Identify Indicator

State
Desired new state; see Table 40‚ “Defined Indicators‚” on
page 143.

Location Code Address
Real or Logical address of a location code string, in the format
defined by Requirement R1–7.4.1–5

Out Status

-1: Hardware error
-2: Busy, try again later
-3: No such indicator
0: Success

990x: Extended delay, where x is a number between 0 and 5, as
described below

7.4  ibm,get-indices RTAS Call 237

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.1–3. The OS must not call ibm,set-dynamic-indicator with a different indicator until a non-busy return Sta-
tus has been received from the previous ibm,set-dynamic-indicator call.

R1–7.4.1–4. The location code string referenced by the Location Code Address argument in the ibm,set-dynamic-in-
dicator argument call buffer must reside in contiguous in real memory below an address of 4GB.

R1–7.4.1–5. The input data format in the work area must be as follows:

a. 32-bit integer length of the location code string, including NULL

b. Location code string, NULL terminated, identifying the sensor to be set.

R1–7.4.1–6. The platform must not modify the location code string.

R1–7.4.1–7. The OS must only use this call for indicators which have been provided by the ibm,get-indices RTAS
call with an index value of 0xFFFFFFFF.

R1–7.4.1–8. Platforms must identify all indicators except types 9006 and 9007 by index.

R1–7.4.1–9. The ibm,set-dynamic-indicator RTAS call must return A Status of -3 for the following conditions:

a. Indicator type not supported

b. The specified location code does not identify a valid indicator

7.4.2 ibm,get-dynamic-sensor-state RTAS Call

This RTAS call behaves as the RTAS get-sensor-state call, except that the instance of the sensor is identified by a loca-
tion code instead of a index.

R1–7.4.2–1. Platforms that implement any sensors that are identified by location code instead of index (see Re-
quirement R1–7.4.0–18) must implement the ibm,get-dynamic-sensor-state RTAS function.

R1–7.4.2–2. The RTAS function ibm,get-dynamic-sensor-state must implement the argument call buffer defined by
Table 107‚ “ibm,get-dynamic-sensor-state Argument Call Buffer‚” on page 237.

Table 107. ibm,get-dynamic-sensor-state Argument Call Buffer

Parameter Type Name Values

In Token Token for ibm,get-dynamic-sensor-state

Number Inputs 2

Number Outputs 2

Sensor Token defining the sensor

Location Code Address
Real or Logical address of a location code string, in the format
defined by Requirement R1–7.4.2–5

Out Status

-1: Hardware error
-2: Busy, try again later
-3: No such indicator
0: Success

990x: Extended delay, where x is a number between 0 and 5, as
described below

State
Current state of the sensor as defined in the Defined Values
column of Table 42‚ “Defined Sensors‚” on page 147

238 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

When 990x Status is returned, it is suggested that software delay for 10 raised to the power x milliseconds (where x is
the last digit of the 990x return code), before calling ibm,get-dynamic-sensor-state with the same indicator type and lo-
cation code. However, software may call ibm,get-dynamic-sensor-state again either earlier or later than this.

R1–7.4.2–3. The OS must not call ibm,get-dynamic-sensor-state with a different sensor until a non-busy return Sta-
tus has been received from the previous ibm,get-dynamic-sensor-state call.

R1–7.4.2–4. The work area must be contiguous in real memory and must reside below 4GB.

R1–7.4.2–5. The input data format in the work area must be as follows:

a. 32-bit integer length of the location code string, including NULL

b. Location code string, NULL terminated, identifying the sensor to be set.

R1–7.4.2–6. The platform must not modify the location code string.

R1–7.4.2–7. The OS must only use this call with sensors which have been provided by the ibm,get-indices RTAS
call with an index value of 0xFFFFFFFF.

R1–7.4.2–8. The platform must use the ibm,get-dynamic-sensor-state RTAS call only for dynamic sensor types of
9004, 9006 and 9007.

R1–7.4.2–9. A Status of -3 must be returned for the following conditions:

a. Sensor type not supported

b. The specified location code does not identify a valid sensor

7.4.3 ibm,get-vpd RTAS Call

This RTAS call allows for collection of VPD that changes after OS boot time (after the initial reporting in the OF de-
vice tree). When this call is implemented, there is no overlap between what is reported in the device tree and what is re-
ported with this RTAS call. Also, when this RTAS call is implemented, all VPD, except PCI and I/O device VPD,
which is dynamically changed during OS run time is reported with this call and not via the “ibm,vpd” property in
the OF device tree.

R1–7.4.3–1. For all Dynamic Reconfiguration options except PCI Hot Plug, when the platform VPD can change
dynamically due to a Dynamic Reconfiguration operation, the platform must implement the ibm,get-vpd
RTAS call.

R1–7.4.3–2. The RTAS function ibm,get-vpd must implement the argument call buffer defined by Table 108‚
“ibm,get-vpd Argument Call Buffer‚” on page 239.

7.4  ibm,get-indices RTAS Call 239

LoPAPR, Version 1.1 (March 24, 2016)

When the 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the
last digit of the 990x return code), before calling ibm,get-vpd with the same input parameters. However, software may
issue the ibm,get-vpd call again either earlier or later than this.

R1–7.4.3–3. On the first call to ibm,get-vpd for a particular VPD gathering operation, the caller must provide a Se-
quence Number of 1 (32-bit integer)

R1–7.4.3–4. Upon calling ibm,get-vpd with a Sequence Number of 1, a previously returned Next Sequence Number
must be discarded. This means that multiple calls to ibm,get-vpd cannot be interleaved by multiple proces-
sors, and if processor “B” starts a new ibm,get-vpd sequence while processor “A” has a call sequence in pro-
cess (that is, the function on processor “A” has returned a Status of 1, and the subsequent call has not yet been
made) then the call sequence on processor “A” is abandoned.

R1–7.4.3–5. Optionally, if firmware detects a change in the VPD being requested before the entire VPD is returned,
the ibm,get-vpd call must return a Status of -4 and the caller must start again with a Starting Number of 1.

Implementation Note: The platform should not impede forward progress by continuously returning a Status of -4.

R1–7.4.3–6. The return data format in the work area must be such that after returning all the data and concatenating
all data together in the order received, that the data is the same as is obtained from the “ibm,vpd” property
of the OF device tree.

R1–7.4.3–7. Each stanza of the returned data must include the YL (location code) keyword.

Table 108. ibm,get-vpd Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,get-vpd

Number Inputs 4

Number Outputs 3

Pointer to Location Code

Real address of NULL-terminated string, contiguous in real
memory and below 4GB, which is the location code of the FRU
for which to obtain the VPD. When this parameter references a
NULL string the VPD for all location codes is returned.

Work Area Address Address of work area

Work Area Size Size of work area

Sequence Number
Integer representing the sequence number of the call. First call in
sequence starts with 1, following calls (if necessary) use the Next
Sequence Number returned from the previous call.

Out

Status

-1: Hardware error
-3: Parameter error
-4: Optional: VPD changed, start again
0: Success
1: More data available; call again
990x: Extended Delay where x is a number 0-5 (see text below)

Next Sequence Number
Return this integer as the Sequence Number parameter on the next
call to continue the sequence, or 1 if no more calls are required

Bytes Returned
Integer representing the number of valid bytes returned in the
work area.

240 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.3–8. If the ibm,get-vpd RTAS call is implemented, then the platform must not provide the “ibm,vpd” or
“ibm,loc-code” properties in the OF device tree root node.

R1–7.4.3–9. If the ibm,get-vpd RTAS call is implemented, then any VPD which may change after OS boot must be
reported via the ibm,get-vpd RTAS call.

R1–7.4.3–10. If the Status returned is 1 (more data available, call again), then the caller must call ibm,get-vpd again
with the Sequence Number parameter set to the Next Sequence Number integer from the previously returned
call.

R1–7.4.3–11. If a Status of anything other than 0 or 1 is returned, the contents of the work area is not defined.

R1–7.4.3–12. The work area must be contiguous in real memory and must reside below 4GB.

R1–7.4.3–13. Firmware cannot count on the contents of the work area at the beginning of any call to ibm,get-vpd
(regardless of the value of the Sequence Number).

R1–7.4.3–14. The location code referenced by the Pointer to Location Code parameter must reside in contiguous
real memory below an address of 4GB.

R1–7.4.3–15. If the ibm,get-vpd RTAS call is implemented, then firmware must supply the “ibm,vpd-size”
property in the /rtas node, the value of which is a single cell, encoded as with encode-int, which is the
estimated maximum size in bytes of the VPD that is returned if the Pointer to Location Code parameter to the
ibm,get-vpd RTAS function is NULL (that is, all system VPD). This size should take in to account possible
concurrent addition of new platform elements after the partition is started. If firmware is unable to estimate
this size, it may return a value of 0x0 to indicate that no estimate is available.

Software Implementation Notes:

1. An OS should be prepared for older versions of firmware where the “ibm,vpd-size” property is not
provided.

2. Each stanza of the returned data must include the YL (location code) keyword.

7.4.4 Managing Storage Preservation

Platforms may optionally preserve selected regions of storage (LMBs) across client program boot cycles. See
Section 2.1.3.6.12‚ “Persistent Memory and Memory Preservation Boot (Storage Preservation Option)‚” on page 49
for more information.

R1–7.4.4–1. For the Storage Preservation option: The platform must implement the ibm,manage-storage-preser-
vation RTAS argument call buffer as defined by Table 109‚ “ibm,manage-storage-preservation Argument
Call Buffer‚” on page 241.

7.4  ibm,get-indices RTAS Call 241

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.4–2. For the Storage Preservation option: The platform must include the “ibm,preservable” prop-
erty in the /memory nodes of its OF device tree, containing a value which reflects the platform's ability to
preserve the specific LMB.

R1–7.4.4–3. For the Storage Preservation option: The value of the “ibm,preservable” property for the first
LMB must be 0 (cannot be preserved).

R1–7.4.4–4. For the Storage Preservation option: The platform must not preserve the first LMB, thus must indi-
cate a value of 0 for the “ibm,preservable” property for the first LMB.

R1–7.4.4–5. For the Storage Preservation option: The platform must include the “ibm,preserved” property
in the /memory nodes of its OF device tree, valued to reflect the platform's preservation state of the specific
LMB.

R1–7.4.4–6. For the Storage Preservation option: The platform, on a reboot, must include in the OF /rtas node
the “ibm,preserved-storage” property if the previous client program registered one or more of its
LMBs for preservation.

R1–7.4.4–7. For the Storage Preservation option: If the client program registered an LMB for preservation, the
platform must preserve the LMB's storage state across client program reboots.

R1–7.4.4–8. For the Storage Preservation option: The platform, on a reboot, must include in the OF /rtas node
the “ibm,request-partition-shutdown” property which reflects the value of the partition shut-
down configuration variable, and if this property is not present, a value of 0 must be assumed by the OS.

Table 109. ibm,manage-storage-preservation Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,manage-storage-preservation

Number Inputs 3

Number Outputs 2

Subfunction

0 = unused (return -3)
1 = Register specified LMB for preservation
2 = Query preservation state of specified LMB
3 = Deregister for preservation Specific LMB
4 = Deregister for preservation all caller’s LMBs.
All other values reserved (return -3)

Reg High
The high order 32 bits of the LMB's “reg” property
(Subfunctions 1-3)

Reg Low
The low order 32 bits of the LMB's “reg” property
(Subfunctions 1-3)

Out

Status

-1: Hardware error
-2: Busy
-3: Parameter error (Subfunction or Reg invalid; or Reg for a
non-preservable LMB)
0: Success
990x: Extended delay where x is a number 0-5

Preservation state
If Status = Success, the current preservation state of specified
LMB (Subfunctions 1-3)

242 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.4.5 ibm,lpar-perftools RTAS Call

This RTAS call provides access to platform-level facilities for performance tools running in a partition on an LPAR
system. Platforms may require platform-specific tools, beyond the scope of this architecture, to make this call avail-
able.

R1–7.4.5–1. For the Performance Tool Support option: The platform must implement the LPAR option.

R1–7.4.5–2. For the Performance Tool Support option: RTAS must implement the ibm,lpar-perftools call using
the argument call buffer defined by Figure 110‚ “ibm,lpar-perftools Argument Call Buffer‚” on page 242.

When 990x Status is returned, it is suggested that software delay for 10 raised to the x milliseconds (where x is the last
digit of the 990x return code), before calling the ibm,lpar-perftools call with the same input parameters. However, soft-
ware may issue the ibm,lpar-perftools call again earlier or later than this.

R1–7.4.5–3. For the Performance Tool Support option: For subfunction value 1, on input the first 8 bytes of the
work area must contain the hypervisor IAR address to be converted. On output, the first 8 bytes of the work
area contain the offset of this address from the start of the hypervisor function, method or module, followed
by a NULL-terminated text string containing the name of the hypervisor function, method or module. If the
address is not a valid address in the hypervisor, on output the buffer must contain 0x0 (8 bytes) followed by a
NULL-terminated text string indicating that the address was not valid.

R1–7.4.5–4. For the Performance Tool support option: The work area must reside in contiguous memory.

R1–7.4.5–5. For the Performance Tool Support option: If a Status of anything other than 0 is returned, the con-
tents of the work area are not defined.

Table 110. ibm,lpar-perftools Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,lpar-perftools

Number Inputs 5

Number Outputs 2

Subfunction 1: Convert hypervisor IAR value to method name.

Work Area Address
High

Most significant 32 bits of real address of work area

Work Area Address
Low

Least significant 32 bits of real address of work area

Work Area Size Size of work area in bytes

Sequence Number
Integer representing the sequence number of this call. First call in sequence starts with 1, following
calls (if necessary) use the Next Sequence Number returned from the previous call.

Out

Status

-1: Hardware Error
-2: Busy
-3: Parameter Error (Subfunction invalid, invalid work area address, invalid work area size)
-9002: Partition does not have authority to perform this function
-5: Buffer was too small to supply requested data
0: Success
990x: Extended delay

Next Sequence
Number

Return this integer as the Sequence Number parameter on the next call, or 1 if no more calls are
required.

7.4  ibm,get-indices RTAS Call 243

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.5–6. For the Performance Tool Support option: A partition must have at most one call to this function in
process at a given time. This means that if one processor in the partition initiates this call, receives a Busy or
Extended Delay return, and then another processor calls this function with a sequence number of 1, a subse-
quent call using the Next Sequence Number returned to the first processor results in a Parameter Error return
code.

7.4.6 ibm,suspend-me RTAS Call

The ibm,suspend-me RTAS call provides the calling OS the ability to suspend processing. Suspension of processing is
required as part of OS hibernation or migration to another platform. This RTAS call is made by the last active processor
thread of a partition. The OS uses the H_JOIN hcall() (see Section 14.11.5.1‚ “H_JOIN‚” on page 466) to deactivate
other processing threads. Processing treads may exit H_JOIN due to an unmaskable interrupt; if a thread has exited
H_JOIN, ibm,suspend-me fails with a status of “multiple processor threads active”. The wake up from suspension is
triggered by partition state change (see Section 17.8.7.1‚ “Partition Migration‚” on page 738 and Section 17.8.7.2‚
“Partition Hibernation‚” on page 740). The ibm,suspend-me RTAS call returns only on the calling virtual processor.
Other virtual processors that were inactive when ibm,suspend-me was called remain so until they are proded by the OS.

While the logical configuration of a suspended partition remains static, the physical properties may change; the OS
may wish to issue ibm,update-nodes (see Section 7.4.7‚ “ibm,update-nodes RTAS Call‚” on page 246) to determine if
any device tree nodes changed, and then refresh its view of the device tree physical properties using ibm,update-prop-
erties (see Section 7.4.8‚ “ibm,update-properties RTAS Call‚” on page 249) and/or ibm,configure-connector (see
Section 13.5.3.5‚ “ibm,configure-connector RTAS Call‚” on page 369). Also during suspension, some system parame-
ters may have changed. See Table 112‚ “System Parameters that May Change During Partition Migration and Hiberna-
tion‚” on page 245, for details. The OS may want to re-scan selected system parameters.

R1–7.4.6–1. For the Partition Suspension option: The platform must implement the Logical Partitioning option
(see Chapter 14, “Logical Partitioning Option,” on page 385).

R1–7.4.6–2. For the Partition Suspension option: RTAS must implement the ibm,suspend-me call within a logical
partition using the argument call buffer defined by Table 111‚ “ibm,suspend-me Argument Call Buffer‚” on
page 243.

R1–7.4.6–3. For the Partition Suspension option: The ibm,suspend-me RTAS call must determine that the calling
partition is in the “suspendable state” (see Table 258‚ “VASI Migration Session States‚” on page 739), else
return a status of -9004 “Partition not suspendable”.

Table 111. ibm,suspend-me Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,suspend-me

Number Inputs 0

Number Outputs 1

Out Status

9000: Suspension Aborted
0: Success -- expected return on function resume
-1: Hardware Error

-9004: Partition not suspendable
-9005: Multiple processor threads active
-9006: Outstanding COP Operations

244 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.6–4. For the Partition Suspension option: The ibm,suspend-me RTAS call must determine that the calling
partition has no other active processor thread, else return a status of -9005 “Multiple processor threads ac-
tive”.

R1–7.4.6–5. For the Partition Suspension option: The platform must implement the Thread Join option (see
Section 14.11.5‚ “Thread Join Option‚” on page 466).

R1–7.4.6–6. For the Partition Suspension option: The platform must restore all partition state as of the time of the
call to ibm,suspend-me prior to returning from the ibm,suspend-me RTAS call, except for the values of those
Open Firmware Device tree properties as reported using the Update OF Tree option, and the system parame-
ters given in Table 112‚ “System Parameters that May Change During Partition Migration and Hibernation‚”
on page 245.

R1–7.4.6–7. For the Partition Suspension option: The platform must be prepared to respond to OS requests for
updated device tree information immediately after returning from the ibm,suspend-me RTAS call.

R1–7.4.6–8. For the Partition Suspension option: The platform must support the “update OF tree” option.

R1–7.4.6–9. For the Partition Suspension option: The platform must support the “Partner partition suspended”
CRQ Transport Event (See Table 232‚ “Transport Event Codes‚” on page 622).

R1–7.4.6–10. For the Partition Suspension option: The ibm,suspend-me RTAS call must cause the platform to de-
liver “Partner partition suspended” CRQ Transport Events to both CRQs of all CRQ connections associated
with the partition calling ibm,suspend-me.

Note: The transport events are visible to the partition calling ibm,suspend-me after the subsequent resume from
suspension, while the transport events are immediately visible to the partner partitions of the caller at the time of
the suspend.

R1–7.4.6–11. For the Partition Suspension option: The ibm,suspend-me RTAS call must cause the platform to set
the state of all of the caller’s CRQs to disabled.

R1–7.4.6–12. For the Partition Suspension option: The platform must implement the H_ENABLE_CRQ hcall()
using the syntax and semantics described in Section 17.2.3.1.5.4‚ “H_ENABLE_CRQ‚” on page 641.

R1–7.4.6–13. For platforms that implement the Partition Suspension and VSCSI options: The “compati-
ble” property of the platform’s v-scsi and v-scsi-host nodes must include “IBM,v-scsi-2” and
“IBM,v-scsi-host-2” respectively indicating the platform supports the “Partner partition suspended”
CRQ Transport Event.

R1–7.4.6–14. For the Partition Suspension option: If the OS is participating in OS surveillance, to avoid a sur-
veillance time out, the OS must disable surveillance (see Section 7.3.5.2.1‚ “Surveillance‚” on page 138)
prior to calling ibm,suspend-me.

R1–7.4.6–15. For the Partition Suspension option: The platform must implement the LRDR option (See
Section 13.7‚ “Logical Resource Dynamic Reconfiguration (LRDR)‚” on page 377).

R1–7.4.6–16. For the Partition Suspension option: The logical configuration of a partition, including its view of
the rtas-display-device, and rtas tone facility must not change while a partition is suspended.

R1–7.4.6–17. For the Partition Suspension option: The platform must not change the support for a system param-
eter during suspension.

7.4  ibm,get-indices RTAS Call 245

LoPAPR, Version 1.1 (March 24, 2016)

NOTE: If RTAS returns a status of -3 (System parameter not supported) prior to suspension, it returns a Status of -3 for
accesses to that same system parameter after suspension. Similarly if RTAS does not return a Status of -3 prior to
suspension for a given system parameter, it does not do so after suspension.

R1–7.4.6–18. For the Partition Suspension option: The platform must limit the system parameters that change
values during suspension to those specified in Table 112‚ “System Parameters that May Change During Parti-
tion Migration and Hibernation‚” on page 245 (all system parameters not specified are preserved).

R1–7.4.6–19. For the Partition Suspension option: The platform must preserve up to the first 32 SLB entries for
each partition processor during the suspension. Other SLB entries are subject to loss.

R1–7.4.6–20. For the Partition Suspension option with the Platform Facilities Option: The ibm,suspend-me
RTAS call must determine that the calling partition has no outstanding coprocessor operations else return a
status of -9005 “Outstanding COP Operations”.

Table 112. System Parameters that May Change During Partition Migration and Hibernation

System Parameter Token Name

0-15 HMC

18-19 Legacy processor CoD

20
SPLPAR characteristics

Only specified SPLPAR keywords may change
value

DesiredEntitledCapacity

DesiredMemory

DesiredNumberOfProcessors

DesiredVariableCapacityWeight

DispatchWheelRotationPeriod

MinimumEntitledCapacityPerVP
 Platform prevents migration where current Entitled
Capacity/VCPU ratio would be below the target's

minimum.

MaximumPlatformProcessors

22 platform_auto_power_restart

23 sp-remote-pon

24 sp-rb4-pon

25 sp-snoop-str

30 sp-call-home

31 sp-current-flash-image

33 epow3-quiesce-time

34 memory-preservation-boot-time

35 SCSI initiator identifier

36 AIX support
The keyword “support” may not change to the value

“no” for an AIX client.

37 enhanced processor CoD

246 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

7.4.7 ibm,update-nodes RTAS Call

This RTAS call is used to determine which device tree nodes have changed due to a massive platform reconfiguration
such as when the partition is migrated between machines. Differing platform reconfigurations are expected to poten-
tially result in different sets of nodes being updated; the “scope” argument communicates what set of changes are to be
reported. The work area is a 4 KB naturally aligned area of storage below the first 4 GB; as such, it may not be large
enough to contain the reports of all changed nodes. The status value of 1 is used to inform the caller that there are more
updates to report and that it will have to call the ibm,update-nodes RTAS again to receive them. On subsequent calls
the state variable, which is set to zero on the first call, is set to the value returned on the previous call, to supply RTAS
with the information it needs to continue from where the previous call ended.

Upon return, the work area contains, in addition to the state variable, zero or more operation lists, and logically ends
with a terminator (4 byte word naturally aligned containing 0x00000000). An operation list consists of an operator (4
bytes naturally aligned) and zero or more (up to a the maximum number of 4 byte locations remaining in the work area)
operands, each 4 bytes long. An operator consists of a single byte opcode followed by 3 bytes encoded with the binary
value of the number of operands that follow. An operator with an operand length field of zero performs no operation,
and the opcode of zero is reserved for the terminator -- thus the terminator can be considered a special encoding of a
no-op operator.

 The opcode of 0x01 is used for deleted nodes -- the operands are the phandle values for the deleted nodes.

 The opcode of 0x02 is used for updated nodes -- the operands are the phandle values for the updated nodes. The
updated properties are obtained using the ibm,update-properties RTAS call.

 The opcode of 0x03 is used for adding nodes -- the operands are pairs of phandle and ibm,drc-index values;
the phandle value denotes the parent node of the node to be added and the ibm,drc-index value is passed
with the ibm,configure-connector RTAS call to obtain the contents of the added node.

To make processing of device tree updates simpler, all opcode 0x01 (delete) operations (if any) are presented prior to
all opcode 0x02 (update) operations (if any), and finally any 0x03 (addition) operations are presented. The phandle
operand values are the same phandle values as reported by the “ibm,phandle” property.

R1–7.4.7–1. For the Update OF Tree option: The platform must include the “ibm,phandle” property in all
OF nodes specified in Table 117‚ “Nodes That May be Reported by ibm,update-nodes for a Given Value of
the “Scope” Argument‚” on page 248.

R1–7.4.7–2. For the Update OF Tree option: The platform must implement the ibm,update-nodes RTAS call us-
ing the argument call buffer defined by Table 113‚ “ibm,update-nodes Argument Call Buffer‚” on page 247.

38 enhanced memory CoD

39 CoD Options

41 firmware boot options

43 processor module information

Table 112. System Parameters that May Change During Partition Migration and Hibernation (Continued)

System Parameter Token Name

7.4  ibm,get-indices RTAS Call 247

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.7–3. The ibm,update-nodes RTAS call work area must be 4 KB long aligned on a 4 KB boundary that is ac-
cessible with MSR[DR] = 0, else RTAS may return -3 “Parameter Error”.

R1–7.4.7–4. The work area on the first call to ibm,update-nodes RTAS for a given value of “Scope” must be format-
ted as specified in Table 114‚ “Initial Format of Work Area for ibm,update-nodes‚” on page 247, else RTAS
may return -3 “Parameter Error”.

R1–7.4.7–5. Upon successful return (non-negative status value) from ibm,update-nodes the work area must by for-
matted as defined in Table 115‚ “Format of Work Area for ibm,update-nodes‚” on page 247. (Note each entry
in Table 115 is 4 bytes long.)

R1–7.4.7–6. An ibm,update-nodes RTAS call operation list for the ibm,update-nodes RTAS call must contain an op-
erator (4 bytes naturally aligned) and zero or more 4 byte operands up to the end of the work area.

Table 113. ibm,update-nodes Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,update-nodes

Number Inputs 2

Number Outputs 1

Work Area Address 32 bit real address of work area

Scope
Values per Table 117‚ “Nodes That May be Reported by ibm,update-nodes for a Given Value of the
“Scope” Argument‚” on page 248.

Out Status

-1: Hardware Error
-2: Busy
-3: Parameter Error (Purpose does not match the current partition state)
0: Success
1: More nodes updated -- call again

Table 114. Initial Format of Work Area for ibm,update-nodes

0x00000000 (State Variable indicates Initial call for specified Scope)

12 bytes of 0x00 (reserved)

Don’t Care . . .

Table 115. Format of Work Area for ibm,update-nodes

State Variable (4 Bytes)

12 bytes of 0x00 (reserved)

0 or more operation lists

. . .

Terminator (0x00000000)

248 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.7–7. An operator in an ibm,update-nodes RTAS call operation list must be formatted with, starting at the
high order byte, a single byte opcode followed by 3 bytes encoded with the binary value of the number of op-
erands that follow.

R1–7.4.7–8. An operator in an ibm,update-nodes RTAS call operation list with an operand length field of zero must
be considered to perform no operation.

R1–7.4.7–9. The opcode of 0x01 in an ibm,update-nodes RTAS call operation list must be used to denote node de-
letions.

R1–7.4.7–10. The operands for opcode 0x01 in an ibm,update-nodes RTAS call operation list must be the phan-
dle values for the deleted nodes.

R1–7.4.7–11. The opcode of 0x02 in an ibm,update-nodes RTAS call operation list must be used to denote updated
nodes.

R1–7.4.7–12. The operands for opcode 0x02 in an ibm,update-nodes RTAS call operation list must be the phan-
dle values for the updated nodes that may be used as the ibm,update-properties RTAS call argument to ob-
tain the changed properties of the updated node.

R1–7.4.7–13. The opcode of 0x03 in an ibm,update-nodes RTAS call operation list must used for the added nodes.

R1–7.4.7–14. The operands for opcode of 0x03 in an ibm,update-nodes RTAS call operation list must be phandle
and ibm,drc-index value pairs (each value being 4 bytes on a natural boundary totalling 8 bytes for the
pair) denoting the parent node of the added node and the ibm,configure-connector RTAS call argument to ob-
tain the contents of the added node respectively.

R1–7.4.7–15. All opcode 0x01 (delete) in an ibm,update-nodes RTAS call operation list (if any) must be presented
prior to any opcode 0x02 (update) operations (if any).

R1–7.4.7–16. All opcode 0x02 (update) in an ibm,update-nodes RTAS call operation list (if any) must be presented
prior to any opcode 0x03 (add) operations (if any).

R1–7.4.7–17. The work area on subsequent call(s) to ibm,update-nodes RTAS for the same value of the “Scope”
must be formatted as specified in Table 116‚ “Format of Work Area for Subsequent Calls to ibm,up-
date-nodes‚” on page 248, else RTAS may return -3 “Parameter Error”.

R1–7.4.7–18. The “Scope” argument for the ibm,update-nodes RTAS call must be one of the values specified in the
scope value column of Table 117‚ “Nodes That May be Reported by ibm,update-nodes for a Given Value of
the “Scope” Argument‚” on page 248, else RTAS may return -3 “Parameter Error”.

R1–7.4.7–19. For the ibm,update-nodes RTAS call, the platform must restrict its reported node updates to those
specified in Table 117‚ “Nodes That May be Reported by ibm,update-nodes for a Given Value of the “Scope”
Argument‚” on page 248 for the value of the specified “Scope” argument.

Table 116. Format of Work Area for Subsequent Calls to ibm,update-nodes

Value of the 1st 16 bytes of the returned work area from last call to ibm,update-nodes RTAS that returned status of 1.

Don’t Care . . .

Table 117. Nodes That May be Reported by ibm,update-nodes for a Given Value of the “Scope” Argument

Scope Value
Reportable node types (value of “name” or “device_type”

property)
Supported Opcodes

7.4  ibm,get-indices RTAS Call 249

LoPAPR, Version 1.1 (March 24, 2016)

7.4.8 ibm,update-properties RTAS Call

This RTAS call is used to report updates to the properties changed due to a massive platform reconfiguration such as
when the partition is migrated between machines. This RTAS call reports changes in the node specified by the phandle
value in the work area passed using the Work Area Address argument. The phandle value may be that of a critical node
that the caller is interested in or one reported by ibm,update-nodes RTAS call. These changes may include any combi-
nation of new values, deleted and added properties. Updates for a given node are retained until the platform is subse-
quently reconfigured, and remain available to subsequent calls to ibm,update-nodes.

There may be more changes than can be reported in a single 4 K work area. In this case, the RTAS call returns with a
status of 1 “More properties updated -- call again”. On the first call, the second word of the work area contains the
value 0 specifying that the RTAS call is to start with the first changed property for the specified updated node. On a call
with a status value of 1, the first sixteen (16) bytes of the work area contain values that, when subsequently supplied in
the work area of another call to ibm,update-properties RTAS, specify that the call returns the updated property data for
properties after those reported in the previous call.

A single updated property value string may exceed the capacity of a single 4 K work area. In that case, the updated
property value descriptor for the property appears in the work area of multiple sequential calls to ibm,update-proper-

Negative values:
Platform Resource

Reassignment events as
from event-scan RTAS

cpu 0x02

memory 0x02

ibm,dynamic-reconfiguration-memory 0x02

ibm,plaform-facilities 0x01-0x03

ibm,random-v# 0x01-0x03

ibm,compression-v# 0x01-0x03

ibm,encryption-v# 0x01-0x03

1 Partition Migration /
Hibernation

root 0x02

openprom 0x02

rtas 0x02

vdevice 0x02

cpu 0x02

cache 0x01-0x03

options 0x02

memory 0x02

ibm,dynamic-reconfiguration-memory <all>

ibm,platform-facilities 0x01-0x03

ibm,random-v# 0x01-0x03

ibm,compression-v# 0x01-0x03

ibm,encryption-v# 0x01-0x03

2 Activate Firmware rtas 0x02

Table 117. Nodes That May be Reported by ibm,update-nodes for a Given Value of the “Scope” Argument

250 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

ties RTAS. When the updated property value descriptor contains the final data for the property value, the property
string length field of the updated property value descriptor is a positive number. When the updated property value de-
scriptor contains either the initial or interim data for the property value, the updated property string length field is a
negative number denoting the twos complement of the length of the updated property string contained in the work area.
The data value strings for a given property name are concatenated until the final updated property value descriptor is
processed.

The first value returned, with an updated property name string of NULL, is always the node’s name (for example: full
path || name property value || @ unit address) even if there has been no change.

R1–7.4.8–1. For the Update OF Tree option: The platform must implement the ibm,update-properties RTAS call
using the argument call buffer defined by Table 118‚ “ibm,update-properties Argument Call Buffer‚” on
page 250.

R1–7.4.8–2. The work area for the ibm,update-properties RTAS call must be 4 KB long aligned on a 4 KB bound-
ary that is accessible with MSR[DR] = 0, else RTAS may return -3 “Parameter Error”.

R1–7.4.8–3. The work area on the first call to ibm,update-properties RTAS for a given updated node must be for-
matted as specified in Table 119‚ “Initial Format of Work Area for ibm,update-properties‚” on page 250, else
RTAS may return -3 “Parameter Error”.

R1–7.4.8–4. Upon successful return (non-negative status value) from ibm,update-properties the work area must by
formatted as defined in Table 120‚ “Return Format of Work Area for ibm,update-properties‚” on page 251.

Table 118. ibm,update-properties Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,update-properties

Number Inputs 2

Number Outputs 1

Work Area Address 32 bit real address of work area

Scope
Values per Table 122‚ “Properties of the Nodes That May Be Reported by ibm,update-properties for
a “Scope”‚” on page 252.

Out Status

-1: Hardware Error
-2: Busy
-3: Parameter Error (Purpose does not match the current partition state)
0: Success
1: More properties updated -- call again

Table 119. Initial Format of Work Area for ibm,update-properties

phandle of updated node containing updated properties to be reported (4 bytes)

0x00000000 (Indicates Initial call for specified phandle)

8 bytes of 0x00 (reserved)

Don’t Care . . .

7.4  ibm,get-indices RTAS Call 251

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.8–5. Upon successful return (non-negative status value) from ibm,update-properties when the State Vari-
able had been 0x00000000, the first updated property descriptor must describe the fully qualified path name
of the node specified by the phandle argument in the work buffer; the three fields of this updated property de-
scriptor are:

 Property name string is as from encode-null

 Value descriptor is the 4 byte binary length of the value string

 Value string is the fully qualified path name as from the node name string returned by the open firmware
package-to-path client interface call.

R1–7.4.8–6. The work area on subsequent call(s) to ibm,update-properties RTAS for a given updated node must be
formatted as specified in Table 121‚ “Format of Work Area for Subsequent Calls to ibm,update-properties‚”
on page 251, else RTAS may return -3 “Parameter Error”.

Table 120. Return Format of Work Area for ibm,update-properties

Description Comments

phandle of updated node containing updated
properties to be reported.

4 Bytes

State Variable
(to be returned if status argument value = 1)

4 Bytes

Reserved 8 bytes

Number of properties reported in the work area
4 Bytes

The number (N) of updated property value descriptors that follow -- see
below

N updated property value descriptors

Each updated property value descriptor is formatted as:

Null terminated string indicating the name of the updated property.
followed by:

Value Descriptor -- 4 Bytes decoded as

0x00000000 Name only property (“encode-null”) no value follows

0x80000000 The property is to be deleted no value follows

Other positive values are the length (M) of the immediately following
property value string that completes the update of the property value.

Other negative values are the twos complement of the length (M) of the
immediately following property value string that either starts or continues
the update of the property value with the remainder in the work area of

subsequent call(s) to ibm,update-properties.

Followed by:
0-M bytes of property value string.

Table 121. Format of Work Area for Subsequent Calls to ibm,update-properties

phandle of updated node containing updated properties to be reported (4 Bytes)

Value from last call to ibm,update-properties RTAS that returned status of 1 (12 bytes).

Don’t Care . . .

252 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.8–7. For the ibm,update-properties RTAS call, the platform must restrict its reported property updates to
those specified in Table 122‚ “Properties of the Nodes That May Be Reported by ibm,update-properties for a
“Scope”‚” on page 252 for the value of the specified “Scope” argument.

R1–7.4.8–8. For the ibm,update-properties RTAS call, the platform must return a Status of -3 (Parameter Error) for
an unrecognized value of the “Scope” argument.

Table 122. Properties of the Nodes That May Be Reported by ibm,update-properties for a “Scope”

Scope Value
Reportable node types (value of “name” or

“device_type” property)
Property Name

All negative values:
Resource Reassignment
events as from event-scan
RTAS

/memory “ibm,associativity”

ibm,dynamic-reconfiguration-memory “ibm,dynamic-memory”

cpu “ibm,associativity”

ibm,random-v# <all>

ibm,compression-v# <all>

ibm,encryption-v# <all>

7.4  ibm,get-indices RTAS Call 253

LoPAPR, Version 1.1 (March 24, 2016)

1 Partition Migration /
Hibernation

root

“ibm,model-class”

“clock-frequency”

“ibm,extended-clock-frequency”

“model”

“compatible”

“name”

“system-id”

“ibm,partition-no”

“ibm,drc-indexes”

“ibm,drc-names”

“ibm,drc-power-domains”

“ibm,drc-types”

“ibm,aix-diagnostics”

“ibm,diagnostic-lic”

“ibm,platform-hardware-notification”

“ibm,ignore-hp-po-fails-for-dlpar”

“ibm,managed-address-types”

“ibm,service-indicator-mode”

openprom “model”

rtas

“power-on-max-latency”

“ibm,associativity-reference-points”

“ibm,max-associativity-domains”

“ibm,configure-kernel-dump”

“ibm,configure-kernel-dump-sizes”

“ibm,configure-kernel-dump-version”

“ibm,read-slot-reset-state-functions”

“ibm,configure-pe”

“ibm,change-msix-capable”

vdevice “ibm,drc-names”

children of the vdevice node “ibm,loc-code”

Table 122. Properties of the Nodes That May Be Reported by ibm,update-properties for a “Scope” (Continued)

254 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

1 Partition Migration /
Hibernation

cpu

“name”

“d-cache-sets”

“d-cache-size”

“i-cache-sets”

“i-cache-size”

“bus-frequency”

“ibm,extended-bus-frequency”

“ibm,extended-clock-frequency”

“clock-frequency”

“timebase-frequency”

“l2-cache”

“performance-monitor”

“ibm,associativity”

TLB properties (See Section C.6.1.5‚ “TLB properties‚” on
page 772)

“slb-size”

“ibm,tbu40-offset”

“ibm,pi-features”

“ibm,spurr”

“ibm,pa-optimizations”

“ibm,dfp” (sign bit only)

"ibm,sub-processors"

cache

“d-cache-sets”

“d-cache-size”

“i-cache-sets”

“i-cache-size”

l2-cache

options “ibm,dasd-spin-interval”

memory “ibm,associativity”

ibm,dynamic-reconfiguration-memory

“ibm,associativity-lookup-arrays”

“ibm,dynamic-memory”
only the associativity list index fields

“ibm,memory-preservation-time”

/chosen
“ibm,architecture-vec-5”

byte 3 (I/O Super Page Option support parameters)

Table 122. Properties of the Nodes That May Be Reported by ibm,update-properties for a “Scope” (Continued)

7.4  ibm,get-indices RTAS Call 255

LoPAPR, Version 1.1 (March 24, 2016)

7.4.9 ibm,configure-kernel-dump RTAS call

This RTAS call is used to register and unregister with the platform a data structure describing kernel dump information.
This dump information is preserved as needed by the platform in support of a platform assisted kernel dump option.

R1–7.4.9–1. For the Configure Platform Assisted Kernel Dump option: The platform must implement the
ibm,configure-kernel-dump RTAS call using the argument call buffer defined by Table 123‚ “ibm,config-
ure-kernel-dump Argument Call Buffer‚” on page 255.

R1–7.4.9–2. For the Configure Platform Assisted Kernel Dump option: The work-buffer address and work-buf-
fer-length for the ibm,configure-kernel-dump RTAS call must point to an RMR-memory buffer that contains
the structures described in Table 124‚ “Kernel Assisted Dump Memory Structure‚” on page 256, whenever
the command is 1, register for future kernel dump; otherwise the call may return -3, “Parameter Error.”

1 Partition Migration /
Hibernation

ibm,random-v# <all>

ibm,compression-v# <all>

ibm,encryption-v# <all>

2 Activate Firmware rtas

1. Any /rtas node property as defined per LoPAPR
remains invariant.

2. Any /rtas node property or definition extension, except
for the value of a function token property*, may change
(provided that the client program has indicated support for
such property or definition extension) including the fol-
lowing:
“ibm,read-slot-reset-state-functions”
“ibm,configure-pe”

*NOTE: This exception mandates that if an RTAS function
token property survives a firmware activation, the token value
of that RTAS function call does not change.

Table 123. ibm,configure-kernel-dump Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,configure-kernel-dump

Number Inputs 3

Number Outputs 1

Command
1: Register for future kernel dump
2: Unregister for future kernel dump
3: Complete/Invalidate current kernel dump

Work_buffer_address
When command is 1: Register for future kernel dump, points to a
structure as defined in Table 124‚ “Kernel Assisted Dump Memory
Structure‚” on page 256

Work_buffer_length Length of Kernel Dump Memory Structure when defined above

Out Status

0: Success
-1: Hardware Error
-2: Busy
-3: Parameter Error
-9: Dump Already Registered
-10: Dump Active
990x:Extended Delay

Table 122. Properties of the Nodes That May Be Reported by ibm,update-properties for a “Scope” (Continued)

256 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

The Dump Memory Structure specified in Table 124‚ “Kernel Assisted Dump Memory Structure‚” on page 256 is
passed by the operating system during a ibm,configure-kernel-dump RTAS call. It is also reported by the platform us-
ing the ibm,kernel-dump RTAS property after a dump has been initiated.

Table 124. Kernel Assisted Dump Memory Structure

Header

Offset Number of Bytes Value

0x0 4 Dump Format Version = 0x00000001

0x4 2 Number of Kernel Dump Sections

0x6 2

Dump Status Flags
A bit mask with value
0x8000 = Dump performed (Set to 0 by caller of the ibm,configure-kernel-dump call)
0x4000 = Dump was triggered by the previous system boot (set by platform)
0x2000 = Dump error occurred (set by platform)
All other bits reserved

0x8 4 Offset to first Kernel Dump Section, offset from the beginning of the Structure

0xc 4
Number of bytes in a block of the dump-disk, if data to be written to a dump-disk, If not, should be set to 0
(indicating the no disk dump option.)

0x10 8 Starting block# offset on dump-disk (set to 0 for the no disk dump option)

0x18 8 Number of blocks on dump-disk usable for dump (set to 0 for the no disk dump option)

0x20 4 Offset from start of structure to a Null-terminated Dump-disk path string (set to 0 for the no disk dump option)

0x24 4
Maximum time allowed (milliseconds) after Non-Maskable-Interrupt for the OS to call
ibm,configure-kernel-dump Function 2 (unregister) to prevent an automatic dump-reboot (set to 0 to disable the
automatic dump-reboot function)

Dump-disk Path String

Offset
specified

above
Varies

Null-terminated Dump-disk path string specifying the dump-disk. If no disk dump option is indicated, this
section is not included.

First Kernel Dump Section

Offset
specified

above
4

Dump Request Flags:
A bit-mask
Bit 0x00000001 When set, firmware to copy source data to partition memory. This option must be selected if no
disk dump option is indicated.
All other bit values reserved

Section
Start+4

2

Source Data type, describes section of dump memory being described
0x0001 = CPU State Data
0x0002 = Hardware Page Table for Real Mode Region
0x0011 = Real Mode Region
0x0012 = Dump OS identified string (identifies that the dump is for a particular OS type and version)
0x0100 - 0xFFFF OS defined source types
All Other values reserved

Section
Start+6

2

Dump Error Flags (set by platform)
Bit mask
0x8000 = Invalid section data type
0x4000 = Invalid source address
0x2000 = Requested section length exceeds source
0x1000 = Invalid partition destination address
0x0800 = Partition memory destination too small

7.4  ibm,get-indices RTAS Call 257

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.9–3. When the platform receives an ibm,os-term RTAS call, or on a system reset without an ibm,nmi-inter-
lock RTAS call, if the platform has a dump structure registered through the ibm,configure-kernel-dump call,
the platform must process each registered kernel dump section as required and, when available, present the
dump structure information to the operating system through the “ibm,kernel-dump” property, updated
with status for each dump section, until the dump has been invalidated through the ibm,configure-ker-
nel-dump RTAS call.

R1–7.4.9–4. If ibm.comfigure-kernel-dump RTAS call is made to register or unregister for a dump while a dump is
currently active, the platform must return a Status of -9, “Dump Active” indicating that a dump has been cop-
ied by the platform and a call must be made to complete/invalidate the active dump before another call to reg-
ister or unregister a dump can be completed successfully.

R1–7.4.9–5. If ibm.comfigure-kernel-dump RTAS call is made to register a dump after a dump has already been reg-
istered by a call, the platform must return a Status of -8, “Dump Already Registered” unless an intervening
call was made to invalidate the previously registered dump.

R1–7.4.9–6. For the Configure Platform Assisted Kernel Dump Option: Partition memory not specifically men-
tioned in the call structure must be preserved by the platform at the same location as existed prior to the os
termination or platform reboot.

R1–7.4.9–7. For the Configure Platform Assisted Kernel Dump Option: The platform must present the RTAS
property, “ibm,configure-kernel-dump-sizes” in the OF device tree, which describes how much
space is required to store dump data for the firmware provided dump sections, where the firmware defined
dump sections are:

 0x0001 = CPU State Data

 0x0002 = Hardware Page Table for Real Mode Region

R1–7.4.9–8. For the Configure Platform Assisted Kernel Dump Option: The platform must present the RTAS
property, “ibm-configure-kernel-dump-version” in the OF device tree.

R1–7.4.9–9. For the Configure Platform Assisted Kernel Dump Option: After a dump registration is disabled
(for example, by a partition migration operation), calls to ibm,os-term must return to the OS as though a
dump was not registered.

Programming Note: The intended flow of interactions that utilize this call is as follows:

1. The OS registers sections of memory for dump preservation during OS initialization

Section
Start+8

8
Source address (logical address if section came from partition memory, or byte offset if section is platform
memory)

Section
Start+16

8 Requested data length, represents number of bytes to dump

Section
Start+24

8 Actual data length, number of bytes dumped

Section
Start+32

8
Destination address, logical address used for sections not written to disk by the platform, always required for a
Real mode region section and for all sections when the no disk dump option is used.

Subsequent Sections

Previous
Section
Start+40

Start of Next Section
A total of up to nine additional 40 bytes sections with values as described in the First Section may be specified
so long as the entire structure does not exceed 512 bytes for version 1.

Table 124. Kernel Assisted Dump Memory Structure (Continued)

258 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

2. The OS terminates abnormally

3. The Platform moves registered sections of memory as instructed during dump registration.

4. The Partition reboots and provides the prior registration data in the device tree.

5. The OS writes the preserved memory regions to disk before using those memory regions for regular use

6. The OS completes/invalidates current dump status.

7.4  ibm,get-indices RTAS Call 259

LoPAPR, Version 1.1 (March 24, 2016)

7.4.10 DMA Window Manipulation Calls

DMA windows for a PE can be changed by the OS when the platform implements the Dynamic DMA Windows
(DDW) option for a PE. The occurrence of the “ibm,ddw-applicable” property in any node of the OF Device
Tree indicates that the platform implements the DDW option, but that property is required to be in the bridge above a
PE in order for the DDW RTAS call to be applicable for the PE. That is, DDW may be applicable to some PEs in a plat-
form and not for others.

The platform may implement the DDW RTAS calls even when the OS does not support these, because they are not re-
quired to be used by the OS, because there is always a default window initially allocated below 4 GB, as specified by
the “ibm,dma-window” property. During partition migration, these RTAS calls may come and go, but so will the
“ibm,ddw-applicable” property as the nodes in which those are supported come or go.

The following is an example of how an OS may grab all DMA window resources allocated for a PE:

1. If the default window (as specified by the “ibm,dma-window” property for the PE) is not needed, then call
ibm,remove-pe-dma-window for the PE, specifying the default window LIOBN, to make the maximum resources
available for the ibm,create-pe-dma-window RTAS call.

2. Call ibm,query-pe-dma-window for the PE to get the Windows Available and PE TCEs available for the PE. If the
Windows Available field indicates 1 or more and the PE TCEs field is non-zero, then continue.

3. Call ibm,create-pe-dma-window for the PE, specifying the size based on the PE TCEs field obtained from the
ibm,query-pe-dma-window RTAS call in step 2 and on the I/O page size being specified.

4. If the Windows Available field indicated 2 or more in step 2, then go back to step 2 and repeat, otherwise finished.

Software Implementation Note: The general expectation is that if the “ibm,ddw-applicable” property exists for
a PE, that the OS will be able to generate one or more windows whose total size is larger than what is available
via the default window. This requires either additional TCEs being available or that I/O page sizes other than 4
KB are available and the PE can use the largest I/O page size (the default window using only the 4 KB I/O page
size). If not, then removing the default window would only allow re-allocation of the same size window at a
different bus address (that is, same number of TCEs and same I/O page size). However, it may be possible for this
to happen, in which case the platform may indicate that DDW is available to a PE, but removal of the default
window will only allow creation of the same size window. An example is when a larger I/O page size is available
but only the TCEs in the default window are available, and the PE cannot make use of the larger page size.

R1–7.4.10–1. For the Dynamic DMA Windows (DDW) option: The platform must implement all of the follow-
ing RTAS calls: ibm,query-dma-window, ibm,create-dma-window, and ibm,remove-dma-window.

R1–7.4.10–2. For the Dynamic DMA Windows (DDW) option: The platform must provide the “ibm,ddw-ap-
plicable” property in the OF Device Tree in the bridge above each PE for which the DDW option is sup-
ported.

R1–7.4.10–3. For the Dynamic DMA Windows (DDW) option: The software must not call the
ibm,query-dma-window, ibm,create-dma-window, or ibm,remove-dma-window RTAS calls in the absence of
the “ibm,ddw-applicable” property for the PE, otherwise the call returns a Status of -3 (Parameter er-
ror), and when the property does exist, software must use the token values specified in the “ibm,ddw-ap-
plicable” property for these RTAS calls.

R1–7.4.10–4. For the Dynamic DMA Windows (DDW) option: The platform must provide a default DMA win-
dow for each PE, and all of the following must be true:

a. The window is defined by the “ibm,dma-window” property in the OF device tree.

b. The window is defined with 4 KB I/O pages.

c. The window is located entirely below 4 GB.

260 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.10–5. For the Dynamic DMA Windows (DDW) option: The platform must remove any DMA windows
created by the ibm,create-pe-dma-window RTAS call for a PE and must restore the default DMA window (if
it was removed) for the PE, as originally defined by the “ibm,dma-window” properties for the PE, in each
of the following cases:

a. On a reboot of the partition

b. On a DR isolate operation that encompasses the PE

R1–7.4.10–6. For the Dynamic DMA Windows (DDW) option: In Requirement R1–7.4.10–5, the platform must
provide the same LIOBN, location, and size as specified in the “ibm,dma-window” property in the OF
Device Tree for the device.

7.4.10.1 ibm,query-pe-dma-window

This RTAS call allows for the discovery of the resources necessary to make a successful subsequent call to ibm,cre-
ate-dma-window.

R1–7.4.10.1–1. RTAS must implement a ibm,query-pe-dma-window call using the argument call buffer defined by
Table 125‚ “ibm,query-pe-dma-window Argument Call Buffer‚” on page 260.

Table 125. ibm,query-pe-dma-window Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,query-pe-dma-window

Number Inputs 3

Number Outputs 5

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

PHB_Unit_ID_Low Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the config_addr

7.4  ibm,get-indices RTAS Call 261

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.10.1–2. For the Dynamic DMA Windows (DDW) option: TCE resources returned in the PE TCEs param-
eter of the ibm,query-dma-window RTAS call must be allocated to the PE specified by the PE configuration
address specified in the call, and must be available to a subsequent ibm,create-dma-window RTAS call for
that PE.

7.4.10.2 ibm,create-pe-dma-window

This call allows the creation of a new DMA window, given the size of the DMA window, I/O page size, and the PE to
which it is associated. The return from the call includes the LIOBN of the new DMA window, the starting I/O address
of the DMA window, and size.

Software Implementation Note: Software is expected to not attempt to create a DMA window that is larger than
possible, or create more DMA windows than is possible, otherwise the ibm,create-pe-dma-window will return a
Status of -3 (Parameter Error). Thus, the OS is expected to use the ibm,query-pe-dma-window first and not ask to
create a window that consumes more resources than those that are available to the PE.

R1–7.4.10.2–1. For the Dynamic DMA Windows (DDW) option: RTAS must implement the ibm,cre-
ate-dma-window call using the argument call buffer defined by Table 126‚ “ibm,create-pe-dma-window Ar-
gument Call Buffer‚” on page 262.

Out

Status
0: Success
-1: Hardware Error
-3: Parameter error

Windows Available

Number of additional DMA windows that can be created for this PE. If the value is 0 and the default window
(as specified by the “ibm,dma-window” property for the PE) has not been yet removed via the
ibm,remove-pe-dma-window RTAS call for that window, and if the default window is not needed, then removal
of the default window makes at least one window available.

PE TCEs
Largest contiguous block of TCEs allocated specifically for (that is, are reserved for) this PE. See also
Requirement R1–7.4.10.1–2.

IO Page Sizes

I/O Page Size Support. I/O page sizes supported for this PE. This is a bit significant field, defined as follows:
Bits 0 - 23 reserved
24 = 16 GB page size supported
25 = 256 MB page size supported
26 = 128 MB pages supported
27 = 64 MB page size supported
28 = 32 MB page size supported
29 = 16 MB page size supported
30 = 64 KB page size supported
31 = 4 KB page size supported

Migration Capable
H_MIGRATE_DMA Mask. Mask to indicate for which page sizes (as specified in the I/O Page Size Support
field), that H_MIGRATE_DMA is supported (for this PE). This is a bit significant field, with the bits defined
to align to the bits in the I/O Page Size Support field.

Table 125. ibm,query-pe-dma-window Argument Call Buffer (Continued)

Parameter Type Name Values

262 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.10.2–2. For the Dynamic DMA Windows (DDW) option: The ibm,create-pe-dma-window RTAS call
must return a Status of 0 (Success) only if a window with the requested attributes is created, and must not cre-
ate a new window if a non-0 Status is returned.

7.4.10.3 ibm,remove-pe-dma-window

This RTAS call allows for the removal of PE DMA windows, including those created with the ibm,create-pe-dma-win-
dow RTAS call as well as the default window specified by the “ibm,dma-window” property for the PE. All created
DMA windows will be removed by the platform, and the default DMA window restored, on a partition reboot, on a DR
isolate operation (see Requirement R1–7.4.10–5 and R1–7.4.10–6), or if the last remaining DMA window for the PE is
removed and that window is not the default DMA window (see Requirements R1–7.4.10.3–3 and R1–7.4.10.3–4). Af-
ter removal of a DMA window, software needs to use the ibm,query-pe-dma-window RTAS call to find out what re-
sources are available to the PE for subsequent ibm,create-pe-dma-window RTAS call.

R1–7.4.10.3–1. For the Dynamic DMA Windows (DDW) option: RTAS must implement the ibm,re-
move-dma-window call using the argument call buffer defined by Table 127‚ “ibm,remove-pe-dma-window
Argument Call Buffer‚” on page 263.

Table 126. ibm,create-pe-dma-window Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,create-pe-dma-window

Number Inputs 5

Number Outputs 4

 Config_addr PE configuration address (Register fields set to 0)

PHB_Unit_ID_Hi
Represents the most-significant 32-bits of the Unit ID of the PHB that corresponds to the
config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the PHB that corresponds to the
config_addr

I/O Page Size
The value n, where 2n is the requested I/O page size. Only page sizes obtained from the
ibm,query-pe-dma-window RTAS call for the PE are allowed. Values of n from 0-11 are
invalid.

Requested Window Size The value n, where 2n is the requested DMA window size.

Out

Status

990x: Extended delay, where x is a number 0-5 (see text)
0: Success (window created)
-1: Hardware Error
-2: Busy, try again later
-3: Parameter Error

LIOBN
LIOBN of the DMA window created by this call, if any. If no DMA window was created
(that is, if the Status is not 0), then this field is present but not used.

I/O Starting Address Hi
Represents the most-significant 32-bits of the starting address on the I/O bus for the DMA
window created by this call, if any. If no DMA window was created (that is, if the Status
is not 0), then this field is present but not used.

I/O Starting Address Low
Represents the least-significant 32-bits of the starting address on the I/O bus for the DMA
window created by this call, if any. If no DMA window was created (that is, if the Status
is not 0), then this field is present but not used.

7.4  ibm,get-indices RTAS Call 263

LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.10.3–2. For the Dynamic DMA Windows (DDW) option: The caller of the ibm,remove-pe-dma-window
RTAS call must assure that the TCE table specified by the LIOBN field does not contain any valid mappings
at the time of the call (that is, that the window is not being used).

R1–7.4.10.3–3. For the Dynamic DMA Windows (DDW) option: The platform must restore the default DMA
window for the PE on a call to the ibm,remove-pe-dma-window RTAS call when all of the following are true:

a. The call removes the last DMA window remaining for the PE.

b. The DMA window being removed is not the default window.

R1–7.4.10.3–4. For the Dynamic DMA Windows (DDW) option: In Requirement R1–7.4.10.3–3, the platform
must provide the same LIOBN, location, and size as specified in the “ibm,dma-window” property in the
OF Device Tree for the PE.

7.4.10.4 Extensions to Dynamic DMA Windows

Platforms supporting the DDW option implement extensions described in this section. These extensions include: add-
ing the “ibm,ddw-extensions” property see Section B.6.5.1.1.1‚ “Properties for Children of PCI Host Bridges‚”
on page 703 to those nodes that include the “ibm,ddw-applicable” property, and implementing the functional
extensions specified for the architectural level in Table 128‚ “DDW Option Extensions‚” on page 263. The
“ibm,ddw-extensions” property value is a list of integers the first integer indicates the number of extensions im-
plemented and subsequent integers, one per extension, provide a value associated with that extension. Thus the prop-
erty value is designed to grow over time in such a way as to enable earlier client programs to ignore later firmware
extensions and later client programs to operate on back level firmware. For this level of compatibility to work, the cli-
ent code needs to ignore extensions beyond what were defined when the client code was written, and be prepared to op-
erate on back level platforms t at do not implement all the extensions that were defined when the client code was
written.

Table 127. ibm,remove-pe-dma-window Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,remove-pe-dma-window

Number Inputs 1

Number Outputs 1

LIOBN LIOBN of the DMA window to be removed.

Out Status
0: Success
-1: Hardware Error
-3: Parameter error

Table 128. DDW Option Extensions

DDW Option
LoPAPR Level

“ibm,ddw-extensions”
list index

Value Definition

2.7 2 Token of the ibm,reset-pe-dma-windows RTAS Call

264 Run-Time Abstraction Services

 LoPAPR, Version 1.1 (March 24, 2016)

R1–7.4.10.4–1. For compatibility with changing extensions to the Dynamic DMA Windows (DDW) option:
The client program must ignore extensions as represented by “ibm,ddw-extensions” value list integers
beyond those defined when the client code was written.

R1–7.4.10.4–2. For compatibility with changing extensions to the Dynamic DMA Windows (DDW) option:
The client program must be prepared to operate on back level platforms that do not implement all the exten-
sions that were defined when the client code was written, including no extensions at all.

7.4.10.4.1 ibm,reset-pe-dma-windows

The ibm,reset-dma-windows call resets the TCE table allocation for the PE to its boot time value as communicated in
the “ibm,dma-window” OF Device Tree property in the for the PE.

R1–7.4.10.4.1–1. For the Dynamic DMA Windows (DDW) option starting with LoPAPR level 2.7: RTAS must
implement the ibm,reset-dma-windows call using the argument call buffer defined by Table 129‚ “ibm,re-
set-pe-dma-windows Argument Call Buffer‚” on page 264.

R1–7.4.10.4.1–2. For the Dynamic DMA Windows (DDW) option starting with LoPAPR level 2.7: The caller
of the ibm,reset-pe-dma-windows RTAS call must assure that the TCE table(s) assigned to the PE specified by
the config_addr field contain no valid mappings at the time of the call (that is, that the window(s) is not being
used).

R1–7.4.10.4.1–3. For the Dynamic DMA Windows (DDW) option starting with LoPAPR level 2.7: On a call to
ibm,restore-pe-dma-windows, the platform must restore the default DMA window per the values provided in
the “ibm,dma-window” OF Device Tree property in the for the PE (same LIOBN, location, and size).

Table 129. ibm,reset-pe-dma-windows Argument Call Buffer

Parameter Type Name Values

In

Token Token for

Number Inputs 3

Number Outputs 1

config_addr PE configuration address

PHB_Unit_ID_HI
Represents the most-significant 32-bits of the Unit ID of the
PHB that corresponds to the config_addr

PHB_Unit_ID_Low
Represents the least-significant 32-bits of the Unit ID of the
PHB that corresponds to the config_addr

Out Status

0: Success
-1: Hardware Error
-2: Busy, Try again later
-3: Parameter error

LoPAPR, Version 1.1 (March 24, 2016)

8 Non-Volatile Memory

This chapter describes the requirements relating to Non-Volatile Memory. Non-Volatile Memory is the repository for
system information that must be persistent across reboots and power cycles.

8.1 System Requirements

R1–8.1–1. Platforms must implement at least 8 KB of Non-Volatile Memory. The actual amount is platform depen-
dent and must allow for 4 KB for the OS. Platforms must provide an additional 4 KB for each installed OS
beyond the first.

R1–8.1–2. Non-Volatile Memory must maintain its contents in the absence of system power.

R1–8.1–3. Firmware must reinitialize NVRAM to a bootable state if NVRAM data corruption is detected.

R1–8.1–4. OSs must reinitialize their own NVRAM partitions if NVRAM data corruption is detected. OSs may cre-
ate free space from the first corrupted NVRAM partition header to the end of NVRAM and utilize this area to
initialize their NVRAM partitions.

Hardware Implementation Note: The NVRAM terminology used in this chapter goes back to historic implementations
that have used battery-powered RAM to implement the non-volatile memory. It should be understood that this is
not the only possible implementation. Implementers need to understand that there are no limits on the frequency
of writing to the non-volatile memory, so certain technologies may not be applicable. Also, it should be noted that
the nvram-fetch and nvram-store RTAS calls do not allow a “busy” Status return, and this may further limit the
implementation choices.

Software Implementation Note: Refer to Section 7.3.1‚ “NVRAM Access Functions‚” on page 120 for information on
accessing NVRAM.

8.2 Structure

NVRAM is formatted as a set of NVRAM partitions that adhere to the structure in Table 130‚ “NVRAM Structure‚” on
page 266. NVRAM partitions are prefixed with a header containing signature, checksum, length, and name fields. The
structure of the data field is defined by the NVRAM partition creator/owner (designated by signature and name).

R1–8.2–1. NVRAM partitions must be structured as shown in Table 130‚ “NVRAM Structure‚” on page 266.

R1–8.2–2. All NVRAM space must be accounted for by NVRAM partitions.

R1–8.2–3. All IBM-defined NVRAM partitions that are intended to be IBM-unique must have names prefixed with
the ASCII representation of the four characters: ibm,.

Software Implementation Note: Although the data areas of NVRAM partitions are not required to have error checking,
it is strongly recommended that the system software implement robust data structures and error checking. Loss of

266 Non-Volatile Memory

 LoPAPR, Version 1.1 (March 24, 2016)

NVRAM structures due to data corruption can be catastrophic, potentially leading to OS reinstallation and/or
complete system initialization.

8.3 Signatures

The signature field is used as the first level of NVRAM partition identification. Table 131‚ “NVRAM Signatures‚” on
page 267 lists all the currently defined signature types and their ownership classes. The ownership class determines the
permission of a particular system software component to create and/or modify NVRAM partitions and/or NVRAM
partition contents. All NVRAM partitions may be read by any system software component, but the ownership class has
exclusive write permission. Global ownership gives read/write permission to all system software components. These
restrictions are made to minimize the possibility of corruption of NVRAM during update activities.

Hardware and Software Implementation Note: It is recommended that NVRAM partitions be ordered on the signature
field with the lowest value signature NVRAM partition at the lowest NVRAM address (with the exception of
signature = 0x7F, free space). This will minimize the effect of NVRAM data corruption on system operation.

Table 130. NVRAM Structure

Field Name Size Description

signature 1 byte
The signature field is used to identify the NVRAM partition type and provide some level
of checking for overall NVRAM contamination. Signature assignments are given in
Table 131‚ “NVRAM Signatures‚” on page 267.

checksum 1 byte

The checksum field is included to provide a check on the validity of the header. The
checksum covers the signature, length, and name fields and is calculated (on a byte by
byte or equivalent basis) by: add, and add 1 back to the sum if a carry resulted as
demonstrated with the following program listing.

unsigned char sumcheck(bp,nbytes)
unsigned char *bp; /* buffer pointer */
unsigned int nbytes; /* number of bytes to sum */
{
unsigned char b_data; /* byte data */
unsigned char i_sum; /* intermediate sum */
unsigned char c_sum; /* current sum */
for (c_sum = 0; nbytes; nbytes--)
{
b_data = *bp++; /* read byte from buffer */
i_sum = c_sum + b_data; /* add to current sum */
if(i_sum < c_sum) /* did a carry out result? */
i_sum += 1; /* if so, add 1 */

c_sum = i_sum; /* copy to current sum */
}
return (c_sum);
}

This checksum algorithm guarantees 0 to be an impossible calculated value. A valid
header cannot have a checksum of zero.

length 2 bytes

The length field designates the total length of the NVRAM partition, in 16-byte blocks,
beginning with the signature and ending with the last byte of the data area. A length of zero
is invalid.
Software Implementation Note: The length field must always provide valid offsets to the
next header since an invalid length effectively causes the loss of access to every NVRAM
partition beyond it.

8.4  Architected NVRAM Partitions 267

LoPAPR, Version 1.1 (March 24, 2016)

8.4 Architected NVRAM Partitions

8.4.1 System (0x70)

System NVRAM partitions are used for storing information (typically, configuration variables) accessible to both OF
and the OS. Refer to Appendix B, “LoPAPR Binding,” on page 661 for the definition of the contents of the System
NVRAM partition named common.

R1–8.4.1–1. Every system NVRAM must contain a System NVRAM partition with the NVRAM partition name =
common.

R1–8.4.1–2. Data in the common NVRAM partition must be stored as NULL-terminated strings of the form:
<name>=<string> and the data area must be terminated with at least two NULL characters.

R1–8.4.1–3. All names used in the common NVRAM partition must be unique.

R1–8.4.1–4. Device and file specifications used in the common NVRAM partition must follow IEEE Std 1275 no-
menclature conventions.

name 12 bytes

The name field is a 12 byte string (or a NULL-terminated string of less than 12 bytes) used
to identify a particular NVRAM partition within a signature group. In order to reduce the
likelihood of a naming conflict, each platform-specific or OS-specific NVRAM partition
name should be prefixed with a company name as specified under the description of the
“name” string in the IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], that is, a company name string in one of
the three forms described in the reference, followed by a comma (“,”). If the company
name string is null, the name will be interpreted as “other”.
Before assigning a new name to a NVRAM partition, software should scan the existing
NVRAM partitions and ensure that an unwanted name conflict is not created.

data
length minus 16

bytes
 The structure of the data area is controlled by the creator/owner of the NVRAM partition.

Table 131. NVRAM Signatures

Signature
(see note)

Signature Type
Ownership

Class
Required Description

0x70 System Global 1 For configuration variables.

0x7E Vendor-defined Global 0 to n “name” prefix required.

0x7F Free Space Global 0 to n
This signature is used to mark free space in the NVRAM array. The
name field of all signature 0x7F NVRAM partitions must be set to
0x7...77.

0xA0 OS Any OS 0 to n General OS usage.

Note: Any signature not defined above is reserved, and signatures 0x02, 0x50, 0x51, 0x52, 0x71, and 0x72 are reserved for legacy reasons.

Table 130. NVRAM Structure (Continued)

Field Name Size Description

268 Non-Volatile Memory

 LoPAPR, Version 1.1 (March 24, 2016)

8.4.1.1 System NVRAM Partition

The System NVRAM partition, with name = common, contains information that is accessible to both OF and OSs. The
contents of this NVRAM partition are represented in the OF device tree as properties (i.e., (name, value) pairs) in the
/options node. While OF is available, the OS can alter the contents of these properties by using the setprop cli-
ent interface service. When OF is no longer available, the OS can alter the contents of the System NVRAM partition it-
self, following the rules below for the formats of the name and value. Information is stored in the System NVRAM
partition as a sequence of (name, value) pairs in the following format:

name = value

where name follows the rules defined in Section 8.4.1.1.1‚ “Name‚” on page 268 and value follows the rules defined in
Section 8.4.1.1.2‚ “Value‚” on page 268. The end of the sequence of pairs is denoted by a NULL (0x00) byte.

8.4.1.1.1 Name

Since the data in the System NVRAM partition is an external representation of properties of the /option node, the
name component must follow the rules for property names as defined by Section 3.2.2.1.1 Property names of IEEE
1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2]; i.e., a
string of 1-31 printable characters containing no uppercase characters or the characters “/”, “\”, “:”, “[“, “]” or “@”. In
addition to these rules, a naming convention is required for OS specific names to avoid name conflicts. Each such
name must begin with the OS vendor’s OUI followed by a “,”; e.g., aapl,xxx or ibm,xxx. This introduces separate name
spaces for each vendor in which it manages its own naming conventions.

8.4.1.1.2 Value

The value component of System NVRAM partition data can contain an arbitrary number of bytes in the range 0x01 to
0xFF, terminated by a NULL (0x00) byte. Bytes in the range 0x01 to 0xFE represent themselves. In order to allow ar-
bitrary byte data to be represented, an encoding is used to represent strings of 0x00 or 0xFF bytes. This encoding uses
the 0xFF byte as an escape, indicating that the following byte is encoded as:

bnnnnnnn

where b, the most-significant bit, is 0 to represent a sequence of 0x00 bytes or 1 to represent a sequence of 0xFF bytes.
nnnnnnn, the least-significant 7 bits, is a binary number (in the range 0x01 to 0x7F) that represents the number of rep-
etitions of 0x00 or 0xFF.

8.4.1.1.3 OF Configuration Variables

OF configuration variables control the operation of OF. In addition to the standard configuration variables defined in
IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2],
other configuration variables are defined by Appendix C, “PA Processor Binding,” on page 753. While such variables
are stored in the System NVRAM partition as described above, they have additional rules placed on the format of the
value component. Each configuration variable is also represented by a user interface word (of the same name) that re-
turns stack value(s) when that word is evaluated. Each also has a platform defined default value; the absence of a con-
figuration variable in the System NVRAM partition indicates that the value is set to its default value. The format of the
external representation of configuration variables, and their stack representation, is defined by Section 7.4.4.1 Config-
uration Variables of IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements
and Practices [2]; the format depends upon the data type of the configuration variable. Whereas the internal storage
format is not defined by IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Require-
ments and Practices [2], this architecture specifies them as described below. The names of configuration variables are
defined in IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Prac-
tices [2], except as noted otherwise.

8.4  Architected NVRAM Partitions 269

LoPAPR, Version 1.1 (March 24, 2016)

8.4.1.1.3.1 Boolean Configuration Variables

The value of a boolean configuration variable is represented in the System NVRAM partition as the string “true” or
“false”. The following configuration variables are of type boolean:

auto-boot?

diag-switch?

fcode-debug?

oem-banner?

oem-logo?

use-nvramrc?

little-endian?

real-mode?

menu? (see Section 2.1.3.6‚ “Boot Process‚” on page 44).

8.4.1.1.3.2 Integer Configuration Variables

The value of an integer configuration variable is represented in the System NVRAM partition as a decimal number or a
hexadecimal number preceded by “0x”. The following configuration variables are of type integer:

screen-#columns

screen-#rows

security-#badlogins

security-mode

selftest-#megs

real-base

real-size

virt-base

virt-size

load-base

8.4.1.1.3.3 String Configuration Variables

The value of a string configuration variable is represented in the System NVRAM partition as the characters of the
string. Where multiple “lines” of text are represented, each line is terminated by a carriage-return (0x0D), a line-feed
(0x0A), or carriage-return, line-feed sequence (0x0D, 0x0A). The following configuration variables are of type string:

boot-command [1]

boot-device [1]

boot-file [1]

diag-device [1]

270 Non-Volatile Memory

 LoPAPR, Version 1.1 (March 24, 2016)

diag-file [1]

input-device [1]

nvramrc [1]

oem-banner [1]

output-device [1]

security-password [1]

bootinfo-nnnnn [*]

reboot-command [*]

8.4.1.1.3.4 Byte Configuration Variables

The value of a bytes configuration variable is represented by an arbitrary number of bytes, using the encoding escape
for values of 0x00 and 0xFF. The following configuration variables are of type bytes:

oem-logo [1]

8.4.1.2 DASD Spin-up Control

 In order to reduce the boot time of platforms, a configuration variable is defined to communicate from the platform to
the OS to what extent spin-up of hard disk drives can be overlapped. Disk drives generally draw more current as the
motors spin up to operating speed, thus the capacity of the power supply limits the ability to spin up drives simultane-
ously.

The configuration variable ibm,dasd-spin-interval indicates the minimum time, in seconds, that must be al-
lowed between initiating the spin-up of hard disk drives on the platform. Presence of this variable potentially allows
starting up a drive prior to receiving completion status from a drive previously started. The absence of this variable im-
plies no platform knowledge regarding the capability to overlap and, hence, the OS should wait for the appropriate de-
vice status before proceeding to subsequent drives (no overlap).

R1–8.4.1.2–1. If a platform wants to overlap spinning up it's hard disk drives to improve boot performance, it must
create the ibm,dasd-spin-interval OF configuration variable in the NVRAM signature 0x70
NVRAM partition named common and set it equal to an integer that represents the minimum time, in sec-
onds, that must be allowed between initiating the spin-up of drives on the platform.

Firmware Implementation Note: The platform should provide a user-friendly interface to this variable to allow for the
possibility of a user installing hard disks that do not conform to the original setting of the variable.

8.4.2 Free Space (0x7F)

R1–8.4.2–1. All unused NVRAM space must be included in a signature = 0x7F Free Space NVRAM partition.

R1–8.4.2–2. All Free Space NVRAM partitions must have the name field set to 0x7...77.

8.5  NVRAM Space Management 271

LoPAPR, Version 1.1 (March 24, 2016)

8.5 NVRAM Space Management

The only NVRAM partitions whose size an OS can modify are OS and Free Space signature NVRAM partitions. As
NVRAM partitions are created and modified by an OS, it is likely that free space will become fragmented; free space
consolidation may become necessary.

R1–8.5–1. An OS must not move or delete any NVRAM partition, except OS and Free Space signature NVRAM
partitions.

R1–8.5–2. The NVRAM partition header checksum must be calculated as shown in Table 130‚ “NVRAM Struc-
ture‚” on page 266.

272 Non-Volatile Memory

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

9 I/O Devices

This chapter describes requirements for IOAs. It adds detail to areas of the PCI architectures (conventional PCI, PCI-X
and PCI Express) that are either unaddressed or optional. It also places some requirements on firmware and the OS for
IOA support. It provides references to specifications to which IOAs must comply and gives design notes for IOAs that
run on LoPAPR systems.

9.1 PCI IOAs

R1–9.1–1. All PCI IOAs must be capable of decoding and generating either a full 32-bit address or a full 64-bit ad-
dress.

R1–9.1–2. IOAs that implement conventional PCI must be compliant with the most recent version of the PCI Local
Bus Specification [18] at the time of their design, including any approved Engineering Change Requests
(ECRs) against that document.

R1–9.1–3. IOAs that implement PCI-X must be compliant with the most recent version of the PCI-X Protocol Ad-
dendum to the PCI Local Bus Specification [21] at the time of their design, including any approved Engineer-
ing Change Requests (ECRs) against that document.

R1–9.1–4. IOAs that implement PCI Express must be compliant with the most recent version of the PCI Express
Base Specification [22] at the time of their design, including any approved Engineering Change Requests
(ECRs) against that document

Architecture Note: Revision 2.1 and later of the PCI Local Bus Specification requires that PCI masters which receive a
Retry target termination to unconditionally repeat the same request until it completes. The master may perform
other bus transactions, but cannot require those to complete before repeating the original transaction which was
previously target terminated with Retry. Revision 2.1 of the specification (page 49) also includes an example
which describes how the requirement above applies to a multi-function IOA. See page 48-49 of the 2.1 revision
of the PCI Local Bus Specification for more detail. Revision 2.0 of the PCI Local Bus Specification includes a
definition of target termination via Retry, but did not spell out the requirement described above for masters, as
does the 2.1 revision of the specification. Masters which are designed based on revision 2.0 of the specification
that perform other transactions following target termination with Retry, may cause live-locks and/or deadlocks
when installed in a system that utilizes bridges (host bridge or PCI-PCI bridges) that implement Retry, delayed
transactions, and/or TCEs, when those masters require following transactions to complete before the original
transaction that was terminated with the target Retry. This revision 2.0 to revision 2.1 compatibility problem has
been observed on several IOAs that have asked for deviations to Requirement R1–9.1–2. Wording was added to
the revision 2.2 of the PCI Local Bus Specification which makes a statement similar to this Architecture Note.

9.1.1 Resource Locking

R1–9.1.1–1. PCI IOAs, excepting bridges, must not depend on the PCI LOCK# signal for correct operation nor re-
quire any other PCI IOA to assert LOCK# for correct operation.

There are some legacy IOAs on legacy buses which require LOCK#. Additionally, LOCK# is used in some implemen-
tations to resolve deadlocks between bridges under a single PHB. These uses of LOCK# are permitted.

274 I/O Devices

 LoPAPR, Version 1.1 (March 24, 2016)

9.1.2 PCI Expansion ROMs

R1–9.1.2–1. PCI expansion ROMs must have a ROM image with a code type of 1 for OF as provided in the PCI
Local Bus Specification [18]. This ROM image must abide by the ROM image format for OF as documented
in the PCI Bus binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware
[6].

LoPAPR systems rely on OF - not BIOS - to boot. This is why strong requirements for OF device support are made.

Vital Product Data (VPD) is an optional feature for PCI adapters and it is strongly recommended that VPD be included
in all PCI expansion ROMs. If it is put in the PCI expansion ROM in accordance with the PCI Local Bus Specification
[18], VPD will be reported in the OF device tree. If the VPD information is formatted as defined in Revision 2.2 with
the new capabilities feature, or in any other format, firmware will not read the VPD, and the device driver for the IOA
will have to reformat any provided VPD into an OS specified format. It is still required that the keywords and their val-
ues must conform to those specified by either PCI 2.1 or PCI 2.2, no matter how they are formatted. Refer to Require-
ment R1–12.4.2–1.

9.1.3 Assignment of Interrupts to PCI IOAs

R1–9.1.3–1. All PCI IOAs must use the PowerPC interrupt controller, except when made transparent to the OS by
the platform through the architected hcall()s.

R1–9.1.3–2. PCI IOAs that do not reside in the Peripheral Memory Space and Peripheral I/O Space of the same
PHB must not share the same LSI source.

For further information on the interrupt controller refer to Chapter 6, “Interrupt Controller,” on page 101.

It is strongly advised that system board designers assign one interrupt for each interrupt source. Additionally,
multi-function PCI IOAs should have multiple interrupt sources. For restrictions on sharing interrupts with the LPAR
option, see Requirement R1–14.4–1. For restrictions on sharing MSIs, see Requirement R1–6.2.3–5 and Requirement
R1–6.2.3–6.

9.1.4 PCI-PCI Bridge Devices

R1–9.1.4–1. Firmware must initialize all PCI-to-PCI bridges. See PCI Bus binding to: IEEE Std 1275-1994, Stan-
dard for Boot (Initialization, Configuration) Firmware [6].

All bridges and switches are required to comply with the bus specification(s) of the buses to which they are attached.
See Requirement R1–4.3–1.

9.1.5 Graphics Controller and Monitor Requirements for Clients

The graphics requirements for servers are different from those for portable and personal systems.

R1–9.1.5–1. Plug-in graphics controllers for portable and personal platforms must provide graphics mode sets in the
OF PCI expansion ROM image in accordance with the PCI Bus binding to: IEEE Std 1275-1994, Standard
for Boot (Initialization, Configuration) Firmware [6].

Portable and personal platforms are strongly urged to support some mechanism which allows the platform to electroni-
cally sense the display capabilities of monitors.

For graphics controllers that are placed on the system board, the graphics mode sets can be put in system ROM. The
mode set software put in the system ROM in this case would be FCode and would be largely or entirely the same as the
FCode that would be in the PCI expansion ROM if the same graphics controller was put on a plug-in PCI card.

9.1  PCI IOAs 275

LoPAPR, Version 1.1 (March 24, 2016)

9.1.6 PCI Plug-in Graphic Cards

R1–9.1.6–1. (Requirement Number Reserved For Compatibility)

R1–9.1.6–2. PCI plug-in graphics cards which are going to be the primary display IOA during the time prior to the
OS device driver being loaded must contain an OF display driver on the IOA.

9.1.7 PCI Cache Support Protocol

The PCI architecture allows for the optional implementation of caching of data. This architecture basically assumes
that the data in I/O memory is non-coherent. As such, platforms are not required to implement the optional PCI Cache
Support protocol using the SBO# and SDONE signals. Therefore, IOAs used in LoPAPR platforms should not count
on those signals for proper operations.

R1–9.1.7–1. IOAs used in LoPAPR platforms and their device drivers must not require the use of the PCI signals
SBO# and SDONE for proper operations.

9.1.8 PCI Configuration Space for IOAs

There are several writable fields in the PCI Configuration Header. Some of these are written by the firmware and
should never be changed by the device driver.

R1–9.1.8–1. All registers and bits in the PCI Configuration Header must be set to a platform specific value by firm-
ware and preserved by software, except that software is responsible for setting the configuration space as in-
dicated in Table 132‚ “Software Programming of PCI Configuration Header Registers‚” on page 275.

R1–9.1.8–2. All IOAs that implement PCI-X Mode 2 or PCI Express must supply the “ibm,pci-con-
fig-space-type” property (see Section B.6.5.1.1.1‚ “Properties for Children of PCI Host Bridges‚” on
page 703).

Table 132. Software Programming of PCI Configuration Header Registers

Register Name Bit Name Software Action

Command

Bus Master
Must write to a 1 before the first DMA operation after a reset. Must write
to a 0 before unconfiguring device driver.

Memory Space
Must write to a 1 before the first MMIO operation to IOA’s memory
space (if any) after a reset. Must write to a 0 before unconfiguring device
driver.

IO Space
Must write to a 1 before the first MMIO operation to IOA’s I/O space (if
any) after a reset. Must write to a 0 before unconfiguring device driver.

all other bits
Must restore to previous value after any reset operation (for example, via
ibm,set-slot-reset Function 1 or 3). The ibm,configure-bridge RTAS call
is available to assist in restoring values, where appropriate.

 Built in Self Test (BIST) all If implemented, software may use if desired.

all other PCI header registers that
may be modified by firmware

after initial reset or by
ibm,configure-connector for DR

operations

all

Must restore to previous value after any reset operation (for example, via
ibm,set-slot-reset-state Function 1). The ibm,configure-bridge RTAS
call is available to assist in configuring PCI bridges and switches, where
appropriate.

276 I/O Devices

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: The “ibm,pci-config-space-type” property in Requirement R1–9.1.8–2 is added for
platforms that support I/O fabric and IOAs that implement PCI-X Mode 2, and PCI Express. To access the
extended configuration space provided by PCI-X Mode 2 and PCI Express, all I/O fabric leading up to an IOA
must support a 12-bit register number. In other words, if a platform implementation has a conventional PCI bridge
leading up to an IOA that implements PCI-X Mode 2, the platform will not be able to provide access to the
extended configuration space of that IOA. The “ibm,config-space-type” property in the IOA's OF node
is used by device drivers to determine if an IOA’s extended configuration space can be accessed.

9.1.9 PCI IOA Use of PCI Bus Memory Space Address 0

Some PCI IOAs will fail when given a bus address of 0. In the PC world, address 0 would not be a good address, so
some PCI IOA designs which were designed for the PC arena will check for an address of 0, and fail the operation if it
is 0.

R1–9.1.9–1. For systems that use PCI IOAs which will fail when given a bus address of 0 for DMA operations, and
when the operations for which those IOAs are used are other than system memory dump operations, then the
OS must prevent the mapping of PCI bus address 0 for PCI DMA operation for such IOAs.

R1–9.1.9–2. PCI IOAs used for dumping contents of system memory must operate properly with a PCI bus address
of 0 for PCI DMA operations.

R1–9.1.9–3. The firmware must not map an IOA used for loading a boot image to an address of 0, when loading a
boot image, if that IOA cannot accept an address of 0.

Implementation Note: A reasonable implementation of Requirement R1–9.1.9–1 would be to have an interface between
the device driver and the kernel to allow the device driver to indicate to the kernel that the restriction is required
for that IOA, so that all IOAs for that kernel image are not affected.

9.1.10 PCI Express Completion Timeout

Prior to the implementation of the PCI Express additional capability to set the Completion Timeout Value and Comple-
tion Timeout Disable in the PCI Express Device Control 2 register of an IOA, the IOAs need device-specific way to
provide the disable capability. In addition, the platforms need to provide a way for the OSs and device drivers to know
when to disable the completion timeout of these devices that only provide a device-specific way of doing so.

R1–9.1.10–1. PCI Express IOAs must either provide a device-specific way to disable their DMA Completion Tim-
eout timer or must provide the Completion Timeout Disable or Completion Timeout Value capability in the
PCI Express Device Control 2 register, and device drivers for IOAs that provide a device-specific way must
disable their DMA Completion Timeout timer if it is either unknown whether the IOA provides a sufficiently
long timer value for the platform, or if it is known that they do not provide a sufficient timeout value (for ex-
ample, if the “ibm,max-completion-latency” property is not provided).

R1–9.1.10–2. Platforms must provide the “ibm,max-completion-latency” property in each PCI Express
PHB node of the OF Device Tree.

9.1.11 PCI Express I/O Virtualized (IOV) Adapters

PCI Express defines I/O Virtualized (IOV) adapters, where such an adapter has separate resources for each virtual in-
stance, called a Virtual Function (VF). There are two PCI specifications that exist to define such adapters:

 Single Root I/O Virtualization and Sharing Specification [29] defines the requirements for SR-IOV adapters.

9.1  PCI IOAs 277

LoPAPR, Version 1.1 (March 24, 2016)

 Multi-Root I/O Virtualization and Sharing Specification [30] defines the requirements for MR-IOV adapters.

The interface presented to an OS from an MR-IOV adapter will look the same as an SR-IOV adapters, and therefore
will not be described separately here.

IOV adapters and/or the VFs of an IOV adapter that has IOV enabled, are assigned to OSs as follows (see also
Table 133‚ “IOV Environment Characteristics‚” on page 277 for a full set of characteristics of these environments):

 For the Legacy Dedicated environment, the entire adapter is assigned to one LPAR, with the IOV functionality not
enabled. In this mode, the OS provides device driver(s) for the adapter Function(s). VFs do not exist, because IOV is
not enabled. The OS is given the capability to do Hot Plug add, remove, and replace in a non-managed environment
(without an HMC), and may be given that capability in a managed environment.

 For the SR-IOV Non-shared environment, the entire adapter is assigned to one LPAR, with IOV functionality en-
abled, but with the Physical Function(s) (PFs) of the adapter hosted by the platform. Only VFs are presented to the
OS. The OS is given the capability to do Hot Plug add, remove, and replace in a non-managed environment (without
an HMC), and may be given that capability in a managed environment.

 For the SR-IOV Shared environment, the adapter is assigned to the platform, with IOV functionality enabled. The
platform then assigns VF(s) to OS(s). Only the managed environment applies, and add/remove/replace operations
are controlled by DLPAR operations to the OS(s) from the management console.

For all environments except the SR-IOV Shared, multiple functions will appear as a multi-function IOA with possible
sharing of a single PE. For example, the multi-function adapters may have a shared EEH domain and shared DMA
window.

Determination of which of the above environments is supported for a given platform and partition or OS type is beyond
the scope of this architecture.

Table 133‚ “IOV Environment Characteristics‚” on page 277 defines the characteristics of these environments.

Table 133. IOV Environment Characteristics

Legacy Dedicated SR-IOV Non-shared SR-IOV Shared

Entire adapter assigned to OS, IOV not enabled yes n/a n/a

Entire adapter assigned to OS, IOV enabled n/a yes n/a

Adapter can be shared across multiple OSs, IOV enabled n/a n/a yes

Function DD support
Plain Function only

(not VF or PF)
VF only VF only

PFs managed by platform? n/a yes yes

Managed environment support? yes yes yes

Non-managed environment support? yes yes no

OS controlled Hot Plug capable? yes yes no

DLPAR capable? yes yes yes

All functions under one PHB in the OF Device Tree for the adapter? yes yes no

All functions under separate PHBs in the OF Device Tree for the same adaptera? no no yes

config_addr translation (virtualization) by the platform (that is, the
bus/device/function of the config_addr does not necessarily correspond to what
the device has programmed)

no yes yes

278 I/O Devices

 LoPAPR, Version 1.1 (March 24, 2016)

R1–9.1.11–1. PCI Express Single Root IOV (SR-IOV) adapters must comply to the Single Root I/O Virtualization
and Sharing Specification [29].

R1–9.1.11–2. PCI Express Multi-Root IOV (MR-IOV) adapters must comply to the Multi-Root I/O Virtualization
and Sharing Specification [30].

R1–9.1.11–3. The platform must present within the device tree nodes for all PCI Express adapters configured to op-
erate in IOV mode the "ibm,is-vf" property as defined in section B.6.5.1.1.2, “LPAR Option Proper-
ties,” on page 706.

9.2 Multi-Initiator SCSI Support

Multi-initiator SCSI support is identified in the OF device tree.

R1–9.2–1. Platform Implementation: Platforms must support the “scsi-initiator-id” property as de-
scribed in Appendix B, “LoPAPR Binding,” on page 661 and Open Firmware Recommended Practice: De-
vice Support Extensions [5].

9.3 Contiguous Memory

I/O devices that require contiguous memory pages (either real or via contiguous TCEs) cannot reasonably be accom-
modated in LoPAPR platforms. When TCEs are turned off, that would require that real physical memory addresses be
allocated. When TCEs are on, that would require contiguous TCEs be assigned, and although that is the first attempt by
the OS’s TCE assignment algorithm, the algorithm will assign non-contiguous ones if contiguous ones cannot be as-
signed. Dynamic Reconfiguration complicates the contiguous problem even further.

R1–9.3–1. I/O devices and/or their device drivers used in LoPAPR platforms must implement scatter/gather capa-
bility for DMA operations such that they do not require contiguous memory pages to be allocated for proper
operation.

9.4 Re-directed Serial Ports

The “ibm,vty-wrap-capable” OF device tree property will be present in an OF device tree of a serial port node
when the OS data communication with that serial port controller can be redirected, or wrapped, away from the physical
serial port connector to an ibm,vty device, which is often a virtual terminal session of the Hardware Management
Console (HMC). This property indicates to serial port diagnostic programs that additional end user information should
be displayed during the serial port diagnostic test indicating that it is possible that serial port data could be redirected
away from the physical serial port preventing the execution of wrap tests with physical wrap plugs. The end user infor-
mation should describe that initiating a virtual terminal session causes the serial port controller's data to be wrapped
away from the physical serial port connection and that terminating a virtual terminal session causes the serial port con-
troller's data to be returned to the physical serial port connection. The “ibm,vty-wrap-capable” property is
present with a value of null when this re-direction capability exists and is absent when this capability does not exist.

Shared PE domain (for example, shared EEH domain, shared DMA window) yes yes no

a. The adapter is physically under one PHB, but the platform creates separate “virtual” PHBs in the OF Device Tree and virtualizes the PCI Express
configuration space for the various functions.

Table 133. IOV Environment Characteristics (Continued)

Legacy Dedicated SR-IOV Non-shared SR-IOV Shared

9.5  System Bus IOAs 279

LoPAPR, Version 1.1 (March 24, 2016)

R1–9.4–1. The “ibm,vty-wrap-capable” OF device tree property must be present in an OF device tree of a
serial port node when the OS data communication with that serial port controller can be redirected, or
wrapped, away from the physical serial port connector to an ibm,vty device, and must not be present if this
capability does not exist.

9.5 System Bus IOAs

This section lists the requirements for the systems to support IOAs connected to the system bus or main I/O expansion
bus.

R1–9.5–1. Each system bus IOA must be a bus master.

R1–9.5–2. Firmware must assign unique addresses to all system bus IOA facilities.

R1–9.5–3. Addresses assigned to system bus IOA facilities must not conflict with the addresses mapped by any host
bridge on the system bus.

R1–9.5–4. System bus IOAs must be assigned interrupt sources for their interrupt requirements by firmware.

R1–9.5–5. A system bus IOA’s OF “interrupts” property must reflect the interrupt source and type allocation
for the device.

R1–9.5–6. All system bus IOA interrupts must be low true level sensitive (referred to as level sensitive).

R1–9.5–7. Interrupts assigned to system bus IOAs must not be shared with other IOAs.

R1–9.5–8. The OF unit address (first entry of the “reg” property) of a system bus IOA must stay the same from
boot to boot.

R1–9.5–9. Each system bus IOA must have documentation for programming the IOA and an OF binding which de-
scribes at least the “name”, “reg”, “interrupts”, and “interrupt-parent” properties for the
device.

280 I/O Devices

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

10 Error and Event Notification

10.1 Introduction

RTAS provides a mechanism which helps OSs avoid the need for platform-dependent code that checks for, or recovers
from, errors or exceptional conditions. The mechanism is used to return information about hardware errors which have
occurred as well as information about non-error events, such as environmental conditions (for example, temperature or
voltage out-of-bounds) which may need OS attention. This permits RTAS to pass hardware event information to the
OS in a way which is abstracted from the platform hardware. This mechanism primarily presents itself to the OS via
two RTAS functions, event-scan and check-exception, which are described further in Section 7.3.3‚ “Error and Event
Reporting‚” on page 125. A further RTAS function, rtas-last-error, is also provided to return information about hard-
ware failures detected specifically within an RTAS call.

The event-scan function is called periodically to check for the presence or past occurrence of a hardware event, such as
a soft failure or voltage condition, which did not cause a program exception or interrupt (for example, an ECC error de-
tected and corrected by background scrubbing activity). The check-exception function is called to provide further detail
on what platform event has occurred when certain exceptions or interrupts are signaled. The events reported by these
two functions are mutually exclusive on any given platform; that is, a platform may choose to notify the OS of a partic-
ular event type either through event-scan or through an interrupt and check-exception, but not both.

Since firmware is platform-specific, it can examine hardware registers, can often diagnose many kinds of hardware er-
rors down to a root cause, and may even perform some very limited kinds of error recovery on behalf of the OS. The
reporting format, described in this chapter, permits firmware to report the type of error which has occurred, what enti-
ties in the platform were involved in the error, and whether firmware has successfully recovered from the error without
the need for further OS involvement. Firmware may not, in many cases, be able to determine all the details of an error,
so there are also returned values which indicate this fact. Firmware may optionally provide extended error diagnostic
information, as described in Section 10.3.2.2‚ “Version 6 Extensions of Event Log Format‚” on page 294.

The abstractions provided by this architecture enable the handling of most platform errors and events without integrat-
ing platform-specific code into each supported OS.

Architecture Note: It is not a goal of the firmware to diagnose all hardware failures. Most I/O device failures, for
example, will be detected and recovered by an associated device driver. Firmware attempts to determine the cause
of a problem and report what it finds, to aid the end user (by providing meaningful diagnostic data for messages)
and to prevent the loss of error syndrome information. Firmware is never required to correct any problem, but in
some cases may attempt to do so. System vendors who want more extensive error diagnosis may create OS error
handlers which contain specific hardware knowledge, or could use firmware to collect a minimum set of error
information which could then be used by diagnostics to further analyze the cause of the error.

10.2 RTAS Error and Event Classes

Table 134‚ “Error and Event Classes with RTAS Function Call Mask‚” on page 282 describes the predefined classes of
error and event notifications that can be presented through the check-exception and event-scan RTAS functions. More
detailed descriptions of these classes are given later in this chapter. Table 134‚ “Error and Event Classes with RTAS
Function Call Mask‚” on page 282 defines nodes in the OF device tree which, through an “interrupts” property,
may list the platform-dependent interrupts related to each class. From this information, OSs know which interrupts
may be handled by calling check-exception. The OF structure for describing these interrupts is defined in Appendix B,

282 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

“LoPAPR Binding,” on page 661. Table 134‚ “Error and Event Classes with RTAS Function Call Mask‚” on page 282
also defines the mask parameter for the check-exception and event-scan RTAS functions which limits the search for er-
rors and events to the classes specified.

R1–10.2–1. For the Platform Interrupt Event option: The platform must implement the I/O Events and Errors
class type along with the appropriate ibm,io-events node property to specify the interrupts.

R1–10.2–2. Platform-specific error and event interrupts that a platform provider wants the OS to enable must be
listed in the “interrupts” property of the appropriate OF event class node, as described in Table 134‚
“Error and Event Classes with RTAS Function Call Mask‚” on page 282.

R1–10.2–3. To enable platform-specific error and event interrupt notification, OSs must find the list of interrupts
(described in Table 134‚ “Error and Event Classes with RTAS Function Call Mask‚” on page 282) for each
error and event class in the OF device tree, and enable them.

R1–10.2–4. OSs must have interrupt handlers for the enabled interrupts described in Requirement R1–10.2–3,
which call the RTAS check-exception function to determine the cause of the interrupt.

R1–10.2–5. Platforms which support error and event reporting must provide information to the OS via the RTAS
event-scan and check-exception functions, using the reporting format described in Table 137‚ “RTAS Event
Return Format (Fixed Part)‚” on page 292.

R1–10.2–6. Optional Extended Error Log information, if returned by the event-scan or check-exception functions,
must be in the reporting format described in Table 138‚ “RTAS General Extended Event Log Format, Version
6‚” on page 296.

R1–10.2–7. To provide control over performance, the RTAS event reporting functions must not perform any event
data gathering for classes not selected in the event class mask parameter, nor any extended data gathering if
the time critical parameter is non-zero or the log buffer length parameter does not allow for an extended error
log.

R1–10.2–8. To prevent the loss of any event notifications, the RTAS event reporting functions must be written to
gather and process error and event data without destroying the state information of events other than the one
being processed.

R1–10.2–9. Any interrupts or interrupt controls used for error and event notification must not be shared between er-
ror and event classes, or with any other types of interrupt mechanisms. This allows the OS to partition its in-
terrupt handling and prevents blocking of one class of interrupt by the processing of another.

Table 134. Error and Event Classes with RTAS Function Call Mask

Class Type
OF Node Name

(where the “interrupts” property lists
the interrupts)

RTAS Function Call Mask
(value = 1 enables class)

Internal Errors internal-errors bit 0

Environmental and Power Warnings epow-events bit 1

Reserved bit 2

Hot Plug Events hot-plug-events bit 3

I/O Events and Errors ibm,io-events bit 4

10.2  RTAS Error and Event Classes 283

LoPAPR, Version 1.1 (March 24, 2016)

R1–10.2–10. If a platform chooses to report multiple event or error sources through a single interrupt, it must ensure
that the interrupt remains asserted or is re-asserted until check-exception has been used to process all out-
standing errors or events for that interrupt.

Platform Implementation Note: In Requirement R1–10.2–5, although the fixed-part return format for check-exception
and event-scan is the same, there are some expectations about what types of error response may be returned from
these functions, as follows:

 The event-scan function is mainly intended to report only errors that have been recovered or are non-critical to
the OS, since it is only called on a periodic basis. As such, it should never be used to report a Severity greater
than “WARNING”. More critical errors should be signaled by an interrupt. Typically, the expected response of
an OS to an event-scan error report is simply to log the error. The check-exception function may report error
information of any severity.

 If event-scan is reporting a critical error (for example, a checkstop) that occurred before the current boot ses-
sion, it should not report it with a “FATAL” Severity, even though the condition was fatal at the time the fail-
ure occurred. The Severity field informs the OS of the severity of the event at the time of reporting. Errors
which occurred before a successful reboot are no longer critical. Likewise, the RTAS Disposition field for
such an error should be “FULLY_RECOVERED”. There is a bit in the extended error log to indicate these
“residual” errors.

 Although check-exception can potentially clean up an error and return a “FULLY_RECOVERED” disposi-
tion, recovery still may not occur if the MSRRI bit is not set to 1. It is up to the OS to examine the RI bit, to de-
termine whether processor state is preserved so that a return from the machine check interrupt handler can be
safely attempted.

10.2.1 Internal Error Indications

Hardware may detect a variety of problems during operation, ranging from soft errors which have already been cor-
rected by the time they are reported, to hard errors of such severity that the OS (and perhaps the hardware) cannot
meaningfully continue operation. The mechanisms described in Section 10.1‚ “Introduction‚” on page 281 are used to
report such errors to the OS. This section describes the architectural sources of errors, and describes a method that plat-
forms can use to report the error. All OSs need to be prepared to encounter the errors reported as they are described
here. However, in some platforms more sophisticated handling may be introduced via RTAS, and the OS may not have
to handle the error directly. More robust error detection, reporting, and correcting are at the option of the hardware ven-
dor.

The primary architectural mechanism for indicating hardware errors to an OS is the machine check interrupt. If an error
condition is surfaced by placing the system in checkstop, it precludes any immediate participation by the OS in han-
dling the error (that is, no error capture, logging, recovery, analysis, or notification by the OS). For this reason, the ma-
chine check interrupt is preferred over going to the checkstop state. However, checkstop may be necessary in certain
situations where further processing represents an exposure to loss of data integrity. To better handle such cases, a spe-
cial hardware mechanism may be provided to gather and store residual error data, to be analyzed when the system goes
through a subsequent successful reboot.

Less critical internal errors may also be signaled to the OS through a platform-specific interrupt in the “Internal Errors”
class, or by periodic polling with the event-scan RTAS function.

Architecture Note: The machine check interrupt will not be listed in the OF node for the “Internal Errors” class, since it
is a standard architectural mechanism. The machine check interrupt mechanism is enabled from software or
firmware by setting the MSRME bit =1. Upon the occurrence of a machine check interrupt, bits in SRR1 will
indicate the source of the interrupt and SRR0 will contain the address of the next instruction that would have been
executed if the interrupt had not occurred. Depending on where the error is detected, the machine check interrupt

284 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

may be surfaced from within the processor, via logical connection to the processor machine check interrupt pin,
or via a system bus error indicator (for example, Transfer Error Acknowledge - TEA).

R1–10.2.1–1. OSs must set MSRME=1 prior to the occurrence of a machine check interrupt in order to enable ma-
chine check processing via the check-exception RTAS function.

Architecture Note: Requirement R1–10.2.1–1 is not applicable when the FWNMI option is used.

R1–10.2.1–2. For hardware-detected errors, platforms must generate error indications as described in Table 135‚
“Error Indications for System Operations‚” on page 285, unless the error can be handled through a less severe
platform-specific interrupt, or the nature of the error forces a checkstop condition.

R1–10.2.1–3. Platforms which detect and report the errors described in Table 135‚ “Error Indications for System
Operations‚” on page 285 must provide information to the OS via the RTAS check-exception function, using
the reporting format described in Table 137‚ “RTAS Event Return Format (Fixed Part)‚” on page 292.

R1–10.2.1–4. To prevent error propagation and allow for synchronization of error handling, all processors in a
multi-processor system must receive any machine check interrupt signaled via the external machine check in-
terrupt pin.

Platform Implementation Notes:

1. The intent of Requirement R1–10.2.1–2 is to define standard error notification mechanisms for different
hardware error types. For most hardware errors, the signaling mechanism is the machine check interrupt, al-
though this requirement hints at the use of a less severe platform-specific interrupt for some errors. The im-
portant point here is actually whether the error can be handled through that interrupt. Simply using an
external interrupt to signal the error is not sufficient. The hardware and RTAS also need to limit the propa-
gation of corrupted data, prevent loss of error state data, and support the cleanup and recovery of such an er-
ror. Since the response to an external interrupt may be significantly slower than a machine check, and in fact
may be masked, the error should not require immediate action on the part of the OS and/or RTAS. In addi-
tion, external interrupts (except external machine check interrupts) are reported to only one processor, so
operations by the other processors in an MP system should not be impacted by this error unless they specif-
ically try to access the failing hardware element. To summarize, platforms should not use platform-specific
interrupts to signal hardware errors unless there is a complete hardware/RTAS platform solution for han-
dling such errors.

2. The intent of Requirement R1–10.2.1–4 is that most hardware errors would be signaled simultaneously to
all processors, so that processors could synchronize the error handling process; that is, one processor would
be chosen to do the call to check-exception, while the other processors remained idle so that they would not
interfere with RTAS while it gathered machine check error data. While this is a straightforward wiring solu-
tion for errors signaled via the external machine check interrupt pin, that is not the case for internal proces-
sor errors or processor bus errors. Typically, only one processor will see such errors. An internal processor
error can be identified with just the contents of SRR1, and so can be handled without synchronization with
other processors. Processor bus errors, however, can be more difficult, especially if the error is propagated
up to the processor bus from a lower-level bus. In general, such propagation should be avoided, and such er-
rors should be signaled through the machine check interrupt pin to ensure proper error handling.

10.2.1.1 Error Indication Mechanisms

Table 135‚ “Error Indications for System Operations‚” on page 285 describes the mechanisms by which software will
be notified of the occurrence of operational failures during the types of data transfer operations listed below. The as-
sumption here is that the error notification can occur only if a hardware mechanism for error detection (for example, a
parity checker) is present. In cases where there is no specific error detection mechanism, the resulting condition, and
whether the software will eventually recognize that condition as a failure, is undefined.

10.2  RTAS Error and Event Classes 285

LoPAPR, Version 1.1 (March 24, 2016)

Table 135. Error Indications for System Operations

Initiator Target Operation
Error Type
(if detected)

Indication to Software Comments

Processor N/A Internal Various Machine check Some may cause checkstop

Processor Memory

Load

Invalid address Machine check

System bus time-out Machine check

Address parity on system bus Machine check

Data parity on system bus Machine check

Memory parity or
uncorrectable ECC

Machine check

Store

Invalid address Machine check

System bus time-out Machine check

Address parity on system bus Machine check

Data parity on system bus Machine check

External cache load
Memory parity or

uncorrectable ECC
Machine check

Associated with Instruction
Fetch or Data Load

External cache flush
Cache parity or

uncorrectable ECC
Machine check

External cache access
Cache parity or

uncorrectable ECC
Machine check

Associated with Instruction
Fetch or Data Transfer

Processor I/O Load or Store
Various errors between the
processor and the I/O fabric

Machine check
I/O fabrics include hubs and
bridges and interconnecting
buses or links.

Processor
I/O bus

configurati
on space

Read

Various, except no response
from IOA

Firmware receives a
machine check, OS
receives all=1’s data

along with a Status of -1
from the RTAS call

If EEH is implemented and
enabled, firmware does not get a
machine check and the PE is in
the EEH Stopped State on return
from the RTAS call

No response from an IOA

All-1’s data returned,
along with a “Success”
Status from the RTAS

call

If EEH is implemented and
enabled, the PE is not in the EEH
Stopped State on return from the
RTAS call

Write

Various, except no response
from IOA

Firmware receives a
machine check, OS

receives a Status of -1
from the RTAS call

If EEH is implemented and
enabled, firmware does not get a
machine check and the PE is in
the EEH Stopped State on return
from the RTAS call

No response from an IOA

Operation ignored, OS
receives a “Success”

Status from the RTAS
call

If EEH is implemented and
enabled, the PE is in the EEH
Stopped State on return from the
RTAS call

286 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: IOAs should, whenever possible, detect the occurrence of PCI errors on DMA and report them
via an external interrupt (for possible device driver recovery) or retry the operation. Since system state has not
been lost, reporting these errors via a machine check to the CPUs is inappropriate. Some devices or device drivers

Processor

I/O bus;
I/O Space

or
Memory

Space

Load

Various, except no response
from IOA

Machine check

If EEH is implemented and
enabled, no machine check is
received, all-1’s data is returned,
and the PE enters the EEH
Stopped State

No response from an IOA All-1’s data returned

Invalid address, broken IOA, or
configuration cycle to
non-existent IOA; if EEH is
implemented and enabled, the
PE enters the EEH Stopped State

Store

Various, except no response
from IOA

Machine check

If EEH is implemented and
enabled, no machine check is
received and the PE enters the
EEH Stopped State

No response from IOA Ignore Store

Invalid address, broken IOA, or
configuration cycle to
non-existent IOA; if EEH is
implemented and enabled, the
PE enters the EEH Stopped State

Processor

Invalid
address

(addressin
g an

“undefine
d” address

area)

Load or Store No response from system Machine check

I/O Memory DMA - either direction

Various, including but not
limited to:

 Invalid addr accepted by
a bridge

 TCE extent

 TCE Page Mapping and
Control mis-match or
invalid TCE

Machine check unless
reportable directly to the
IOA in a way that allows

the IOA to signal the
error to its device driver

If EEH is implemented and
enabled, no machine check is
received and the PE enters the
EEH Stopped State

I/O I/O DMA - either direction Various

Machine check unless
reportable to master of

the transfer in a way that
allows master to recover

I/O
Invalid
address

DMA - either direction No response from any IOA
PCI IOA

master-aborts
Signal device driver using an
external interrupt

PCI IOA - Any
Internal, indicated by SERR#

or ERR_FATAL

SERR# or
ERR_FATAL, causing

machine check

If EEH is implemented and
enabled, no machine check is
received and the PE enters the
EEH Stopped State

Table 135. Error Indications for System Operations (Continued)

Initiator Target Operation
Error Type
(if detected)

Indication to Software Comments

10.2  RTAS Error and Event Classes 287

LoPAPR, Version 1.1 (March 24, 2016)

may cause a catastrophic error. Systems which wish to recover from these types of errors should choose devices
and device drivers which are designed to handle them correctly.

10.2.2 Environmental and Power Warnings

Environmental and Power Warnings (EPOW) is an option that provides a means for the platform to inform the OS of
these types of events. The intent is to enable the OS to provide basic information to the user about environmental and
power problems and to minimize the logical damage done by these problems. For example, an OS might want to abort
all disk I/O operations in progress to ensure that disk sectors are not corrupted by the loss of power. Even on platforms
that provide hardware protection of data during environmental events, EPOW notification allows discrimination be-
tween I/O errors caused by hardware failures versus EPOW events.

These warnings include action codes that the platform can use to influence the OS behavior when various hardware
components fail. For example, a fan failure where the system can continue to operate in the safe cooling range may just
generate an action code of WARN_COOLING, but a fan failure where the system cannot operate in the safe cooling
range may generate an action code of SYSTEM_HALT.

Implementation Note: Hardware cannot assume that the OS will process or take action on these warnings. These
warnings are only provided to the OS in order to allow the OS a chance to cleanly abort operations in progress at
the time of the warning. Hardware still assumes responsibility for preventing hardware damage due to
environmental or power problems.

An OS that wants to be EPOW-aware will look for the epow-events node in the OF device tree, enable the inter-
rupts listed in its “interrupts” property, and provide an interrupt handler to call check-exception when one of
those interrupts are received.

When an EPOW event occurs, whether reported by check-exception or event-scan, RTAS will directly pass back the
EPOW sensor value as part of the Extended Error Log format as described in Table 146‚ “Platform Event Log Format,
Version 6, EPOW Section‚” on page 308, assuming the extended log is requested. Doing so avoids the need for the OS
to make an extra RTAS call to obtain the sensor value. For critical power problems, the check-exception function is
used to immediately report changes of state to the OS, while the get-sensor-state function allows the OS to monitor the
condition (for example, loss of AC power) to see if the problem corrects itself.

R1–10.2.2–1. If the platform supports Environmental and Power Warnings by including a EPOW device tree entry,
then the platform must support the EPOW sensor for the get-sensor-state RTAS function.

R1–10.2.2–2. The EPOW sensor, if provided, must contain the EPOW action code (defined in Table 136‚ “EPOW
Action Codes‚” on page 288) in the least significant 4 bits. In cases where multiple EPOW actions are re-
quired, the action code with the highest numerical value (where 0 is lowest and 7 is highest) must be pre-
sented to the OS. The platform may implement any subset of these action codes, but must operate as
described in Table 136‚ “EPOW Action Codes‚” on page 288 for those it does implement.

R1–10.2.2–3. To ensure adequate response time, platforms which implement the EPOW_MAIN_ENCLOSURE or
EPOW_POWER_OFF action codes must do so via interrupt and check-exception notification, rather than by
event-scan notification. (Except as modified by Requirement R1–10.2.2–4)

R1–10.2.2–4. If the platform does not notify EPOW_MAIN_ENCLOSURE or EPOW_POWER_OFF via interrupt,
then the platform must protect data on I/O storage devices from corruption due to the EPOW event.

R1–10.2.2–5. For interrupt-driven EPOW events, the platform must ensure that an EPOW interrupt is not lost in the
case where a numerically higher-priority EPOW event occurs between the time when check-exception gathers
the sensor value and when it resets the interrupt.

R1–10.2.2–6. For SYSTEM_SHUTDOWN EPOW class 3, after a SYSTEM_SHUTDOWN EPOW commences
and when the delay interval timer expires, if an “ibm,recoverable-epow3” encode-null property in
the /rtas node is present, then the OS code that manages preserving storage must check the EPOW sensor

288 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

state and the “ibm,request-partition-shutdown” property if present. A normal boot must only
occur when the EPOW sensor state indicates that the EPOW condition requiring a shutdown no longer exists
(EPOW 0) and the “ibm,request-partition-shutdown” is not present. Otherwise, the code that
manages preserving storage must take the action as identified by the property.

Implementation Note: One way for hardware to prevent the loss of an EPOW interrupt is by deferring the generation of
a new EPOW interrupt until the existing EPOW interrupt is reset by a call to the RTAS check-exception function.
Another way is to ignore resets to the interrupt until all EPOW events have been reported.

Software Implementation Note: A recommended OS processing method for an EPOW_MAIN_ENCLOSURE event is
as follows:

 Prepare for shutdown, mask the EPOW interrupt, and wait for 50 milliseconds. Then call get-sensor-state to
read the EPOW sensor.

 If the EPOW action code is unchanged, wait an additional 50 milliseconds.

 If the action code is EPOW_POWER_OFF, attempt to power off. Otherwise, the power condition may have
stabilized, so interrupts may be enabled and normal operation resumed.

Implementation Note: EPOW_RESET (EPOW action code 0) may be used to indicate that a previously reported EPOW
condition is no longer present. For instance, a system might see a WARN_POWER action code for a loss of a
redundant line input power. EPOW_RESET may subsequently be issued if the line power were restored. The same
bits in the EPOW error log that specified the type of WARN_POWER EPOW generated would be set in the
EPOW_RESET error log to indicate the specific EPOW event that was reset.

Systems that do not support an EPOW interrupt would generally be unable to support the EPOW action codes 5
and 7. In those cases, there could not be an EPOW event to indicate a loss of power. However, after power were
restored, generating the EPOW_RESET EPOW would indicate that the system had lost power previously and the

Table 136. EPOW Action Codes

Action Code Value Description

EPOW_RESET/MESSAGE 0 No EPOW event is pending. This action code is the lowest priority.

WARN_COOLING 1 A non-critical cooling problem exists. An EPOW-aware OS logs the EPOW information.

WARN_POWER 2 A non-critical power problem exists. An EPOW-aware OS logs the EPOW information.

SYSTEM_SHUTDOWN 3
The system must be shut down. An EPOW-aware OS logs the EPOW error log information, then
schedules the system to be shut down to begin after an OS defined delay internal (default is 10 minutes.)

SYSTEM_HALT 4
The system must be shut down quickly. An EPOW-aware OS logs the EPOW error log information, then
schedules the system to be shut down in 20 seconds.

EPOW_MAIN_ENCLOSURE 5

The system may lose power. The hardware ensures that at least 4 milliseconds of power within
operational thresholds is available after signalling an interrupt. An EPOW-aware OS performs any
desired functions, masks the EPOW interrupt, and monitors the sensor to see if the condition changes.
Hardware does not clear this action code until the system resumes operation within safe power levels.

EPOW_POWER_OFF 7

The system will lose power. The hardware ensures that at least 4 milliseconds of power within
operational thresholds is available after signalling an interrupt. An EPOW-aware OS performs any
desired operations, then attempts to turn system power off. An EPOW-aware OS does not clear the
EPOW interrupt for this action code. This action code is the highest priority.

10.3  RTAS Error and Event Information Reporting 289

LoPAPR, Version 1.1 (March 24, 2016)

power had been restored. The EPOW_RESET should only be used in this way if the system is unable to generate
an EPOW class 5 or class 7.

10.2.3 Hot Plug Events

Hot Plug Events, when implemented, are reported through the event-scan RTAS call. These events are surfaced
through the fixed portions of the RTAS return value. (see Table 137‚ “RTAS Event Return Format (Fixed Part)‚” on
page 292) Some parts of the system may be modified without direct support from the OS.

R1–10.2.3–1. If FRUs can be hot plugged in the system without OS support, the Hot Plug Event mechanism must
be provided for signaling the OS about the event.

10.3 RTAS Error and Event Information Reporting

Architecture Note: All data formats listed in this section are either referenced as byte fields (and therefore are
independent of Endian orientation), or an indicator in the data structure describes their Endian orientation. Bits are
numbered from left (high-order:0) to right (low-order:7).

10.3.1 Introduction

This section describes the data formats used to report events and errors from RTAS to the OS. A common format is
used for errors and events to simplify software both in RTAS and in the OS. Both errors and events may have been an-
alyzed to some degree by RTAS, and value judgments may have been applied to decide how serious an error is, or even
how to describe it to the OS. These judgments are made by platform providers, since only they know enough about the
hardware to decide how serious a problem it is, whether and how to recover from it, and how to map it onto the ab-
stracted set of events and errors that a system is required to know about. There will be cases with some platforms where
no reasonable mapping exists, and platform features may not be fully supported by the OS. In such cases, error reports
may also be non-specific, leaving platform-specific details to platform-aware software.

10.3.2 RTAS Error/Event Return Format

This section describes in detail the return value retrieved by an RTAS call to either the event-scan or check-exception
function.

The return value consists of a fixed part and an optional Extended Error Report, described in the next section, which
contains full details of the error. The fixed part is intended to allow reporting the most common problems in a simple
way, which makes error detection and recovery simple for OSs that want to implement a very simple error handling
strategy. At the same time, the mechanism is capable of providing full disclosure of the error syndrome information for
OSs which have a more complete error handling strategy.

RTAS can return at most one return code per invocation. If multiple conditions exist, RTAS returns them in descending
order of severity on successive calls.

10.3.2.1 Reporting and Recovery Philosophy, and Description of Fields

All firmware implementations use a common error and event reporting scheme, as described in detail below. It is not
required that error recovery be present in firmware implementations, nor is it required that a high degree of error recov-
ery or survival be undertaken by OSs. If such behavior is desired, then specific platform-dependent handlers can be
loaded into the OS. However, this section defines return result codes and a philosophy which can be used if aggressive
error handling is implemented in firmware. This section describes the fields of the Error Report format, and the philos-
ophy which should be applied in generating return values from firmware or interpreting such return codes in an OS.

290 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

In general, an OS would look at the Disposition field first to see if an error has been corrected already by firmware. If
not corrected to the OS’s satisfaction, the OS would examine the Severity field. Based on that value, and optionally on
any information it can use from the Type and other fields, the OS will make a determination of whether to continue or
to halt operations. In either case, it may choose to log information regarding the error, using the remaining fields and
optional Extended Error Log.

The following sections describe the field values in Table 137‚ “RTAS Event Return Format (Fixed Part)‚” on page 292.

10.3.2.1.1 Version

This field is used only to distinguish among present and potential future formats for the remainder of the error report.
This value will be incremented if extensions are made to the format described here. The primary function of this field
is for future OSs to identify whether an error report may contain some (unknown at present) feature that was added af-
ter the initial version of this specification.

10.3.2.1.2 Severity

This field represents the value judgment of firmware of how serious the problem being reported should be considered
by the OS.

Errors which are believed to represent a permanent hardware failure affecting the entire system are considered “FA-
TAL.” OSs would not attempt to continue normal operation after receiving notice of such an error. OSs may not even
be able to perform an orderly shutdown in the presence of a Fatal error, though they may make a policy decision to try.

Less serious errors, but still causing a loss of data or state, are considered “ERRORs.” In general, continuing after such
an error is questionable, since details of what has failed may not be available, or if available, may not map nicely onto
any ongoing activity with which the OS can associate it. However, OSs may make a policy decision (for example,
based on the error Type, the Initiator, or the Target) to continue operation after an Error.

There are some types of errors, such as parity errors in memory or a parity error on a transfer between CPU and mem-
ory, which occur synchronously with the current process execution context. Such errors are sometimes fatal only to the
current thread of execution; that is, they affect only the current CPU state and possibly that of any memory locations
being currently referenced. If that context of execution is not essential to the system’s operation (for example, if an er-
ror trap mechanism is available in the OS and can be triggered to recover the OS to a known state), recovery and con-
tinuation may be possible. Or at least, since the memory of the machine is in an undamaged state, the system may be
able to be brought down in an orderly fashion. Such errors are reported as having Severity “ERROR_SYNC”. It is OS
dependent whether recovery is possible after such an error, or whether the OS will treat it as a fatal problem.

The “WARNING” return value indicates that a non-state-losing error, either fully recovered by firmware or not need-
ing recovery, has occurred. No OS action is required, and full operation is expected to continue unhindered by the er-
ror. Examples include corrected ECC errors or bus transfer failures which were re-tried successfully.

The “EVENT” return value is the mechanism firmware uses to communicate event information to the OS. The event
may have been detected by polling using event-scan or on the occurrence of an interrupt by calling check-exception. In
either case, the Error Return value indicates the event which has occurred in the Type field. See the Type description
below for a description of specific events and their expected handling.

The “NO_ERROR” return value indicates that no error was present. In this case, the remainder of the Error Return
fields are not valid and should not be referenced.

10.3.2.1.3 RTAS Disposition

An aggressive firmware implementation may choose to attempt recovery for some classes of error so an OS can con-
tinue operation in the face of recoverable errors. If firmware detects an error for which it has recovery code, it attempts
such action before it returns a value to the OS (that is, the mechanisms are linked in RTAS and cannot be separately ac-
cessed). Note that Disposition is nearly independent from Severity. Severity says how serious an error was, and Dispo-

10.3  RTAS Error and Event Information Reporting 291

LoPAPR, Version 1.1 (March 24, 2016)

sition says, regardless of severity, whether or not the OS has to even look at it. In general, an OS will first examine
Disposition, then Severity.

A return value of “FULLY RECOVERED” means that RTAS was able to completely recover the machine state after
the error, and OS operation can continue unhindered. The severity of the problem in this case is irrelevant, though for
consistency a “FATAL” error can never be “FULLY RECOVERED.”

A return value of “LIMITED RECOVERY” means that RTAS was able to recover the state of the machine, but that
some feature of the machine has been disabled or lost (for example, error checking), or performance may suffer (for ex-
ample, a failing cache has been disabled). The RTAS implementation may return further information in the extended
error log format regarding what action was done or what corrective action failed. In general, a conservative OS will
treat this return the same as “NOT RECOVERED,” and initiate shutdown. A less conservative OS may choose to let
the user decide whether to continue or to shut down.

A value of “NOT RECOVERED” indicates that the RTAS either did not attempt recovery, or that it attempted recovery
but was unsuccessful.

10.3.2.1.4 Optional Part Presence

This is a single flag, valid only if the 32-bit Error Return value is located in memory, which indicates whether or not an
Extended Error Log Length field and the Extended Error Log follows it in memory. It will be set on an in-memory re-
turn result from RTAS if and only if the RTAS call indicated sufficient space to return the Extended Error Log, and the
RTAS implementation supports the Extended Error Log.

10.3.2.1.5 Initiator

This field indicates, to the best ability of RTAS to determine it, the initiator of a failed transaction. (Note that in the
“Initiator” field of Table 135‚ “Error Indications for System Operations‚” on page 285, the value “I/O” indicates one of
the defined I/O buses or IOAs. This field contains finer-grained details of which type of I/O bus failed, if known, and
“UNKNOWN” if RTAS cannot tell.)

In many of the newer LoPAPR platforms, the platform error notification and handling flow is asynchronous to the OS
and software execution flow, therefore the context of Initiator is not applicable to the platform firmware. In those cases,
the value of “(0) Unknown or Not Applicable” is used for Initiator. In logs created with Version 6 or later, more de-
tailed information about the error is provided in the Platform Event log format.

10.3.2.1.6 Target

If RTAS can determine it, this field indicates the target of a failed transaction.

In many of the newer LoPAPR platforms, the platform error notification and handling flow is asynchronous to the OS
and software execution flow, therefore the context of Target is not applicable to the platform firmware. In those cases,
the value of “(0) Unknown or Not Applicable” is used for Target. In logs created with Version 6 or later, more detailed
information about the error are provided in the Platform Event log format.

10.3.2.1.7 Type

This field identifies the general type of the error or event. In some cases (for example, INTERN_DEV_FAIL), multiple
possible events are grouped together under a common return value. In such cases, platform-aware software may use the
Extended Error Log to distinguish them. Non-platform-aware software will generally treat all errors of a given type the
same, so it generally will not need to access the Extended Error Log information.

In the table, the EPOW values are associated with a Severity of EVENT. All other values will be associated with Se-
verity values of FATAL, ERROR, ERROR_SYNC, or WARNING, and may or may not be corrected by RTAS.

EPOW is an event type which indicates the potential loss of power or environmental conditions outside the limits of
safe operation of the platform. See “Environmental and Power Warnings” on page 287 for more information.

292 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

The “Platform Error (224)”, introduced for Version 6, generalizes that the error is identified by the platform and the
specific details are encoded in the Platform Event log format itself.

The “ibm,io-events (225)” defines a set of event notifications which requires special handling by the OS. For this type
of event notification, the Platform Event Log contains the “IO Events” section which identifies additional details asso-
ciated with the event.

The “Platform information event (226)” indicates the return log should be logged as “Information Log”. These logs in-
dicate key platform events and can be used for reference purposes.

The “Resource deallocation event (227)” indicates an event notification to the OS that a specific hardware resource has
experienced recurring recoverable errors with a trend toward unrecoverable. The OS should take action to deallocate
the resource from usage to prevent unrecoverable errors. For these types of event notification, the Platform Event Log
contains the “Logical Resource Identification” section which identifies the “Logical Entity” by Resource Type and Re-
source ID, associated with the event.

The “Dump notification event (228)” indicates that a dump file is present in the platform and is available for retrieval
by the OS. For this type of event notification, the Platform Event Log contains the “Dump Locator” section which con-
tains additional event specific information.

Additional Type values will be added in future revisions of the specification. If an OS does not recognize a particular
event type, it can examine the severity first, and then choose to ignore the event if it is not serious.

10.3.2.1.8 Extended Event Log Length / Change Scope

This optional 32-bit field is present in memory following the 32-bit Event Return value if the Optional Part Presence
flag is “PRESENT”, and it indicates the length in bytes of the Extended Event Log information which immediately fol-
lows it in memory. The length does not include this field or the Event Return field, so it may be zero. The field is also
present for a resource change “Hot Plug” event, such as a PRRN event, and then represents the scope of a resource
change.

10.3.2.1.9 RTAS Event Return Format Fixed Part

The summary portion of the error return is designed to fit into a single 32-bit integer. When used as a data return format
in memory, an optional Length field and Extended Error Log data may follow the summary. The fixed part contains a
“presence” flag which identifies whether an extended report is present.

In the table below, the location of each field within the integer is included in parentheses after its name. Numerical
field values are indicated in decimal unless noted otherwise.

Table 137. RTAS Event Return Format (Fixed Part)

Bit Field Name (bit
number(s))

Description, Values (Described in Section 10.3.2.1‚ “Reporting and Recovery Philosophy, and
Description of Fields‚” on page 289)

Version (0:7) A distinct value used to identify the architectural version of message.

Severity (8:10)

Severity level of error/event being reported:

ALREADY_REPORTED (6)
FATAL (5)
ERROR (4)
ERROR_SYNC (3)
WARNING (2)
EVENT (1)
NO_ERROR (0)
reserved for future use (7)

10.3  RTAS Error and Event Information Reporting 293

LoPAPR, Version 1.1 (March 24, 2016)

RTAS Disposition (11:12)

Degree of recovery which RTAS has performed prior to return after an error (value is
FULLY_RECOVERED if no error is being reported):

FULLY_RECOVERED(0)
Note: Cannot be used when Severity is “FATAL”.
LIMITED_RECOVERY(1)
NOT_RECOVERED(2)
reserved for future use (3)

Optional_Part_Presence (13)

Indicates if an Extended Error Log Length and Extended Error Log follows this 32-bit quantity in
memory:

PRESENT (1): The optional Extended Error Log is present.
NOT_PRESENT (0): The optional Extended Error Log is not present.

Reserved (14:15) Reserved for future use (0:3)

Initiator (16:19)

Abstract entity that initiated the event or the failed operation:

UNKNOWN (0): Unknown or Not Applicable
CPU (1): A CPU failure (in an MP system, the specific CPU is not differentiated here)
PCI (2): PCI host bridge or PCI IOA
Reserved -- do not reuse (3)
MEMORY (4): Memory subsystem, including any caches
Reserved -- do not reuse (5)
HOT PLUG (6)
Reserved for future use (7-15)

Target (20:23)
Abstract entity that was apparent target of failed operation (UNKNOWN if Not Applicable): Same
values as Initiator field

Table 137. RTAS Event Return Format (Fixed Part) (Continued)

Bit Field Name (bit
number(s))

Description, Values (Described in Section 10.3.2.1‚ “Reporting and Recovery Philosophy, and
Description of Fields‚” on page 289)

294 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

Typically, most OSs care about, and have handlers for, only a few specific errors. Since coding of an error is unique in
the above scheme, an OS can check for specific errors, then if nothing matches exactly, look at more generic parts of
the error message. This permits generic error message generation for the user, providing the basic information that
RTAS delivered to the OS. Platforms may provide more complete error diagnosis and reporting in RTAS, combined
with off-line diagnostics which take advantage of the information reported from previous failures.

10.3.2.2 Version 6 Extensions of Event Log Format

10.3.2.2.1 RTAS General Extended Event Log Format, Version 6

The following section defines new extensions to the event log format which are identified by a Version number 0x06 in
the first byte in the returned buffer (byte 0 of the fixed-part information). The following tables define extended error
log formats for Version 6, by which the RTAS can optionally return detailed information to the software about a hard-
ware error condition. Other versions will be defined in following sections of this chapter. This format is also intended
to be usable as residual error log data in NVRAM, so that the OS could alternatively retrieve error data after an error
event which caused a reboot.

Type (24:31)

General event or error type being reported:

Internal Errors:

RETRY (1): too many tries failed, and a retry count expired
TCE_ERR (2): range or access type error in an access through a TCE
INTERN_DEV_FAIL (3): some RTAS-abstracted device has failed (for example, TOD clock)
TIMEOUT (4): intended target did not respond before a time-out occurred
DATA_PARITY (5): Parity error on data
ADDR_PARITY(6): Parity error on address
CACHE_PARITY (7): Parity error on external cache
ADDR_INVALID(8): access to reserved or undefined address, or access of an unacceptable

type for an address
ECC_UNCORR (9): uncorrectable ECC error
ECC_CORR (10): corrected ECC error
RESERVED (11-63): Reserved for future use

Environmental and Power Warnings:

EPOW(64): See Extended Error Log for sensor value
RESERVED (65-95): Reserved for future use

Reserved -- do not reuse (96-159)

Platform Resource Reassignment (160) -- includes Change Scope in bits 32-63

Reserved for future use (through-223)

Platform Error (224) (for Version 6 or later)
ibm,io-events (225) (for Version 6 or later)
Platform information event (226) (for Version 6 or later)
Resource deallocation event (227) (for Version 6 or later)
Dump notification event (228) (for Version 6 or later)

Vendor-specific events(229-255): Non-architected

Other (0): none of the above

Extended Event Log Length /
Change Scope

(32:63)

Length in bytes of Extended Event Log information which follows (see 10.3.2.2, “Version 6
Extensions of Event Log Format,” on page 294) OR the scope parameter to be input the
ibm,update-nodes RTAS to retrieve the nodes that were changed by selected “Hot Plug” events.

Table 137. RTAS Event Return Format (Fixed Part) (Continued)

Bit Field Name (bit
number(s))

Description, Values (Described in Section 10.3.2.1‚ “Reporting and Recovery Philosophy, and
Description of Fields‚” on page 289)

10.3  RTAS Error and Event Information Reporting 295

LoPAPR, Version 1.1 (March 24, 2016)

Platforms indicate the maximum length of the error log buffer in the “rtas-error-log-max” RTAS property in
the OF device tree, so that the OS can allocate a buffer large enough to hold the extended error log data when calling
the RTAS event-scan or check-exception functions. If the allocated buffer is not large enough to hold all the error log
data, the data is truncated to the size of the buffer.

Requirement R1–10.3.2.2.1–1 and Table 138‚ “RTAS General Extended Event Log Format, Version 6‚” on page 296
require that four bytes of the vendor-specific format contain a unique identifier for the company that has defined the
format. The description of the “name” string in IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2] provides alternatives for defining this identifier. Examples of these
unique identifiers include stock ticker labels and Organizationally Unique Identifiers (OUIs). Since the different op-
tions in IEEE 1275 provide different guarantees of uniqueness and different identifier lengths, the company should use
its best judgement in selecting a unique identifier that fits the four character field. The length of this field is limited to
4 bytes to conserve available log data space. As an example, if Allied Information Monitoring (a fictional name for the
purposes of this example) were to create a vendor-specific log format 12, then bytes 12-15 of such a log may contain
“AIM<NULL>”.

This identifier is intended to apply to the company that defines the specific format, and may be used by other compa-
nies that wish to be compatible with that format. For example, if another company wanted to take advantage of existing
support in one of the OSs by using an AIM-specific error log format for logs generated on their own platform, their log
would have to contain an identifier of “AIM<NULL>”.

R1–10.3.2.2.1–1. Platforms which support Version 6 of the Extended Event Log Format must do so by including a
0x06 value in the first byte of the RTAS Event Return Format (Fixed Part) and using the formats described in
Section 10.3.2.2‚ “Version 6 Extensions of Event Log Format‚” on page 294 (and all subsections under that
section).

Software Implementation Note: OSs running on platforms which support Version 6 of the Extended Event Log Format
must ensure that the length parameter passed in the event-scan RTAS call be at least 2 KB.

R1–10.3.2.2.1–2. If the length parameter on the RTAS event-scan call for returning data using Version 6 of the Ex-
tended Event Log Format is insufficient to return all the data the platform would otherwise make available,
the platform must truncate the data by eliminating optional sections entirely rather than truncating a section.

R1–10.3.2.2.1–3. All event logs returning a Version 6 Platform Event Log format must include the Main-A and
Main-B Sections. Other sections are optional depending on the specific event type as specified in Require-
ment R1–10.3.2.2.1–4.

R1–10.3.2.2.1–4. The following sections must be provided as indicated:

a. For the Platform error Type, the Primary Service Reference Code (SRC) section must be provided.

b. For the ibm,io-events Type, the IO Events section must be provided.

c. For the Resource deallocation event Type, the Logical Resource Identification section must be provided.

d. For the Dump notification event Type, the Dump Locator section must be provided.

e. For the EPOW Type, the EPOW section must be provided.

296 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: All fields in the Platform Event Log marked “Platform specific information” or “Other
platform specific information sections” contain information reserved for platform or platform Service Application
use only. That information is not defined in this document. Information in these fields should be ignored by the OS.

Software Implementation and Architecture Note: All fields currently marked “Reserved” are set to zero by RTAS and
are ignored by the OS. The reserved values in the defined fields in the Platform Event Log may be defined in the
future in this architecture document for platform specific usage without change to this architecture.

10.3.2.2.2 Platform Event Log Format, Version 6

This format is used when byte 2, bits 4:7, of the RTAS General Extended Event Log Version 6 are a value of 14 (Plat-
form Event Log).

Table 138. RTAS General Extended Event Log Format, Version 6

Byte Bit Description

0

0 1 = Log Valid

1 1 = Unrecoverable Error

2 1 = Recoverable (correctable or successfully retried) Error

3
1 = Unrecoverable Error, Bypassed - Degraded operation (e.g.
CPU/memory taken off-line, bad cache bypassed, etc.)

4
1 = Predictive Error - Error is recoverable, but indicates a trend toward
unrecoverable failure (e.g. correctable ECC error threshold, etc.)

5 1 = “New” Log (always 1 for data returned from RTAS)

6 1 = Big-Endian

7 Reserved

1 0:7 Reserved

2

0 Set to 1 - (Indicating log is in PowerPC format)

1:3 Reserved

4:7
Log format indicator, defined format used for byte 12-2047:
0-13, 15 Reserved
14: Platform Event Log

3 0:7 Reserved

4-11 Reserved

12-15
Company identifier of the company that has defined the format for this
vendor specific log type.

16-
2047

Detail vendor specific log data. If byte 2, bits 4:7, above, are a value of 14
(Platform Event Log) and bytes 12-16 are “IBM ”, then see
Section 10.3.2.2.2‚ “Platform Event Log Format, Version 6‚” on page 296
for the content of this field.

10.3  RTAS Error and Event Information Reporting 297

LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.3 Platform Event Log Format, Main-A Section

Table 139. Overview of Platform Event Log Format, Version 6

Byte
Length in

Bytes
Description

12-15 4 Contains ASCII characters “IBM<NULL>”.

16-63 48
Main-A section (ID = 'PH'). Required section. See Section 10.3.2.2.3‚ “Platform Event Log Format, Main-A
Section‚” on page 297 for the format.

64-87 24
Main-B section (ID = 'UH'). Required, always follow Main-A section. See Section 10.3.2.2.4‚ “Platform Event Log
Format, Main-B Section‚” on page 298 for the format.

88-103 16
Logical Resource Identification section (ID = 'LR'). Optional, present only for Resource deallocation event
notification. If present, this section always follows Main-B section. See Section 10.3.2.2.5‚ “Platform Event Log
Format, Logical Resource Identification section‚” on page 303 for the format.

104-

80+
optional

FRU call
out

sub-section

Primary SRC section (ID = 'PS'). Required for “Platform Error” event type, optional for other event types. If present,
this section always follows Main-B section. See Section 10.3.2.2.6‚ “Platform Event Log Format, Primary SRC
Section‚” on page 304 for the format.

64
Dump Locator section (ID = 'DH') Optional, present only for dump event notification. If present, this section follows
Main-B or Primary SRC section. See Section 10.3.2.2.7‚ “Platform Event Log Format, Dump Locator Section‚” on
page 307 for the format.

20
EPOW section (ID = 'EP'). Optional, present only for “EPOW” interrupt event notification. If present, this section
follows Main-B section. See Section 10.3.2.2.8‚ “Platform Event Log Format, EPOW Section‚” on page 308 for the
format.

Variable
IO Events section (ID = 'IE'). Optional, present only for “ibm,io-events” interrupt event notification. If present, this
section follows Main-B section. See Section 10.3.2.2.9‚ “Platform Event Log Format, IO Events Section‚” on
page 309 for the format.

28
Failing Enclosure MTMS section (ID = 'MT'). Required for errors only. If present, this section follows Main-B
section or Primary SRC. See Section 10.3.2.2.10‚ “Platform Event Log Format, Failing Enclosure MTMS‚” on
page 310 for the format.

28
Impacted partition description section (ID = 'LP''). Required for errors only. If present, this section follows Main-B
section or Primary SRC

40
Machine Check Interrupt section (ID = 'MC'). Optional for “Platform Error” event types with ERROR_SYNC
severity caused by a machine check interrupt. If present, this section follows the Main-B. See Section 10.3.2.2.12‚
“Platform Event Log Format, Failing Memory Address‚” on page 311.

...- 2047 Variable Other platform specific information sections. Optional.

Table 140. Platform Event Log Format, Version 6, Main-A Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'PH'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 48

0x04 1 Section Version

298 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.4 Platform Event Log Format, Main-B Section

0x05 1 Section sub-type

0x06 2 Creator Component ID

0x08 4 Log creation date in BCD format: YYYYMMDD, where YYYY = year, MM = month 01 - 12, DD = day 01 - 31.

0x0C 4
Log creation time in BCD format: HHMMSS00, where HH = hour 00 - 23, MM = minutes 00 - 59, SS = s econds
00 -5 9, 00 = hundredth of seconds 00 - 99.

0x10 8 Platform specific information

0x18 1

Creator ID -- subsystem creating the log entry represented as a single ASCII character
'E' = Service Processor
'H' = Hypervisor,
'W' = Power Control
'L' = Partition Firmware

0x19 2 Reserved

0x1B 1 Section count -- number of sections comprising log entry, including this section

0x1C 4 Reserved

0x20 8 Platform specific information

0x28 4
Platform Log ID (PLID)
Unique identifier for a single event. Note that it is possible for multiple log entries to be made for a single error/event.
The entries are linked to the same event by using the same PLID.

0x2C 4 Platform specific information

Table 141. Platform Event Log Format, Version 6, Main-B Section

Byte
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'UH'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 24

0x04 1 Section Version

0x05 1 Section subtype

0x06 2 Creator Component ID

Table 140. Platform Event Log Format, Version 6, Main-A Section (Continued)

10.3  RTAS Error and Event Information Reporting 299

LoPAPR, Version 1.1 (March 24, 2016)

0x08 1

Subsystem ID: For error events, this is the failing subsystem. For non-error events, this is the subsystem associated
with the event.
0x10 - 0x1F = Processor subsystem including internal cache
0x20 - 0x2F = Memory subsystem including external cache
0x30 - 0x3F = I/O subsystem (hub, bridge, bus)
0x40 - 0x4F = I/O adapter, device and peripheral
0x50 - 0x5F = CEC hardware
0x60 - 0x6F = Power/Cooling subsystem
0x70 - 0x79 = Others subsystem
0x7A - 0x7F = Surveillance Error
0x80 - 0x8F = Platform Firmware
0x90 - 0x9F = Software
0xA0 - 0xAF = External environment
0xB0 - 0xFF = Reserved

0x09 1 Platform specific information

0x0A 1

Event/Error Severity (see additional description following the table)
0x00 = Informational or non- error Event. This field must be 0x00 for non-error event. Use Event Sub-type field to
specify unique event.
0x1X = Recovered Error
0x10 = Recovered Error, general
0x14 = Recovered Error, spare capacity utilized
0x15 = Recovered Error, loss of entitled capacity
0x2X = Predictive Error
0x20 = Predictive Error, general
0x21 = Predictive Error, degraded performance
0x22 = Predictive Error, fault may be corrected after platform re-boot
0x23 = Predictive Error, fault may be corrected after boot, degraded performance
0x24 = Predictive Error, loss of redundancy
0x4X = Unrecoverable Error
0x40 = Unrecoverable Error, general
0x41 = Unrecoverable Error, bypassed with degraded performance
0x44 = Unrecoverable Error, bypassed with loss of redundancy
0x45 = Unrecoverable Error, bypassed with loss of redundancy and performance
0x48 = Unrecoverable Error, bypassed with loss of function
0x6X = Error on diagnostic test
0x60 = Error on diagnostic test, general
0x61 = Error on diagnostic test, resource may produce incorrect results
All other values = reserved

0x0B 1

Event Sub-Type (primarily used when Event Severity = 0x00, see additional description following the table)
0x00 = not applicable.
0x01 = Miscellaneous, Information Only
0x08 = Dump Notification (Dump may also be reported on Error event)
0x10 = Previously reported error has been corrected by system
0x20 = System resources manually deconfigured by user
0x21 = System resources deconfigured by system due to prior error event
0x22 = Resource deallocation event notification
0x30 = Customer environmental problem has returned to normal
(e.g. input power restored, ambient temperature back within limits)
0x40 = Concurrent Maintenance Event
0x60 = Capacity Upgrade Event
0x70 = Resource Sparing Event
0x80 = Dynamic Reconfiguration Event (generated by RTAS)
0xD0 = Normal system/platform shutdown or powered off
0xE0 = Platform powered off by user without normal shutdown (abnormal power off)
All other values = reserved

0x0C 4 Platform specific information

0x10 2 Reserved

Table 141. Platform Event Log Format, Version 6, Main-B Section (Continued)

300 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.4.1 Error/Event Severity

This field indicates the severity of the error event and the impact of the error to the platform (if applicable).

Non-error or Informational Event: This value indicates an event that is a non-error event. Informational or user ac-
tion event log entries must use this value. The Event Type field provides additional event information.

Recovered Error, general: This value indicates an error event that has been automatically recovered or corrected by
the platform hardware and/or firmware, e.g. ECC, internal spare or redundancy, cache line delete, boot time array re-
pair, etc. No service action is required for this type of error. In general, when this value is used, the Error Action Flags
has the value of “Hidden Error”. An event log with this value is used primarily for error thresholding design and code
debug or as a record to indicate error frequency or trend.

Recovered Error, spare capacity utilized: This value indicates that an error on a resource has been recovered by uti-
lizing another resource not currently assigned for use (spare). The failing component is to be considered permanently
in an error state. For example, a faulty instruction on one processor may be checkpointed and loaded into a spare pro-
cessor, continuing the operations of the faulty one. In this case the failing component is considered permanently in an
error state.

Recovered Error, loss of entitled capacity: This value indicates that an error on a resource has been recovered by uti-
lizing another resource already in use by the system. The failing component is to be considered permanently in an error
state. This results in a loss of capacity in the partition that receives the error. For example, a processor already in use
may take over the operations of a faulty one. Loss of the faulty processor in the system then results in less capacity be-
ing available to the partition receiving the error event. Typically this event would have an event sub-type of “Resource
deallocation event notification” and the revised amount of entitled capacity would be found in the Logical Resource
Identification Section, Entitled Capacity field.

Predictive Error, general: This value indicates an event that has been automatically recovered or corrected by the
platform hardware and/or firmware. However, the frequency of the errors indicates a trend toward (or potential) plat-
form unrecoverable error. A deferred service or repair action is required. The automatic platform recovery actions have
no impact to system performance (e.g. ECC, CRC, etc.), or the impact is unknown.

Predictive Error, degraded performance: This value indicates an error event that has been automatically recovered
or corrected by the platform hardware and/or firmware. However, the frequency of the errors (i.e. over threshold) indi-
cates a trend toward (or potential) platform unrecoverable error. A deferred service or repair action is required. The au-
tomatic platform recovery actions are impacting/degrading system performance.

Predictive Error, fault may be corrected after platform re-boot: This value indicates an error event that has been
automatically recovered or corrected by the platform hardware and/or firmware. However, the frequency of the errors
(i.e. over threshold) indicates a trend toward (or potential) platform unrecoverable error. A deferred service or repair
action is required. The hardware fault may be corrected after platform re-boot as part of the repair action. If the fault

0x12 2

Error Action Flags (see additional description following the table)
bit 0 (0x8000) = 1, Service Action (customer notification) Required
bit 1 (0x4000) = 1, Hidden Error - exclusive with SA Required (bit 0)
bit 2 (0x2000) = 1, Report Externally (send to HMC and hypervisor)
bit 3 (0x1000) = 1, Don't report to hypervisor (only report to HMC)
(only meaningful when (bit 2) Report Externally is set)
bit 4 (0x0800) = 1, Call Home Required
(only valid if (bit 0) SA Required is set)
bit 5 (0x0400) = 1, Error Isolation Incomplete. Further analysis required.
bit 6 (0x0200) = 1, Deprecated.
bit 7 (0x0100) = 1, Reserved
bit 8, 9 = Platform specific information
bit 10-15 = Reserved

0x14 4 Reserved

Table 141. Platform Event Log Format, Version 6, Main-B Section (Continued)

10.3  RTAS Error and Event Information Reporting 301

LoPAPR, Version 1.1 (March 24, 2016)

cannot be corrected after re-boot, then a part replacement is required. The automatic platform recovery actions have no
impact to system performance (e.g. ECC, CRC, etc.), or the impact is unknown.

Predictive Error, fault may be corrected after platform re-boot, degraded performance: This value indicates an
error event that has been automatically recovered or corrected by the platform hardware and/or firmware. However, the
frequency of the errors (i.e. over threshold) indicates a trend toward (or potential) platform unrecoverable error. A de-
ferred service or repair action is required. The hardware fault may be corrected after platform re-boot as part of the re-
pair action. If the fault cannot be corrected after re-boot, then a part replacement is required. The automatic platform
recovery actions are impacting/degrading the system performance.

Predictive Error, loss of redundancy: This value indicates an error event that has been automatically recovered or
corrected by the platform hardware and/or firmware. However, the frequency of the errors (i.e. over threshold) caused
a loss in hardware redundancy. Future error in this subsystem may causes platform unrecoverable error. A deferred ser-
vice or repair action is required to restore redundancy. The loss of redundancy may or may not impact system perfor-
mance.

Unrecoverable Error, general: This value indicates an error event that is unrecoverable or uncorrectable by the plat-
form hardware and/or firmware. The hardware or platform resource with the error cannot be deconfigured from the
system. If the error is intermittent or soft, the platform may be able to re-boot successfully and resume. A service or re-
pair action is required as soon as possible to correct the error.

Unrecoverable Error, bypassed with degraded performance: This value indicates an error event that is unrecover-
able or uncorrectable by the platform hardware and/or firmware. However, the hardware or platform resource with the
error has been deconfigured from the system. The platform can be IPLed or re-IPLed with the error bypassed. System
performance is degraded due to the deconfigured platform resource(s) e.g. processor, cache, memory, etc. A deferred
service or repair action is required.

Unrecoverable Error, bypassed with loss of redundancy: This value indicates an error event that is unrecoverable or
uncorrectable by the platform hardware and/or firmware. However, the hardware or platform resource with the error
can be deconfigured from the system. The platform can be IPLed or re-IPLed with the error bypassed. The deconfig-
ured platform resource(s) resulted in loss of redundancy (e.g. Redundant FSP with static fail-over) with no loss of sys-
tem performance. A deferred service or repair action is required.

Unrecoverable Error, bypassed with loss of redundancy + performance: This value indicates an error event that is
unrecoverable or uncorrectable by the platform hardware and/or firmware. However, the hardware or platform re-
source with the error can be deconfigured from the system. The platform can be IPLed or re-IPLed with the error by-
passed. The deconfigured platform resource(s) resulted in loss of redundancy and system performance. A deferred
service or repair action is required.

Unrecoverable Error, bypassed with loss of function: This value indicates an error event that is unrecoverable or un-
correctable by the platform hardware and/or firmware. However, the hardware or platform resource with the error can
be deconfigured from the system. The platform can be IPLed or re-IPLed with the error bypassed. The deconfigured
platform resource(s) resulted in loss of platform or system function. A deferred service or repair action is required.

Error on diagnostic test, general: This value indicates an error event that is detected during a diagnostic test. Impact
to the system is undefined or unknown.

Error on diagnostic test, resource may produce incorrect results: This value indicates an error event that is detected
during a diagnostic test. The error may produce incorrect computational results (e.g. processor floating point unit test
error).

10.3.2.2.4.2 Event Sub-Type

This field provides additional information on the non-error event type.

Not applicable: This value is used when the event is associated with an error. Error/Event Severity field and SRC sec-
tion provide additional error information.

302 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

Miscellaneous, Information Only: This value is used when the event is “for information only” or the event descrip-
tion doesn't fit into any other defined values in this field.

Dump Notification: This value is used by the hypervisor or partition firmware as a “Dump Notification” event to the
OS that a dump file is present in the platform for retrieval by the OS. This value is used by the HMC as a “Dump Noti-
fication” event to the Service Application to indicate a dump file is present for transmission to the manufacturer.

Previously reported error has been corrected by system: This value is used by the platform firmware to indicate
that the error event that was previously reported has been corrected by the platform. On a subsequent platform boot,
this event type is logged to indicate that the array was successfully repaired.

System resources manually deconfigured by user: This value is used by the platform firmware to indicate that a sub-
set of platform resource(s) was/were deconfigured due to user's request (e.g. via platform ASM menu). The deconfig-
ured resource(s) is/are not associated with error detected by the platform. The event is a reminder to the user that the
platform is running with partial capacity. Note: The platform provides this user option for platform performance testing
purpose.

System resources deconfigured by system due to prior error event: This value is used by the platform firmware to
indicate that the platform is IPLed with resource(s) deconfigured due to error detected and reported previously. The
event is a reminder to the user that the platform requires service.

Resource deconfiguration notification: This value is used by partition firmware as an “Event Notification” to the OS
that a specified resource (e.g. processor, memory page, etc.) currently used by the OS should be deallocated due to pre-
dictive error. A Logical Resource Identification section is included in the event log to indicate the Resource Type and
ID.

Customer environmental problem has returned to normal: This value is used by the platform firmware to indicate
that a customer environmental problem (e.g. utility power, room ambient temperature, etc.) detected and reported pre-
viously, has returned to normal.

Concurrent Maintenance: This value is used by the platform firmware to indicate any non-error event associated with
concurrent maintenance activity.

Capacity Upgrade Event: This value is used by the platform firmware to indicate any non-error event associated with
capacity upgrade activity.

Resource Sparing Event: This value is used by the platform firmware to indicate any non-error event associated with
platform resource sparing activity.

Dynamic Reconfiguration Event: This value is used by the partition firmware to indicate any significant but non-er-
ror event associated with dynamic reconfiguration activity. Implementation Note: Due to limited platform storage re-
source, non-error event log associated with a logical partition will be reported to the OS but may not be stored in the
platform.

Normal system/platform shutdown or powered off: This value is used by the platform firmware to indicate any
non-error event associated with normal system/platform shutdown or powered off activity initiated by the user.

Platform powered off by user without normal shutdown (abnormal powered off): This value is used by the plat-
form firmware to indicate that the platform is abnormally powered off by the user.

10.3.2.2.4.3 Error Action Flags

The following are the definitions of the actions taken for the various Error Action Flags.

Report Externally - This flag instructs the service processor (error logger component) to send the error to the service
application (e.g. service focal point(s) or FNM error analyzer). If this flag is set, the SP always sends the error:

 To the “managing HMC(s)” if one (or multiple) exists.

10.3  RTAS Error and Event Information Reporting 303

LoPAPR, Version 1.1 (March 24, 2016)

 And to the hypervisor (unless the “Don't report to hypervisor” flag is also set).

Service Action Required - This flag instructs the Service application that some service action is required by either the
customer or by the manufacturer’s service personnel. This is equivalent to saying Customer Notification is required.
Contrast this flag with the “Call Home Required” flag.

Call Home Required - This flag indicates that the error requires service and a Call Home Operation is to be per-
formed. There are additional policies used in combination with this flag: what subsystem performs the Call Home,
what is sent and where it is sent.

Hidden Error - This flag allows errors to be placed in a partition's OS error log, but still remain hidden from the cus-
tomer. This is a legacy function and the partition firmware for must filter errors marked “Hidden” and not forward
these errors marked with this flag to the OS. Note that this flag has no impact on the SP reporting errors to either the
HMC or hypervisor or for the hypervisor reporting errors to partitions.

Don't report Error to hypervisor - While a partition is booting and before it is functional (e.g. no OS error logging
available), partition errors may be sent through the hypervisor to the Service Processor). These partition errors (and
only partition errors) may be marked with this flag to indicate that they need not be sent back to the hypervisor. This is
due to the error scope being limited to the failing partition and the hypervisor has already taken the appropriate actions.

Incomplete Information for Error Isolation - Some errors are not contained to a single enclosure and require error
isolation from an entity with broader system view / scope.

Software Error - This flag is used by the partition error logger to indicate to the error is most likely to be caused by the
software. When both Software Error and Hardware Error flags are set, the error is caused by either software or hard-
ware. The Software Error and Hardware Error flags are used to trigger the manufacturer’s support system to automati-
cally download software or firmware fixes.

Hardware Error - This flag is used by the partition error logger to indicate to the error is most likely to be caused by
the hardware. The Software Error and Hardware Error flags are used to trigger the manufacturer’s support system to
automatically download software or firmware fixes.

10.3.2.2.5 Platform Event Log Format, Logical Resource Identification section

Table 142. Platform Event Log Format, Version 6, Logical Resource Identification Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'LR'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 20

0x04 1 Section Version

0x05 1 Section subtype

0x06 2 Creator Component ID

0x08 1

Resource Type
0x10: Processor
0x11: Shared processor
0x40: Memory page
0x41: Memory LMB
All other values = reserved

0x09 1 Reserved

304 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.6 Platform Event Log Format, Primary SRC Section

0x0A 2
Entitled Capacity: Hundredths of a CPU (only used for Resource Type = Shared processor, value = 0x0000 for
others)

0x0C 4
Logical CPU ID: for resource type = processor
DRC Index, for resource type = memory LMB
Memory Logical Address (bit 0-31), for resource type = memory page

0x10 4 Memory Logical Address (bit 32-64)), for resource type = memory page

Table 143. Platform Event Log Format, Version 6, Primary SRC Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'PS'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 80 + optional FRU call out sub section

0x04 1 Section Version

0x05 1 Section Subtype

0x06 2 Creator component ID

0x08 1 SRC Version

0x09 1
SRC Flags
bit 0:6 = Platform specific information
bit 7 = 1: Additional/Optional sub-sections present

0x0A 6 Platform specific information

0x10 4 Extended Reference Code hex data word 2 (required)

0x14 4 Extended Reference Code hex data word 3 (optional)

0x18 4 Extended Reference Code hex data word 4 (optional)

0x1C 4 Extended Reference Code hex data word 5 (optional)

0x20 4 Extended Reference Code hex data word 6 (optional)

0x24 4 Extended Reference Code hex data word 7 (optional)

0x28 4 Extended Reference Code hex data word 8 (optional)

0x2C 4 Extended Reference Code hex data word 9 (optional)

0x30 32 Primary Reference Code: 32 byte ASCII character (required)

Additional/Optional Sub section for FRU call out (present only for “Platform Error” event type)

0x00 1 Sub section ID = C0 for FRU call out

0x01 1 Platform specific information

0x02 2 Length of sub section: expressed in # of words (4 bytes), from Sub section ID field

Table 142. Platform Event Log Format, Version 6, Logical Resource Identification Section (Continued)

10.3  RTAS Error and Event Information Reporting 305

LoPAPR, Version 1.1 (March 24, 2016)

FRU call out
structure

length
FRU call out 1 (see FRU call out structure format below)

FRU call out 2 (call out 2-10 are optional)

...

FRU call out 10 (maximum)

Table 144. Platform Event Log Format, Version 6, FRU Call-out Structure

Offset
Length in

Bytes
Description

0x00 1 Call-out Structure length, in bytes including all fields, including this one.

0x01 1

Call-out Type / Flags
bits 0-3: Call-out structure type
0b0010 = this structure
bit 4 = 1 FRU Identity (ID) Substructure field included in this FRU Call-out structure
bit 5 = 1 Other platform-only use substructure field present following FRU ID substructure
bit 6-7 = 0b11: Other platform-only use substructure field present following FRU ID substructure

0x02 1

FRU Replacement or Maintenance Procedure Priority (expressed as an ASCII character, see additional description
following the table)
'H' = High priority and mandatory call-out.
'M' = Medium priority.
'A' = Medium priority group A (1st group).
'B' = Medium priority group B (2nd group).
'C' = Medium priority group C (3rd group).
'L' = Low priority.

0x03 1 Length of Location Code field - must be a multiple of 4.

0x04
variable
max=80

Location Code
NULL terminated ASCII string. May be up to 80 characters including the NULL. Padded with extra NULLs to
4-byte boundary.

 FRU Identity Substructure follow:

0x00 2
Substructure Type (2 ASCII Characters)
'ID' = FRU Identity Substructure

0x02 1 Substructure length (variable, several optional fields - see flags below)

0x03 1

Flags
bits 0-3: Failing component Type (see additional description following the table)
0b0000: reserved
0b0001: “normal” hardware FRU
0b0010: code FRU
0b0011: configuration error, configuration procedure required
0b0100: Maintenance Procedure required
0b1001: External FRU
0b1010: External code FRU
0b1011: Tool FRU
0b1100: Symbolic FRU
0b1111: Reserved for expansion
all other values reserved
bit 4 (0x08) = 0b1: FRU Stocking Part Number supplied (mutually exclusive with bit 6)
bit 5 (0x04) = 0b1: CCIN supplied (only valid if bit 4 = 0b1)
bit 6 (0x02) = 0b1: Maintenance procedure call out supplied (mutually exclusive with FRU p/n)
bit 7 (0x01) = 0b1: FRU Serial Number supplied (only valid if bit 4 = 0b1)

Table 143. Platform Event Log Format, Version 6, Primary SRC Section (Continued)

306 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.6.1 FRU Replacement or Maintenance Procedure Priority

This field defines the service priority of the specific call-out, i.e., replacing the FRU part number or performing the
maintenance procedure ID as given in the FRU/Procedure Identity substructure. Here are the priority descriptions:

 'H' = High priority and mandatory call-out. Replacing the FRU (or performing the maintenance procedure) is man-
datory. If multiple call-outs with 'H' priority are given, all must be replaced or performed as a group.

 'M' = Medium priority. Replacing the FRU (or performing maintenance procedure) with 'M' priority one at a time
in the order given after all call-outs prior to this one, if present, are performed.

 'A' = Medium priority group A (1st group). Replacing all the FRUs with 'A' priority as a group after all call-outs
prior to this group, if present, are performed.

 'B' = Medium priority group B (2nd group). Replacing all the FRUs with 'B' priority as a group after all call-outs
prior to this group, if present, are performed.

 'C' = Medium priority group C (3rd group). Replacing all the FRUs with 'C' priority as a group after all call-outs
prior to this group, if present, are performed.

 'L' = Low priority. After performed all the prior call-outs, if present, and problem still persists, replacing the FRU
with this priority one at a time in the order given.

The list of FRU/Procedure call-outs in the “call-out” subsection of the SRC structure must be in order as defined
above, i.e. High, Medium, Low. 'M' has the same medium priority level as 'A', 'B', or 'C' and a call out with 'M' priority
can precede or follow 'A', 'B' or 'C'. A group call-out must be contiguous in the list. Within the medium priority level,
follow the call-out order in the list A list without High or Medium priority is also valid.

10.3.2.2.6.2 Failing Component Type Description

 Normal Hardware FRU: Hardware FRU in the platform which the platform firmware or code can positively iden-
tify, and its VPD contains the part number and associated information.

 Code FRU: Some layer of platform firmware or OS code is suspected. The procedure ID field provides additional
information about which code(s) is/are the potential problem.

 Configuration error: The problem may be related to how hardware or code is configured. For example, an adapter
is plugged in a slot that cannot support it. The FRU could be a procedure or a symbolic FRU. The reason to use
one of these is if the analysis can provide more information to the customer and service provider by giving a location
code.

0x04 8, if present

FRU Stocking Part Number (VPD FN keyword) or Procedure ID
This field is present if Flags bits 4 =0b1 or Flags bits 6 =0b1.
It contains a NULL-terminated ASCII character string.
If Flags bit 4 = 0b1, this field contains a 7ASCII character part number
If Flags bit 6 = 0b1, this field contains a 5 ASCII character procedure ID

0x0C 4, if present
CCIN (VPD CC keyword) (optional, only supplied if Part Number also supplied)
This field is present if Flags bit 5 = 0b1. It contains the CCIN of the failing FRU (VPD CC keyword), represented
as 4 ASCII characters (not a NULL-terminated string).

12, if present
FRU Serial Number (VPD SE Keyword) (optional)
This field is present if Flags bit 7 = 0b1. It contains the serial number of the failing FRU (VPD SE keyword),
represented as a 12 ASCII characters (not a NULL-terminated string).

End of FRU Identify Substructure

variable Other platform used only substructure field

Table 144. Platform Event Log Format, Version 6, FRU Call-out Structure (Continued)

10.3  RTAS Error and Event Information Reporting 307

LoPAPR, Version 1.1 (March 24, 2016)

 Maintenance procedure required: Further isolation of the problem is required by performing the procedure as
identified in the Procedure ID field. Procedures are designed to help to isolate problems and guide the service pro-
vider through identifying which FRUs to replace in which order.

 Symbolic FRU: Used for a single FRU where the analysis code knows exactly what the part is but there is no part
number, or the part number cannot be pulled from VPD, or when there is something special (like a procedure) for ac-
quiring the FRU or working with it. Examples are cables, or FRUs without VPD (so a part number cannot be filled
in). The term “Symbolic” simply means “not an actual part number”.

 External FRU: A failing part(s) which is/are not in the system, e.g. attached storage sub-system, network
hubs/switches, external drives like CD/DVD boxes.

 External Code: Code not running in the platform but is the potential source of the error. This could be something
like storage subsystem code or even another system in the same cluster.

 Tool FRU: This is a special tool that will be required by one of the FRUs in the list. Tools are only added as FRUs
when they are not part of the CE tool kit and therefore the repair action could be delayed if the CE did not know to
bring it. Examples are Optical Cleaning Kits for fiber channel, and special tools for torque or reach or weight con-
siderations.

10.3.2.2.7 Platform Event Log Format, Dump Locator Section

Table 145. Platform Event Log Format, Version 6, Dump Locator Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'DH'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 64

0x04 1 Section Version

0x05 1

Section Sub-Type
0x00 = Log truncated, complete log received by another service entity.
0x01 = FSP Dump
0x02 = Platform System Dump
0x03 = Reserved
0x04 = Power Subsystem Dump
0x05 = Platform Event Log Entry Dump (when distinguishing between dump types, the term “Log Dump” is typically used)
0x06 = Partition-initiated resource dump
0x07 = Platform-initiated resource dump
All other values reserved

0x0 2 Creator component ID

0x08 4 Dump ID

0x0C 1

Flags

bit 0 (0x80) = 0, Dump sent to partition
bit 0 = 1, Dump sent to HMC
bit 1 (0x40) = 0, File name in ASCII
bit 1 = 1, Dump file name is hex
bit 2 (0x20) = 1, Dump size field valid

0x0D 2 Reserved

0x0F 1
Length of OS assigned Dump ID field in bytes, must be multiple of 4.
May be 0.

308 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.8 Platform Event Log Format, EPOW Section

0x10 8 Dump Size

0x18 40

OS-Assigned Dump ID
As the flag field indicates, this field may either be an ASCII string or a hex number.
When an ASCII string (AIX, Linux, HMC), this is a NULL terminated ASCII string representing the dump file name (leaf name
only, does not include path).
Field may be up to 40 characters including the NULL.

Table 146. Platform Event Log Format, Version 6, EPOW Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'EP'

0x02 2 Section length: Length in bytes of the section, including the section ID.

0x04 1 Section Version

0x05 1 Section subtype

0x06 2 Creator Component ID

0x08 1 EPOW Sensor Value (low-order 4 bits contain the action code).

0x09 1

EPOW Event Modifier
(low-order 4 bits contain the event modifier value)
0x00 = Not applicable
For EPOW sensor value = 3
0x01 = Normal system shutdown with no additional delay
0x02 = Loss of utility power, system is running on UPS/Battery
0x03 = Loss of system critical functions, system should be shutdown
0x04 = Ambient temperature too high
All other values = reserved

0x0A 1

Extended Modifier for Section Version 2 and higher
For EPOW Sensor Value = 3
0x00 System wide shutdown
0x01 Partition specific shutdown
0x02 – 0xFF Reserved
All other situations Reserved = 0x00

0x0B 1 Reserved

0x0C 8 Platform specific reason code

Table 145. Platform Event Log Format, Version 6, Dump Locator Section (Continued)

10.3  RTAS Error and Event Information Reporting 309

LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.9 Platform Event Log Format, IO Events Section

Table 147. Platform Event Log Format, Version 6, IO Events Section

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'IE'

0x02 2 Section length: Length in bytes of the section, including the section ID.

0x04 1 Section Version

0x05 1 Section subtype

0x06 2 Creator Component ID

0x08 1

IO-Event Type:
0x01 = Error Detected
0x02 = Error Recovered
0x03 = Event
0x04 = RPC Pass Through
All other values = Reserved

0x09 1

Offset 0x10 Field Length:
For IO Event Type of RPC Pass Through, this field specifies the length of the data field which begins at offset 0x10,
otherwise the value in this field is 0. Must be a multiple of 4 to maintain 4-byte alignment.

0x0A 1

Error/Event Scope:
0x00 = Not Applicable (use for IO-Event type 0x02, 0x03, 0x04)
0x36 = Reserved
0x37 = Reserved
0x38 = PHB
0x39 = Reserved
0x3A = Reserved
0x3B = Reserved
0x51 = Service Processor
All other values = Reserved

0x0B 1

I/O-Event Sub-Type:
0x00 = Not Applicable (use for IO-Event type 0x01, 0x02, 0x04)
0x01 = Rebalance request
0x03 = Node online
0x04 = Node off-line
0x05 = platform-dump-max-size change
0x08 = Generic Notification
All other values = Reserved

0x0C 4 DRC Index

0x10 0-216

For the RPC Pass Through IO Event Type: RPC data. Variable length data. Must be padded to 4 bytes alignment.

For the platform-dump-max-size change I/O-Event Sub-Type: 8 bytes for the new value of the
platform-dump-max-size system parameter (specifying the sum (in bytes) of the maximum size of each unique
platform dump type that the ibm,platform-dump RTAS call could return).

For Generic Notification I/O Event Sub-Type: Scoped Data Generic Notification Event Section. Must be padded to
4 bytes alignment.

310 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.3.2.2.10 Platform Event Log Format, Failing Enclosure MTMS

The Failing Enclosure Machine Type, Model, and Serial Number (MTMS) that is associated with the error is important
for service and support.

The source of information for the MTMS fields varies according to the following:

 For CEC errors, it is the CEC enclosure MTMS.

 For errors in I/O enclosures (drawers and towers) that have their own MTMS and are sold as separate MTMS from
the CEC, we use the I/O Drawer MTMS.

 For I/O enclosures that were sold as a feature, this section contains the Feature Code and Serial Number of the I/O
enclosure. When the Feature Code is used, it is left justified in the Machine Type and Model field.

10.3.2.2.11 Platform Event Log Format, Impacted Partitions

Table 148. Platform Event Log Format, Version 6, Failing Enclosure MTMS

Offset
Length in

Bytes
Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'MT'

0x02 2
Section length: Length in bytes of the section, including the section ID.
value = 28

0x04 1 Section Version

0x05 1 Section subtype

0x06 2 Creator Component ID

0x08 8
Machine Type and Model: 8 ASCII characters, in the form “tttt-mmm”,
where tttt = Machine Type and mmm = Model Number

0x10 12
Serial Number:
12 ASCII characters (If less than 12 characters are used, string is left justified (stored in the field starting with the
lowest address) and padded with NULLs.)

Table 149. Platform Event Log Format, Version 6, Impacted Partitions

Offset Length Byte 0 Byte 1 Byte 2 Byte 3

0 8 Section Header

0x10 4 Primary Partition ID
Length of LP name

(must be a multiple of 4)
Target LP Count

0x14 4 Logical Partition ID

0x18 variable
Primary Partition (LP) Name
Null terminated ASCII string,

padded to 4-Byte boundary

variable Target LP 1
Target LP 2
and so on

(padded to a 4-Byte boundary)

10.3  RTAS Error and Event Information Reporting 311

LoPAPR, Version 1.1 (March 24, 2016)

This section describes partitions that are impacted by an error. When this section is supplied, the partitions in this list
(and only these partitions) are notified of the error.

10.3.2.2.12 Platform Event Log Format, Failing Memory Address

Table 150. Platform Error Event Log Format, Version 6, Failing Memory Address

Offset Length in Bytes Description

0x00 2
Section ID: A two-ASCII character field which uniquely identifies the type of section.
value = 'MC'

0x02 2
Section length: Length in bytes of the section, including the section ID
value = 32

0x04 1 Section Version

0x05 1 Section Subtype

0x06 2 Creator Component ID

 0x08 4 FRU ID -- Identifies the FRU on which the machine check interrupt occurred

 0x0C 4 Processor ID -- identifies the physical CPU on which the machine check occurred

0x10 1

Type of machine check interrupt
0x00 = Uncorrectable Memory Error (UE)
0x01 = SLB error
0x02 = ERAT Error
0x04 = TLB error
0x05 = D-Cache error
0x07 = I-Cache error

0x11 23
Information specific to machine check interrupt type. This section is binary zeroes if the platform does not provide specific
information for the type of interrupt.

312 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

Table 151. UE Error Information

Offset Length in Bytes Description

0x11 1

Type of UE
Bit 0 = 0 Permanent UE. The UE may be cleared with a DCBZ instruction.
Bit 0 =1 Transient UE. The UE cannot be cleared with a DCBZ instruction. The contents of the entire logical page are not accessible
for this type of UE
64 bit effective address is provided
Bit 1 = 0 64 bit effective address is not provided by the log
Bit 1 = 1 64 bit effective address is provided by the log. Offset 0x18 provides the effective address if this bit is 1
64 bit logical address is provided
Bit 2 = 0 64 bit logical address of logical page is not provided by the log
Bit 2 = 1 64 bit logical address of logical page is provided by the log. Offset 0x20 provides the logical address of the page if this
bit is 1
Bit3-4 Reserved
Bit5-7 Type of UE machine check interrupt. The value of the field is 0b000 for a permanent UE
0b000 = Platform cannot determine the processor unit that detected the error
0b001 = Error detected by instruction fetch unit of the processor
0b010 = Error during page table search for instruction fetch
0b011 = Error detected by load/store unit of the processor
0b100 = Error detected during page table search for load/store type of instruction
All other values are reserved.

 0x12 6 Reserved

0x18 8 64 bit effective address

0x20 8 64 bit logical address

Table 152. SLB Error Information

Offset Length in Bytes Description

0x11 1

64 bit effective address is provided
Bit 0 = 0 64 bit effective address not provided by the log
Bit 0 =1 64 bit effective address provided by the log. Offset 0x18 provides the effective address if bit 0 is1
Bit1-5 Reserved
Bit 6-7 Type of SLB error
0b00 = Parity error in the SLB array or on the access path to the SLB
0b01 = Multiple hit error. There are two or more entries in the SLB that translate the same effective address
0b10 = Multiple hit error or parity error. Platform does not have enough information to disambiguate between the two cases.
All other values are reserved.

0x12 6 Reserved

0x18 8 64 bit effective address

0x20 8 Reserved

10.3  RTAS Error and Event Information Reporting 313

LoPAPR, Version 1.1 (March 24, 2016)

For an error log that has the machine check interrupt section filled out, the platform is not required to provide the date
and time stamp in the main-a section. The fields will be binary zeroes if the date and time stamp is not provided.

10.3.3 Location Codes

This document defines an architecture extension for physical location codes. One use of location codes is to append
failing location information to error logs returned by the event-scan and check-exception RTAS services. Refer to
Section 12.3‚ “Hardware Location Codes‚” on page 327 for more information on the format and use of location codes.
For event logs with Version 6 or later, the location code of FRU call out is contained in the Primary SRC section, FRU
call out sub-section of the Platform Event Log format.

Table 153. ERAT Error Information

Offset Length in Bytes Description

0x11 1

64 bit effective address is provided
Bit 0 = 0 64 bit effective address not provided by the log
Bit 0 =1 64 bit effective address provided by the log. Offset 0x18 provides the effective address if bit 0 is1
Bit 1-5 Reserved
Bit 6-7 Type of ERAT error
0b01 = Parity error in the ERAT array
0b10 = Multiple hit error. There are two or more entries in the ERAT array that translate the same effective address
0b11 = Multiple hit error or parity error in the ERAT array. Platform does not have enough information to disambiguate
between the two cases.
All other values are reserved.

0x12 6 Reserved

0x18 8 64 bit effective address

0x20 8 Reserved

Table 154. TLB Error Information

Offset Length in Bytes Description

0x11 1

64 bit effective address is provided
Bit 0 = 0 64 bit effective address not provided by the log
Bit 0 =1 64 bit effective address provided by the log. Offset 0x18 provides the effective address if bit 0 is1
Bit 1-5 Reserved
Bit 6-7 Type of TLB error
0b01 = Parity error in the TLB array
0b10 = Multiple hit error. There are two or more entries in the TLB that translate the same effective address
0b11= Multiple hit error or parity error in the TLB array. Platform does not have enough information to disambiguate
between the two cases.
All other values are reserved.

0x12 6 Reserved

0x18 8 64 bit effective address

0x20 8 Reserved

314 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

10.4 Error Codes

10.4.1 Displaying Codes on the Standard Operator Panels

R1–10.4.1–1. Platform Implementation: Platforms must display firmware progress codes (4 hex digits) on the op-
erator panel display. On 2x16 LCD displays, the progress codes are displayed left-justified on the first line.

R1–10.4.1–2. Platform Implementation: Platforms must display firmware error codes (8 hex digits) on the system
console (graphic or tty), and left-justified on the first line of a 2x16 LCD operator panel display (if available).

R1–10.4.1–3. Platform Implementation: When a platform displays firmware error codes, associated location
codes must be displayed on the following line on the system console (graphic or tty), and left-justified on the
second line of a 2x16 LCD operator panel display (if available).

The following describes in more detail the standard platform usage of operator panel LEDs or LCDs for the display of
firmware progress and error codes.

 Progress codes: Progress codes from the system firmware and service processor firmware are 4 hex digits in the
range from 0x8000 through 0xFFFF. Codes are displayed in the 4 character positions of a 1x4 LED, or left justified
in the first line of a 2x16 LCD. Subsequent progress codes are displayed on top of (overlaying) the previous one. If
the system “hangs”, the last displayed progress code is left on the display.

 Error codes: Error codes are 8 hex digits, as defined in Section 10.4.2‚ “Firmware Error Codes‚” on page 314. These
codes are displayed by either boot ROM Power On Self Test (POST) or the service processor. If a critical error is de-
tected which prevents a successful boot or results in system halt condition, the error code will be displayed left justi-
fied on the first line of a 2x16 LCD. The error code is left on the LCD until the system is reset or powered down.
Error codes are not displayed on the operator panel of platforms with only a 4-digit LED. On all platforms, however,
POST error codes are displayed on any system console (graphic or tty). For non-critical errors where the system can
boot and operate normally or in a degraded mode, the associated error codes are not displayed, but are reported to
the OS via the POST error log and the RTAS event-scan service.

 Location Codes: Location codes describe the physical location of the most probable failing part associated with an
error code. When an error code is displayed on the first line of a 2x16 LCD, the location code, if known, is displayed
left justified on the second line. The location code will remain on the LCD along with the error code until the system
is reset or powered down. Location codes for POST errors are also displayed on any system console (graphic or tty),
on the next line below the error code.

10.4.2 Firmware Error Codes

The error code is an 8-character (4-byte) hexadecimal code produced by firmware to identify the potential failing func-
tion or FRU in a system. It consists of 5 source code characters and 3 reason code characters. Individual characters
within the error code have specific field definitions, as defined in the following tables.

R1–10.4.2–1. Platform Implementation: To indicate the occurrence of a critical platform error, platforms must
display (either on an operator panel or console) an 8-digit hex error code as defined in Table 155‚ “Service
Reference Code (SRC) Field Layout‚” on page 315 and Table 156‚ “Service Reference Code (SRC) Field
Descriptions‚” on page 315.

10.4  Error Codes 315

LoPAPR, Version 1.1 (March 24, 2016)

Table 155. Service Reference Code (SRC) Field Layout

Source Code Reason Code

Byte 0 Byte 1 Byte 2 Byte 3

S1 S2 S3 S4 S5 R1 R2 R3

Table 156. Service Reference Code (SRC) Field Descriptions

Field Description

S1

Maintenance Package Source that produced the SRN

0: Reserved

1: Reserved

2: POST, Firmware

3: BIST

4: Service processor, base system controller, etc.

5: Reserved (potentially for use by AIX Diagnostics)

8: Product-Specific Service Guide, MAPs

9: Reserved (potentially for use by the Problem Solving Guide)

A-F: Reserved for future extension

S2

Where applicable, use the lower nibble of the PCI Local Bus Specification [18] base class code for the IOA definition
(see Table 157‚ “Current PCI Class Code Definition‚” on page 316). Only 00 to 0C are currently defined in Revision
2.1, therefore the high nibble is always zero. (There is a potential exposure that the high nibble will be defined in the
future, but currently there are 13 base classes defined which include every device class, with 3 remaining characters
for future extension by the PCI SIG. Therefore the exposure is in the far future.) For non-PCI devices, use base class
0 to extend the definition (see Table 158‚ “S2-S3-S4 Definition for Devices/FRUs not Defined in the PCI
Specification‚” on page 318).

S3-S4

Where applicable, use the PCI Local Bus Specification [18] subclass code for IOA definition (see Table 157‚
“Current PCI Class Code Definition‚” on page 316). Also, extend the definition to include non-PCI devices where
it is not fully utilized by PCI specification (see Table 158‚ “S2-S3-S4 Definition for Devices/FRUs not Defined in
the PCI Specification‚” on page 318).

S5 Unique version of the device/FRU type for a particular product

R1

Device/FRU unique failure reason codes.
For POST: assigned by Firmware Developer.
For AIX Diagnostics (S1 = 5, not currently supported):

1-7: Use in combination with R2,R3 for diagnostic test failure when maximum isolation was obtained.

8-9: Use in combination with R2,R3 for diagnostic test failure when maximum isolation was NOT obtained.

A: Log analysis of POST error log

B: Log analysis of machine check or checkstop error log

C: Log analysis of AIX device driver error log

D: diagnostic detected missing resource

E-F: Reserved

For others: assigned by respective developers.

316 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

R2-R3
Device/FRU unique failure reason codes.
For POST: assigned by Firmware Developer
For others: assigned by respective developers.

Table 157. Current PCI Class Code Definition

PCI Base Class
(lower nibble)

S2

PCI Sub-Class
S3-S4

Description

0

Devices that were built before the class code field was defined

00 All currently implemented IOAs except VGA-compatible IOAs.

01 VGA-compatible IOAs.

1

Mass storage controller.

00 SCSI bus controller.

01 IDE controller.

02 Floppy disk controller.

03 Intelligent Peripheral Interface (IPI) bus controller.

04 Redundant Array of Independent Disks (RAID) controller.

80 Other mass storage controller.

2

Network controller.

00 Ethernet controller.

01 Token Ring controller.

02 FDDI controller.

03 ATM controller.

80 Other Network controller.

3

Display controller.

00 VGA-Compatible controller.

01 Extended Graphics Array (XGA) controller.

80 Other display controller.

4

Multimedia device

00 Video device

01 Audio device

80 Other multimedia device

Table 156. Service Reference Code (SRC) Field Descriptions

Field Description

10.4  Error Codes 317

LoPAPR, Version 1.1 (March 24, 2016)

5

Memory controller.

00 RAM

01 Flash

80 Other memory controller.

6

Bridge IOAs.

00 Host bridge

01 Reserved

02 Reserved

03 Reserved

04 PCI-to-PCI bridge

05 Reserved

06 Reserved

07 Reserved

80 Other bridge device.

7

Simple communication controllers.

00 Serial controllers.

01 Parallel port.

80 Other communication controllers.

8

Generic system peripherals

00 PIC

01 DMA Controller.

02 System timer

03 Real-Time Clock (RTC) controller

80 Other system peripherals

9

Input devices

00 Keyboard controller

01 Digitizer (pen).

02 Mouse controller

80 Other input controllers.

Table 157. Current PCI Class Code Definition (Continued)

PCI Base Class
(lower nibble)

S2

PCI Sub-Class
S3-S4

Description

318 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

A

Docking stations

00 Generic docking station

80 Other type of docking station

B

Processors

20 PA compliant (PowerPC and successors)

40 Co-processor

C

Serial bus controllers

03 Universal Serial Bus (USB)

04 Fibre Channel

Table 158. S2-S3-S4 Definition for Devices/FRUs not Defined in the PCI Specification

Base Class
S2

Sub-Class
S3-S4

Description

0

10 AC Power

11 DC Power

20 Temperature Related Problem

21 Fans

30-3x Cables

40-4x Terminators

50 Operator panels

60-6x Reserved

70-7x Reserved

90-9x Reserved

A0 Boot firmware Heartbeat

B0 O/S Heartbeat

D0 Unknown device

E0 Security

Table 157. Current PCI Class Code Definition (Continued)

PCI Base Class
(lower nibble)

S2

PCI Sub-Class
S3-S4

Description

10.4  Error Codes 319

LoPAPR, Version 1.1 (March 24, 2016)

1

A0 SCSI Drives (generic)

B0 IDE Drives

C0 RAID Drives

D0 SSA Drives

E0 Tapes SCSI

E1 Tapes IDE

ED SCSI Changer

EE Other SCSI Device

EF Diskette drive

F0 CDROM SCSI

F1 CDROM IDE

F2 Read/Write Optical SCSI

F3 Read/Write Optical IDE

F4-FF Reserved for other media devices

5

A0 L2 Cache Controller including integrated SRAM

A1 L2 Cache SRAM

A8 NVRAM

A9 CMOS

AA Quartz/EEPROM

B0-Bx Memory cards

Cyy Memory DIMMs (yy = memory PD bits)

7 A0 I2C bus

8 A0 Power Management Functions

9

A0-Ax Keyboards

B0-Bx Mouse(s)

C0-Cx Dials

D0 Tablet

D1-Dx Reserved for other input devices

B A0 Service processor

Table 158. S2-S3-S4 Definition for Devices/FRUs not Defined in the PCI Specification (Continued)

Base Class
S2

Sub-Class
S3-S4

Description

320 Error and Event Notification

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

11 The Symmetric Multiprocessor
Option

This architecture supports the implementation of symmetric multiprocessor (SMP) systems as an optional feature. This
Chapter provides information concerning the design and programming of such systems. For SMP OF binding informa-
tion, see Section B.7‚ “Symmetric Multi-Processors (SMP)‚” on page 729.

SMP systems differ from uniprocessors in a number of ways. These differences are not all covered in this chapter.
Other chapters that cover SMP-related topics include:

 Non-processor-related initialization and other requirements: Chapter 2, “System Requirements,” on page 41

 Interrupts: Chapter 6, “Interrupt Controller,” on page 101

 Error handling: Chapter 10, “Error and Event Notification,” on page 281

Many other general characteristics of SMPs—such as interprocessor communication, load/store ordering, and cache
coherence—are defined in Power ISA [1]. Requirements and recommendations for system organization and time base
synchronization are discussed here, along with SMP-specific aspects of the boot process.

SMP platforms require SMP-specific OS support. An OS supporting only uniprocessor platforms may not be usable on
an SMP, even when an SMP platform has only a single processor installed; conversely, an SMP-supporting OS may not
be usable on a uniprocessor. It is, however, a requirement that uniprocessor OSs be able to run on one-processor SMPs,
and that SMP-enabled OSs also run on uniprocessors. See the next section.

11.1 SMP System Organization

This chapter only addresses SMP multiprocessor platforms. This is a computer system in which multiple processors
equally share functional and timing access to and control over all other system components, including memory and
I/O, as defined in the requirements below. Other multiprocessor organizations (“asymmetric multiprocessors,” “at-
tached processors,” etc.) are not included in this architecture. These might, for example, include systems in which only
one processor can perform I/O operations; or in which processors have private memory that is not accessible by other
processors.

Requirements R1–11.1–4 through R1–11.1–7, further require that all processors be of (nearly) equal speed, type, cache
characteristics, etc. Requirements for optional non-uniform multiprocessor platforms are found in Chapter 15, “Non
Uniform Memory Access (NUMA) Option,” on page 505.

R1–11.1–1. OSs that do not explicitly support the SMP option must support SMP-enabled platforms, actively using
only one processor.

R1–11.1–2. For the Symmetric Multiprocessor option: SMP OSs must support uniprocessor platforms.

R1–11.1–3. For the Symmetric Multiprocessor option: The extensions defined in Section B.7‚ “Symmetric
Multi-Processors (SMP)‚” on page 729, and the SMP support section of the RTAS specifications (see
Section 7.3.8‚ “SMP Support‚” on page 161) must be implemented.

322 The Symmetric Multiprocessor Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–11.1–4. For the Symmetric Multiprocessor or Power Management option: All processors in the configura-
tion must have equal functional access and “quasi-equal” timing access to all of system memory, including
other processors’ caches, via cache coherence. “Quasi-equal” means that the time required for processors to
access memory is sufficiently close to being equal that all software can ignore the difference without a notice-
able negative impact on system performance; and no software is expected to profitably exploit the difference
in timing.

R1–11.1–5. For the Symmetric Multiprocessor option: All processors in the configuration must have equal func-
tional and “quasi-equal” timing access to all I/O devices and IOAs. “Quasi-equal” is defined as in Require-
ment R1–11.1–4, above, with I/O access replacing memory access for this case.

R1–11.1–6. For the Symmetric Multiprocessor option: SMP OSs must at least support SMPs with the same PVR
contents and speed. The PVR contents includes both the PVN and the revision number.

R1–11.1–7. For the Symmetric Multiprocessor option: All caches at the same hierarchical level must have the
same OF properties.

R1–11.1–8. Hardware for SMPs must provide a means for synchronizing all the time bases of all the processors in
the platform, for use by platform firmware. See Section 7.3.8‚ “SMP Support‚” on page 161. This is for pur-
poses of clock synchronization at initialization and at times when the processor loses time base state.

R1–11.1–9. The platform must initialize and maintain the synchronization of the time bases and timers of all plat-
form processors such that; for any code sequence “C”, run between any two platform processors “A” and
“B”, where the reading of the time base or timer in processor “A” can be architecturally guaranteed to have
happened later in time than the reading of the time base or timer in processor “B”, the value of the time base
read by processor “A” is greater than or equal to the value of the time base read by processor “B”.

Software Implementation Notes:

1. Requirement R1–11.1–1 has implications on the design of uniprocessor OSs, particularly regarding the han-
dling of interrupts. See the sections that follow, particularly Section 11.2.2‚ “Finding the Processor Config-
uration‚” on page 324.

2. While Requirement R1–11.1–6 does not require this, OSs are encouraged to support processors of the same
type but different PVR contents as long as their programming models are compatible.

3. Because of performance penalties associated with inter-processor synchronization, the weakest synchroni-
zation primitive that produces correct operation should be used. For example, eieio can often be used as part
of a sequence that unlocks a data structure, rather than the higher-overhead but more general sync instruc-
tion.

Hardware Implementation Notes:

1. Particularly when used as servers, SMP systems make heavy demands on the I/O and memory subsystems.
Therefore, it is strongly recommended that the I/O and memory subsystem of an SMP platform should ei-
ther be expandable as additional processors are added, or else designed to handle the load of the maximum
system configuration.

2. Defining an exact numeric threshold for “quasi-equal” is not feasible because it depends on the application,
compiler, subsystem, and OS software that the system is to run. It is highly likely that a wider range of tim-
ing differences can be absorbed in I/O access time than in memory access time. An illustrative example that
is deliberately far from an upper bound: A 2% timing difference is certainly quasi-equal by this definition.
While significantly larger timing differences are undoubtedly also quasi-equal, more conclusive statements
must be the province of the OS and other software.

11.2  An SMP Boot Process 323

LoPAPR, Version 1.1 (March 24, 2016)

11.2 An SMP Boot Process

Booting an SMP entails considerations not present when booting a uniprocessor. This section indicates those consider-
ations by describing a way in which an SMP system can be booted. It does not pretend to describe “the” way to boot an
SMP, since there are a wide variety of ways to do this, depending on engineering choices that can differ from platform
to platform. To illustrate the possibilities, several variations on the SMP booting theme will be described after the ini-
tial description.

This section concentrates solely on SMP-related issues, and ignores a number of other initialization issues such as hi-
bernation and suspension. See Section 2.1‚ “System Operation‚” on page 41 for a discussion of those other issues.

11.2.1 SMP-Safe Boot

The basic booting process described here is called “SMP-Safe” because it tolerates the presence of multiple processors,
but does not exploit them. This process proceeds as follows:

1. At power on, one or more finite state machines (FSMs) built into the system hardware initialize each processor in-
dependently. FSMs also perform basic initialization of other system elements, such as the memory and interrupt
controllers.

2. After the FSM initialization of each processor concludes, it begins execution at a location in ROM that the FSM
has specified. This is the start of execution of the system firmware that eventually provides the OF interfaces to
the OS.

3. One of the first things that firmware does is establish one of the processors as the master: The master is a single
processor which continues with the rest of the booting process; all the others are placed in a stopped state. A pro-
cessor in this stopped state is out of the picture; it does nothing that affects the state of the system and will con-
tinue to be in that state until awakened by some outside force, such as an inter-processor interrupt (IPI).1

One way to choose the master is to include a special register at a fixed address in the memory controller. That spe-
cial register has the following properties:

 The FSM initializing the memory controller sets this register’s contents to 0 (zero).

 The first time that register is read, it returns the value 0 and then sets its own contents to non-zero. This is per-
formed as an atomic operation; if two or more processors attempt to read the register at the same time, exactly
one of them will get the 0 and the rest will get a non-zero value.

 After the first attempt, all attempts to read that register’s contents return a non-zero value.

The master is then picked by having all the processors read from that special register. Exactly one of them will re-
ceive a 0 and thereby become the master.

Note that the operation of choosing the master cannot be done using the PA memory locking instructions, since at
this point in the boot process the memory is not initialized. The advantage to using a register in the memory con-
troller is that system bus serialization can be used to automatically provide the required atomicity.

4. The master chosen in step 3. then proceeds to do the remainder of the system initialization. This includes, for ex-
ample, the remainder of Power-On Self Test, initialization of OF, discovery of devices and construction of the OF
device tree, loading the OS, starting it, and so on. Since one processor is performing all these functions, and the
rest are in a state where they are not affecting anything, code that is at least very close to the uniprocessor code can
be used for all of this (but see Section 11.2.2‚ “Finding the Processor Configuration‚” on page 324 below).

1.Another characteristic of the stopped state, defined by Appendix C, “PA Processor Binding,” on page 753, is that the processor remembers nothing
of its prior life when placed in a stopped state; this distinguishes it from the idle state. That isn’t strictly necessary for this booting process; idle could
have been used. However, since the non-master processor must be in the stopped state when the OS is started, stopped might as well be used.

324 The Symmetric Multiprocessor Option

 LoPAPR, Version 1.1 (March 24, 2016)

5. The OS begins execution on the single master processor. It uses the OF Client Interface Services to start each of
the other processors, taking them out of the stopped state and setting them loose on the SMP OS code.

This completes the example SMP boot process. Variations are discussed beginning at Section 11.2.3‚ “SMP-Efficient
Boot‚” on page 324. Before discussing those variations, an element of the system initialization not discussed above
will be covered.

11.2.2 Finding the Processor Configuration

Unlike uniprocessor initialization, SMP initialization must also discover the number and identities of the processors in-
stalled in the system. “Identity” means the interrupt address of each processor as seen by the interrupt controller; with-
out that information, a processor cannot reset interrupts directed at it. This identity is determined by board wiring: The
processor attached to the “processor 0” wire from the interrupt controller has identity 0. For information about how this
identity is used, see Section B.7‚ “Symmetric Multi-Processors (SMP)‚” on page 729.

The method used by a platform to identify its processors is dependent upon the platform hardware design and may be
based upon service processor information, identification registers, inter-processor interrupts, or other novel techniques.

11.2.3 SMP-Efficient Boot

The booting process as described so far tolerates the existence of multiple processors but does not attempt to exploit
them. It is possible that the booting process can be sped up by actively using multiple processors simultaneously. In
that case, the pick-a-master technique must still be used to perform sufficient initialization that other inter-processor
coordination facilities—in-memory locks and IPIs—can be used. Once that is accomplished, normal parallel SMP pro-
gramming techniques can be used within the initialization process itself.

11.2.4 Use of a Service Processor

A system might contain a service processor that is distinct from the processors that form the SMP. If that service pro-
cessor has suitably intimate access to and control over each of the SMP processors, it can perform the operations of
choosing a master and discovering the SMP processor configuration.

LoPAPR, Version 1.1 (March 24, 2016)

12 Product Topology

12.1 VPD and Location Code OF Properties

A set of OF properties is defined to facilitate asset protection and RAS capabilities in LoPAPR systems. The following
properties are defined in Section B.6.10.2‚ “Miscellaneous Node Properties‚” on page 717):

 “ibm,vpd”

 “ibm,loc-code”

R1–12.1–1. Each instance of a hardware entity (FRU) has a platform unique location code and any node in the OF
device tree that describes a part of a hardware entity must include the “ibm,loc-code” property with a
value that represents the location code for that hardware entity.

R1–12.1–2. OF nodes that do not represent an instance of a hardware entity (FRU) do not have a location code and
thus these nodes, except for the OF root node, do not include the “ibm,loc-code” property.

Architecture Note: In general, an OF node that has a unit address corresponds to an instance of a hardware entity and a
node that does not have a unit address does not correspond to an instance of a hardware entity. The nodes for
caches are one exception to this statement. Note that the OF openprom node is a system node and thus should
have neither the “ibm,loc-code” property nor the “ibm,vpd” property.

R1–12.1–3. If a hardware entity contains unique VPD information and the entity corresponds to a node in the OF
device tree, then that device tree node must include the “ibm,vpd” property.

R1–12.1–4. An instance of a hardware entity (FRU) must have one and only one “ibm,vpd” property element
that defines the VPD keywords specified in Requirement R1–12.4.3.1–1.

Platform Implementation Note: In general, an instance of a hardware entity has a single “ibm,vpd” property element
that is in one of the nodes that also contains an “ibm,loc-code” property element for that entity.

R1–12.1–5. An OF device tree node that includes the “ibm,vpd” property must also include an
“ibm,loc-code” property, where each property has the same number of elements and the matching ele-
ments of both properties define the same instance of a hardware entity (FRU), where matching elements are
defined as the nth string of the “ibm,loc-code” property and the nth set of tags in the “ibm,vpd”
property for all values of n.

R1–12.1–6. VPD data that is not associated with an instance of a hardware entity (FRU) that is described by a single
OF device tree node must be reported in an appropriate OF node using the “ibm,loc-code” and
“ibm,vpd” properties.

Architecture Notes:

 The root node is the appropriate OF node (for Requirement R1–12.1–6) for any instance of a hardware entity
that cannot be dynamically reconfigured. Any one and only one of the OF nodes that describe the dynamically
reconfigurable entity can contain the properties for the dynamically reconfigurable entity case.

 A dynamically reconfigurable entity may consist of more than one FRU. In this case, the first element of both
the “ibm,vpd” property and the “ibm,loc-code” property for the dynamically reconfigurable entity
must define the VPD and location code for the OF device tree node that includes those properties.

326 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

 A FRU can be considered dynamically reconfigurable if the hardware is enabled for dynamic reconfiguration
and full platform support might be implemented at a later date.

Platform Implementation Note: If a location does not return VPD, the property would contain a null entry for the VPD.

12.2 System Identification

Appendix B, “LoPAPR Binding,” on page 661 provides properties in the “OF Root Node” section called “sys-
tem-id” and “model”.

R1–12.2–1. (Requirement Number Reserved For Compatibility)

R1–12.2–2. Each system enclosure (generally, a drawer), must have the VPD SE and TM keywords (see Table 160‚
“LoPAPR VPD Fields‚” on page 343).

R1–12.2–3. The SE and TM keywords for a master enclosure must be contained in the “ibm,vpd” property for
the master enclosure which may also contain other keywords. A master enclosure must also have the YK key-
word if another enclosure shares the same combined SE and TM keyword values. The YK keyword (see
Table 160‚ “LoPAPR VPD Fields‚” on page 343) for a secondary enclosure must be contained in the
“ibm,vpd” property for the secondary enclosure, which may also contain other keywords. Each master
enclosure with a YK keyword must have a unique YK value that is the same as the value of the YK keyword
for each of the secondary enclosures that share the same combined SE and TM keyword values. An enclosure
is not a FRU and thus its VPD must not contain the FN, PN, SN, EC, RM or RL keywords.

R1–12.2–4. The enclosure must also be represented in the corresponding element of the “ibm,loc-code” prop-
erty with the location code of the enclosure for a multi-enclosure platform.

Implementation Note: The location code will be for the full enclosure. The drawer position is the u-units counting from
the bottom of the rack. Specific numbering is platform dependent.

R1–12.2–5. If the system contains multiple processor enclosures, firmware must use the VPD SE field from the first
or ‘marked’ processor enclosure (see Table 160‚ “LoPAPR VPD Fields‚” on page 343) to construct “sys-
tem-id”.

Implementation Note: What is meant by ‘marked’ above is that, in a system, the ‘first’ processor enclosure could become
ambiguous. In such a case, a specific processor enclosure could be marked by the firmware or HMC as being the
processor enclosure to use for identification purposes.

R1–12.2–6. One or more of the MI, RM, and RL keywords must be present for any firmware specific VPD. (with a
value of “UNKNOWN” for unknown values), and must be present based on all of the following:

a. The RL keyword must be provided if the platform does not support the ibm,update-flash-64-and-reboot
RTAS call.

b. The RM keyword must be provided if the platform supports only a single flash image updated via the
ibm,update-flash-64-and-reboot service and does not support the ibm,manage-flash-image and ibm,vali-
date-flash-image RTAS calls.

c. The MI keyword must be provided if the platform supports dual flash images via the ibm,up-
date-flash-64-and-reboot, the ibm,manage-flash-image, and the ibm,validate-flash-image RTAS calls.

d. The ML keyword must be provided if the platform supports dual flash images via the ibm,up-
date-flash64-and-reboot, the ibm,manage-flash-image, and the ibm,validate-flash-image RTAS calls.

R1–12.2–7. System firmware and service processor firmware must have VPD that is separate from the VPD of the
FRU that contains the system firmware and service processor firmware and this VPD must have a location

12.3  Hardware Location Codes 327

LoPAPR, Version 1.1 (March 24, 2016)

code that is made by adding “/Yn” to the end of the location code for the FRU that contains the firmware
where n is a platform dependent instance of the firmware.

R1–12.2–8. The description (large resource type of 0x82) for the system firmware VPD in the “ibm,vpd” prop-
erty must be “System Firmware or Platform Firmware”.

R1–12.2–9. System firmware VPD must be found in the root node if the system supports only static VPD, other-
wise system firmware VPD must be provided via the ibm,get-vpd RTAS call.

R1–12.2–10. The description (large resource type of 0x82) for the service processor firmware VPD in the
“ibm,vpd” property must be “Service Processor Firmware”, if the service processor firmware is a separate
FRU from the system firmware.

R1–12.2–11. Service processor firmware VPD must be found in the root node if the service processor firmware is a
separate FRU from the system firmware.

R1–12.2–12. The VPD SE field (see Table 160‚ “LoPAPR VPD Fields‚” on page 343) must be electronically stored
in a manner that is not modifiable in a user environment.

R1–12.2–13. There must be a property, “model”, under the root node in the format, “<vendor>,xxxx-yyy”, where
<vendor> is replaced by one to five letters representing the stock symbol of the company (for example, for
IBM: “IBM,xxxx-yyy”), and where xxxx-yyy is derived from the VPD TM field (see Table 160‚ “LoPAPR
VPD Fields‚” on page 343) of the first or ‘marked’ processor enclosure.

R1–12.2–14. The values of the type/model (TM) and system serial number (SE) (see Table 160‚ “LoPAPR VPD
Fields‚” on page 343) must remain the same even with service or reconfiguration of the system.

Implementation Note: A change in either TM or SE would indicate a system replacement as opposed to a
reconfiguration.

This definition of the “system-id” property provides extensibility and ensures that uniqueness can be maintained.
The 2 byte Field Type will serve to identify the format of the System Identifier Field which follows.

Hardware Implementation Note: It is recommended that the VPD SE field be held in an area of the machine that is least
susceptible to hardware failure. This is to minimize the effect on software licensing when a FRU must be changed.
Another useful technique is to socket the part containing the SE field, allowing service personnel to move the old
SE to the new FRU.

12.3 Hardware Location Codes

Hardware location codes are used to provide a mapping of logical functions in a platform (or expansion sites for logical
functions, such as connectors or ports) to their specific locations within the physical structure of the platform. The de-
scription in the following section is intended to define a standard architecture for these location codes, which would be
used in three places:

1. These location codes would be included as a property, “ibm,loc-code”, under device nodes in the OF device
tree, to provide identification of where those device functions are physically located in the platform.

2. To make service and parts replacement easier, hardware location codes of failing components would be appended
to the standard 40-byte Extended Error Log templates returned by the RTAS event-scan and check-exception ser-
vices.

Software Note: Since the OF device tree currently only defines the core platform devices and IOAs, OS applications such
as diagnostics may need to extend these location codes with logical addresses to point to devices such as SCSI
(Small Computer System Interface) drives or asynchronous tty (teletypewriter) terminals.

Location Codes are globally unique within a system and are persistent between system reboots and power cycles.

328 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

R1–12.3–1. All platforms must implement the Converged Location Codes option.

R1–12.3–2. Location codes must be globally unique within a system, including across multiple CECs of a clustered
system, and must be persistent across multiple system reboots and power cycles.

Converged location codes1 are strings composed of one or more location labels separated by dashes (“-”). Location la-
bels are strings that begin with a location prefix followed by a distinguishing value. For example, the location code for
a PCI (Peripheral Component Interconnect) card in a CEC (Central Electronic Complex) might be something like this:

U7879.001.1012345-P2-C3

Valid location codes consist of uppercase characters ('A' - 'Z'), digits (0 - 9), periods ('.'), and dashes ('-'). Characters
other than these valid characters will be replaced by pound signs ('#') to protect display and formatting routines and
give a consistent indication of a problem in the data. Periods may be used to improve readability of the location code.

The existence of the “ibm,converged-loc-codes” property in the root node of the device tree indicates that
the platform implements the Converged Location Codes option.

R1–12.3–3. For the Converged Location Codes option: The platform must implement the “ibm,con-
verged-loc-codes” property in the root node of the device tree.

R1–12.3–4. For the Converged Location Codes option: The location code contained in each instance of the prop-
erty “ibm,loc-code” must match the format as described in the sections under Section 12.3.1‚ “Con-
verged Location Code Labels‚” on page 328 and Section 12.3.2‚ “Converged Location Code Rules‚” on
page 332.

R1–12.3–5. For the Converged Location Codes option: Extended error logs reported to the OS by event-scan or
check-exception must have the characters “IBM<NULL>” in bytes 12-15, and include the location codes for
the failing elements in the format as described in the sections under Section 12.3.1‚ “Converged Location
Code Labels‚” on page 328 and Section 12.3.2‚ “Converged Location Code Rules‚” on page 332.

12.3.1 Converged Location Code Labels

This section describes the types of location code labels. See also Section 12.3.2‚ “Converged Location Code Rules‚”
on page 332 for the rules for building a location code.

12.3.1.1 Prefix Summary Table

The prefix of a converged location code is as defined in this section.

R1–12.3.1.1–1. For the Converged Location Codes option: The location code prefixes specified in Table 159‚
“Converged Location Code Prefix Values‚” on page 328 must be used in constructing location codes.

1.The term “converged” is historic, based on merging (converging) several previous versions of location codes.

Table 159. Converged Location Code Prefix Values

Prefix Meaning

A
Air handler (for example: blower, fan, motor scroll assembly, motor drive assembly). See Section 12.3.1.4‚ “Air
Handler Location Label‚” on page 330.

C
Card Connector (for example, connector for: IOA, Processor Card, Riser Card, Daughter Card, DIMM, Regulator
Card, MCM, L3 Cache, Jumper Card, Passthru Interposer (for Processor Fabric when an MCM is not installed),
Pluggable Module Chips). See Section 12.3.1.5‚ “Card Connector Location Label‚” on page 330.

12.3  Hardware Location Codes 329

LoPAPR, Version 1.1 (March 24, 2016)

12.3.1.2 Unit Location Label

The unit location label consists of the prefix “U” followed by uppercase alphabetic characters, digits, and periods (“.”).
There is one and only one unit location label in a location code and it is the first element in the location code.

12.3.1.3 Planar Location Label

The planar location label consists of the prefix “P” followed by a non-zero decimal number with no leading zeroes.
Planar location labels are present in location codes for planars and all locations on a planar. There is at most one planar
location label in a location code. When present, the planar location label immediately follows the unit location label in
the location code.

Planars are uniquely labeled within a unit.

D
Device (for example: Diskette, DASD, Operator Panel, SES (Storage Enclosure Services) Device). See
Section 12.3.1.6‚ “Device Location Label‚” on page 330.

E
Electrical (for example: Battery, Power Supply, Charger). See Section 12.3.1.7‚ “Electrical Location Label‚” on
page 330.

F Frame. See Section 12.3.1.15‚ “Frame Location Label‚” on page 331.

L
Logical Path (for example: SCSI Target, IDE Address, ATAPI Address, Fibre Channel LUN, etc.). See
Section 12.3.1.10‚ “Logical Path Label‚” on page 331.

M Mechanical (Plumbing, Valves, Latches). See Section 12.3.1.17‚ “Mechanical Location Label‚” on page 332.

N
Horizontal placement for an empty rack location. See Section 12.3.1.13‚ “Horizontal Placement Location Label‚”
on page 331.

P Planar (for example: Backplane, Board). See Section 12.3.1.3‚ “Planar Location Label‚” on page 329.

R
Resource (identifies a resource that is not a FRU, but needs identification in the error log). See Section 12.3.1.18‚
“Resource Location Label‚” on page 332.

S SR-IOV adapter virtual function. See Section 12.3.1.16‚ “Virtual Function Location Label‚” on page 331.

T
Port (for example: Port, Connector, Cable Connector, Jack, Interposer). See Section 12.3.1.8‚ “Port Location
Label‚” on page 330.

U
Unit (for example: System, CEC, Card Cage, Drawer, Chassis (Unpopulated drawer)). See Section 12.3.1.2‚
“Unit Location Label‚” on page 329.

V Virtual Planar. See Section 12.3.1.11‚ “Virtual Planar Location Label‚” on page 331.

W
Worldwide unique ID (for example: Fibre Channel). See Section 12.3.1.9‚ “Worldwide Unique Identifier‚” on
page 330.

X EIA value for empty rack location. See Section 12.3.1.14‚ “EIA Location Label‚” on page 331.

Y Firmware FRU. See Section 12.3.1.12‚ “Firmware Location Label‚” on page 331.

Table 159. Converged Location Code Prefix Values (Continued)

Prefix Meaning

330 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

12.3.1.4 Air Handler Location Label

An air handler location label consists of the prefix “A” followed by a non-zero decimal number with no leading zeroes.
A location code may have zero or more air handler location labels. When present, the air handler location label follows
the location label of the resource onto which the air handler is mounted, usually a unit or planar.

Examples of air handlers include blowers and fans.

12.3.1.5 Card Connector Location Label

The card connector location label consists of the prefix “C” followed by a non-zero decimal number with no leading
zeroes. A location code may contain zero or more card connector location labels. When present, the card connector lo-
cation label follows the location label of the resource onto which the card is mounted, usually a planar or another card.

Examples of cards include: Plug-in I/O cards, processor cards, daughter cards, DIMMs, regulator cards, MCMs, L3
cache modules, jumper cards, pass-through interposers, and pluggable module chips.

12.3.1.6 Device Location Label

A device location label consists of the prefix “D” followed by a non-zero decimal number with no leading zeroes. A lo-
cation code may have zero or more device location labels. When present, the device location label follows the location
label of the resource onto which the device is mounted, usually a planar.

Device location labels are used for devices for which a physical location can be determined. These are usually mounted
in enclosures that have rigid placement rules and, often, additional hardware support for location determination, such
as SES (Storage Enclosure Services) devices.

12.3.1.7 Electrical Location Label

An electrical location label consists of the prefix “E” followed by a non-zero decimal number with no leading zeroes.
A location code may have zero or more electrical location labels. When present, the electrical location label follows the
location label of the resource onto which the electrical resource is mounted, usually a unit or planar.

Examples of electrical resources include: batteries, power supplies, and chargers.

12.3.1.8 Port Location Label

A port location label consists of the prefix “T” followed by a non-zero decimal number with no leading zeroes. A loca-
tion code may have zero or more port location labels. When present, the port location label follows the location label of
the resource onto which the port is mounted, usually a card or planar.

Examples of resources with a port location label include: ports, connectors, cable connectors, jacks, and interposers.

12.3.1.9 Worldwide Unique Identifier

A worldwide unique identifier location label consists of the prefix “W” followed by a maximum of 16 uppercase hexa-
decimal digits with no leading zeroes. A location code may have zero or one worldwide unique identifier location la-
bels. When present, the worldwide unique identifier location label follows the location label of the resource that
interfaces with the resource having the worldwide unique identifier, usually a port.

12.3  Hardware Location Codes 331

LoPAPR, Version 1.1 (March 24, 2016)

12.3.1.10 Logical Path Label

A logical path location label consists of the prefix “L” followed by a decimal or hexadecimal number with no leading
zeros. Refer to Section 12.3.2.17‚ “Port Location Codes‚” on page 336 through Section 12.3.2.20‚ “IDE/ATAPI Device
Logical Path Location Codes‚” on page 337 to determine when decimal and hexadecimal values are allowed. A loca-
tion code may have zero or more logical path location labels. When present, the logical path location label follows the
location label of the resource that interfaces with the resource being located, usually a port or worldwide unique identi-
fier.

The numeric value portion of the logical path label is a portion of the address, appropriate to the protocol in use, which
identifies the resource to be located.

12.3.1.11 Virtual Planar Location Label

A virtual planar label consists of the prefix “V” followed by a non-zero decimal number with no leading zeroes. A lo-
cation code may have zero or one virtual planar location labels. When present, the virtual planar location label will im-
mediately follow the unit location label in a location code. There is no physical label in the system or any I/O drawer
corresponding to the virtual planar location label.

Virtual planars are uniquely labeled within a system.

12.3.1.12 Firmware Location Label

A firmware location label consists of the prefix “Y” followed by a non-zero decimal number with no leading zeroes. A
location code may have zero or one firmware location labels. A firmware location code will always contain a unit loca-
tion label as its first element and a firmware location label its last element.

12.3.1.13 Horizontal Placement Location Label

The horizontal placement location label of an empty space in a rack consists of the prefix “N” followed by a non-zero
decimal number with no leading zeroes. A location code may have zero or one horizontal placement location labels.
When present, the horizontal placement location label immediately follows the EIA location label.

12.3.1.14 EIA Location Label

The EIA location label of an empty space in a rack consists of the prefix “X” followed by a non-zero decimal number
with no leading zeroes. A location code may have zero or one EIA location labels. When present, the EIA location la-
bel immediately follows the frame location label.

12.3.1.15 Frame Location Label

The frame location label of an empty space in a rack consists of the prefix “F” followed by a non-zero decimal number
with no leading zeroes. A location code may have zero or more frame location labels. When present, the frame location
label immediately follows the unit location label.

12.3.1.16 Virtual Function Location Label

A virtual function label consists of the prefix “S” followed by a zero-starting decimal number with no leading zeros. A
location code may have zero or more virtual function labels. When present, the virtual function label is appended to the
location code of the port that the virtual function uses.

332 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

12.3.1.17 Mechanical Location Label

The Mechanical location label consists of the prefix “M” followed by a nonzero decimal number with no leading ze-
roes. A location code my have zero or more Mechanical location labels. When present, the Mechanical location label
follows the location label of the resource onto which the mechanical device is mounted.

Examples of resources with a mechanical location label include: plumbing, valves, and latches.

12.3.1.18 Resource Location Label

The Resource location label consists of the prefix “R” followed by a nonzero decimal number with no leading zeroes.
A location code my have zero or more Resource location labels. When present, the Resource location label follows the
location label of the parent FRU.

Resource location labels are resources, that are not FRUs, but that need a location code label to be properly identified
in the error log. An example of a Resource is a module on the System backplane that is not a separate FRU, but which
needs to be separately identified in the system error log for a fail in place type of service strategy.

12.3.2 Converged Location Code Rules

This section describes the rules for building a location code. See also Section 12.3.1‚ “Converged Location Code La-
bels‚” on page 328 the types of location code labels.

12.3.2.1 Usage of Location Codes

Any reference to a FRU must reference the official location code.

Unofficial internal forms or values of location codes which system components may use for internal convenience are
not to be presented to customers, service personnel, etc. They are to be kept internal to those components.

12.3.2.2 Persistence of Location Codes

Physical path location codes are permanent. Physical path location codes will not change unless there has been a
change of hardware.

Logical path location codes are dependent on configuration information and are therefore not permanent. Whenever
reasonable and possible, logical path location codes will persist across power cycles of the system.

12.3.2.3 Forming Location Codes

Location codes are formed by concatenating one or more location labels together. Location labels start at the largest or
most general resource (the unit) and proceed to the most specific in order of containment. The location labels are sepa-
rated by dashes (“-”).

12.3.2.4 Length Restrictions

Location codes are no more than 79 characters in length. The lengths of individual location labels vary.

12.3  Hardware Location Codes 333

LoPAPR, Version 1.1 (March 24, 2016)

12.3.2.5 Location Labels Content

The unit location label may contain uppercase letters, digits, and periods. All other location labels contain only upper
case letters and digits. This will avoid problems when printing or displaying the location codes on double byte devices.

12.3.2.6 Physical Representation

In so far as it is possible, location labels must match the labels that are present on the hardware.

Generally, there are labels visible on the hardware to identify connectors, slots, etc. These physical labels must adhere
to this specification and must be reflected in the corresponding location codes. This will eliminate the need for the user
to translate between the location code presented in logs, displays, reports, and instructions and the location label found
on the hardware.

12.3.2.7 Multiple Function FRUs

Some FRUs (Field Replaceable Units) contain more than one logical resource or function. The physical location code
refers to the physical FRU. So all the logical resources or functions on a FRU have the same physical location code.
Connectors on a FRU have different location codes except for the case of multiple connectors for one port.

12.3.2.8 Multiple Connectors for One Port

Some IOAs have multiple connectors (for example, a D-connector and an RJ-45 connector) for one port. Since there is
only one port involved, both connectors have the same location code.

12.3.2.9 Location Label Numbering Scope

For sequentially numbered location labels (planar, card, device, air handler, electrical), each FRU has its own number-
ing space for its child location labels. That numbering space begins with 1 and increments by 1 for each child location
label. Number is in decimal. For example, if there were two planars in a unit, each planar having five card connectors,
then each planar would show child location labels of C1, C2, C3, C4, and C5.

This means that for each parent, the child location labels begin with a count of one. As a further example, if there were
two adapters in adjacent PCI slots each with two port connectors, the ports on the first adapter would have location la-
bels T1 and T2, and the ports on the second adapter would have location labels of T1 and T2.

Note: Model-specific modifications to this numbering rule may be made, when similar models of a product line are
housed in the same enclosure/rack, and the equivalent slots and connectors from each model are lined up with each
other as seen by the customer. Then the location code numbering of these equivalent slots and connectors may be
the same for each model, even though numbers may be skipped or appear to be out of order on specific models.

12.3.2.10 FRU Orientation

Locations are numbered left to right, top to bottom, back to front with respect to the parent FRU, as viewed from the
service position. However, a location label does not change based on the orientation of a piece of hardware within its
parent hardware, for FRUs that may have more than one way of being oriented.

If a CEC or I/O drawer is used both in standalone and rack mounted configurations, the rack mounted configuration
takes precedence in determining location numbering.

334 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

12.3.2.11 Unit Location Codes

The unit location code is the unit location label, Un, for the unit. The unit location label is permanent. The unit location
labels may not be etched on the containing racks, since it may not be possible to determine them during manufacture.

A system will have a unit location code composed of the machine type, model, and serial number of the system with
the components separated by periods ('.'). For example, a system with machine type 9117, model 250, and serial num-
ber 10-ABCDE would have a location code of:

U9117.250.10ABCDE

Some I/O Drawers and CECs may be assigned machine type, model, and serial numbers (MTMS) by manufacturing.
Other I/O Drawers and CECs may be assigned feature code, count, and serial numbers by manufacturing. The same re-
quirements for uniqueness apply to both identification schemes. The data is formatted in exactly the same way. And,
for the purposes of location codes, the data will be used in exactly the same way.

Drawers and CECs which have a machine type, model, and serial number which the system can obtain will have a unit
location code composed of the machine type, model, and serial number with the components separated by periods
(“.”). For example, a drawer with machine type 5703, model 012, and serial number 10-30490 would have a location
code of:

U5703.012.1030490

Drawers and CECs which have a feature code, count, and serial number which the system can obtain will have a unit
location code composed of the feature code, count, and serial number with the components separated by periods (‘.’),
for readability. For example, a drawer with feature code 0573, count 001, and serial number 10-40320 would have a lo-
cation code of:

U0573.001.1040320

Additionally, the count portion of the location code unit label may be modified by firmware at boot time to reflect in-
formation about the physical location. It may be modified according to whatever scheme appropriate for the unit's con-
figuration -- provided all other location code rules are followed and that the scheme generates the same value every
time when no actual or relative physical location change has been made. For example, TUn (“TU” to indicate the Top
CEC Unit, n=1,2,3, or 4 to indicate which drawer numbered top to bottom) may be substituted for the actual count
value, so an imaginary CEC following this scheme might have a unit label of:

U1234.TU1.5678901

Enclosure feature code/count must never collide with one another or with any machine type/model. Likewise, enclo-
sure machine type/model must never collide with one another or any enclosure feature code/count.

Drawers for which the system cannot obtain a machine type, model, and serial or a feature code, count, and serial num-
ber, will have a location code of the form Uttaa. In this form, the tt is an alphabetic string identifying the kind of
drawer, for example, SSA. The aa is a string provided by the rules of the OS to identify the instance of the drawer
within the particular system. For example: USSABKUP. The lengths of both tt and aa will vary depending on the kind
of drawer. The OS must provide mechanisms by which the customer can ensure the uniqueness of these values.

12.3.2.12 Planar Location Codes

Planar location codes are formed by appending the planar location label, Pn, to the location code of the unit that con-
tains the planar. The Pn value is assigned during the engineering design and manufacturing process, is unique within
the unit, is physically displayed on the parent resource, and is present in the VPD of the parent resource. This process
is the same irrespective of the kind of planar involved.

Note: In some implementations, a planar is not a separate FRU but is considered to be part of the enclosure. For
consistency of the user interface, the enclosure in these cases is still considered to have a location code consisting

12.3  Hardware Location Codes 335

LoPAPR, Version 1.1 (March 24, 2016)

entirely of a unit location label. In these cases, the planar has a location code consisting of both the unit location
label and the planar location label. This is done even though the planar is not a separate FRU. In these cases,
service related VPD and errors will be reported with the planar location code.

12.3.2.13 Card Connector Location Codes

Card connector location codes are formed by appending the card connector location label, Cn, to the location code of
the resource to which the card is docked. The location label, Cn, assigned in the engineering and manufacturing pro-
cess, is unique within the parent resource, is physically displayed on the parent resource, and is present in the VPD of
the parent resource.

The process is the same irrespective of the kind of card involved.

12.3.2.14 Riser Card Connector Location Codes

Riser card connector location codes are formed by appending the card location label, Cn, of the child card to the loca-
tion code of the parent card to which it is attached. For example:

U5702.115.1031010-P3-C4-C2

12.3.2.15 Blade Daughter Card Connector Location Codes

The Blade daughter card slot can actually contain multiple partitionable endpoints depending on the type of daughter
card attached. The PCI-E bus can be split (bifurcated) between two PHB's that are separately DLPAR-able (just not
hot-pluggable) resources. When that occurs, a -L# suffix is required after the -C# of the daughter card slot to distinctly
identify between the two PE's. For example, when the daughter card contains two 4x PCIE devices, the location code
for the two PE's might be:

U78A0.001.DNWGDG0-P1-C10-L1

U78A0.001.DNWGDG0-P1-C10-L2

The actual daughter card device ports, in this example, will have the -T# suffix (starting from 1) on top of those. For
example, a 4-port PCI-E Ethernet daughter card, might have location codes like:

U78A0.001.DNWGDG0-P1-C10-L1-T1

U78A0.001.DNWGDG0-P1-C10-L1-T2

U78A0.001.DNWGDG0-P1-C10-L2-T1

U78A0.001.DNWGDG0-P1-C10-L2-T2

If only a single PCI device is on the daughter card, then the -L# suffix should not be used, as the -C# is sufficient to
identify the PE and device.

12.3.2.16 Virtual Card Connector Location Codes

Virtual card connector location codes are formed as though there were a virtual planar with card slots. For example, a
virtual IOA would have a location code of form:

U9117.150.1054321-V5-C2

In the virtual card connector location code, the unit location label specifies the system location code, not the CEC en-
closure location code.

336 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

It is recommended that the card connector location label have a non-zero numeric part, for human factors reasons.

12.3.2.17 Port Location Codes

Port location codes are formed by appending the port location label, Tn, to the location code of the resource on which
the port connector is mounted. The location label, Tn, assigned in the engineering and manufacturing process, is
unique within the parent resource, is physically displayed on the parent resource, and is present in the VPD of the par-
ent resource.

12.3.2.17.1 Resources without Port VPD

If a resource without slot map VPD has port numbers physically marked on it, the hard coded slot map will reflect the
marked numbers and letters with a “T” prefix. Any letters will be folded to uppercase to avoid double byte display con-
cerns. (Note: only letters 'A' - 'F' may be used in a port location label. Other letters on the card will be ignored and num-
bers will be assigned for uniqueness.) It is recognized that location labels formed in this way may not conform to the
location label rules stated in Section 12.3.1.8‚ “Port Location Label‚” on page 330.

If the port labels are not marked on the standalone adapter, the hard coded slot map will specify location labels of Tn,
where n is decimal and equal to the port address (i.e. port 0 will map to T1, port 1 will map to T2, etc.) Whenever pos-
sible, the hardware design should be such that this will lead to the preferred left to right, top to bottom, front to back or-
dering. For standalone adapters that can be installed in multiple systems, ports are labeled beginning with the PCI
connector and continuing toward the opposite edge of the card and from tailstock forward toward the opposite edge of
the card.

If the adapter is imbedded on a FRU which does not have port location labels marked on it and has ports for other func-
tions, then the numbering to the ports in the hard coded slot map must take into account the other ports on the FRU.
The hard coded slot map will comply with the left to right, bottom to top, front to back ordering guidelines. In this case,
the first port for the imbedded adapter may be other than T0 and may not be contiguous.

12.3.2.17.2 Determining Port Number

If the port number cannot be determined from VPD or VPD plus configuration or addressing information, software or
firmware must infer the port number.

 For SCSI IOAs with multiple PCI configuration spaces, each port has its own configuration space.

 For multiport SCSI IOAs with a single PCI configuration space, firmware or software will add n+1 to the base port's
distinguishing value to obtain the port number for the nth port. Thus port 0 (usually closest to the PCI connector
edge of the card) will have label T1, port 1 will have label T2, etc.

12.3.2.17.3 Physical Device Location Codes

Devices whose parent supports location label VPD1 (that is, mounted/docked on a backplane that supports location in-
formation for docked devices) will have physical location codes. For example,

U5734.001.10ABCDE-P3-D19

Physical device location codes are formed by appending the physical device location label, Dn, to the location code of
the resource to which the device is docked. The location label, Dn, assigned in the engineering and manufacturing pro-
cess, is unique within the parent resource, is physically displayed on the parent resource, and is present in the VPD of
the parent resource.

1.SES devices on SCSI backplanes contain VPD that has a slot map. The slot map associates a SCSI LUN with a location label. Some backplanes that
do not actually have SES support have a virtual SES that provides the same function. It is assumed that future protocols will support equivalent func-
tion.

12.3  Hardware Location Codes 337

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. AIX will use logical path location codes for SCSI devices even in situations where a SES device is available
to provide device location label information.

2. In some cases, a location code may need to be displayed or logged before the information from the back-
plane is available to form the physical location code. In these cases, a logical path location code will be
formed according to the applicable rules and used temporarily. Once the information needed to form the
physical device label is available, the physical device location code will be used.

12.3.2.18 SCSI Device Logical Path Location Codes -- Real and Virtual

SCSI (Small Computer System Interface) devices whose parent does not support location label VPD will have location
codes that are composed of the location code of the controlling SCSI port followed by the SCSI Target (0-15) and SCSI
LUN (Logical Unit Number). A SCSI logical-path example is:

U7043.150.1076543-P4-T3-L13-L0
(Decimal L values)

For virtual SCSI, a 48-bit ID is currently used (but is not limited from moving to 64-bit) to identify the attached virtu-
alized SCSI device. This 48/64 bit ID is represented with a -L# in hexadecimal. There is no separate LUN#. Examples
are:

U7043.150.1076543-P4-T1-L830000000000
(Hexadecimal L value)

or

U7043.150.1076543-P4-T3-W830000000000-L0
(Hexadecimal W and L values)

12.3.2.19 SAS Device Logical Path Location Codes

SAS (Serial SCSI) devices whose parent FRU does not support location label VPD will have location codes that are
composed of the location code of the controlling SAS adapter followed by a series of port labels, “-L#”, for each SAS
port traversed from the adapter down to the drive followed by the SCSI LUN (Logical Unit Number). The number
value of the “-L#” label will be the lowest phy in the outgoing SAS port with # being a decimal value. For example:

U7043.150.1076543-P1-C3-L3-L1-L5-L0

12.3.2.20 IDE/ATAPI Device Logical Path Location Codes

The desired form of the location code is based on the physical-path location codes obtained from VPD. For example:

U5734.001.1076543-P2-D4

For an IDE device that had an older form of VPD (without physical location codes), then its location code would have
looked like:

Ux-Px-(Cx)-Tx-L#
(from -L0 to -L3 where:
L0 = primary/master
L1 = primary/slave
L2 = secondary/master
L3 = secondary/slave)

338 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

12.3.2.21 Fibre Channel Device Logical Path Location Codes -- Real and Virtual

Fibre channel devices that are not mounted/docked on a backplane that supports location code VPD will have location
codes composed of the location of the port on the controlling IOA followed by the worldwide unique port identifier
and LUN. The number value (#) of the “-L#” label is a hexadecimal value. An example FC disk attached to a physical
adapter is:

U787A.001.1012345-P1-C5-T2-W123456789ABCDEF0-L1A05000000000000

The same disk being accessed through virtual fibre channel would appear like:

U9111.520.1012345-V2-C4-T1-W123456789ABCDEF0-L1A05000000000000

12.3.2.22 Location Codes for SR-IOV Adapter Virtual Functions

Single Root IO Virtualization allows for multiple “virtual functions” to share the same physical port of a PCI adapter.
The -S# suffix, appended to the physical location code of the port (-T#), is used to identify the unique virtual function
using that port. The number value (#) of the “-S#” label is a zero starting decimal value determined and managed by the
software layer that owns the physical functions of the SR-IOV adapter.

For an SR-IOV ethernet adapter, the third virtual function for the first ethernet port would look like:

U7043.150.1076543-P1-C5-T1-S2

12.3.2.23 Group Labels

Group labels appear on parent FRUs to indicate groupings such as port or DIMM pairs. Group labels are not part of the
location label or location code. Group labels may be part of slot map VPD and may be processed by software that dis-
plays information on the corresponding FRUs.

12.3.2.24 Sandwich FRU Location Label

A Sandwich FRU has a single location label to describe its location just as any single FRU would.

12.3.2.25 Sandwich FRU Child Location Labels

A Sandwich FRU is like any single FRU in that it has one numbering space for numbering its child locations.

12.3.2.26 Location Code Reported by Sensors

The location code reported by a sensor is the location code of the FRU being monitored by the sensor.

12.3.2.27 Sensor Locations

The location code of a sensor is the location code of the FRU on which the sensor is located.

12.3.2.28 Location Code Reported for Indicators

The VPD that reports an indicator will give the location label of the resource identified by the indicator, not the loca-
tion label of the indicator itself.

12.3  Hardware Location Codes 339

LoPAPR, Version 1.1 (March 24, 2016)

12.3.2.29 Indicator Locations

The location code of an indicator is the location code of the FRU on which the indicator is located.

12.3.2.30 Firmware Location Codes

The location specified for firmware is left to the platform except that the location code must match the scope of the
firmware and the location code must follow the form specified above, beginning with a unit location label and ending
with a firmware location label. For example, firmware for port 2 (T location label value) on planar 1 could have a loca-
tion code of the form:

U7879.001.1054321-P1-Y2

If the firmware is considered to be system wide, then the planar location label would not be present and the unit loca-
tion label specifies the system location code not the CEC enclosure location code:

U9117.001.1054321-Y1

12.3.2.31 Bulk Power Assembly (BPA) Location Codes

The unit location label for a BPA and its components consists of the “U” prefix and the MTMS of the rack of which the
BPA is a component.

In some configurations, there are two BPAs in one rack. If they were treated separately, the second BPA would have the
same location label as the first which would lead to location code collisions. Therefore, from the perspective of loca-
tion codes, the two BPAs will be treated as on BPA. The planar location labels and, when necessary, other location la-
bels within the second BPA are incremented so that they are not the same as the labels in the first BPA. For example,
the front side BPA has a planar P1 and the back side BPA has a planar P2 etc.

12.3.2.32 Internal Battery Features Location Codes

The unit location label of an Internal Battery Feature (IBF) is the unit location label of the BPA to which it belongs.
The planar location labels and, if necessary, other location labels within the IBF are incremented so that they are not
the same as the labels in the BPA or any other IBF belonging to that BPA.

12.3.2.33 Media Drawer Location Codes

In some configurations, there are media drawers that do not have a MTMS. The unit location label for these media
drawers is the unit location label of the CEC to which it belongs. The planar location labels and, if necessary, other lo-
cation labels within the media are incremented so that they are not the same as the labels in any other media drawer in
the system or any labels in the CEC.

12.3.2.34 Horizontal Placement Location Labels

The horizontal placement location label begins with the prefix “N” followed by the digit “1” for the left side of the
frame (viewed from the front) or the digit “2” for the right side of the frame (when viewed from the front).

12.3.2.35 EIA Location Label

The EIA location label begins with the prefix “X” followed by a nonzero digit which represents the EIA location of the
bottom of the unit that is or would be in the frame at that location.

340 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

12.3.2.36 Blade Chassis Location Codes

The disk storage module in a blade chassis may consist of a backplane and a set of disks that plug into the backplane.
Such a storage module is assigned an enclosure feature code which is used to define the unit location label (Un) of a
disk in a storage module.

In some blade chassis there may be multiple identical storage modules. All storage modules have a unit location with
the same enclosure feature code. The backplane within the left storage module has label P1, the backplane in the next
storage enclosure has label P2, and so on, to help with disk identification.

12.3.2.37 Location Codes for Hot-pluggable Devices

There are multiple occasions where devices may be added after the system has booted and the addition did not use any
dynamic reconfiguration flows. In this situation, the O/S does not have adequate information from the device tree's
“ibm,loc-code” properties to construct a correct physical location code. One example of this is with IDE/SCSI
drives that are hot-pluggable, where the O/S only knows the logical location code from the IDE/SCSI bus. Firmware,
however, may know the physical location code of the drive based on the unit-address. Similarly, a USB root-hub may
have multiple down-facing ports with different physical location codes, but the root-hub is only a single device tree
node, so only a single location code can be provided with just the “ibm,loc-code” property.

The “ibm,loc-code-map” property contains a list of pairs (unit-address, location code), both as encoded strings.
It describes the physical location code for each potential child node.

R1–12.3.2.37–1. The instance of each USB root-hub in the device tree must contain the “ibm,loc-code-map”
property if the root-hub has multiple down-facing ports. This applies to both the OHCI and EHCI interfaces
of a USB adapter. Lack of this property implies there is only a single down-facing root-hub port from that
USB interface.

R1–12.3.2.37–2. To determine the location code for an end device associated with leaf open firmware node, the O/S
must use the “ibm,loc-code-map” entry with a matching unit-address, if it exists, in preference to the
parent's “ibm,loc-code” property.

R1–12.3.2.37–3. The “ibm,loc-code-map” property must not contain an entry for a port from an embedded
IOA that is not externally connected, or if the location code is undeterminable.

R1–12.3.2.37–4. If the unit-address architecture for certain node types do not strictly bind a particular unit-address
with a hardware location, the “ibm,loc-code-map” property must not exist in the parent of those nodes.

12.3.2.38 Location Code for USB Attached Devices

The root hub port number used determines the location code up to the Tn suffix. There can be zero or many intervening
hubs, and the intervening “Ln” location labels are in path order. All immediate children are of root hubs are represented
by “L1”. For devices not directly attached to the root hub, the “Ln” will correspond to the software port number, n, of
the parent hub that a device is attached to, counting from 1.

For example, the location code for a USB device attached to an IOA imbedded on a backplane with location label P1,
using port T5, and with an intervening hub under which the device is attached to the third port would be:

U787A.001.10ABCDE-P1-T5-L1-L3

12.4  Vital Product Data 341

LoPAPR, Version 1.1 (March 24, 2016)

12.4 Vital Product Data

12.4.1 Introduction

The set of all Vital Product Data (VPD) from the FRUs of a system is the product topology information which uniquely
defines that system’s hardware and firmware elements. The system VPD describes a system in terms of various FRUs,
part numbers, serial numbers and other characterizing features. With VPD, mechanisms may be provided for collecting
information such as field performance and failure data on any FRU in a system. Also, with the feedback from the field
into an installed system data base, the delivery of complete and accurate Miscellaneous Equipment Specifications
(MESs) to customers can be assured.

R1–12.4.1–1. FRUs used in LoPAPR platforms must provide machine-readable VPD as defined in Section 12.4‚
“Vital Product Data‚” on page 341.

R1–12.4.1–2. LoPAPR platforms must support the collection of, and provide availability to, Vital Product Data.

Platform Implementation Notes:

1. It is the intent of this architecture that the FRUs of a system be self describing using VPD.

2. There are FRU’s which have VPD which is not in the format described herein, such as JEDEC. In the case
of use of these parts, the firmware may choose to translate the FRU VPD data into the LoPAPR format when
the OF device tree is being generated. For I/O adapters which have different VPD, their device driver must
perform the reading and translation.

12.4.2 VPD Data Structure Description

Architecture Note: Even though only a few large and small resource tags have been defined (see the PCI Local Bus
Specification [18]), the current definition will allow all possible tags except for (0x00). This will allow later
devices with a new, previously undefined tag, to work.

R1–12.4.2–1. Vital Product Data when reported to the OS via ibm,get-vpd or the OF device tree, must conform to
the data structures describe in the PCI Local Bus Specification [18], section 6.41, except as follows:

 The VPD will consist of only the following sequence of tags: Large Resource type identifier string tag
(type 2, byte 0 = 0x82) with FRU name, Large Resource type VPD keywords tag (type 16, byte 0 = 0x90)
with FRU VPD keywords, Small Resource type end tag (type 15) with or without checksum covering the
above.

 Only resource tags, lengths and checksums are binary. All other data must be in ASCII format.

Architecture Note: There are three keywords (FU, SI and VI) which allow binary data. There are no other exceptions.
Also, the length code following a large resource tag is Little-Endian. That is, the first byte is the low order byte
and the second byte is the high order byte of the length.

Implementation Notes:

1. Version 2.2 of the PCI Local Bus Specification changed the format and location of VPD information. With
that change, a device with Version 2.2 VPD will result in no VPD being detected by the firmware. In this
case the selected device driver will have to access and reformat the VPD information so that the format of
the data provided to the OS is in the format which is required by the OS.

1. The PCI 2.1 VPD keywords are PN, FN, EC, MN, SN, LI, RL, RM, NA, DD, DG, LL, VI, FU, SI, and Z0-ZZ

342 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

2. The definition of a small resource tag is where bit 7 is 0. Then bit 6 through 3 are the type and bits 2 through
0 are the length. An end tag is a type of 15. Thus a 0x78 is a small resource end tag of length 0 and 0x79 is
a small resource end tag of length 1. The valid end tags are 0x78 through 0x7F.

R1–12.4.2–2. The end tag checksum, when provided to the OS, must cover all resources beginning with the first
byte (a resource tag) up to, but not including, the Small Resource Type End tag.

R1–12.4.2–3. If the platform determines that the VPD that it has collected is invalid, then the platform must discard
any collected data and replace it with:

 Large Resource type identifier string tag (type 2, byte 0 = 0x82) with value ‘NOT_VALID_VPD’.

 Large Resource type VPD keywords tag (type 16, byte 0 = 0x90) containing the “YL” keyword and associ-
ated location code data.

 Small Resource Type End tag with or without a checksum covering the above.

R1–12.4.2–4. If the device VPD is valid, all of the device VPD must be transferred including the Small Resource
Type End Tag.

R1–12.4.2–5. A “YL” keyword must be added to the Large Resource type VPD keywords tag (type 16, byte 0 =
0x90) when the VPD is reported to the OS via either the ibm,get-vpd RTAS call or the OF device tree.

The checksum byte after the (0x79) resource tag will cause the binary sum of all the bytes from the first large resource
tag, carries being discarded, to result in 0x00. As noted in Requirement R1–12.4.2–2, the (0x79) small resource tag is
not included in this sum.

12.4.3 Keyword Format Definition

The exact format of the VPD is vendor-specific but falls within the specification as defined in the following subsec-
tions.

12.4.3.1 VPD fields

The fields defined in Table 160‚ “LoPAPR VPD Fields‚” on page 343 are stored in VPD modules at the time of manu-
facturing.

R1–12.4.3.1–1. LoPAPR platforms and FRUs must provide VPD fields marked as required in Table 160‚ “LoPAPR
VPD Fields‚” on page 343 and for all VPD fields provided must adhere to the definitions specified by Table
160.

R1–12.4.3.1–2. Each system must have VPD that contains the system’s SE keyword (see Requirements R1–12.2–1,
R1–12.2–3, R1–12.2–12, and R1–12.2–14) and the system’s TM keyword (see Requirements R1–12.2–1,
R1–12.2–3, R1–12.2–13, and R1–12.2–14). The description (large resource type of 0x82) for this VPD in the
“ibm,vpd” property must be “System VPD”.

R1–12.4.3.1–3. VPD for memory FRUs must contain the SZ keyword.

Platform Implementation Note: There are circumstances where vendor preference or manufacturing processes may
require that some fields be omitted (for example; Serial Number). This should be treated as an exception and

12.4  Vital Product Data 343

LoPAPR, Version 1.1 (March 24, 2016)

should be accompanied by an appropriate level of risk assessment. In the case of an SN exception, the SN should
be omitted, not made blank, NULL, or a fixed value.

Table 160. LoPAPR VPD Fields

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

A1 ASCII Up to 16 --

Storage Facility Image MTMS - Logical ID
Length (MTMS-a####). Linkage between logical entities. Examples: Used on Disk FRU resource to
link disk to array site. Used on array site resource to link array site to array. Used on array resource to
link array to rank. Used on rank resource to link rank to segment pool.

AC ASCII Up to 32 --
Account Name
Used on HMC resource.

AD ASCII Up to 10 -- Addressing Field

AP ASCII Up to 16 -- Asset Protection Key Password

AS ASCII Up to 8 -- Reserved

AT - - -- Reserved

AX ASCII Up to 32 -- AIX name

B1 ASCII

A multiple
of 16, up

to a max of
240

--

Contains 1 to 15 instances of the following 16 byte definition, concatenated together.

Contains the base ethernet MAC address and an instance count.

The count specifies the number of valid MAC addresses starting with the base MAC address and
incrementing by one for each successive MAC address, until the specified number of MAC addresses
have been created.

The field contains the ASCII coded hexadecimal representation of the binary value, as follows:

Bytes
1 - 12 Base MAC address
13 - 14 Reserved (ASCII “00”)
15 - 16 Count

B2 ASCII

A multiple
of 32, up

to a max of
224

--

Contains 1 to 7 instances of the following 32 byte definition, concatenated together.

SAS WWIDs.

The Count field is the number of available WWIDs starting from the base and incrementing by 1 for
each new WWID.

The field contains the ASCII coded hexadecimal representation of the binary value, as follows:

Bytes
1 - 16 Base SAS WWID
17 - 24 Reserved (ASCII “00000000”)
25 - 32 Count

BC ASCII Up to 12 -- Bar Code

BH ASCII 2 -- BatcH code - used for vintage if no serial number

344 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

BR ASCII 2 --

Brand keyword value “xy”

Note: The following are the values currently defined. To get other product specific values, go through
the normal LoPAPR change process.

x = Type of machine

 “B” - Reserved

 “C” - Reserved

 “D” - Reserved

 “I” - Reserved

 “N” - Reserved

 “O” - Reserved

 “P” - Reserved

 “S” - IBM Power Systems™ platforms

 “T” - OEM Power Systems platforms

 Other values are reserved.

y = Specific Information

 “0” - no specific information

 Other values are reserved.

BT ASCII 10 --
Battery Replacement date in YYYY-MM-DD format. Used on Primary Power Supply FRU in rack
enclosure.

CC ASCII 4

Required when a
CCIN is required

by code to
configure or
service the
component

Customer Card Identification Number (CCIN)

CE ASCII 1 -- CCIN Extender

CD ASCII Up to 10 -- Card ID

CI ASCII 16 --

CEC ID - of the CEC, that is the logical controller of an MTMS (machine-type-model-serial #), like
a drawer.

The 16 byte CI field definition is
TTTT-MMM SSSSSSS

TTTT-MMM - is an 8 byte field. The high order 4 bytes are the system type, followed by a dash,
followed by the 3 low order bytes which is the model.
blank - is a 1 byte separator character, that separates the type-model from the serial #.
SSSSSSS - is the 7 byte serial number. The high order 2 bytes are the “plant of manufacture” and the
low order 5 bytes are the “sequence number”.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

12.4  Vital Product Data 345

LoPAPR, Version 1.1 (March 24, 2016)

CL ASCII Up to 32 --

Code Level, LID keyword

Format:
fix pack MIF name, “space”, Load ID (8 characters), time stamp (12 characters)
The fix pack name must be the same as the name used in the MI keyword and is delimited by a space.
The time stamp is, hours (2 characters) + Minutes (2 characters) + Year (4 characters) + Month (2
characters) + Day (2 characters). The LID level reported is the current active level.

Note: There is no correlation between the CL keyword value and which of the 3 candidate fixpack
levels are reported in the MI keyword.

CN ASCII Up to 7 -- Customer Number

CV ASCII Up to 4 -- Country Number

DC ASCII

2
1
12

--

Action Code, timestamp
blank (space)
TimeStamp: yyyymmddhhmm
Action Codes:
BD = Build Date
AM = added as MES
AB = added as bulk MES
AI = available at install
ID = field install date
AC = added with field EC
AU = added from unknown source
AR = added in repair action
AT = added temporarily in field
AH = added manually in field
Returned on history file:
RU = removed unknown (field)
RR = removed in repair action
RC = removed with EC
RT = removed temporarily / powered off (field)
RM = removed permanently (field)
RN = removed to another system

DD - - -- Reserved -- used for MicroChannel Architecture VPD

DG - - -- Reserved -- used for MicroChannel Architecture VPD

DU ASCII Up to 10 -- Drawer Unit

DL ASCII Up to 10 -- Drawer Level

DP ASCII Up to 255 --

Disk Space Characteristics
Used on Disk resource. Comma separated string.
Example (in the following, the “<“, “>”, and text in between these would be replaced by a value
representing the quantity specified by the words between “<” and “>”):
“VN=<Volume Serial Number>, VD=<Vendor>, DT=<Disk Type>, DC=<Disk-Capacity>,
DR=<Disk-RPM>, DS=<Disk-Interface-Speed>, AP=<Array-Site-Position>, ST=<Status>”

DS ASCII Up to 30 -- Displayable Message (if not defined, created by the contents of the ID large resource (82))

EA ASCII Up to 24 -- Electronic Message for electronic customer support (ECS)

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

346 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

EC ASCII 12

Required if the
part number is

not changed with
every

modification

Engineering Change Level (technical features, revision level, vintage level)

ET ASCII 2 --

Enclosure Type.
This value is defined in the System Management BIOS (SMBIOS) Reference Specification [24]. The
ASCII value specified below is the ASCII representation of the hexadecimal representation of the byte
value defined in the SMBIOS specification (for example, 0x0B becomes “0B”). Bit 7 of the byte
number is the chassis lock bit (if present value is a 1, otherwise if either a lock is not present or it is
unknown if the enclosure has a lock, the value is a 0). If the chassis lock bit is set, the following get
changed to the corresponding ASCII representation (for example, “01” becomes “81”, “10” becomes
“90”)
“01” Other
“02” Unknown
“03” Desktop
“04” Low Profile Desktop
“05” Pizza Box
“06” Mini Tower
“07” Tower
“08” Portable
“09” LapTop
“0A” Notebook
“0B” Hand Held
“0C” Docking Station
“0D” All in One
“0E” Sub Notebook
“0F” Space-saving
“10” Lunch Box
“11” Main Server Chassis
“12” Expansion Chassis
“13” SubChassis
“14” Bus Expansion Chassis
“15” Peripheral Chassis
“16” RAID Chassis
“17” Rack Mount Chassis
“18” Sealed-case PC

FC ASCII 8 -- The Feature Code is 8 bytes formatted as 4 characters, a dash, and three characters.

FD ASCII 7 -- Field Bill of Material (FBM) EC level

FG ASCII 4 --

FlaG Field: The first two bytes contain a VPD flag in the form of VS. V=V indicates that there is VPD.
V=N indicates there is no VPD. S=S indicates that the VPD contains a slot map. S=P indicates there
is a port map. S=N indicates no slot map or port map. S=B indicates both a slot map and a port map.
The right two characters contain the FRU identification keyword.

FI ASCII 2 - 8 -- Frame ID: 2 hex byte value for SPCN or 8 character logical frame number for DASD backplane.

FL ASCII Up to 16 -- FRU Label: This is a variable length ASCII character data area for the FRU Label.

FN ASCII Up to 8 Required FRU Number (Board, card, or assembly Field Replacement Unit number).

FU Binary Up to 10 --
Function Unit - This function identifies which function in a multi-function IOA this VPD data applies
to. Only one FU field can appear per VPD tag. Data is binary encoded.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

12.4  Vital Product Data 347

LoPAPR, Version 1.1 (March 24, 2016)

H1 ASCII 1 --
Partition HSL Pool
Used on a partition resource that is part of a storage facility image.

ID ASCII 2 --
Two ASCII characters are used to identify each system in a Storage Facility. Valid values are 00 and
01.

IF ASCII Up to 16 --

Storage Facility MTMS - InterfaceID
Length (MTMS-####). Identifies one or more adapter I/O interfaces in the storage facility that
interconnect device adapters and storage enclosures. Used on Device Adapter FRUs in I/O enclosure
and on Storage Enclosures. Device Adapters have two Interfaces Ids (comma separated string), and
storage enclosures have one. The number could change for future products.

L1
L2
L3
L4
L5
L6

ASCII

Up to 30
Up to 30
Up to 30
Up to 10
Up to 30
Up to 12

--

Location Information:
Individual or Company Name
Street Address
City, State, Country
Zip Code
Contact Name
Contact Phone Number

LA ASCII 32 --
LIC Node Alternate Bus VPD: This fixed format data field contains 32 bytes of LIC I/O node alternate
bus VPD data.

LE ASCII Up to 17 --

LIC VMRF
Example: SEA 5.1.0.0345. Used on a partition resource that is part of a storage facility image or on
an enclosure or enclosure resource that has a firmware level.

LI ASCII Up to 10 -- Adapter Software Identification

LL ASCII Up to 10 -- Adapter Software Level

LN ASCII 32 -- LIC Node VPD: Fixed format 32 bytes of VPD data.

LO ASCII 2 -- Location (INternal/EXternal)

LP ASCII 32 -- LIC Node Primary Bus VPD: Fixed format 32 bytes of VPD data.

LS ASCII Up to 255 --

Logical Space Characteristics
Used on Storage Logical resources.
Examples:
Used on Array resource. Comma separated string. Including: “AN=Array Serial Number,
AT=Array-Type, AC=Array Configuration, Rank Position”.
Used on Rank resource. Comma separated string. Including: “RN=Rank Serial Number,
ST=Segment-Type(FB-1G, CKD-Mod1), SS=Segments(####), SU=Segments-Used, RG=Rank
Group(#)”.
Used on Segment Pool resource. Comma separated string. Including: “ST=Segment-Type(FB-1G,
CKD-Mod1), SS=Segments(####), SU=Segments-Used, VS=Virtual-Segments(####),
VU=Virtual-Segments-Used(####)”, RG=Rank-Group(#).

MD ASCII 4 -- Model Number: 3 characters with a leading blank.

MF ASCII 2 --
Map Format: Two hex characters identify the slot or port map format that follows. This keyword must
immediately precede the SM or PM keyword.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

348 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

MI ASCII Up to 40 --

Microcode Image

This keyword is only used to describe dual sided alterable system firmware Image which can be
altered by the OS via the ibm,update-flash-64-and-reboot RTAS call. Both the
ibm,validate-flash-image and the ibm,manage-flash-image RTAS calls are supported. May or may not
be able to be updated via non-OS visible means.

Format:
t side Microcode Image name, “space”, p side Microcode Image name, “space”, booted Microcode
Image name

The Microcode Image name must be a 9 character name of the form:

“NNSSS_FFF”

where

“NN” is a two character name (assigned by the GFW Firmware Distribution Coordinator) used to
identify a set of platforms;
“SSS” is a 3 character code stream indicator;
“_” is a separation character for readability; and,
“FFF” is a 3 character identifier of the current microcode level.

Note: The booted fix pack level reported may not match the current p-side or t-side level as a result
of concurrent update. The important information is what is in flash, and that is what is being reported.
The hypervisor will have to cache the value for the booted level, and should go to FSP to check what's
current on flash for the p-side and t-side levels.

ML ASCII Up to 40 --

Microcode Level

This keyword is only used to describe dual sided alterable system firmware images which can be
altered by the OS via the ibm,update-flash-64-and-reboot RTAS call. Both the
ibm,validate-flash-image and the ibm,manage-flash-image RTAS calls are supported. May or may not
be able to be updated via non-OS visible means.

Format:
t side Microcode Level name, “space”, p side Microcode Level name, “space”, booted Microcode
Level name

The Microcode Image name must be a 8 character name of the form:
“FWVRE.MF”

where
"FW" is a static prefix representing 'firmware'
“V” is Version - Power Processor Level
"R" is Revision - Typically GA number from the processor level
"E" is Extension - Typically zero. If non-zero, designates off cycle single system release
"M" is Modification - associated Service Pack Level (0-Z)
"F" is Fix Level - Typically zero. If non-zero, designate off cycle, targeted fixes

Note: The booted fix pack level reported may not match the current p-side or t-side level as a result
of concurrent update. The important information is what is in flash, and that is what is being reported.
The hypervisor will have to cache the value for the booted level, and should go to FSP to check what's
current on flash for the p-side and t-side levels.

MN ASCII 10 -- Manufacturer ID (source of device, name and location)

MP ASCII 3 --
Module Plug count. This counter keeps track of the numbers of times a module has been plugged, so
that reliability statistics can be kept.

MS ASCII Up to 6 -- MES Number

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

12.4  Vital Product Data 349

LoPAPR, Version 1.1 (March 24, 2016)

MU ASCII 32 --
Machine Universal Unit ID (UUID). The value is the ASCII coded hexadecimal representation of the
16 byte binary value.

N5 ASCII Up to 228 -- Processor CoD Capacity Card Info

N6 ASCII Up to 231 -- Memory CoD Capacity Card Info

N7 ASCII Up to 144 -- Processor on Demand billing data

N8 ASCII Up to 145 -- Memory on Demand billing data

NA ASCII Up to 16 -- Network Address (ASCII coded hexadecimal representation of the binary value.)

NC ASCII Up to 25 --

This keyword is used to describe the prefix name of the file used to install a single sided alterable
system firmware or adapter/device microcode image. When this keyword is present, the complete file
name will be described by the content of the NC keyword, concatenated with “.”, concatenated with
the content of the RM keyword.

NN ASCII 16 --
World Wide Node Name - IEEE assigned 64 bit identifier (16 hexadecimal digits) for Storage Facility.
Valid values are 0-9, A-F.

NT ASCII Up to 32 -- Sub-machine type

NV ASCII Up to 24 -- NVRAM ID, part number, location and size

NX - - -- Reserved

OS ASCII Up to 17 --
OS name and level.
The OS level is shown in the form of: V.R.M.F where V is the version, R is the release, M is the
modification, and F is the fix.

PA ASCII 1 --
Op Panel installed flag. “Y” = yes a panel is installed, “N” = no a panel is not installed. The absence
of this keyword means, that an Op Panel is installed.

PC ASCII Up to 16 -- Processor Component Definition

PD ASCII Up to 8 -- Power dissipation/consumption

PI ASCII Up to 8 -- Processor ID or unique ID (used for licensing control)

PL ASCII Up to 32 -- Location code

PM ASCII Up to 16 -- Port Map: Contains the RIO Port Map label information. Must be preceded by the MF keyword.

PN ASCII 12
Required if it is

different from the
FRU number (FN)

Part number of assembly.

PO ASCII Up to 16 -- SPCN VPD: Identification of the SPCN VPD area on the I/O backplane.

PP ASCII 32 -- Power Parameters: SPCN field identifying Power node parameters.

PR ASCII 16 --
Power: 16 ASCII hexadecimal characters that represent the 8 bytes of binary information for Power
Control.

R1 ASCII Up to 16 --
Rack MTMS - Rack Location
Length (MTMS-Exx). - used on storage enclosure resources.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

350 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

R2 ASCII 1 --
Rack Number
Used on Rack enclosure resources. Provides an ordered number of racks in the storage facility.

RA - - -- Reserved

RD ASCII 16 --

Power Domain ID - is the MTMS of the BPA, that powers an MTMS (Machine-Type-Model-Serial
#), like a CEC or drawer.
The 16 byte RD field definition is: TTTT-MMM SSSSSSS
TTTT-MMM - is an 8 byte field. The high order 4 bytes are the system type, followed by a dash,
followed by the 3 low order bytes which is the model.
blank - is a 1 byte separator character, that separates the type-model from the serial #.
SSSSSSS - is the 7 byte serial number. The high order 2 bytes are the “plant of manufacture” and the
low order 5 bytes are the “sequence number”.

RI ASCII 4 -- Power Resource ID: A 4 byte hex field providing a unique logical ID for the power resource.

RJ ASCII Up to 16 --
RIO-G Loop
Used on I/O enclosure resource. Identifies RIO-G loop on the reporting system.

RK ASCII 16 --
Rack Unique ID - is the 64 bit Dallas “1-wire” unique ROM code. The first 8 bits are a 1-Wire family
code. The next 48 bits are a unique serial number. The last 8 bits are a CRC of the first 56 bits.
Each of the 16 4-bit nibbles are converted to 16 ASCII characters, in the range 0-9 or A-F.

RL ASCII Up to 24 --

This keyword is only used to describe single sided non-alterable system firmware or adapter/device
microcode image which can not be altered by any means; OS visible or non-OS visible. A single
alphanumeric character string that defines the level of the image.
ROM id, Location ID, ROM part number, FW part number, FW level, FW code, release date, FW size.

RM ASCII Up to 25 --

This keyword is only used to describe single sided alterable system firmware or adapter/device
microcode image which can be altered by the OS. The OS alters the system firmware image via the
ibm,update-flash-64-and-reboot RTAS call. Neither the ibm,validate-flash-image nor the
ibm,manage-flash-image RTAS calls are supported. May or may not be able to be updated via non-OS
visible means. A single alphanumeric character string that defines the level of the image.
ROM id, Location ID, ROM part number, FW part number, FW level, FW code, release date, FW size

RN ASCII Up to 2 -- Rack Name

RP ASCII 1 --
RIO-G Position Offset
Used on I/O enclosure resource. Identifies the distance in enclosures from the reporting system - first
enclosure is offset 1.

RS ASCII Up to 128 -- IBM LoPAPR Compliant platform unique VPD: Start of a data area.

RT ASCII 4 --

Record Type. Contains a four character Record Name that represents a VPD Definition. The following
list associates Record Names with their VPD Definitions.

 “VSYS” - System MTMS VPD

 “VCEN” - Enclosure MTMS VPD

 “VINI” - FRU VPD record

RW - - -- Reserved

RX ASCII Up to 25 --
This keyword is only used to describe single sided microcode image which can not be altered by the
OS, but may be updated via non-OS visible means. A single alphanumeric character string that defines
the level of the image.

S1 ASCII Up to 8 -- Serial Number of attached machine

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

12.4  Vital Product Data 351

LoPAPR, Version 1.1 (March 24, 2016)

S3 ASCII 16 --

Storage Facility MTMS
Length (MTMS). Used on system resource, partition resources, array-site, resources, array resources,
rank resources, storage pool resources, and enclosure resources in a storage facility to identify the
storage facility.

S4 ASCII Up to 16 --
Storage Facility Image MTMS
Length (MTMS). Used on partition, array-site, array, rank, and storage pool, and enclosure-FRU
resources, associated with a storage facility image.

SC ASCII Up to 44 -- Specify codes

SE ASCII Up to 7

See Requirements
R1–12.2–1,
R1–12.2–3,
R1–12.2–12,

R1–12.2–14, and
R1–12.4.3.1–2

Machine or Cabinet Serial Number.

SF ASCII Up to 8 -- Field Change Shipping Instruction (FCSI) number

SG ASCII 7 --

2 high order bytes are the “plant of manufacture code”, followed by the low order 5 bytes, which are
the “unit sequence number”. This unit sequence number must be DDDD0, ADDD0, AADD0,
AAAD0, or AAAA0 where D is a digit 0-9 and A is an alphabetic character A-Z excluding E, I, J, O,
Q, S, U. The right most character of the unit sequence number must be set to 0.

SI Binary Up to 10 -- Subsystem Vendor ID. Data is binary encoded.

SL - - -- Reserved

SM ASCII Up to 16 -- Slot Map: Contains Slot Map information. Must be preceded by the MF keyword.

SN ASCII 12

Required and
must be unique for
each part with the

same FN

Serial Number 12 characters.

SU ASCII 12 See notes 1
The System Unique Identifier (SUID) is a twelve hexadecimal character value that is unique to a given
system anywhere in the world. The number range is obtained from the Institute of Electrical and
Electronic Engineers. There are no IBM asset protection considerations involved.

SY ASCII 7 -- System Number (only one allowed)

SZ ASCII Up to 10

For memory
FRUs, see

Requirement
R1–12.4.3.1–3

Size in decimal, with no leading zeroes. For memory (for example, cards and DIMMs), it provides the
memory size in MB’s. As an example, a 32 GB memory card would be coded as 32768.

Tl ASCII 8 -- Attached machine type-model

TM ASCII 8

See Requirements
R1–12.2–1,
R1–12.2–3,
R1–12.2–13,

R1–12.2–14, and
R1–12.4.3.1–2

The high order 4 bytes are the “Machine Type”, the next byte is a dash, followed by the 3 byte
“Model”.

TN ASCII 8 --
The high order 4 bytes are the “Machine Type”, the next byte is a dash, followed by the 3 byte
“Model”.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

352 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

Notes referenced in Table 160‚ “LoPAPR VPD Fields‚” on page 343:

1. When the BR keyword indicates “S” or “T” for the type of machine, this field must be present and must be
non-blank.

Implementation Note: The following keywords are defined in this architecture with the same or similar usage: AD, CD,
DC, DL, DS, DU, EC, FC, FN, LO, NA, P C, PI, PN, RL, RN, SN, SZ, TM, and US.

12.4.3.2 Additional Fields for Product Specific use

 Three fields are available for user, system or product specific data for which no unique keyword has been defined. The
first and second ranges of fields in the list are not addressed in the PCI Specifications and are unique to LoPAPR plat-
forms.

1. U0 - UZ User specific

2. N0 - NF Reserved
V0 - VF Reserved

U1 ASCII Up to 255 --

Logical Configuration String
Used on a partition resource that is: CKD3380=####, CKD3390=####, SCSI512=####,
SCSI520=####, SCSI Host Ports=####, SCSI LUN Groups=####.
Used on device adapter or host adapter FRU for logical configuration information, if any.
Used on Storage Enclosure. Comma separated string including “BA=Base Address(xx)”.

U2 ASCII Up to 255 --

Host Inventory
Used on a partition resource that is part of a storage facility image for storage facility image logical
configuration. Comma separated string. Including: “Host OS Type1=####, Host OS Type
2=####, . . .”.

U3 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U4 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U5 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U6 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U7 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U8 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

U9 ASCII Up to 255 -- Reserved for future use. Used on partition resource or Storage Configuration resources.

VE - - -- Reserved -- used for MicroChannel Architecture VPD

VI Binary Up to 10 --
Vendor ID / Device ID
Only one VI may appear per VPD tag.

WN ASCII 16 -- Contains the ASCII coded hexadecimal World Wide Port Name (WWPN).

YK ASCII 4
See Requirement

R1–12.2–3
Ties together multiple enclosures that share the same combined SE and TM.

a. A lack of a hard requirement in this column does not mean that the keyword is never required; only that it is not required all the time. Keywords which are
not marked as “Required” are required when appropriate for the specific keyword.

Table 160. LoPAPR VPD Fields (Continued)

Keyword Data Type
Data

Length
(Bytes)

Required?a Description

12.4  Vital Product Data 353

LoPAPR, Version 1.1 (March 24, 2016)

3. Y0 - YZ System Information specific

4. Z0 - ZZ Product specific

Note: If firmware/software has a specific need for a keyword, then it must be provided by the appropriate component
VPD.

The Y? and Z? fields defined in Table 161‚ “LoPAPR Usage of Product Specific VPD Fields‚” on page 353 are spe-
cific to LoPAPR platforms. As a need for these fields is determined, they will be defined in this document. The table
contains several keywords which have been defined as place holders.

Table 161. LoPAPR Usage of Product Specific VPD Fields

Keyword Data Type
Data Length

(Bytes)
Description

N5 ASCII Up to 56 Processor CoD Capacity Card Info per Section 7.3.16.4.1‚ “CoD Capacity Card Info‚” on page 213

N6 ASCII Up to 56 Memory CoD Capacity Card Info per Section 7.3.16.4.1‚ “CoD Capacity Card Info‚” on page 213

U? ASCII Up to 128 User Data:? = 0...9, A...Z

Y0 ASCII

64

2
2
24
24
12

 Board Repair Actions:

times board repaired
times board updated with code patches
Copy of system ID Y2 field
Copy of system ID TM field
Copy of system ID PI field

Y1 ASCII

24

2
2

8
12

Error Descriptor:

allowable messages
valid messages
Messages of 20 bytes each, first, last and most recent 4 messages
Error Code
Date/Time Stamp: yyyymmddhhmm

Y2 ASCII

24

4
4
4
12

Only in system VPD EEPROM:

Manufacturer’s Location
Machine Type
Model ID
Cabinet Serial Number

YK ASCII Up to 4
Ties together multiple enclosures that share the same combined SE and TM. See Requirement R1–12.2–
3.

YL ASCII Up to 255 Hardware Location Code (see Section 12.3‚ “Hardware Location Codes‚” on page 327)

Z? ASCII Up to 255 Product Specific Information: may be keyword oriented and ‘,’ delimited.

354 Product Topology

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

13 Dynamic Reconfiguration (DR)
Architecture

Dynamic Reconfiguration (DR) is the capability of a system to adapt to changes in the hardware/firmware physical or
logical configuration, and to be able to use the new configuration, all without having to turn the platform power off or
restart the OS. This section will define the requirements for systems that support DR operations.

13.1 DR Architecture Structure

Figure 11‚ “DR Architecture Structure‚” on page 356 shows the relationship of the DR architecture with LoPAPR and
the relationship of the individual DR pieces with the base DR architecture. Each specific DR option (for example, PCI
Hot Plug) will have a piece that sits on top of the base DR option. The base DR option is the set of requirements that
will be implemented by all DR platforms and that will be utilized by the OS that supports any of the specific DR op-
tions. The specific DR options will call out the base DR option requirements as being required. Therefore, in the figure,
any specific DR option is really that specific DR option piece plus the base DR option. The base DR option is not a
stand-alone option; a platform which supports the base DR option without one or more of the specific DR option pieces
that sit on top of it, has not implemented the DR architecture to a level that will provide any DR function to the user.
Likewise, a DR entity will meet the requirements of at least one of the specific DR options, or else software is not re-
quired to support it as a DR entity. Thus, the base DR option is the common building block and structure upon which
all other specific DR options are built.

DR operations can be physical or logical. Currently the only physical DR entities are PCI Hot Plug. That is, the OS
only has control over the physical DR operations on PCI IOAs. The current direction for hot plug of other DR entities
is to do the physical hot plug (power up/down, control of service indicators, etc.) via the HMC and to bring the entity
into usage by an OS via logical DR operations (Logical Resource DR -- LRDR). The PCI Hot Plug DR option can be
found in Section 13.6‚ “PCI Hot Plug DR Option‚” on page 372. The Logical Resource Dynamic Reconfiguration op-
tion can be found in Section 13.7‚ “Logical Resource Dynamic Reconfiguration (LRDR)‚” on page 377. It is expected
that as time goes on, the base DR option may be expanded upon by addition of other DR options.

356 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.2 Definitions Used in DR

Figure 11. DR Architecture Structure

Table 162. DR Definitions

Term Definition

Base Dynamic Reconfiguration (DR)
option

The base on which all of the specific DR options are built. Specific DR options include, for example, the PCI Hot
Plug DR option, processor card DR option, etc. These specific DR options each include the requirement that all
the base DR option requirements be met. See Section 13.1‚ “DR Architecture Structure‚” on page 355 for more
information about the structure of the DR architecture pieces.

Dynamic Reconfiguration (DR)

The capability of a system to adapt to changes in the hardware/firmware configuration with the power on and the
OS operating, and to be able to use the new configuration. This is a piece of the High Availability puzzle, but only
one of the pieces.

Addition, removal, and replacement may, in general, be done with the power on or off on the connector into which
the entity is being added or removed. For the PCI Hot Plug option, the power to the slot is turned off and the logic
signals are electrically isolated from the connector during the plug or unplug operation.

Depth First
Refers to a method where a tree structure (for example, a set of PCI buses connected by PCI to PCI bridges) is
traversed from the top to the bottom before all the siblings at any particular level are acted upon.

DR Connector (DRC)
The term “DR connector” will be used here to define the plug-in point for the entity that is participating in DR.
For example, a ‘slot’ into which a PCI IOA is inserted is a DRC.

DR Entity
An entity that can participate in DR operations. That is, an entity that can be added or removed from the platform
while the platform power is on and the system remains operational. See also the definitions of logical and physical
DR entities.

DR Operation The act of removing, adding or replacing a DR Entity.

Entity One or more I/O devices, IOAs, Processor cards, etc., that are treated as one unit.

Base DR option

PCI Hot
Plug DR
option

Logical
Resource

DR (LRDR)
option

Other DR
options

Other
LoPAPR
options

OS

Specific DR
options

Hardware/firmware
to OS interface

Base LoPAPR

13.2  Definitions Used in DR 357

LoPAPR, Version 1.1 (March 24, 2016)

High Availability (HA) System

A system that gives the customer “close” to continuous availability, but allows for some system down-time.
Besides DR, other factors that need to be considered in the design of an HA system include system partitioning,
clustering, redundancy, error recovery, failure prediction, Error Detection and Fault Isolation (EDFI), software
failure detection/recovery, etc.

I/O Adapter (IOA)

A device which attaches to a physical bus which is capable of supporting I/O (a physical IOA) or logical bus (a
virtual IOA) and which has its own separate set of resources is referred to as an IOA. The term “IOA” without the
usage of the qualifier “physical” or “virtual” will be used to designate a physical IOA. Virtual IOAs are defined
further in Chapter 17, “Virtualized Input/Output,” on page 597. Resources which must have the capability of
being separate (from other devices) include: MMIO Load/Store address spaces, configuration address spaces,
DMA address spaces, power domains, error domains, interrupt domains, and reset domains. Note that the
hardware of an IOA may allow for separation of these resources but the platform or system implementation may
limit the separation (for example, shared error domains). In PCI terms, an IOA may be defined by a unique
combination of its assigned bus number and device number, but not including its function number; an IOA may
be a single or multi-function device, unless otherwise specified by the context of the text. Examples include LAN
and SCSI IOAs. A PCI IOA may exist as multiple device nodes in the OF device tree; that is, the OF may treat
separate “functions” in an IOA as separate OF device tree nodes.

IOA: built-in
An IOA that is not pluggable by the user. Sometimes called integrated I/O. As opposed to an IOA that may be
removed as part of a plug-in card removal (see definition for a plug-in card, below).

I/O Bus A hardware interface onto which an IOA can be plugged on a platform. I/O buses discussed here include:

I/O Bus: PCI
The term “PCI” refers to one of: conventional PCI, PCI-X, or PCI Express. The term “bus” in the case of PCI
Express refers to a PCI Express link.

I/O Bus: System Bus
The system bus in a platform is normally used only to attach CPUs, memory controllers, and Host Bridges to
bridge to I/O buses. A platform’s system bus may, in certain circumstances, be used to attach very high speed
IOAs. DR of system bus-attached entities is not considered here.

I/O Device

An entity that is connected to an IOA (usually through a cable). A SCSI-attached DASD device is an example.
Some I/O devices and their connection points to the IOAs are designed to be plugged while the connection point
is operational to the other I/O devices connected to the same IOA, and some are not. For example, while the SCSI
bus was not initially designed to have devices added and removed while the SCSI bus was operational, different
vendors have found ways to do so. For example, SCSI-attached DASD is pluggable and unpluggable from the
SCSI bus in some platforms.

Live Insertion
A DR operation where the power remains on at the DR connector. Live insertion entities are always powered
unless the machine power is shut off or unless a subsystem containing those entities is shut off.

Logical DR entity
A DR entity which does not have to be physically plugged or unplugged during a DR operation on that entity. See
Table 240‚ “Currently Defined DR Connector Types‚” on page 671 for a list of the supported Logical DR types.

Logical Resource DR
The name of the option for support of DR of logical entities. See Section 13.7‚ “Logical Resource Dynamic
Reconfiguration (LRDR)‚” on page 377.

PCI Hot Plug

DR for PCI plug-in cards where there is a separate power domain for each PCI Hot Plug slot. Platforms which do
not provide individual control of power and isolation for each PCI slot but which do provide power and isolation
control for groups of PCI slots (that is, multiple slots per power domain), do not provide “PCI Hot Plug,” but can
support PCI DR.

Physical DR entity
A DR entity which may need to be physically plugged or unplugged during a DR operation on that entity. See
Table 240‚ “Currently Defined DR Connector Types‚” on page 671 for a list of the supported physical DR types.

Plug-in card
A card which can be plugged into an I/O connector in a platform and which contains one or more IOAs and
potentially one or more I/O bridges or switches.

Subsystem
One or more I/O devices, IOAs, Processor cards, etc., that are treated as one unit, for purposes of
removal/insertion.

Table 162. DR Definitions (Continued)

Term Definition

358 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.3 Architectural Limitations

The DR architecture places a few limitations on the implementations. Current architectural limitations include:

 DR operations will be user initiated at the software level before any physical plugging or unplugging of hardware is
performed. This architecture will be flexible enough to add additional methods for invoking the process in the fu-
ture, but for the initial architecture it will be assumed that the operation is invoked by the user via a software method
(for example, invoking an OS DR services program). It is expected that some technologies which will be added in
the future will allow plugging/unplugging without the user first informing the software (for example, P1394 and
USB).

 Critical system resources cannot be removed via a DR operation. Which system resources are critical will not be de-
fined by this architecture; it is expected that this determination will be made by the OS implementation and/or archi-
tecture. Loss of a critical resource would stop the system from operating.

 Many of the RTAS calls will need to work properly, independent of what is powered-off (for example, NVRAM ac-
cess must work during DR operations). This is partially encompassed by the last bullet. For more information, see
Section 13.5.1‚ “For All DR Options - Platform Requirements‚” on page 360.

 Any special requirements relative to redundant power supplies or cooling are not addressed here.

 Moving of a DR entity from one location to another in a platform is supported through a “remove and add” method-
ology rather than a specific architecture which defines the constructs necessary to allow moving of pieces of the
platform around.

Note: The current AIX implementation does a “remove and add” sequence even when the overall DR operation is a
replacement. That is, first the old entity is removed, and then the new entity is added.

13.4 Dynamic Reconfiguration State Transitions

Figure 12‚ “Dynamic Reconfiguration State Transition Diagrams‚” on page 359 shows the states and transitions for the
dynamic reconfiguration entities (DR Entities). The transition between states is initiated by a program action (RTAS
functions) provided the conditions for the transition are met.

Note: Relative to Figure 12‚ “Dynamic Reconfiguration State Transition Diagrams‚” on page 359, physical DRC types
are brought in to the “owned by the OS” states either: (1) by the Device Tree at boot time, or (2) by a DLPAR
operation, which brings in the logical DRC “above” the physical DRC first, and drags the physical in as part of
transferring from state 3 to state 4. Therefore no states appear in the “owned by platform” section under Hot Plug
DR in the figure. So, for example, the DLPAR assignment of a PCI physical slot to an OS is done by assigning the
logical SLOT DRC above the physical PCI slot, thus giving the following state transitions: state 1, to state 2, to
state 3, to state 4, at which time the OS sees the physical slot, sees an IOA in the physical slot (via get-sensor-state
(dr-entity-sense) of the physical DRC returning “present”), and then proceeds with the state transitions of: state 5,
to state 6, to state 7, to state 8. The reverse of this (DLPAR removal of the PCI slot) is: state 8, to state 6, to state 5,
to state 4, to state 2, to state 1.

13.4  Dynamic Reconfiguration State Transitions 359

LoPAPR, Version 1.1 (March 24, 2016)

Figure 12. Dynamic Reconfiguration State Transition Diagrams

Notes:

1. In State 5, if empty status is returned from the get-sensor-state dr-entity-sense call, then do not attempt to power-on

2. Transitions from State 8 to 6 or from State 6 to 5 may fail (set-indicator isolation-state isolate, and get-sensor-state
dr-entity-sense) if the hardware cannot be accessed to control these operations. In this case, the OS may ignore
those errors if the operation is a DLPAR to remove the hardware. See also the “ibm,ig-
nore-hp-po-fails-for-dlpar” property in Section B.6.2.1‚ “Root Node Properties‚” on page 673.

available

se
t-

in
di

ca
to

r

(1)

(2)

(4)

(3)
unisolate

unusable

A
ll

oc
at

io
n-

st
at

e
un

us
ab

le

A
ll

oc
at

io
n-

st
at

e
us

ab
le

se
t -

i n
di

ca
to

r

Is
ol

at
io

n-
st

at
e

un
is

ol
at

e

se
t-

in
di

ca
to

r
Is

ol
at

io
n-

st
at

e
is

ol
at

e

configured

ib
m

,c
on

fi
gu

re
-c

on
ne

ct
or

A
ll

oc
at

io
n-

st
at

e
re

co
ve

r
A

llo
ca

ti
on

-s
ta

te
 e

xc
ha

ng
e

get-sensor

 - unusable
- exchange
- recover

R
es

ou
rc

e
O

pe
ra

t i
on

al

O
w

ne
d

by
 O

S
R

es
ou

r c
e

N
ot

-O
pe

r a
ti

on
al

R
es

ou
r c

e
R

es
er

ve
d

O
w

n e
d

by
 P

la
t f

o r
m

s e
t-

in
d i

ca
to

r

 dr-entity-sense

O
w

ne
d

by
 O

S
Logical Resource DR Hot Plug DR

get-sensor-state

- present
dr-entity-sense

get-sensor-state

 - present
dr-entity-sense

available
(5)

(8)

(7)
unisolate

configured

ib
m

,c
on

fi
gu

re
-c

on
ne

ct
or

get-sensor-state

- present
dr-entity-sense

get-sensor-state

 - present
dr-entity-sense

(6)

set-indicator

Isolation-state unisolate

power-on

Full-O
n

Offset-p
ower-le

vel
get-sensor-state

- empty (see note, below)
dr-entity-senseset-p

ower-le
vel

se
t-i

nd
ic

at
or

Is
ol

at
io

n-
st

at
e

is
ol

at
e

- get-sensor-state dr-entity-sense
status -3 is returned,

no valid transition, resource must
be allocated to the OS, otherwise,

(no such sensor implemented)

(Logical DRC Types) (Physical DRC Types)

(See Note, above)

- -9000
- -9001

- -9000

get-sensor-state

- present
dr-entity-sense

(n
ot

e
2)

(note 2)

(note 2)

360 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.5 Base DR Option

13.5.1 For All DR Options - Platform Requirements

This section contains the extra requirements placed on the platform for all of the various DR configurations.

At this time, there are no provisions made in the DR architecture for unexpected removal of hardware or insertion of
hardware into a DR connector. Therefore the user is expected to interact with the DR software prior to changing the
hardware configuration. For example, it is expected that most systems will require a keyboard action prior to the hard-
ware configuration change. Future architecture might allow for other possibilities. For example, a push-button switch
at the DR connector may be provided which causes an interrupt to the OS to signal that an operation is about to take
place on the connector1.

As mentioned in Section 13.1‚ “DR Architecture Structure‚” on page 355, the requirements in this section are not
stand-alone requirements; the platform will also need to implement one or more of the specific DR options.

R1–13.5.1–1. For all DR options: If the “ibm,configure-connector” property exists in the /rtas node
of the OF device tree, then the platform must meet all of the requirements for the Base DR option (that is, all
of the requirements labeled “For all DR options”), and must also meet all the requirements for at least one of
the specific DR options.

R1–13.5.1–2. For all DR options: The platform and OS must adhere to the design and usage restrictions on RTAS
routines defined in Table 163‚ “RTAS Call Operation During DR Operations‚” on page 360, and any RTAS
calls not specified in Table 163‚ “RTAS Call Operation During DR Operations‚” on page 360 must comply
with Table 163 Note 1 and 2.

1.The push-button method is one that has been mentioned as a possible enhancement for systems that are produced for telephone company applica-
tions.

Table 163. RTAS Call Operation During DR Operations

RTAS Call Name
Reference to Table 163

Note Numbers
RTAS Call Name

Reference to Table 163
Note Numbers

rtas-last-error 1 ibm,read-pci-config 4

check-exception 1, 2 ibm,write-pci-config 4,7

display-character 1 restart-rtas 1

event-scan 1, 2 set-indicator 3, 4, 5

query-cpu-stopped-state 4 set-power-level 3, 4, 5

get-power-level 4 set-time-for-power-on 1

get-sensor-state 3, 4 set-time-of-day 1

get-time-of-day 1 start-cpu 4

ibm,configure-connector 7 stop-self 7

ibm,exti2c 1 system-reboot 1

ibm,os-term 1 nvram-store 1

nvram-fetch 1 power-off 1, 6

13.5  Base DR Option 361

LoPAPR, Version 1.1 (March 24, 2016)

Table 163 Notes:

1. These RTAS calls function as specified in this architecture, regardless of the power state of any DR entity in
the platform (providing the call is implemented).

2. These RTAS calls do not cause errors nor return an error status by accessing hardware which is isolated, un-
usable and/or powered down.

3. These RTAS calls function properly when dealing with a DR connector, when the parent of that DR connec-
tor is powered and configured, regardless of the state of the child of the parent (for set-indicator, the isola-
tion-state and dr-indicator names, and for get-sensor-state, the dr-entity-sense sensor name).

4. The results of the OS issuing these RTAS calls to hardware when the access to that hardware is through
hardware which is isolated, unusable, powered off, or incompletely configured, are indeterminate.

5. The results of the OS changing the power or isolation state of a Dynamic Reconfigure connector while there
is an uncompleted ibm,configure-connector operation in progress against that connector are indeterminate.

6. Power domains which were defined within sub-trees which have been subsequently isolated may remain
un-modified by this call; their state will be platform dependent.

7. The results of the OS issuing these RTAS calls to hardware which is isolated and/or powered off are indeter-
minate.

R1–13.5.1–3. For all DR options: If there is Forth code associated with a DR entity, it must not modify the OF de-
vice tree properties or methods unless modifications can be hidden by the ibm,configure-connector RTAS call
(that is, where this RTAS routine recognizes the entity and creates the appropriate OF device tree characteris-
tics that would have been created by the Forth code).

R1–13.5.1–4. For all DR options: The hardware must protect against any physical damage to components if the
DR entity is removed or inserted while power is on at the DR connector.

R1–13.5.1–5. For all DR options: During a DR operation (including resetting and removing the reset from the en-
tity, powering up and powering down the entity, unisolating and isolating the entity, and physically inserting
and removing the entity), the platform must prevent the introduction of unrecoverable errors on the bus or in-
terconnect into which the DR entity is being inserted or removed.

R1–13.5.1–6. For all DR options: During a DR operation (including resetting and removing the reset from the en-
tity, powering up and powering down the entity, unisolating and isolating the entity, and physically inserting
and removing the entity), the platform must prevent damage to the DR entity and the planar due to any elec-
trical transitions.

R1–13.5.1–7. For all DR options: If there are any live insertion DR entities in a platform and if those entities or the
rest of the platform cannot tolerate the power being turned off to those entities during DR operations on other
DR entities, then they must not be placed in the same power domain as the DR entities that will be powered
off.

R1–13.5.1–8. For all DR options: A separate visual indicator must be provided for each physical DR connector
which can be used for insertion of a DR Entity or which contains a DR entity that can be removed, and the in-
dicator must be individually controllable via the set-indicator RTAS call, and must have the capability to be
set to the states as indicated in Table 168‚ “set-indicator Defined Indicators for all DR Options‚” on page 368
and Table 171‚ “Visual Indicator Usage‚” on page 371.

ibm,power-off-ups

Table 163. RTAS Call Operation During DR Operations (Continued)

RTAS Call Name
Reference to Table 163

Note Numbers
RTAS Call Name

Reference to Table 163
Note Numbers

362 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

R1–13.5.1–9. For all DR options: If a platform provides a separate indicator to indicate the state of the power for
the DR connector, then that LED must be turned on by the platform when the platform turns the power on to
the DR connector and must be turned off by the platform when the platform turns the power off to the DR
connector.

R1–13.5.1–10. For all DR options: If a DR entity requires power to be turned off prior to the physical removal of
the DR entity from the platform, then the hardware must provide a green power indicator to indicate the
power state of the DR entity

R1–13.5.1–11. For all DR options: The platform must provide any necessary power sequencing between voltages
within a power domain during DR operations (for example, during the set-power-level RTAS call).

R1–13.5.1–12. For all DR options: If a platform supports DR, then all DR entities must support the full on to off
and the off to full on power transitions.

Architecture Note: Requirement R1–13.5.1–2 is necessary so that the OS can count on the availability of certain RTAS
facilities and so that the OS does not use other RTAS facilities when they are not available. This may put certain
hardware restrictions on what can and cannot be shut down.

Hardware Implementation Notes:

 Requirement R1–13.5.1–2 requires careful planning of hardware design and platform structure to assure that
no resources critical to RTAS are put into power domains that are powered down as part of a DR operation. In
addition, the platform is required to provide the facilities (registers and bits in registers readable by firmware,
etc.) so that RTAS can query the state of the hardware and determine if something is powered off before actu-
ally accessing the powered-off hardware.

 Requirement R1–13.5.1–8 indicates that there cannot be any sharing of indicators between DR connectors.

 In some large systems (for example, systems with many racks of equipment) it may not be possible or conve-
nient to view the individual DR visual indicators without opening cabinet doors, etc. In such cases, the design-
ers of such systems could consider putting a “summary” visual indicator where the user could readily see it,
which is basically a logical “or” of the visual indicators which are out of sight. For example, in a rack-based
system, the drawers might have an indicator on the front of the drawer that indicates if any indicators on the
back of the drawer are flashing. This summary indicator will not be accessed by the software (that is, will be
transparent to the software) but it is permissible for the indicator to have firmware dependencies.

13.5.2 For All DR Options - OF Requirements

This section describes the OF properties added for DR and any additional requirements placed on OF due to DR.

This section defines a number of new DR properties which are arrays. All properties for a specific DR connector under
a node are at the same offset into each array. Also, when the descriptive text states “the first connector” this does not
imply any physical position or numbering, but rather a logical “first” connector beneath a particular node in the OF de-
vice tree.

13.5.2.1 General Requirements

R1–13.5.2.1–1. For all DR options: When the firmware passes control to the OS, the DR hardware must be initial-
ized such that all of the DR connectors which would return “DR entity present” to a get-sensor-state (dr-en-
tity-sense) are fully powered and operational and any DR visual indicators are set to the appropriate state (on
or off) as indicated by Table 171‚ “Visual Indicator Usage‚” on page 371.

R1–13.5.2.1–2. For all DR options: After the firmware has passed control to the OS, the state of the DR visual in-
dicators must not change except under the following conditions:

13.5  Base DR Option 363

LoPAPR, Version 1.1 (March 24, 2016)

 As directed to do so by the set-indicator RTAS call.

 Under the condition of a power-fault, in which case the hardware may change the state of the visual indica-
tor to the “off” state if it turns the power off to the slot.

R1–13.5.2.1–3. For all DR options: The platforms which have hierarchical power domains must provide the
“power-domains-tree” property in the OF device tree.

13.5.2.2 “ibm,drc-indexes” Property

This property is added for the DR option to specify for each DR connector an index to be passed between the OS and
RTAS to identify the DR connector to be operated upon. This property is in the parent node of the DR connector to
which the property applies. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the defini-
tion of this property.

R1–13.5.2.2–1. For all DR options: For each OF device tree node which supports DR operations on its children,
the OF must provide an “ibm,drc-indexes” property for that node.

13.5.2.3 “ibm,my-drc-index” Property

This property is added for the DR option to specify for each node which has a DR connector between it and its parent,
the value of the entry in the “ibm,drc-indexes” property for that connector. This property is used for correlation
purposes. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the definition of this prop-
erty.

R1–13.5.2.3–1. For all DR options: For each OF device tree node which has a DR connector between it and its
parent, the OF must provide an “ibm,my-drc-index” property for that node.

13.5.2.4 “ibm,drc-names” Property

This property is added for the DR option to specify for each DR connector a user-readable location code for the con-
nector. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the definition of this property.

R1–13.5.2.4–1. For all DR options: For each OF device tree node which supports DR operations on its children,
the OF must provide an “ibm,drc-names” property for that node.

R1–13.5.2.4–2. For all DR options: The content of the “ibm,drc-names” property must be of the format de-
fined in Table 164‚ ““ibm,drc-names” Property Format‚” on page 363.

Table 164. “ibm,drc-names” Property Format

DRC Type DRC Name

1-8, 11-30 (PCI Hot Plug) Location code

SLOT Location code (built-in has port suffix)

PORT Port x

CPU
CPU x

where “x” is a decimal number with one or more digits and no leading zeroes

MEM or MEM-n
LMB x

where “x” is a decimal number with one or more digits and no leading zeroes

364 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.5.2.5 “ibm,drc-power-domains” Property

This property is added for the DR option to specify for each DR connector the power domain in which the connector
resides. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the definition of this property.

R1–13.5.2.5–1. For all DR options: For each OF device tree node which supports DR operations on its children,
the OF must provide an “ibm,drc-power-domains” property for that node.

Software Implementation Notes:

 Software will not call the set-power-level RTAS call with an invalid power domain number, and for purposes
of this call, a power domain number of -1 (a live insert connector) is considered invalid.

 For the case where the power domain is -1 (the live insert case), this does not imply that the connector does
not need isolating before the DR operation, only that it does not need to be powered off.

13.5.2.6 “ibm,drc-types” Property

This property is added for the DR option to specify for each DR connector a user-readable connector type for the con-
nector. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the definition of this property.

Architecture Note: The logical connectors (CPU, MEM etc.) represent DR boundaries that may not have physical DR
connectors associated with them. If a physical DR boundaries were present they would be represented by a
different DR connector type. It is possible that a given boundary may be represented by both a physical and a
logical connector. In that case, logical assignment would be managed with the logical connector and physical
add/remove would be managed by specifying the physical DR connector.

R1–13.5.2.6–1. For all DR options: For each OF device tree node which supports DR operations on its children,
the OF must provide an “ibm,drc-types” property for that node.

13.5.2.7 “ibm,phandle” Property

This property is added for the DR option to specify the phandle for each OF device tree node returned by ibm,config-
ure-connector. See Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on page 670 for the definition of this
property.

R1–13.5.2.7–1. For all DR options: The ibm,configure-connector RTAS call will include the “ibm,phandle”
property in each OF device tree node that it returns. This phandle must be unique and consistent with any
phandle visible to an OF client program or any other information returned by ibm,configure-connector.

13.5.3 For All DR Options - RTAS Requirements

For platforms that implement DR, there is one new RTAS call and some changes (new requirements) placed on exist-
ing ones.

PHB
PHB x

where “x” is a decimal number with one or more digits and no leading zeroes

Table 164. “ibm,drc-names” Property Format

DRC Type DRC Name

13.5  Base DR Option 365

LoPAPR, Version 1.1 (March 24, 2016)

13.5.3.1 General Requirements

The following are the general requirements for RTAS for all DR options.

R1–13.5.3.1–1. For all DR options: If there is Forth code associated with a DR entity and that Forth code would
normally modify the OF device tree properties or methods, then if that entity is to be supported as a DR entity
on a particular platform, the ibm,configure-connector RTAS call on that platform must recognize that entity
and create the appropriate OF device tree characteristics that would have been created by the Forth code.

13.5.3.2 set-power-level

This RTAS call is defined in Section 7.3.6.1‚ “set-power-level‚” on page 151. Several additional requirements are
placed on this call when the platform implements DR along with PM.

This RTAS call is used in DR to power up or power down a DR connector, if necessary (that is, if there is a non-zero
power domain listed for the DR connector in the “ibm,drc-power-domains” property). The input is the power
domain and the output is the power level that is actually to be set for that domain; for purposes of DR, only two of the
current power levels are of interest: “full on” and “off.”

For sequencing requirements between this RTAS routine and others, see Requirements R1–13.5.4.2–2 and R1–
13.5.4.2–3.

R1–13.5.3.2–1. For all DR options: the set-power-level RTAS call must be implemented as specified in
Section 7.3.6.1‚ “set-power-level‚” on page 151 and the further requirements of this DR option.

R1–13.5.3.2–2. For all DR options: The set-power-level RTAS call must initiate the operation and return “busy”
status for each call until the operation is actually complete.

R1–13.5.3.2–3. For all DR options: If a DR operation involves the user inserting a DR entity, then if the firmware
can determine that the inserted entity would cause a system disturbance, then the set-power-level RTAS call
must not power up the entity and must return an error status which is unique to that particular type of error, as
indicated in Table 165‚ “set-power-level Error Status for specific DR options‚” on page 365.

Hardware Implementation Notes:

 For any DR operation, the firmware could optionally not allow powering up of a DR entity, if the powering up
would cause a platform over-power condition (the firmware would have to be provided with the DR Entities’
power requirements and the platform’s power capability by a method which is not architected by the DR archi-
tecture).

 If PM is not implemented in the platform, then only the “full on” and “off” states need to be implemented for
DR and only those two states will be used.

Table 165. set-power-level Error Status for specific DR options

Parameter Type Name Option Name Values

Out Status PCI Hot Plug DR option
-9000: Powering entity would create change of frequency on the bus and would
disturb the operation of other PCI IOAs on the bus, therefore entity not powered
up.

366 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: The operation of the set-power-level call is not complete at the time of the return from
the call if the “busy” status is returned. If it is necessary to know when the operation is complete, the routine should
be called with the same parameters until a non-busy status is returned.

13.5.3.3 get-sensor-state

This RTAS call is defined in Section 13.5.3.3‚ “get-sensor-state‚” on page 366. This RTAS call will be used in DR to
determine if there is something connected to the DR connector.

The “rtas-sensors” and “ibm,sensor-<token>” OF properties are not applicable to DR sensors defined in
Table 166‚ “get-sensor-state Defined Sensors for All DR Options‚” on page 366.

R1–13.5.3.3–1. For all DR options: RTAS must implement the get-sensor-state RTAS call.

R1–13.5.3.3–2. For all DR options: The sensor values specified in Table 166‚ “get-sensor-state Defined Sensors
for All DR Options‚” on page 366 must be implemented as specified in that table.

R1–13.5.3.3–3. For all DR options except the PCI Hot Plug and LRDR options: If the get-sensor-state call with
the dr-entity-sense sensor requires the DR entity to be powered up and/or unisolated to sense the presence of
the DR entity, then the get-sensor-state call must return the error code of -9000 or -9001, as defined in
Table 167‚ “get-sensor-state Error Status for All DR Options‚” on page 367, if the DR entity is powered
down or is isolated when the call is made.

Table 166. get-sensor-state Defined Sensors for All DR Options

Sensor Name
Token
Value

Defined Sensor Values Description

dr-entity-sense 9003

DR connector empty (0)

Returned for physical DR entities if the connector is available (empty) for an add
operation. The DR connector must be allocated to the OS to return this value,
otherwise a status of -3, no such sensor implemented, will be returned from the
get-sensor-state RTAS call.

DR entity present (1)

Returned for logical and physical DR entities when the DR connector is allocated
to the OS and the DR entity is present. For physical DR entities, this indicates that
the DR connector actually has a DR entity plugged into it. For DR connectors of
physical DR entities, the DR connector must be allocated to the OS to return this
value, otherwise a status of -3, no such sensor implemented, will be returned from
the get-sensor-state RTAS call. For DR connectors of logical DR entities, the DR
connector must be allocated to the OS to return this value, otherwise a sensor value
of 2 or 3 will be returned.

DR entity unusable (2)
Returned for logical DR entities when the DR entity is not currently available to
the OS, but may possibly be made available to the OS by calling set-indicator with
the allocation-state indicator, setting that indicator to usable.

DR entity available for exchange (3)
Returned for logical DR entities when the DR entity is available for exchange in a
sparing type operation, in which case the OS can claim that resource by doing a
set-indicator RTAS call with allocation-state set to exchange.

DR entity available for recovery (4)
Returned for logical DR entities when the DR entity can be recovered by the
platform and used by the partition performing a set-indicator RTAS call with
allocation-state set to recover.

13.5  Base DR Option 367

LoPAPR, Version 1.1 (March 24, 2016)

Architecture Note: The -9002 return code should not be implemented. For legacy implementations if it is returned, then
it should be treated by the caller the same as a return value of 2 (DR entity unusable).

R1–13.5.3.3–4. For all DR options: The value used for the sensor-index input to the get-sensor-state RTAS call for
the sensors in Table 166‚ “get-sensor-state Defined Sensors for All DR Options‚” on page 366 must be the in-
dex for the connector, as passed in the “ibm,drc-indexes” property.

Hardware and Software Implementation Note: The status introduced in Requirement R1–13.5.3.3–3 is not valid for
get-sensor-state calls when trying to sense insertion status for PCI slots (see Requirement R1–13.6.1–5).

Architecture Note: DR entity available for recovery state is intended to allow a platform to temporary allocate to itself
resources on a reboot and then allow the OS to subsequently recover those resources when no longer needed by
the platform. An example of use would be the platform temporarily reserving some LMBs to itself during a reboot
to store dump data, and then making the LMBs available to a OS partition by marking them with the state of
“available for recovery” after the dump data has been transferred to the OS.

13.5.3.4 set-indicator

This RTAS call is defined as shown in Table 39‚ “set-indicator Argument Call Buffer‚” on page 142. This RTAS call is
used in DR to transition between isolation states, allocation states, and control DR indicators. In some cases, a state
transition fails due to various conditions, however, a null transition (commanding that the new state be what it already
is) always succeeds. As a consequence, this RTAS call is used in all DR sequences to logically (and if necessary phys-
ically) isolate and unisolate the connection between a DR entity and the platform. If physical isolation is indeed re-
quired for the DR entity, this RTAS call determines the necessity for isolation, not the calling program.

The set-indicator allocation-state and set-indicator isolation-state are linked. Before calling set-indicator with isola-
tion-state set to unisolate, the DR entity being unisolated will first need to be allocated to the OS. If the get-sensor-state
call would return a value of DR entity unusable or if it would return an error like -3 for the DR entity, then the set-indi-
cator isolation-state to unisolate would fail for that DR entity.

For sequencing requirements between this RTAS routine and others, see Requirements R1–13.5.4.2–2 and R1–
13.5.4.2–3.

A single set-indicator operation for indicator type 9001 may require an extended period of time for execution. Follow-
ing the initiation of the hardware operation, if the set-indicator call returns prior to successful completion of the opera-
tion, the call will return either a status code of -2 or 990x. A status code of -2 indicates that RTAS may be capable of
doing useful processing immediately. A status code of 990x indicates that the platform requires an extended period of
time, and hints at how much time will be required before completion status can be obtained. Neither the 990x nor the -2
status codes imply that the platform has initiated the operation, but it is expected that the 990x status would only be
used if the operation had been initiated.

The following are the requirements for the base DR option. Other DR options may put additional requirements on this
RTAS call.

Table 168‚ “set-indicator Defined Indicators for all DR Options‚” on page 368 indicates which DR indicators are used
with which DR connector types.

Table 167. get-sensor-state Error Status for All DR Options

Parameter Type Name Values

Out Status
-9000: Need DR entity to be powered up and unisolated before RTAS call
-9001: Need DR entity to be powered up, but not unisolated, before RTAS call
-9002: (see architecture note, directly below)

368 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

The “rtas-indicators” and “ibm,indicator-<token>” OF properties are not applicable to DR indicators
defined in Table 168‚ “set-indicator Defined Indicators for all DR Options‚” on page 368.

R1–13.5.3.4–1. For all DR options: The indicator state values specified in Table 168‚ “set-indicator Defined Indi-
cators for all DR Options‚” on page 368 must be implemented as specified in that table.

R1–13.5.3.4–2. For all DR options: The value used for the indicator-index input to the set-indicator RTAS call for
the indicators in Table 168‚ “set-indicator Defined Indicators for all DR Options‚” on page 368 must be the
index for the connector, as passed in the “ibm,drc-indexes” property.

R1–13.5.3.4–3. For all DR options: The set-indicator call must return a -2 status, or optionally for indicator type
9001 the 990x status, for each call until the operation is complete; where the 990x status is defined in
Table 20‚ “RTAS Status Word Values‚” on page 119.

R1–13.5.3.4–4. For all DR options: If this is a DR operation that involves the user inserting a DR entity, then if the
firmware can determine that the inserted entity would cause a system disturbance, then the set-indicator
RTAS call must not unisolate the entity and must return an error status which is unique to the particular error.

R1–13.5.3.4–5. For all DR options: If the set-indicator index refers to a connector that would return a “DR entity
unusable” status (2) to the get-sensor dr-entity-sense token, the set-indicator RTAS return code must be “No
such indicator implemented” (-3), except in response to a successful set-indicator allocation state usable.

R1–13.5.3.4–6. For all DR options combined with the LPAR option: The RTAS set-indicator specifying unus-
able allocation-state of a DR connector must unmap the resource from the partition’s Page Frame Table(s)
and, as appropriate, its Translation Control Entry tables.

R1–13.5.3.4–7. For all DR options combined with the LPAR option: The successful completion of the RTAS
set-indicator specifying usable allocation-state of a DR connector must allow subsequent mapping of the re-
source as appropriate within the partition’s Page Frame Table(s) and/or its Translation Control Entry tables.

Table 168. set-indicator Defined Indicators for all DR Options

Indicator Name
Token
Value

Defined State
Values

Default
Value

Examples/Comments

isolation-state 9001
Isolate (0),

Unisolate (1)
Unisolated

This indicator must be implemented for DR connectors for both physical and logical DR
entities. Isolate refers to the DR action to logically disconnect the DR entity from the
platform. An isolate operation makes the DR entity available to the firmware, and in the case
of a physical DR entity like a PCI IOA, logically disconnects the DR entity from the platform
(for example, from the PCI bus). Unisolate refers to the DR action to logically connect the
entity. Before set-indicator isolation-state to unisolate, the DR entity being unisolated must
first be allocated to the OS. If the get-sensor-state call with the dr-entity-sense token would
return a value of DR entity unusable or if it would return an error like -3 for the DR entity,
then the set-indicator isolation-state to unisolate must fail for that DR entity.

dr-indicator 9002

Inactive (0),
Active (1),
Identify (2)
Action (3)

0 if Inactive
1 if Active

This indicator must be implemented for DR connectors for physical DR entities. If the DR
indicators exist for the DR connector, then they are used to indicate the state of the DR
connector to the user. Usage of these states are as defined in Table 171‚ “Visual Indicator
Usage‚” on page 371 and Chapter 16, “Service Indicators,” on page 511.

allocation-state 9003

unusable (0)
usable (1)

exchange (2)
recover (3)

NA

This indicator must be implemented for DR connectors for logical DR entities. Used to
allocate and deallocate entities to the OS. The initial allocation state of a connector is
established based upon the initial allocation of resources to the OS image. Subsequently, an
OS may request a change of allocation state by use of the set-indicator with allocation-state
token. If the transition to the usable state is not possible the -3 (no such indicator
implemented) status is returned.

13.5  Base DR Option 369

LoPAPR, Version 1.1 (March 24, 2016)

Software Implementation Note: The operation of the set-indicator call is not complete at the time of the return from the
call if the “busy” status is returned. If it is necessary to know when the operation is complete, the routine should
be called with the same parameters until a non-busy status is returned.

Hardware and Software Implementation Note: The set-indicator (isolation-state) call is used to clear RTAS internal
tables regarding this device. The ibm,configure-connector RTAS routine will need to be called before using the
entities below this connector, even if power was never removed from an entity while it was in the isolated state.

13.5.3.5 ibm,configure-connector RTAS Call

The RTAS function ibm,configure-connector is a new RTAS call introduced by DR and is used to configure a DR en-
tity after it has been added by either an add or replace operation. It is expected that the ibm,configure-connector RTAS
routine will have to be called several times to complete the configuration of a dynamic reconfiguration connector, due
to the time required to complete the entire configuration process. The work area contains the intermediate state that
RTAS needs to retain between calls. The work area consists of 4096 byte pages of real storage on 4096 byte boundaries
which can be increased by one page on each call. The OS may interleave calls to ibm,configure-connector for different
dynamic reconfiguration connectors, however, a separate work area will be associated with each dynamic reconfigura-
tion connector which is actively being configured. Other standard RTAS locking rules apply.

The properties generated by the ibm,configure-connector call are dependent on the type of DR entities. For a list of
properties generated, see the RTAS Requirements section for each specific DR option. For example, for a list of prop-
erties generated for PCI Hot Plug, see Section 13.6.3‚ “PCI Hot Plug DR - Run Time Firmware Requirements‚” on
page 374.

For sequencing requirements between this RTAS routine and others, see Requirement R1–13.5.4.2–2.

R1–13.5.3.5–1. For all DR options: The RTAS function ibm,configure-connector must be implemented and must
implement the argument call buffer defined by Table 169‚ “ibm,configure-connector Argument Call Buffer‚”
on page 369.

Table 169. ibm,configure-connector Argument Call Buffer

Parameter Type Name Values

In

Token Token for ibm,configure-connector

Number Inputs 2

Number Outputs 1

Work area Address of work area

Memory extent 0 or address of additional page

Out Status

-9003: Cannot configure - Logical DR connector unusable, available for exchange, or available for recovery.
-9002: Cannot configure - DR Entity cannot be supported in this connector
-9001 Cannot configure - DR Entity cannot be supported in this system
-2: Call again
-1: Hardware error
0: Configuration complete
1: Next sibling
2: Next child
3: Next property
4: Previous parent
5: Need more memory
990X: Extended Delay

370 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

R1–13.5.3.5–2. For all DR options: On the first call of a dynamic reconfiguration sequence, the one page work
area must be initialized by the OS as in Table 170‚ “Initial Work Area Initialization‚” on page 370.

Architecture Note: The entry offset in Table 170‚ “Initial Work Area Initialization‚” on page 370 is either four bytes or
eight bytes depending on whether RTAS was instantiated in 32-bit or 64-bit mode, respectively.

R1–13.5.3.5–3. For all DR options: On all subsequent calls of the sequence, the work area must be returned un-
modified from its state at the last return from RTAS.

R1–13.5.3.5–4. For all DR options: The ibm,configure-connector RTAS call must update any necessary RTAS
configuration state based upon the configuration changes effected through the specified DR connector.

The sequence ends when either RTAS returns a “hardware error” or “configuration complete” status code, at which
time the contents of the work area are undefined. If the OS no longer wishes to continue configuring the connector, the
OS may recycle the work area and never recall RTAS with that work area. Unless the sequence ends with Configura-
tion Complete, the OS will assume that any reported devices remain unconfigured and unusable. RTAS internal data
structures (outside of the work area) are not updated until the call which returns “configuration complete” status. A
subsequent sequence of calls to ibm,configure-connector with the same entry from the “ibm,drc-indexes” prop-
erty will restart the configuration of devices which were not completely configured.

If the index from “ibm,drc-indexes” refers to a connector that would return an “DR entity unusable” status (2) to
the get-sensor RTAS call with dr-entity-sense token, the ibm,configure-connector RTAS call for that index immedi-
ately returns “-9003: Cannot configure - Logical DR connector unusable” on the first call without any configuration
action taken on the DR connector.

A dynamic reconfiguration connector may attach several sibling OF device tree architected devices. Each such device
may be the parent of one or more device sub-trees. The ibm,configure-connector RTAS routine configures and reports
the entire sub-tree of devices rooted in previously unconfigured architected devices found below the connector whose
index is specified in the first entry of the work area, except those that are associated with an empty or unowned dy-
namic reconfiguration connector; where unowned refers to a DR connector that would return a DR entity unusable, a
DR entity available for exchange, or a DR entity available for entity available for recovery value, for a get-sensor
dr-entity-sense sensor. Configuration proceeds in a depth first order.

If the ibm,configure-connector RTAS routine returns with the “call again” or 990x status, configuration is proceeding
but had to be suspended to maintain the short execution time requirement of RTAS routines. No results are available.
The OS should call the ibm,configure-connector RTAS routine passing back the work area unmodified at a later time to
continue the configuration process.

If the ibm,configure-connector RTAS routine returns with a “Cannot configure - DR Entity cannot be supported in this
connector”, then there is a lack of one or more resources at this connector for this DR Entity and there is at least one
DR connector in the system into which this DR Entity can be configured. In this case, the DR program should indicate
to the user that they need to consult the appropriate system documentation relative to the DR Entity that they are trying
to insert into the system.

The “need more memory” status code, is similar in semantics to the “call again” status. However, on the next ibm,con-
figure-connector call, the OS will supply, via the Memory extent parameter, the address of another page of memory for
RTAS to add to the work area in order for configuration to continue. On all other calls to ibm,configure-connector the

Table 170. Initial Work Area Initialization

Entry Offset Value

0 entry from the “ibm,drc-indexes” property for the connector to configure

1 0

13.5  Base DR Option 371

LoPAPR, Version 1.1 (March 24, 2016)

contents of the Memory extent parameter should be 0. It is the responsibility of the OS to recover all work area memory
after a sequence of ibm,configure-connector calls is completed.

Software Implementation Note: The OS may allocate the work area from contiguous virtual space and pass individual
discontiguous real pages to ibm,configure-connector as needed.

If the ibm,configure-connector RTAS routine returns either the “next sibling” or “next child” status codes, configura-
tion has detected an architected OF device tree device, and is returning its OF device tree node-name. Work Area offset
2 contains an offset within the first page of the work area to a NULL terminated string containing the node-name. Note,
if the caller needs to preserve this or any other returned parameters between the various calls of a configuration se-
quence it will copy the value to its own area. Also, the first call returning configuration data will have a “next child”
status code.

The “next property” status code indicates that a subsequent property is being returned for the device. Work Area entry
offset 2 contains an offset within the first page of the work area to a NULL terminated string containing the property
name. Work Area entry offset 3 contains the length of the property value in bytes. Work Area entry offset 4 contains an
offset within the first page of the work area to the value of the property.

Architecture Note: The ibm,configure-connector RTAS routine returns those applicable properties that can be
determined without interpreting any FCode ROM which is associated with the IOA. Additionally, it is permissible
for this RTAS call to be aware of various specific IOAs and emulate the action of any FCode associated with the
IOA.

If the ibm,configure-connector RTAS routine returns the “previous parent” status code, it has come to the end of the
string of siblings, and will back up the tree one level following its depth first order algorithm. The 2nd through 4th
work area entries are undefined for this status code.

Software Implementation Notes:

1. Any attempts to configure an already configured connector or one in progress of being configured will pro-
duce unpredictable results.

2. The software will put the DR entity in the full on power state before issuing the ibm,configure-connector
RTAS call to configure the DR entity.

13.5.4 For All DR Options - OS Requirements

13.5.4.1 Visual Indicator States

DR Visual indicator usage will be as indicated in the following requirement, in order to provide for a consistent user in-
terface across platforms. Information on implementation dependent aspects of the DR indicators can be found in
Chapter 16, “Service Indicators,” on page 511.

R1–13.5.4.1–1. For all DR options: The visual indicators must be used as defined in Table 171‚ “Visual Indicator
Usage‚” on page 371.

Table 171. Visual Indicator Usage

State of indicator Usage

Inactive

The DR connector is inactive and entity may be removed or added without system disruption.
For DR entities that require power off at the connector, then the caller of set-indicator must turn
power off prior to setting the indicator to this state. See also Chapter 16, “Service Indicators,”
on page 511.

372 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.5.4.2 Other Requirements

R1–13.5.4.2–1. For all DR options: The OS must detect hierarchical power domains (as specified in the
“power-domains-tree” property) and must handle those properly during a DR operation.

R1–13.5.4.2–2. For all DR options: When bringing a DR entity online, the OS must issue the following RTAS
calls in the following order:

a. If the power domain is not 0, then call set-power-level

b. set-indicator (with the isolation-state token and a state value of unisolate)

c. ibm,configure-connector

R1–13.5.4.2–3. For all DR options: When taking a DR entity offline, the OS must issue the following RTAS calls
in the following order:

a. set-indicator (with the isolation-state token and a state value of isolate)

b. If the power domain is not 0, then call set-power-level

R1–13.5.4.2–4. When bringing a DR entity online that utilizes TCEs (see Section 3.2.2.2‚ “DMA Address Transla-
tion and Control via the TCE Mechanism‚” on page 65), the OS must initialize the DR entity's TCEs.

13.6 PCI Hot Plug DR Option

This section will develop the requirements over and beyond the base DR option requirements, that are unique to being
able to perform DR operations on PCI plug-in cards that do not share power domains with other PCI plug-in cards.

13.6.1 PCI Hot Plug DR - Platform Requirements

A method will be provided to isolate the plug-in card (power and logic signals) and to physically remove the plug-in
card from the machine. The physical removal may pose an interesting mechanical challenge, due to the position of the
card edge connector relative to the desired direction of insertion of the card from the outside of the machine. In addi-
tion, PCI plug-in cards may have internal cables and may span multiple slots. Such mechanical issues are not addressed
by this architecture.

This section describes the requirements for the platform when a platform implements the PCI Hot Plug DR option.

R1–13.6.1–1. For the PCI Hot Plug DR option: All platform requirements of the base DR option architecture
must be met (Section 13.5.1‚ “For All DR Options - Platform Requirements‚” on page 360).

Identify (Locate)
This indicator state is used to allow the user to identify the physical location of the DR
connector. This state may map to the same visual state (for example, blink rate) as the Action
state, or may map to a different state. See also Chapter 16, “Service Indicators,” on page 511.

Action
Used to indicate to the user the DR connector on which the user is to perform the current DR
operation. This state may map to the same visual state (for example, blink rate) as the Identify
state, or may map to a different state. See also Chapter 16, “Service Indicators,” on page 511.

Active
The DR connector is active and entity removal may disrupt system operation. See also
Chapter 16, “Service Indicators,” on page 511.

Table 171. Visual Indicator Usage

State of indicator Usage

13.6  PCI Hot Plug DR Option 373

LoPAPR, Version 1.1 (March 24, 2016)

R1–13.6.1–2. For the PCI Hot Plug DR option: All PCI requirements must be met (for example, timing rules,
power slew rates, etc.) as specified in the appropriate PCI specifications, and in the PCI Standard Hot-Plug
Controller and Subsystem Specification [20].

R1–13.6.1–3. For the PCI Hot Plug DR option: The hardware must provide two indicators per PCI Hot Plug slot,
and all the following must be true:

a. One indicator must be green and the platform must use the indicator to indicate the power state of the PCI
Hot Plug slot, turning on the indicator when the slot power is turned on and turning off the indicator
when the slot power is turned off.

b. The other indicator must be amber and must be controllable by RTAS, separately from all other indicators,
and must be used as a slot Identify indicator, as defined in Chapter 16, “Service Indicators,” on page 511.

R1–13.6.1–4. For the PCI Hot Plug DR option: The hardware must provide a separate power domain for each
PCI Hot Plug slot, controllable by RTAS, and that power domain must not be used by any other DR connector
in the platform.

R1–13.6.1–5. For the PCI Hot Plug DR option: The hardware must provide the capability to RTAS to be able to
read the insertion state of each PCI Hot Plug slot individually and must provide the capability of reading this
information independent of the power and isolation status of the plug-in card.

R1–13.6.1–6. For the PCI Hot Plug DR option: The hardware must provide individually controllable electrical
isolation (disconnect) from the PCI bus for each PCI Hot Plug slot, controllable by RTAS and this isolation
when set to the isolation mode must protect against errors being introduced on the bus, and damage to the
plug-in cards or planars during the plug-in card power up, power down, insertion, and removal.

R1–13.6.1–7. For the PCI Hot Plug option: A platform must prevent the change in frequency of a bus segment
(for example, on the insertion or removal of an plug-in card) while that change of frequency would result in
improper operation of the system.

R1–13.6.1–8. For the PCI Hot Plug option: For each PCI Hot Plug slot which will accept only 32-bit (data width)
plug-in cards, the platform must:

a. Accommodate plug-in cards requiring up to 64 MB of PCI Memory Space and 64 KB of PCI I/O space

b. For TCE-mapped DMA address space, must provide the capability to map simultaneously and at all times
at least 128 MB of PCI Memory space for the slot.

R1–13.6.1–9. For the PCI Hot Plug option: Each PCI Hot Plug slot which will accept 64-bit (data width) plug-in
cards, the platform must:

a. Accommodate plug-in cards requiring up to 128 MB of PCI Memory Space and 64 KB of PCI I/O space

b. For TCE-mapped DMA address space, must provide the capability to map simultaneously and at all times
at least 256 MB of PCI Memory space for the slot.

R1–13.6.1–10. For the PCI Hot Plug option with PCI Express: The power and isolation controls must be imple-
mented by use of the PCI Standard Hot-Plug Controller (see PCI Standard Hot-Plug Controller and Subsys-
tem Specification [20]).

R1–13.6.1–11. For the PCI Hot Plug option with PCI Express: If a PCI Hot Plug DRC contains multiple PEs,
then that DRC must be owned by the platform or a trusted platform agent.

Hardware implementation Notes:

1. Surge current protection on the planar is one way to provide the required protection against damage to com-
ponents if an entity is removed from or inserted into a connector with the power still applied to the connec-
tor.

374 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

2. Removal of an entity without the proper quiescing operation may result in a system crash.

3. In order for hot plugging of PCI plug-in cards with the system operational to be useful, a mechanical means
is needed in order to be able to remove or insert PCI plug-in cards without shutting off system power and
without removing the covers above the plug-in cards (which in general, would require powering-down the
system).

4. It is recommended that the control of the indicators required by Requirement R1–13.6.1–3 be via the PCI
Standard Hot Plug Controller (see PCI Standard Hot-Plug Controller and Subsystem Specification
[20]).

13.6.2 PCI Hot Plug DR - Boot Time Firmware Requirements

R1–13.6.2–1. For the PCI Hot Plug DR option: All OF requirements of the base DR option architecture must be
met (Section 13.5.2‚ “For All DR Options - OF Requirements‚” on page 362).

R1–13.6.2–2. For the PCI Hot Plug DR option: The OF must only generate the “clock-frequency” OF
property for PCI bridge nodes which cannot change bus clock frequency during a PCI Hot Plug operation.

R1–13.6.2–3. For the PCI Hot Plug DR option: The OF must set the PCI configuration register bits and fields ap-
propriately.

Hardware Implementation Note: The OF should leave sufficient gaps in the bus numbers when configuring bridges and
switches such that plug-in cards with bridges and switches which are to be supported by the platform’s DR
operations can be plugged into every slot in the platform in which those plug-in cards are supported. That is,
insertion of an plug-in card that contains a bridge or switch into a platform, requires that there be sufficient
available bus numbers allocated to that PCI bus such that new bus numbers can be assigned to the buses generated
by the bridges and switches on the plug-in cards.

13.6.3 PCI Hot Plug DR - Run Time Firmware Requirements

R1–13.6.3–1. For the PCI Hot Plug DR option: All RTAS requirements of the base DR option architecture must
be met (Section 13.5.3‚ “For All DR Options - RTAS Requirements‚” on page 364).

R1–13.6.3–2. For the PCI Hot Plug DR option: The set-indicator RTAS call with a indicator type of isola-
tion-state and a state value of unisolate (1) must not return a “success” status until any IOA on a plug-in card
inserted into the PCI slot is ready to accept configuration cycles, and must return a “success” status if the PCI
slot is empty.

R1–13.6.3–3. For the PCI Hot Plug DR option: The ibm,configure-connector RTAS call must initialize the PCI
configuration registers and platform to the same values as at boot time.

Architecture Note: During a DR replace operation, the replacement PCI IOA may not get placed back at the same
addresses, etc., as the original DR entity by the firmware (although it has to be placed back into the same DR
connector, or it is not a DR replace operation). On a replace operation, the configuration information cannot
reliably be read from the IOA being replaced (the IOA might be broken), so the firmware cannot read the
configuration information from the old IOA and replace the configuration information into the new IOA.

PCI I/O sub-systems architecturally consist of two classes of devices, bus bridges (Processor Host Bridges (PHBs),
PCI to PCI Bridges, and PCI Express switches and bridges) and IOAs. The support that ibm,configure-connector pro-
vides for these two classes is different.

For Bus Bridges, firmware will totally configure the bridge so that it can probe down the depth of the tree. For this rea-
son, the firmware must include support for all bridges the platform supports. This includes interrupt controllers as well
as miscellaneous unarchitected devices that do not appear in the OF device tree. The properties supported and reported
are the same as provided by the boot time firmware.

13.6  PCI Hot Plug DR Option 375

LoPAPR, Version 1.1 (March 24, 2016)

For PCI plug-in cards, the support is significantly less; it is essentially the functionality specified in section 2.5 FCode
Evaluation Semantics of the PCI Bus binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configura-
tion) Firmware [6]. However, the configuration proceeds as if all devices do not have an expansion ROM since the
RTAS code does not attempt to determine if an FCode ROM is present nor attempts to execute it. This may, in some
cases, generate different device node properties, values and methods than would happen had the IOA been configured
during boot. If the IOA’s device driver or configuration support cannot deal with such differences, then the IOA is not
dynamically reconfigurable. The other properties generated are dependent upon the IOA’s configuration header from
the following list. If the property is not on this list the reader should assume that RTAS ibm,configure-connector will
not generate it.

Table 172‚ “PCI Property Names which will be Generated by ibm,configure-connector‚” on page 375 shows what PCI
OF properties can be expected to be returned from the ibm,configure-connector call for PCI Hot Plug operations and
Table 173‚ “Non-exhaustive list of PCI properties that may not be generated by ibm,configure connector‚” on page 376
shows some which can be expected to not be returned.

R1–13.6.3–4. For the PCI Hot Plug DR option: The ibm,configure-connector RTAS call when used for PCI IOAs
must return the properties named in Table 172‚ “PCI Property Names which will be Generated by ibm,con-
figure-connector‚” on page 375 except as indicated in the Present?/Source column.

Table 172. PCI Property Names which will be Generated by ibm,configure-connector

Property Name Present?/Source

“name” Always present.

“vendor-id” Always present. From PCI header.

“device-id” Always present. From PCI header.

“revision-id” Always present. From PCI header.

“class-code” Always present. From PCI header.

“interrupts” Only present if Interrupt Pin register not 0.

“min-grant” Present unless Header Type is 0x01.

“max-latency” Present unless Header Type is 0x01.

“devsel-speed” Only present for conventional PCI and PCI-X.

“compatible” Always present. Constructed from the PCI header information for the IOA or bridge.

“fast-back-to-back” Only present for conventional PCI and PCI-X when Status Register bit 7 is set.

“subsystem-id” Only present if “Subsystem ID” register not 0.

“subsystem-vendor-id” Only present if “Subsystem vendor ID” register not 0.

“66mhz-capable” Only present for conventional PCI and PCI-X when Status Register bit 5 is set.

“133mhz-capable” Only present for PCI-X when PCI-X Status Register bit 17 is set.

“266mhz-capable” Only present for PCI-X when PCI-X Status Register bit 30 is set.

“533mhz-capable” Only present for PCI-X when PCI-X Status Register bit 31 is set.

“reg” Always present. Specifies address requirements.

“assigned-addresses” Always present. Specifies address assignment.

376 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

Table 173‚ “Non-exhaustive list of PCI properties that may not be generated by ibm,configure connector‚” on page 376
is a non-exhaustive list of common properties that may not be generated by RTAS ibm,configure connector for a PCI
IOA. Also, the concept of a phandle does not apply to nodes reported by ibm,configure-connector.

Architecture Note: Without “device_type” and other properties, the OS cannot append an IOA added via DR to the
boot list for use during the next boot.

R1–13.6.3–5. For the PCI Hot Plug option: When ibm,configure-connector RTAS call returns to the caller, if the
device driver(s) for any IOA(s) configured as part of the call are EEH unaware (that is may produce data in-
tegrity exposures due to an EEH stopped state) or if they may be EEH unaware, then the ibm,configure-con-
nector call must disable EEH prior to returning to the caller.

Software Implementation Note: To be EEH aware, a device driver does not need to be able to recover from an EEH
stopped state, only recognize the all-1's condition and not use data from operations that may have occurred since
the last all-1's checkpoint. In addition, the device driver under such failure circumstances needs to turn off

“ibm,loc-code”
Always present. RTAS will have to remember the location codes associated with all DR connectors so
that it can build this property.

“ibm,my-drc-index” Always present.

“ibm,vpd”
Always present for sub-systems and for PCI IOAs which follow the PCI VPD proposed standard. See
Requirement R1–12.4.2–1 and note to see the effect of using different PCI versions.

“device_type” For bridges, always present with a value of “PCI” otherwise not present.

“ibm,req#msi”
Present for all PCI Express IOA nodes which are requesting MSI support, when the platform supports
MSIs.

Table 173. Non-exhaustive list of PCI properties that may not be generated by ibm,configure connector

Property Name Present?/Source

“ibm,connector-type” Never present -- only for built-in entries not for pluggable ones.

“ibm,wrap-plug-pn” Never present -- only for built-in entries not for pluggable ones.

“alternate-reg” Never present -- needs FCode.

“fcode-rom-offset” Never present -- RTAS does not look for this.

“wide” Never present -- needs FCode.

“model” Never present -- needs FCode.

“supported-network-types” Never present -- needs FCode.

“address-bits” Never present -- needs FCode.

“max-frame-size” Never present -- needs FCode.

“local-mac-address” Never present -- needs FCode.

“mac-address” Never present -- needs FCode.

“built-in” Not present for a PCI Hot Plug connectors.

Table 172. PCI Property Names which will be Generated by ibm,configure-connector (Continued)

Property Name Present?/Source

13.7  Logical Resource Dynamic Reconfiguration (LRDR) 377

LoPAPR, Version 1.1 (March 24, 2016)

interrupts (using the ibm,set-int-off RTAS call) in order to make sure that any (unserviceable) interrupts from the
IOA do not affect the system. Note that this is the same device driver support needed to protect against an IOA
dying or against a no-DEVSEL type error (which may or may not be the result of an IOA that has died). Note that
if all-1’s data may be valid, the ibm,read-slot-reset-state2 RTAS call should be used to discover the true EEH state
of the device.

13.6.4 PCI Hot Plug DR - OS Requirements

R1–13.6.4–1. For the PCI Hot Plug DR option: All OS requirements of the base DR option architecture must be
met (Section 13.5.4‚ “For All DR Options - OS Requirements‚” on page 371).

13.7 Logical Resource Dynamic Reconfiguration (LRDR)

The Logical Resource Dynamic Reconfiguration option allows a platform to make available and recover platform re-
sources such as CPUs, Memory Regions, Processor Host Bridges, and I/O slots to/from its operating OS image(s). The
Logical Resource Dynamic Reconfiguration option provides the means for providing capacity on demand to the run-
ning OS and provides the capability for the platform to make available spare parts (for example, CPUs) to replace fail-
ing ones (called sparing operations). Combined with the LPAR option, platforms can move resources between
partitions without rebooting the partitions’ OS images.

The Logical Resource Dynamic Reconfiguration (LRDR) option deals with logical rather than physical resources.
These logical resources are already physically installed (dynamic installation/removal of these resources, if supported,
is managed via the Hardware Management Console (HMC) or Service Focal Point (SFP)). As such, the OS does not
manage either connector power or DR visual indicators. Logical connector power domains are specified as “hot plug-
gable” (value -1) and DR visual indicators are not defined for logical connectors.

The device tree contains logical resource DR connectors for the maximum number of resources that the platform can
allocate to the specific OS. In some cases such as for processors and PHBs, this may be the maximum number of these
resources that the platform supports even if there are fewer than that currently installed. In other cases, such as memory
regions in a LPARed system, the number may be limited to the amount of memory that can be supported without resiz-
ing the cpu page frame table. The OS may use the get-sensor-state RTAS call with the dr-entity-sense token to deter-
mine if a given drc-index refers to a connector that is currently usable for DR operations. If the connector is not
currently usable the return state is “DR entity unusable” (2). A set-indicator (isolation state) RTAS call to an unusable
connector or (dr-indicator) to any logical resource connector results in a “No such indicator implemented” return sta-
tus.

Two allocation models are supported. In the first, resources are specifically assigned to one and only one partition at a
time by the HMC. In this model, a DR entity state is changed from unusable to usable only by firmware in response to
HMC requests to explicitly move the allocation of the resource between partitions. In the second model, certain re-
sources may “float” between cooperating partitions, a partition issues a set-indicator (allocation state usable) RTAS
call and if the resource is free, the firmware assigns the resource to the requesting partition and returns the success sta-
tus. Set-indicator returns the code “no-such-indicator” if either the resource is not free, or the platform is operating in
the first model. To return a resource to the platform firmware, the OS issues a set-indicator (allocation state unusable)
RTAS call for the resource’s DR connector.

378 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

13.7.1 Platform Requirements for LRDR

The following requirements apply to the hardware and/or firmware as a result of implementing LRDR on a platform.

R1–13.7.1–1. For the LRDR option: The hardware must provide the capability to power-cycle any hardware that
is going to be switched between partitions as part of LRDR, if that hardware requires power-cycling to put the
hardware into a known state (for example, PCI IOAs).

Architecture Note: Except for PCI Express IOAs that implement the Function Level Reset (FLR) option, since the PCI
architecture is not specific as to the state of the IOA when the IOAs reset is activated and deactivated, either the
platform designer will need to guarantee that all logic in all IOAs (including any internal storage associated with
the IOA) is cleared to a known state by use of the IOAs' reset, or else the platform will need to provide the
capability to power-cycle those IOAs, including the integrated ones (that is, including the non-pluggable ones).
Also note that hardware which requires power-cycling to initialize may impact the capability to reliably reboot an
OS, independent of whether or not LRDR is implemented.

R1–13.7.1–2. For the LRDR option: Any power-cycling of the hardware which is done by the platform during an
LRDR operation (for example, as part of an ibm,configure-connector operation), must be functionally trans-
parent to the software, except that PCI plug-in cards that are plugged into a PCI Hot Plug DR connector do
not need to be powered on before the ibm,configure-connector call for a logical SLOT DR connector returns
to the caller.

Architecture Note: PCI plug-in cards that are plugged into a DR connector will not be configured as part of an
ibm,configure-connector operation on a logical DR connector of type SLOT above the plug-in card (see section
17.6.3.3 ibm,configure-connector). However, Requirement R1–13.7.1–2 does require a PCI IOA which is not
plugged in to a PCI Hot Plug DR connector (for example, soldered on the planar) be powered up and configured
as a result of an ibm,configure-connector operation on a logical DR connector of type SLOT above such an IOA,
and requires this powering up to be functionally transparent to the caller of ibm,configure-connector operation (a
longer busy time is not considered to be a violation of the functional transparency requirement).

13.7.2 DR Properties for Logical Resources

Logical resource dynamic reconfiguration is a special case of general DR, therefore, certain DR properties take on spe-
cial values.

R1–13.7.2–1. For the LRDR option: All platform requirements of the base DR option architecture must be met
(Section 13.5.1‚ “For All DR Options - Platform Requirements‚” on page 360).

R1–13.7.2–2. For the LRDR option: The /cpus OF device tree node must include “ibm,drc-types” (of
type CPU), “ibm,drc-power-domains” (of value -1), “ibm,drc-names”, and “ibm,drc-in-
dexes” properties with entries for each potentially supported dynamically reconfigurable processor.

Table 174. DR Property Values for Logical Resources

Property Name Property Value

“ibm,drc-indexes” As defined in Section 13.5.2.2‚ ““ibm,drc-indexes” Property‚” on page 363.

“ibm,my-drc-index” As defined in Section 13.5.2.3‚ ““ibm,my-drc-index” Property‚” on page 363.

“ibm,drc-names”
As defined in Section 13.5.2.4‚ ““ibm,drc-names” Property‚” on page 363. Note: This name
allows for correlation between the OS and HMC user interfaces.

“ibm,drc-power-domains”
Logical Resource connectors are defined to be “hot pluggable” having a domain value of -1
per definition in Section 13.5.2.5‚ ““ibm,drc-power-domains” Property‚” on page 364.

“ibm,drc-types”
Shall be one of the values “CPU”, “MEM”, “PHB”, or “SLOT” as defined in Table 240‚
“Currently Defined DR Connector Types‚” on page 671.

13.7  Logical Resource Dynamic Reconfiguration (LRDR) 379

LoPAPR, Version 1.1 (March 24, 2016)

R1–13.7.2–3. For the LRDR option: The root node of the OF device tree must include “ibm,drc-types” (of
type MEM), “ibm,drc-power-domains” (of value -1), “ibm,drc-names”, and “ibm,drc-in-
dexes” properties with entries for each potentially supported dynamically reconfigurable memory region.

R1–13.7.2–4. For the LRDR option: The root node of the OF device tree must not include any drc properties
(“ibm,drc-*”) for the base memory region (reg value 0).

R1–13.7.2–5. For the LRDR option: The root node of the OF device tree must include “ibm,drc-types” (of
type PHB), “ibm,drc-power-domains” (of value -1), “ibm,drc-names”, and “ibm,drc-in-
dexes” properties with entries for each potentially supported dynamically reconfigurable PHB.

R1–13.7.2–6. For the LRDR option: The /pci OF device tree node representing a PHB must include
“ibm,drc-types” (of type SLOT), “ibm,drc-power-domains” (of value -1),
“ibm,drc-names”, and “ibm,drc-indexes” properties with entries for each potentially supported
dynamically reconfigurable PCI SLOT.

R1–13.7.2–7. For the LRDR option: platforms must implement the allocation-state indicator 9003, as defined in
Table 168‚ “set-indicator Defined Indicators for all DR Options‚” on page 368.

R1–13.7.2–8. For the LRDR option: For memory LRDR, the “ibm,lrdr-capacity” property must be in-
cluded in the /rtas node of the partition device tree (see Section B.6.3.1‚ “RTAS Node Properties‚” on
page 690).

13.7.3 Architectural Intent -- Logical DR Sequences:

This architecture is designed to support the logical DR sequences specified in the following sections. See also
Section 13.4‚ “Dynamic Reconfiguration State Transitions‚” on page 358.

13.7.3.1 Acquire Logical Resource from Resource Pool

1. The OS responds to some stimuli (command, workload manager, HMC, etc.) to acquire the resource, perhaps us-
ing the “ibm,drc-names” value as a reference if a human interface is involved.

2. The OS determines if the resource is usable:

a. OS uses get-sensor-state (dr-entity-sense) to determine the state of the DR connector

b. If the state is “unusable” the OS issues set-indicator (allocation-state, usable) to attempt to allocate the re-
source. Similarly, if the state is “available for exchange” the OS issues set-indicator (allocation-state, ex-
change) to attempt to allocate the resource, and if the state is “available for recovery” the OS issues
set-indicator (allocation-state, recover) to attempt to allocate the resource.

c. If successful, continue, else return error status to the requester. If successful, this is the point where the re-
source is allocated to the OS.

3. Continue with DR operation.

a. The OS unisolates the resource via set-indicator (isolation-state, unisolate). This is the point where the OS
takes ownership of the resource from the platform firmware and the firmware removes the resource from its
resource pool.

b. The OS configures the resource using ibm,configure-connector RTAS.

c. The OS incorporates the resource into its resource pool.

1. If the resource is a processor, the OS must use the start-cpu RTAS call to move the processor from the
stopped state (at the end of the ibm,configure-connector) to the running state.

380 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

d. The OS returns status of operation to the requester.

4. The OS notifies requesting entity of the OS state relative to the resource acquisition.

13.7.3.2 Release Logical Resource

1. Some entity (System administrator commanding from the HMC, a workload manager, etc.) requests the OS to re-
lease the resource using the “ibm,drc-names” value as a reference.

a. The OS attempts to stop using logical resource.

1. If the resource is a processor, the OS calls the stop-self RTAS call then waits for the processor to enter
the stopped state using the RTAS query-cpu-stopped-state call.

2. The OS isolates the resource via set-indicator (isolation-state, isolate).

3. Unless the isolated resource was the partition’s last processor, the OS deallocates the resource via set-in-
dicator (allocation-state, unusable). This is the point where the platform firmware takes ownership of the
resource from the OS. That is, the OS removes the resource from its resource pool and the firmware adds
it to the firmware resource pool.

b. The OS returns status of operation to the requester.

2. The OS unallocates the resource by set-indicator (allocation-state, unusable).

3. The system administrator may command the HMC to allocate the logical resource to another partition (LPAR) or
reserved pool (COD).

4. Any needed hardware removal is handled by HMC/SPC.

13.7.4 RTAS Call Semantics/Restrictions

This section describes the unique application of DR RTAS functions to the dynamic reconfiguration of logical re-
sources.

13.7.4.1 set-indicator (isolation-state, isolate)

Dynamic reconfiguration of logical resources introduces special meaning and restrictions to the DR connector isolation
function depending upon the logical resource being isolated.

13.7.4.1.1 Isolation of CPUs

The isolation of a CPU, in all cases, is preceded by the stop-self RTAS function for all processor threads, and the OS in-
sures that all the CPU’s threads are in the RTAS stopped state prior to isolating the CPU. Isolation of a processor that is
not stopped produces unpredictable results. The stopping of the last processor thread of a LPAR partition effectively
kills the partition, and at that point, ownership of all partition resources reverts to the platform firmware.

R1–13.7.4.1.1–1. For the LRDR option: Prior to issuing the RTAS set-indicator specifying isolate isolation-state
of a CPU DR connector type, all the CPU threads must be in the RTAS stopped state.

R1–13.7.4.1.1–2. For the LRDR option: Stopping of the last processor thread of a LPAR partition with the
stop-self RTAS function, must kill the partition, with ownership of all partition resources reverting to the plat-
form firmware.

13.7  Logical Resource Dynamic Reconfiguration (LRDR) 381

LoPAPR, Version 1.1 (March 24, 2016)

13.7.4.1.2 Isolation of MEM Regions

Isolation of a MEM region creates a paradox if the MEM region being isolated contains the calling program (there be-
ing no program left for the firmware to return).

NOTE: The base memory region (starting at address zero) is not associated with a MEM DR connector. This means that
the base memory region cannot be isolated. This restriction avoids two fatal conditions, attempts to isolate the
region containing RTAS, and attempts to isolate the region containing the interrupt vectors.

It is the responsibility of the OS to unmap the addresses of the MEM region being isolated from both PFT and the TCE
tables. When the LRDR option is combined with the LPAR option, the hypervisor ensures that the addresses of the
MEM region being isolated are unmapped from both the PFT and TCE tables before successfully completing the isola-
tion of the MEM region. If any valid mappings are found, the RTAS set-indicator (isolation-state) does not change the
isolation-state and returns with a Status -9001 (Valid outstanding translation).

R1–13.7.4.1.2–1. For the LRDR option: The caller of the RTAS set-indicator specifying isolate isolation-state of a
MEM DR connector type must not be within the region being isolated.

R1–13.7.4.1.2–2. For the LRDR option combined with the LPAR option: The RTAS set-indicator specifying
isolate isolation-state of a MEM DR connector type must check that the region is unmapped from both the
partition’s Page Frame Table(s) and any Translation Control Entries that would reference the memory, else
the RTAS routine must return with a status of Status -9001 (Valid outstanding translation) and the isola-
tion-state is not changed.

Implementation Note: The algorithm chosen for implementing Requirement R1–13.7.4.1.2–2 depends upon the
expected frequency of isolation events. For RAS reasons, they should be seldom. For load balancing, they
may be far more frequent. These methods are briefly described here:

 First pull the corresponding logical address from the partition’s valid space so setting new translations to the
logical address are not possible. Then wait for any current in flight translation additions to complete. Followed
by either scanning the entire PFT and TCE tables looking for valid translations or checking a use count for the
particular logical address range. The PFT/TCE table search may be long, however, it is only done at isolation
time.

 The use count method must be maintained for each add and remove of an address translation with the corre-
sponding accessing of a use count based upon the physical real address of the memory block.

13.7.4.1.3 Isolation of PHBs and Slots

An isolation of a PHB naturally disconnects the OS image from any of the DR connectors downstream of the PHB
(specifically any I/O slots and PCI Hot Plug connectors associated with the PHB). To avoid the complexity of grace-
fully managing multi-level isolation, isolation is restricted to only “leaf” DR connectors, that is connectors that have no
unisolated or usable DR connectors below them. That is, for logical DR connectors below the connector being isolated,
a get-sensor-state dr-entity-sense needs to return an unusable (2) and for physical DR connectors below the connector
being isolated, the DR entity needs to be isolated first via set-indicator (isolation-state, isolate). The OS is responsible
for removing all virtual address mappings to the address range associated with a logical I/O SLOT before making the
RTAS set-indicator (isolation-state) call that isolates the SLOT. When the LRDR option is combined with the LPAR
option, the hypervisor ensures that the addresses associated with the logical SLOT being isolated are unmapped from
both the PFT and TCE tables before successfully completing the isolation of the SLOT connector. If any valid map-
pings are found, the RTAS set-indicator (isolation-state) does not change the isolation-state and returns with a Status
-9001 (Valid outstanding translation).

R1–13.7.4.1.3–1. For all LRDR options: If a request to set-indicator (isolation-state, isolate) would result in the
isolation of one or more other DR connectors which are currently unisolated or usable, then the set-indicator
RTAS must fail with a return code of “Multi-level isolation error” (-9000).

382 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

R1–13.7.4.1.3–2. For the LRDR option combined with the LPAR option: The RTAS set-indicator specifying
isolate isolation-state of a SLOT DR connector type must check that the IOA address range associated with
the slot is unmapped from both the partition’s Page Frame Table(s) and any Translation Control Entries that
would reference those locations, else the RTAS routine must return with a Status -9001 (Valid outstanding
translation) and the isolation-state is not changed.

13.7.4.2 set-indicator (dr-indicator)

Logical connectors do not have associated dr-indicators (token value 9002). An attempt to set the state of such an indi-
cator results in a “No such indicator implemented” return status.

R1–13.7.4.2–1. For all LRDR options: The calling of set-indicator with a token value of 9002 (dr-indicator) and
an index representing a logical connector must fail with a return code of “No such indicator implemented”
(-3).

13.7.4.3 ibm,configure-connector

The ibm,configure-connector RTAS call is used to return to the OS the device tree nodes and properties associated with
the newly un-isolated logical resources and configure them for use.

The ibm,configure-connector RTAS call used against a logical DR connector can encounter other logical DR connec-
tors or physical DR connectors below it in the tree. If a logical connector is encountered below a logical connector that
is being configured, the ibm,configure-connector RTAS call will not configure the sub-tree, if it is not owned by the OS
(where owned refers to a DR connector that would return a DR entity usable, for a get-sensor dr-entity-sense sensor). If
a physical connector is encountered, then the sub-tree below the physical connector may or may not be configured, de-
pending on the implementation.

Architecture Note: The requirements of this section specify the minimum sub-tree contents returned for various
connector types. Implementations may optionally return other valid previously reported nodes that represent the
current configuration of the device tree. Previously reported nodes may not have any changes from their
previously reported state. A node that was removed from the configuration due to a DR operation and returns due
to a subsequent DR operation is not considered to have been previously reported. It is the caller's responsibility to
recognize previously reported nodes.

R1–13.7.4.3–1. For all LRDR options: If a request to ibm,configure-connector specifies a connector that is iso-
lated, ibm,configure-connector must immediately return configuration complete.

R1–13.7.4.3–2. For all LRDR options: If the connector index refers to a connector that would return a “DR entity
unusable” status (2), “DR entity available for exchange” status (3), or “DR entity available for recovery” sta-
tus (4) to the get-sensor dr-entity-sense token, the ibm,configure-connector RTAS call must return “-9003:
Cannot configure - Logical DR connector unusable, available for exchange, or available for recovery” on the
first call without any configuration action taken on the DR connector.

R1–13.7.4.3–3. For all LRDR options: If a request to ibm,configure-connector specifies a connector of type CPU,
the returned sub-tree must consist of the specific cpu-node, its children, and any referenced nodes that had
not been previously reported (such as L2 and L3 caches etc.) all containing the properties as would be
contained in those nodes had they been available at boot time.

Implementation Note: Future platforms that support concurrent maintenance of caches, will require that high level cache
nodes (L2, L3 etc.) are added by ibm,configure-connector such that their properties can change as new/repaired
hardware is added to the platform. Therefore, it is the OS's responsibility when isolating a CPU to purge any
information it may have regarding an orphaned high level cache node. The OS may use the “ibm,phandle”

13.7  Logical Resource Dynamic Reconfiguration (LRDR) 383

LoPAPR, Version 1.1 (March 24, 2016)

property to selectively remove caches when a processor is removed. The platform considers any high level cache
that is newly referenced (reference count for this partition goes from 0 to 1) to have been previously unreported.

R1–13.7.4.3–4. For all LRDR options: If a request to ibm,configure-connector specifies a connector of type
MEM, the returned sub-tree must consist of the specific ibm,memory-region node containing the prop-
erties as would be contained in that node had it been available at boot time.

R1–13.7.4.3–5. For all LRDR options: If a request to ibm,configure-connector specifies a connector of type PHB
or SLOT, then all of the following must be true:

a. The returned values must represent the sub-tree for the specific I/O sub-system represented by the connec-
tor, except for entities below any DR connectors (logical or physical) which are below the connector
which is the target of the ibm,configure-connector operation (that is, the ibm,configure-connector opera-
tion stops at any DR connector).

b. The sub-tree must consist of the specific node and its children all containing the properties as would be
contained in those nodes had they been available at boot time, including (if they exist) built-in PCI IOAs.

R1–13.7.4.3–6. For all LRDR options: If a request to ibm,configure-connector specifies a connector of type
SLOT, the returned values must represent the sub-tree for the specific I/O sub-system represented by the
SLOT connector, and the sub-tree must consist of the specific /pci node and its children all containing the
properties as would be contained in those nodes had they been available at boot time, except for the PCI IOA
nodes assigned to the OS image that contain the same properties as they would following a PCI hot plug op-
eration (see Section 13.6.3‚ “PCI Hot Plug DR - Run Time Firmware Requirements‚” on page 374).

R1–13.7.4.3–7. For all LRDR options: If a platform implementation powers-up and configures physical DR enti-
ties in the sub-tree under a logical DR connector, then a request to ibm,configure-connector of the logical DR
connector must use the return status of 990x from the ibm,configure-connector call, as necessary, during the
DR entity power-up sequence(s) and must control any power-up and sequencing requirements, as would be
done by the platform during platform power-up.

384 Dynamic Reconfiguration (DR) Architecture

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

14 Logical Partitioning Option

14.1 Overview

The Logical PARtitioning option (LPAR) simultaneously runs one or more copies of a single OS or multiple heteroge-
neous LoPAPR compliant OSs on a single LoPAPR platform. A partition, within which an OS image runs, is assigned
a non-overlapping sub-set of the platform’s resources. These platform-allocatable resources include one or more archi-
tecturally distinct processors with their interrupt management area, regions of system memory, and I/O adapter bus
slots. Partition firmware loaded into each partition generates an OF device tree to represent the resources of the parti-
tion to the OS image. Allocatable resources are directly controlled by an OS. This architecture restricts the sharing of
allocatable resources between partitions; to do so requires the use of optional facilities presented in 17.2.1.5, “Shared
Logical Resources,” on page 605. Platform resources, other than allocatable resources mentioned above, that are repre-
sented by OF nodes in the device tree of more than one partition (for example, memory controllers and processor host
bridges) are marked ‘used-by-rtas’.

Since one of the main purposes of partitioning is isolation of the OSs, the ability to manage real system resources that
are common to all partitions is modified for the LPAR option. This means that partition use of RTAS functions which
ostensibly use real system resources such as power and time-of-day clocks are buffered from actual manipulation of
those resources. The RTAS is modified for LPAR, and has hypervisor support, to virtualize real resources for the parti-
tions. Operational management of the platform moves to a Hardware Management Console (HMC) which is an appli-
cation, either local or remote, that manages platform resources with messages to the hypervisor rather than being under
direct control of a partition’s OS.

Platforms supporting LPAR, contain Power PC processors that support the hypervisor addressing mode, in which the
physical address is equal to the effective address and all processor resources are available. The “Real Mode” address-
ing mode, in these processors, is redefined to translate and limit the physical addresses that the processor can access
and to restrict access to certain address translation controlling processor resources. The virtual addressing mode is un-
changed. See the Power ISA [1] (level 2.0 and beyond) for the architecture extensions required for the processor.

The I/O subsystems of these platforms contain I/O bridges that restrict the bus addresses that I/O adapters can access.
These restricted bus addresses are subsequently translated through the Translation Control Entry (TCE) mechanism to
restrict Direct Memory Accesses (DMAs) by I/O devices. This restriction is to system memory allocated to a partition
and managed by the OS image owning the device. The interrupt subsystem of these platforms is enhanced with multi-
ple (one per partition) global interrupt queues to direct interrupts to any processor assigned to the I/O adapter’s owning
OS image.

Logical Partitioning platforms employ a unique firmware component called the hypervisor (that runs in hypervisor
mode) to manage the address mapping and common platform hardware facilities, thereby ensuring isolation between
partitions. The OS uses new hypervisor interfaces to manage the partition’s page frame and TCE tables. The platform
firmware utilizes implementation dependent interfaces to platform hardware common to all partitions. Thus, a system
with LPAR has different OS support than a system without LPAR.

In addition to generating per partition device trees, the OF component of a logically partitioned platform manages the
initial booting and any subsequent booting of the specific OS image associated with each partition.

The NVRAM of a platform contains configuration variables, policy options, and working storage that is protected from
accesses that might adversely affect one or more partitions and their OS images. The hypervisor firmware component

386 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

restricts an OS image’s access to NVRAM to a region assigned to its partition. This may restrict the number of parti-
tions.

Most system management on systems without LPAR is performed by OS based applications that are given access to
modify the platform’s configuration variables, policy options and firmware flash. For various Reliability Availability
and Serviceability (RAS) reasons, LoPAPR Logical Partitioning platforms do not restrict platform operational manage-
ment functions to applications running on a preferred partition or OS image. Access to these Operational Management
facilities is provided via a Support Processor communication port that is connected to an HMC and/or through a com-
munications port that is connected through a PCI adapter in a partition. The HMC is a set of applications running in a
separate stand-alone platform or in one of the platform’s partitions. These HMC applications are required to establish
the platform’s LPAR configuration, however, the configuration is stored in the platform and, therefore, the HMC is not
required to boot or operate the platform in a pre-configured non-error condition.

14.1.1 Real Mode Accesses

When the OS controlling an LPAR runs with address translation turned off (MSRDR or MSRIR bit(s) =0) (real mode)
the LPAR hardware translates the memory addresses to an LPAR unique area known as the Real Mode Area (RMA).
When control is initially passed to the OS from the platform, the RMA starts at the LPAR's logical address 0 and is the
first logical memory block reported in the LPAR’s device tree. In general, the RMA is a subset of the LPAR's logical
address space. Attempting a non relocated access beyond the bounds of the RMA results in an storage interrupt
(ISI/DSI depending upon instruction or data reference). The RMA hardware translation scheme is platform dependent.
The options are given below.

14.1.1.1 Offset and Limit Registers

The Offset RMA architecture checks the LPAR effective address against the contents of an RMOL register allowing
the access, after adding an LPAR specific offset to form the real address, if the effective address is less, else signaling a
protection exception.

14.1.1.2 Reserved Virtual Addresses

The platform may map the RMA through the hashed paged table via a reserved range of virtual addresses. This map-
ping from the effective address is done by setting the high order virtual address bits corresponding to the VSID to the
0b00 || 0x001FFFFFF 1 TB VSID value. This virtual address is then translated as other virtual addresses. If the effec-
tive address is outside the bounds of the RMA, the storage interrupt signals a PTEG miss. The platform firmware pre-
populates the LPAR's page frame table with “bolted” entries representing the real storage blocks that make up the
RMA. Note, this method allows for the RMA to be discontiguous in real address space. The Virtualized Real Mode
Area (VRMA) option gives the OS the ability to dynamically relocate, expand, and shrink the RMA. See
Section 14.12.2‚ “Virtualizing the Real Mode Area‚” on page 473 for more details.

14.1.2 General LPAR Reservations and Conventions

This section documents general LPAR reserved facilities and conventions. Other sections document reserved facilities
and conventions specific to the function they describe.

R1–14.1.2–1. For the LPAR option: To avoid conflict with the platform’s reserved addresses, the OS must not use
the 1 TB (SLB and PTE B field equal to one) 0b00 || 0x001FFFFFF VSID for purposes other than virtualizing
the RMA.

R1–14.1.2–2. For the LPAR option: In order to avoid a storage exception, the OS must not remove PTEs marked
with the “bolted” indicator (PTE bit 59 = 1) unless the virtual address space can be referenced by another
PTE or the OS does not intend to access the virtual address space.

14.2  Processor Requirements 387

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.1.2–3. For the LPAR option: To avoid conflict with the platform’s hypervisor, the OS must be prepared to
share use of SPRG2 as the interrupt scratch register whenever an hcall() is made, or a machine check or reset
interrupt is taken.

R1–14.1.2–4. For the LPAR option: If the platform virtualizes the RMA, prior to transferring control to the OS,
the platform must select a page size for the RMA such that the platform uses only one page table entry per
page table entry group to virtualize the RMA.

R1–14.1.2–5. For the LPAR option: If the platform virtualizes the RMA, prior to transferring control to the OS,
the platform must use only the last page table entry of a page table entry group to virtualize the RMA.

14.2 Processor Requirements

R1–14.2–1. For the LPAR option: The platform processors must support the Logical Partitioning (LPAR) facili-
ties as defined in Power ISA [1] (Version 2.0 or later).

14.3 I/O Sub-System Requirements

The platform divides the I/O subsystem up into Partitionable Endpoints (PEs). See Section 4.1‚ “I/O Topologies and
Endpoint Partitioning‚” on page 71 for more information on PEs. Each PE has its own (separate) error, addressing, and
interrupt domains which allows the assignment of separate PEs to different LPAR partitions.

The following are the requirements for I/O subsystems when the platform implements LPAR.

R1–14.3–1. For the LPAR option: The platform must provide methods and mechanisms to isolate IOA and I/O
bus errors from one PE from affecting another PE, from affecting a partition to which the PE is not given ac-
cess authority by the platform, and from affecting system resources such as the service processor which are
shared between partitions, and must do so with the EEH option programming model.

R1–14.3–2. For the LPAR option: The platform must enable the EEH option for all PEs by default.

Software and Firmware Implementation Notes: For the platform (versus the OS or device driver) to enable EEH, there
must be some assurance that the device drivers are EEH aware, if not EEH enabled. For example, the device driver
or OS may signal its awareness by using ibm,set-eeh-option RTAS call to enable EEH prior to a configuration
cycle via the ibm,write-pci-config RTAS call which enables the Memory Space or IO Space enable bits in the PCI
Command register, and firmware can ignore the ibm,write-pci-config RTAS call which enables the Memory Space
or IO Space enable bits for an IOA if EEH for that IOA has not been enabled first. To be EEH aware, a device
driver does not need to be able to recover from an MMIO Stopped and DMA Stopped state, only recognize the
all-1's condition (from a Load from its IOA or on a PCI configuration read from its IOA) and not use data from
operations that may have occurred since the last all-1's checkpoint. In addition, the device driver under such failure
circumstances needs to turn off interrupts (using the ibm,set-int-off RTAS call, or for conventional PCI and PCI-X
infrastructures only: by resetting the IOA and keeping it reset with ibm,set-slot-reset or ibm,slot-error-detail) to
make sure that any (unserviceable) interrupts from the IOA do not affect the system (MSIs are blocked by the EEH
DMA Stopped State, but LSIs are not). Note that if all-1’s data may be valid, the ibm,read-slot-reset-state2 RTAS
call should be used to discover the true EEH state of the device.

R1–14.3–3. For the LPAR option: The platform must assign a PE to one and only one partition at a time.

R1–14.3–4. For the LPAR option: The platform must limit the DMA addresses accessible to a PE to the address
ranges assigned to the partition to which the PE is allocated, and, if the PE is used to implement a VIO de-
vice, then also to any allowed redirected DMA address ranges.

388 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Architecture and Implementation Notes:

1. Platforms which do not implement either Requirement R1–14.3–1 or Requirement R1–14.3–4 require PE
granularity of everything below the PHB, resulting in poor LPAR partition I/O assignment granularity.

2. Requirement R1–14.3–4 has implications in preventing access to both to I/O address ranges and system
memory address ranges. That is, Requirement R1–14.3–4 requires prevention of peer to peer operations
from one IOA to another IOA when those IOA addresses are not owned by the same partition, as well as to
providing an access protection mechanism to protect system memory. Note that relative to peer to peer op-
erations, some bridges or switches may not provide the capabilities to limit peer to peer, and the use of such
bridges or switches require the limitation that all IOAs under such bridges or switches be assigned to the
same partition.

R1–14.3–5. For the LPAR option: The platform must provide a PE the capability of accessing all of the System
Memory addresses assigned to the partition to which the PE is allocated.

R1–14.3–6. For the LPAR option: If TCEs are used to satisfy Requirements R1–14.3–4, and R1–14.3–5, then the
platform must provide the capability to map simultaneously and at all times at least 256 MB for each PE.

R1–14.3–7. For the LPAR option: If TCEs are used to satisfy Requirements R1–14.3–4, and R1–14.3–5, then the
platform must prevent any DMA operations to System Memory addresses which are not translated by TCEs.

R1–14.3–8. For the LPAR option: The DMA address range accessible to a PCI IOA on its I/O bus must be defined
by the “ibm,dma-window” property in its parent’s OF device tree node.

Platform Implementation Note: To maximize the ability to migrate memory pages underneath active DMA operations,
when ever possible, a bridge should create a bus for a single IOA and either its representing bridge node should
include the “ibm,dma-window” property specific for the IOA for conventional PCI or PCI-X IOAs or the IOA
function nodes should contain the “ibm,my-dma-window” property specific for the IOA function for PCI
Express IOAs. When the configuration of a bus precludes memory migration, the platform may combine the DMA
address for multiple IOAs that share a bus into a single “ibm,dma-window” property housed in the bridge node
representing the bridge that creates the shared bus.

14.4 Interrupt Sub-System Requirements

R1–14.4–1. For the LPAR option: The platform must not assign the same interrupt (LSI or MSI) or same interrupt
source number to different PEs (interrupts cannot be shared between partitions).

R1–14.4–2. For the LPAR option: The interrupt presentation layer must support at least one global interrupt queue
per platform supported partition.

R1–14.4–3. For the LPAR option: The interrupt presentation layer must separate the per processor interrupt man-
agement areas into a separate 4 K pages per processor so that they can each be individually protected by the
PTE mechanism and assigned to their respective assigned partitions.

R1–14.4–4. For the LPAR option: The platform must restrict the processors that service a global queue to those
assigned to a single partition.

R1–14.4–5. For the LPAR option: If the interrupt source layer supports message signaled interrupts, the platform
must isolate the PCI Message interrupt Input Port (PMIP) in its own 4 K page of the platform’s address space.

R1–14.4–6. For the LPAR option: If the interrupt source layer supports message signaled interrupts, the hardware
must ignore all writes to the PMIP’s 4 K page except those to the PMIP itself.

R1–14.4–7. For the LPAR option: If the interrupt source layer supports message signaled interrupts, the hardware
must return all ones on reads of the PMIP’s 4 K page except those to the PMIP itself. Signalling a machine
check interrupt to the affected processor on a read that returns all 1s as above is optional.

14.5  Hypervisor Requirements 389

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.4–8. For the LPAR option: The interrupt source layer must support a means in addition to the inter-proces-
sor interrupt mechanism for the hypervisor to signal an interrupt to any processor assigned to a partition.

Software Note: While firmware takes all reasonable steps to prevent it, it may be possible, on some hardware
implementations, for an OS to erroneously direct an individual IOA’s interrupt to another partition’s processor. An
OS supporting LPAR should ignore such “Phantom” interrupts.

14.5 Hypervisor Requirements

The purpose of the hypervisor is to virtualize the facilities of platforms, with LPAR, such that multiple copies of a Lo-
PAPR compliant OS may simultaneously run protected from each other in different logical partitions of the platform.
That is, the various OS images may, without explicit knowledge of each other, boot, run applications, handle excep-
tions and events and terminate without affecting each other.

The hypervisor is entered by way of three interrupts: the System Reset Interrupt, the Machine Check Interrupt and Sys-
tem (hypervisor) Call Interrupt. These use hypervisor interrupt vectors 0x0100, 0x0200, and 0x0C00 respectively. In
addition, a processor implementation dependent interrupt, at its assigned address may cause the hypervisor to be en-
tered. The return from the hypervisor to the OS is via the rfid (Return from Interrupt Doubleword) instruction. The tar-
get of the rfid (instruction at the address contained in SRR0) is either a firmware glue routine (in the case of System
Reset or Machine Check) or the instruction immediately following the invoking hypervisor call. The reason for the
firmware glue routines is that the OS must do its own processing because of the asynchronous nature of System Reset
or Machine Check interruptions. The firmware glue routine calls an OS registered recovery routine for the System Re-
set or Machine Check condition for further details see (reference to recoverable machine check ACR material to be
added when available). The glue routines are registered by the partition’s OS through RTAS. Until the glue routines are
registered, the OS does not receive direct reports of either System Reset or Machine Check interrupts but is simply
re-booted by the hypervisor. The glue routines contain a register buffer area that the hypervisor fills with register val-
ues that the glue routine must pass to the OS when calling the interrupt handler. The last element in this buffer is a lock
word. The lock word is set with the value of the using processor, and reset by the glue routine just before calling the OS
interrupt handler. This way only one buffer is needed per partition rather than one per processor.

At the invocation of the hypervisor, footprint records are generated for recovery conditions. Machine Check and Check
Stop conditions are, in some cases, isolatable to the affected partition(s). In these cases, the hypervisor can then prove
that it was not executing changes to the global system tables on the offending processor when the error occurred. If this
cannot be proven, the global state of the complex is in doubt and the error cannot be contained. It is anticipated that
check stops that only corrupt the internal state of the affected processor, stop that processor only. When the service pro-
cessor subsequently notices the stopped processor it notifies one of the other processors in the partition through a sim-
ulated recoverable machine check. The hypervisor running on the notified processor then takes appropriate action to
log out and restart the partition, or if there is an alternate cpu capability, then continue execution with a substitute for
the stopped processor.

The following table presents the functions supplied by the hypervisor.

Architecture Note: Some functions performed by partition firmware (OF and RTAS) require hypervisor assist, but those
firmware implementation dependent interfaces do not appear in this document.

Table 175. Architected hcall()s

Function Name/Section Comments

H_REMOVE / 14.5.4.1.1 Removes a PTE from the partition’s node Page Frame Table

H_BULK_REMOVE / 14.5.4.1.7 Removes up to four (4) PTEs from the partition’s node Page Frame Table

H_ENTER / 14.5.4.1.2 Inserts a PTE into the partition’s node Page Frame Table

390 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

H_READ / 14.5.4.1.3 Reads the specified PTE from the partition’s node Page Frame Table

H_CLEAR_MOD / 14.5.4.1.4 Clears the Modified bit in the specified PTE in the partition’s node Page Frame Table

H_CLEAR_REF / 14.5.4.1.5 Clears the Referenced bit in the specified PTE in the partition’s node Page Frame Table

H_PROTECT / 14.5.4.1.6
Sets the Page Protection and Storage Key bits in the specified PTE in the partition’s node Page Frame
Table

H_GET_TCE / 14.5.4.2.1 Returns the value of the specified DMA Translation Control Entry

H_PUT_TCE / 14.5.4.2.2 Inserts the specified value into the specified DMA Translation Control Entry

H_STUFF_TCE / 14.5.4.2.3 Inserts the specified value into multiple DMA Translation Control Entries

H_PUT_TCE_INDIRECT / 14.5.4.2.4 Inserts a list of values into the specified range of DMA Translation Control Entries

H_SET_SPRG0 / 14.5.4.3.1 SPRG0 is architecturally a hypervisor resource. This call allows the OS to write the register.

H_SET_DABR / 14.5.4.3.2 DABR is architecturally a hypervisor resource. This call allows the OS to write the register.

H_PAGE_INIT / 14.5.4.3.3 Initializes pages in real mode either to zero or to the copied contents of another page.

H_SET_XDABR / 14.5.4.3.4 Manage the Extended DABR facility.

H_LOGICAL_CI_LOAD / 14.5.4.4.1 Returns the value contained in a cache inhibited logical address

H_LOGICAL_CI_STORE / 14.5.4.4.2 Stores a value into a cache inhibited logical address

H_GET_TERM_CHAR / 16.6.2.1.1 Returns up to 16 bytes of virtualized console terminal data.

H_PUT_TERM_CHAR / 16.6.2.1.2 Sends up to 16 bytes of data to a virtualized console terminal.

H_VTERM_PARTNER_INFO / 16.6.2.4.2.1 Gets a list of possible client Vterm IOA connections.

H_REGISTER_VTERM / 16.6.2.4.2.2 Associates server Vterm IOA to client Vterm IOA.

H_FREE_VTERM / 16.6.2.4.2.3 Breaks association between server Vterm IOA and client Vterm IOA.

H_HYPERVISOR_DATA / 14.5.4.6.1 Returns internal hypervisor work areas for code maintenance.

H_EOI / 14.5.4.7.1 Generates and End Of Interrupt

H_CPPR / 14.5.4.7.2 Sets the Processor’s Current Interrupt Priority

H_IPI / 14.5.4.7.3 Generates an Inter-processor Interrupt

H_IPOLL / 14.5.4.7.4 Polls for pending interrupt

H_XIRR / H_XIRR-X / 14.5.4.7.5 Accepts pending interrupt

H_MIGRATE_DMA / 14.5.4.8.1 Migrates the page underneath an active DMA operation.

H_PERFMON / 14.5.4.9.1 Manages the performance monitor facility.

H_REGISTER_VPA / 14.11.3.2 Registers the virtual processor area that contains the virtual processor dispatch count

H_CEDE / 14.11.3.3 Makes processor virtual processor cycles available for other uses (called when an OS image is idle)

H_CONFER / 14.11.3.4
Causes a virtual processor’s cycles to be transferred to a specified processor. (Called by a blocked OS
image to allow a lock holder to use virtual processor cycles rather than waiting for the block to clear.)

H_PROD / 14.11.3.5 Awakens a virtual processor that has ceded its cycles.

Table 175. Architected hcall()s (Continued)

Function Name/Section Comments

14.5  Hypervisor Requirements 391

LoPAPR, Version 1.1 (March 24, 2016)

H_GET_PPP / 14.11.3.6 Returns the partition’s virtual processor performance parameters.

H_SET_PPP / 14.11.3.7 Sets the partition’s virtual processor performance parameters (within constraints).

H_PURR / 14.11.3.8 Returns the value of the virtual processor utilization register.

H_POLL_PENDING / 14.11.3.9 Polls the hypervisor for the existence of pending work to dispatch on the calling processor.

H_PIC / 14.11.4.1 Returns the summation of the physical processor pool’s idle cycles.

H_REG_CRQ / 17.2.3.1.5.1 Register Command/Response Queue

H_FREE_CRQ / 17.2.3.1.5.2 Frees the memory associated with the Command/Response Queue

H_VIO_SIGNAL / 17.2.1.3.1 Controls the virtual interrupt signaling of virtual IOAs

H_SEND_CRQ / 17.2.3.1.5.3 Sends a message on the Command/Response Queue

H_PUT_RTCE / 17.2.2.2.1 Loads a Redirected Remote DMA Remote Translation Control Entry

H_PUT_RTCE_INDIRECT / 17.2.2.2.2 Loads a list of Redirected Remote DMA Remote Translation Control Entries

H_REMOVE_RTCE / 17.2.2.2.3 Unmaps a redirected TCE that was previously built with H_PUT_RTCE or H_PUT_RTCE_INDIRECT

H_LIOBN_ATTRIBUTES / 17.2.2.2.6 Allows modification of LIOBN Attributes.

H_COPY_RDMA / 17.2.3.2.1.1 Copies data between partitions as if by TCE mapped DMA.

H_WRITE_RDMA / 17.2.3.2.1.2 Write parameter data to remote DMA buffer.

H_READ_RDMA / 17.2.3.2.1.3 Read data from remote DMA buffer to return registers.

H_REGISTER_LOGICAL_LAN / 16.4.3.1 Registers the partition’s logical LAN control structures with the hypervisor

H_FREE_LOGICAL_LAN / 16.4.3.2 Releases the partition’s logical LAN control structures

H_ADD_LOGICAL_LAN_BUFFER / 16.4.3.3 Adds receive buffers to the logical LAN receive buffer pool

H_SEND_LOGICAL_LAN / 16.4.3.5 Sends a logical LAN message

H_MULTICAST_CTRL / 16.4.3.6 Controls the reception and filtering of non-broadcast multicast packets.

H_CHANGE_LOGICAL_LAN_MAC / 16.4.3.7 Changes the MAC address for an ILLAN virtual IOA.

H_ILLAN_ATTRIBUTES / 16.4.3.8 Allows modifications of ILLAN Attributes.

 /
Map from 4 KB up to the size of a full LMB per RTCE table TCE entry, and map multiple TCEs (and
therefore multiple LMBs) in one operation.

H_ALRDMA / 17.2.4.2.9 ALRDMA CRQ and ASQ setup and control.

H_GRANT_LOGICAL / 17.2.1.5.1 Constructs a cookie, specific to the intended client, representing a shared resource.

H_RESCIND_LOGICAL / 17.2.1.5.2 Invalidates a cookie representing a shared resource.

H_ACCEPT_LOGICAL / 17.2.1.5.3 Maps a shared resource into the client’s logical address space

H_RETURN_LOGICAL / 17.2.1.5.4 Removes a shared resource from a client’s logical address space.

H_FREE_LOGICAL_LAN_BUFFER / 16.4.3.4 Removes receive buffers of specified size from the logical LAN receive buffer pool.

H_VIOCTL / 17.2.1.6 Allows the partition to manipulate or query certain virtual IOA behaviors.

Table 175. Architected hcall()s (Continued)

Function Name/Section Comments

392 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.5.1 System Reset Interrupt

Hypervisor code saves all processor state by saving the contents of one register in SPRG2 (SPRG1 if ibm,nmi-regis-
ter-2 was used) (Multiplexing the use of this resource with the OS). The processor’s stack and data area are found by
processing the Processor Identification Register.

R1–14.5.1–1. For the LPAR option: The platform must support signalling system reset interrupts to all processors
assigned to a partition.

R1–14.5.1–2. For the LPAR option: The platform must support signalling system reset interrupts individually as
well as collectively to all supported partitions.

H_JOIN / 14.11.5.1 Join active threads and return H_CONTINUE to final calling thread

H_DONOR_OPERATION / 17.8.6.1 Use the calling processor to perform platform operations.

H_VASI_SIGNAL / 17.8.6.2 Transition VASI operation stream state.

H_VASI_STATE / 17.8.6.3 Return the VASI operation stream state.

H_ENABLE_CRQ / 17.2.3.1.5.4 Reactivate a suspended CRQ.

H_VRMASD / 14.12.2.1 Change the page mapping characteristics of the Virtualized Real Mode Area.

H_VPM_PSTAT / 14.12.4.1 Returns Virtual Partition Memory pool statistics

H_SET_MPP / 14.12.3.4 Set Memory Performance Parameters

H_GET_MPP / 14.12.3.5 Get Memory Performance Parameters

H_MO_PERF / 14.12.3.7 Determine Memory Overcommit Performance

H_REG_SUB_CRQ / 17.2.3.3.5.1 Register a Sub-CRQ.

H_FREE_SUB_CRQ / 17.2.3.3.5.2 Free a Sub-CRQ.

H_SEND_SUB_CRQ / 17.2.3.3.5.3 Send a message to a Sub-CRQ.

H_SEND_SUB_CRQ_INDIRECT / 17.2.3.3.5.4 Send a list of messages to a Sub-CRQ.

H_HOME_NODE_ASSOCIATIVITY /
14.11.6.1

Report the home node associativity for a given virtual processor

H_GET_EM_PARMS / 14.14.2 Get the partition energy management parameters

H_BEST_ENERGY / 14.14.2.1 Returns hints for activating/releasing resource instances to achieve the best energy efficiency.

SNS Registration (H_REG_SNS) / 14.12.3.8.3.2 Registers Subvention Notification Structure

H_RANDOM / 14.15.1 Get a random number

14.15.2.1 H_COP_OP: / 14.15.2.1 Initiate a co-processor operation

14.15.2.2 H_STOP_COP_OP / 14.15.2.2 Stop a co-processor operation

H_GET_MPP_X / 14.12.3.5.1 Get Extended Memory Performance Parameters

H_SET_MODE / 14.5.4.3.5 Set Processing resource mode

H_GET_DMA_XLATES_LIMITED / 14.5.4.10 Search TCE table for entries within a specified range

Table 175. Architected hcall()s (Continued)

Function Name/Section Comments

14.5  Hypervisor Requirements 393

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.5.1–3. For the LPAR option: The system reset interrupts signaled to one partition must not affect opera-
tions of another partition.

R1–14.5.1–4. For the LPAR option: The hypervisor must intercept all system reset interrupts.

R1–14.5.1–5. For the LPAR option: The platform must implement the FWNMI option.

R1–14.5.1–6. For the LPAR option: The hypervisor must maintain a count, reset when the partition’s OS, through
RTAS, registers for system reset interrupt notification, of system reset interrupts signaled to a partition’s pro-
cessor.

R1–14.5.1–7. For the LPAR option: Once the partition’s OS has registered for system reset interrupt notification,
the hypervisor must forward the first and second system reset interrupts signaled to a partition’s processor.

R1–14.5.1–8. For the LPAR option: The hypervisor must on the third and all subsequent system reset interrupts
signaled to a partition’s processor invoke OF to initiate the partition’s reboot policy.

R1–14.5.1–9. For the LPAR option: The hypervisor must have the capability to receive and handle the system re-
set interrupts simultaneously on multiple processors in the same or different partitions up to the number of
processors in the system.

14.5.2 Machine Check Interrupt

Hypervisor code saves all processor state by saving the contents of one register in SPRG2 (SPRG1 if ibm,nmi-regis-
ter-2 was used) (Multiplexing the use of this resource with the OS). The processor’s stack and data area are found by
processing the Processor Identification Register.

The hypervisor investigates the cause of the machine check. The cause is either a recoverable event on the current pro-
cessor, or a non-recoverable event either on the current processor or one of the other processors in the logical partition.
Also the hypervisor must determine if the machine check may have corrupted its own internal state (by looking at the
footprints, if any, that were left in the per processor data area of the errant processor.

R1–14.5.2–1. For the LPAR option: The hypervisor must have the capability to receive and handle the machine
check interrupts simultaneously on multiple processors in the same or different partitions up to the number of
processors in the system.

14.5.3 Hypervisor Call Interrupt

The hypervisor call (hcall) interrupt is a special variety of the system call instruction. The parameters to the hcall() are
passed in registers using the PA ABI definitions (Reg 3-12 for parameters). In contrast to the PA ABI, pass by refer-
ence parameters are avoided to or from hcall(). This minimizes the address translation problem pointer parameters
cause. Some input parameters are indexes. Output parameters, when generated, are passed in registers 4 through 12 and
require special in-line assembler code on the part of the caller. The first parameter to hcall() is the function token.
Table 176‚ “Hypervisor Call Function Table‚” on page 394 specifies the valid hcall() function names and token values.
Some of the hcall() functions are optional, to indicate if the platform is in LPAR mode, and which functions are avail-
able on a given platform, the OF property “ibm,hypertas-functions” is provided in the /rtas node of the
partition’s device tree. The property is present if the platform is in LPAR mode while its value specifies which function
sets are implemented by a given implementation. If platform implements any hcall() of a function set it implements the
entire function set. Additionally, certain values of the “ibm,hypertas-functions” property indicate that the
platform supports a given architecture extension to a standard hcall().

The floating point registers along with the FPSCR are in general preserved across hcall() functions, unless the “Main-
tain FPRs” field of the VPA =0, see Table 184‚ “Per Virtual Processor Area‚” on page 449. The general purpose regis-
ters r0 and r3-r12, the CTR and XER registers are volatile along with the condition register fields 0 and 1 plus 5-7.
Specific hcall()s may specify a more restricted “kill set”, refer to the specific hcall() specification below.

394 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.5.3–1. For the LPAR option: The platform’s /rtas node must contain an “ibm,hypertas-func-
tions” property as defined below.

R1–14.5.3–2. For the LPAR option: If a platform reports in its “ibm,hypertas-functions” property (see
Section B.6.3.1‚ “RTAS Node Properties‚” on page 690) that it supports a function set, then it must support
all hcall()s of that function set as defined in Table 176‚ “Hypervisor Call Function Table‚” on page 394.

Table 176. Hypervisor Call Function Table

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

UNUSED 0x0

H_REMOVE / 14.5.4.1.1 0x4 Critical Yes hcall-pft

H_ENTER / 14.5.4.1.2 0x8 Critical Yes hcall-pft

H_READ / 14.5.4.1.3 0xC Critical Yes hcall-pft

H_CLEAR_MOD / 14.5.4.1.4 0x10 Critical Yes hcall-pft

H_CLEAR_REF / 14.5.4.1.5 0x14 Critical Yes hcall-pft

H_PROTECT / 14.5.4.1.6 0x18 Critical Yes hcall-pft

H_GET_TCE / 14.5.4.2.1 0x1C Critical Yes hcall-tce

H_PUT_TCE / 14.5.4.2.2 0x20 Critical Yes hcall-tce

H_SET_SPRG0 / 14.5.4.3.1 0x24 Critical Yes hcall-sprg0

H_SET_DABR / 14.5.4.3.2 0x28 Critical Yes - if DABR exists hcall-dabr

H_PAGE_INIT / 14.5.4.3.3 0x2C Critical Yes hcall-copy

H_LOGICAL_CI_LOAD / 14.5.4.4.1 0x3C Normal Yes hcall-debug

H_LOGICAL_CI_STORE / 14.5.4.4.2 0x40 Normal Yes hcall-debug

H_GET_TERM_CHAR / 16.6.2.1.1 0x54 Critical Yes hcall-term

H_PUT_TERM_CHAR / 16.6.2.1.2 0x58 Critical Yes hcall-term

H_HYPERVISOR_DATA / 14.5.4.6.1 0x60 Normal
Yes if enabled by HMC

(default disabled)
hcall-dump

H_EOI / 14.5.4.7.1 0x64 Critical Yes hcall-interrupt

H_CPPR / 14.5.4.7.2 0x68 Critical Yes hcall-interrupt

H_IPI / 14.5.4.7.3 0x6C Critical Yes hcall-interrupt

H_IPOLL / 14.5.4.7.4 0x70 Critical Yes hcall-interrupt

H_XIRR / 14.5.4.7.5 0x74 Critical Yes hcall-interrupt

H_XIRR-X 14.5.4.7.5 0x2FC Critical Yes hcall-interrupt

H_MIGRATE_DMA / 14.5.4.8.1 0x78 Normal
If LRDR option is

implemented
hcall-migrate

H_PERFMON / 14.5.4.9.1 0x7C Normal
If performance monitor is

implemented
hcall-perfmon

14.5  Hypervisor Requirements 395

LoPAPR, Version 1.1 (March 24, 2016)

Reserved 0x80 - 0xD8

H_REGISTER_VPA / 14.11.3.2 0xDC Normal
If SPLPAR or SLB

Shadow Buffer option is
implemented

hcall-splpar
SLB-Buffer

H_CEDE / 14.11.3.3 0xE0 Critical
If SPLPAR option is

implemented
hcall-splpar

H_CONFER / 14.11.3.4 0xE4 Critical
If SPLPAR option is

implemented
hcall-splpar

H_PROD / 14.11.3.5 0xE8 Critical
If SPLPAR option is

implemented
hcall-splpar

H_GET_PPP / 14.11.3.6 0xEC Normal
If SPLPAR option is

implemented
hcall-splpar

H_SET_PPP / 14.11.3.7 0xF0 Normal
If SPLPAR option is

implemented
hcall-splpar

H_PURR / 14.11.3.8 0xF4 Critical
If SPLPAR option is

implemented
hcall-splpar

H_PIC / 14.11.4.1 0xF8 Normal
If SPLPAR option is

implemented
hcall-pic

H_REG_CRQ / 17.2.3.1.5.1 0xFC Normal
If VSCSI option is

implemented
hcall-crq

H_FREE_CRQ / 17.2.3.1.5.2 0x100 Normal
If VSCSI option is

implemented
hcall-crq

H_VIO_SIGNAL / 17.2.1.3.1 0x104 Critical
If either the VSCSI or
logical LAN option is

implemented
hcall-vio

H_SEND_CRQ / 17.2.3.1.5.3 0x108 Critical
If VSCSI option is

implemented
hcall-crq

H_PUT_RTCE / 17.2.2.2.1 0x10C Critical
If VSCSI option is

implemented
hcall-rdma

H_COPY_RDMA / 17.2.3.2.1.1 0x110 Critical
If VSCSI option is

implemented
hcall-rdma

H_REGISTER_LOGICAL_LAN / 16.4.3.1 0x114 Normal
If logical LAN option is

implemented
hcall-lLAN

H_FREE_LOGICAL_LAN / 16.4.3.2 0x118 Normal
If logical LAN option is

implemented
hcall-lLAN

H_ADD_LOGICAL_LAN_BUFFER / 16.4.3.3 0x11C Critical
If logical LAN option is

implemented
hcall-lLAN

H_SEND_LOGICAL_LAN / 16.4.3.5 0x120 Critical
If logical LAN option is

implemented
hcall-lLAN

H_BULK_REMOVE / 14.5.4.1.7 0x124 Critical
New designs as of

01/01/2003
hcall-bulk

H_WRITE_RDMA / 17.2.3.2.1.2 0x128 Critical
If VSCSI option is

implemented
hcall-rdma

Table 176. Hypervisor Call Function Table (Continued)

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

396 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

H_READ_RDMA / 17.2.3.2.1.3 0x12C Critical
If VSCSI option is

implemented
hcall-rdma

H_MULTICAST_CTRL / 16.4.3.6 0x130 Critical
If logical LAN option is

implemented
hcall-lLAN

H_SET_XDABR / 14.5.4.3.4 0x134 Normal
If Extended DABR

option is implemented
hcall-xdabr

H_STUFF_TCE / 14.5.4.2.3 0x138 Critical hcall-multi-tce

H_PUT_TCE_INDIRECT / 14.5.4.2.4 0x13C Critical hcall-multi-tce

H_PUT_RTCE_INDIRECT / 17.2.2.2.2 0x140 Critical hcall-multi-tce

Reserved 0x144

Reserved 0x148

H_CHANGE_LOGICAL_LAN_MAC / 16.4.3.7 0x14C Normal
If Logical LAN option is

implemented
hcall-ILAN

H_VTERM_PARTNER_INFO / 16.6.2.4.2.1 0x150 Normal
If the Server Vterm

option is implemented
hcall-vty

H_REGISTER_VTERM / 16.6.2.4.2.2 0x154 Normal
If the Server Vterm

option is implemented
hcall-vty

H_FREE_VTERM / 16.6.2.4.2.3 0x158 Normal
If the Server Vterm

option is implemented
hcall-vty

H_GRANT_LOGICAL / 17.2.1.5.1 0x1C4 Normal
If Shared Logical
Resource option is

Implemented
hcall-slr

H_RESCIND_LOGICAL / 17.2.1.5.2 0x1C8 Normal
If Shared Logical
Resource option is

Implemented
hcall-slr

H_ACCEPT_LOGICAL / 17.2.1.5.3 0x1CC Normal
If Shared Logical
Resource option is

Implemented
hcall-slr

H_RETURN_LOGICAL / 17.2.1.5.4 0x1D0 Normal
If Shared Logical
Resource option is

Implemented
hcall-slr

H_FREE_LOGICAL_LAN_BUFFER / 16.4.3.4 0x1D4 Critical
If logical LAN option is

implemented
hcall-lLAN

H_POLL_PENDING / 14.11.3.9 0x1D8 Critical
If SPLPAR option is

implemented
hcall-poll-pending

Reserved 0x1DC - 0x1E0 Varies

Reserved 0x1E8 - 0x1EC

Reserved 0x1F0 - 0x23C Varies

H_LIOBN_ATTRIBUTES / 17.2.2.2.6 0x240 Normal
If LIOBN Attributes are

implemented
hcall-liobn-attributes

Table 176. Hypervisor Call Function Table (Continued)

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

14.5  Hypervisor Requirements 397

LoPAPR, Version 1.1 (March 24, 2016)

H_ILLAN_ATTRIBUTES / 16.4.3.8 0x244 Normal

If ILLAN Checksum
Offload Support is

implemented
If ILLAN Backup Trunk

Adapter option is
implemented

hcall-illan-options

Reserved 0x248

H_REMOVE_RTCE / 17.2.2.2.3 0x24C Critical
If H_PUT_RTCE is

implemented
hcall-rdma

Reserved 0x27C

Reserved 0x280

Reserved 0x28C-0x294

H_JOIN / 14.11.5.1 0x298 Normal
If Thread Join option is

implemented
hcall-join

H_DONOR_OPERATION / 17.8.6.1 0x29C Normal
If VASI option is

implemented
hcall-vasi

H_VASI_SIGNAL / 17.8.6.2 0x2A0 Normal
If VASI option is

implemented
hcall-vasi

H_VASI_STATE / 17.8.6.3 0x2A4 Normal
If VASI option is

implemented
hcall-vasi

H_VIOCTL / 17.2.1.6 0x2A8 Normal
If any virtual I/O options

are implemented
hcall-vioctl

H_VRMASD / 14.12.2.1 0x2AC Normal
If the VRMA option is

implemented.
hcall-vrma

H_ENABLE_CRQ / 17.2.3.1.5.4 0x2B0 Continued
If partition suspension
option is implemented

hcall-suspend

Reserved 0x2B4

H_GET_EM_PARMS / 14.14.2 0x2B8 Normal
If the Partition Energy
Management Option is

implemented
hcall-get-emparm

H_VPM_PSTAT / 14.12.4.1 0x2BC Normal

If the Cooperative
Memory

Over-commitment
Option is implemented

hcall-cmo

H_SET_MPP / 14.12.3.4 0x2D0 Normal

If the Cooperative
Memory

Over-commitment
Option is implemented

hcall-cmo

H_GET_MPP / 14.12.3.5 0x2D4 Normal

If the Cooperative
Memory

Over-commitment
Option is implemented

hcall-cmo

Table 176. Hypervisor Call Function Table (Continued)

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

398 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

H_MO_PERF / 14.12.3.7 0x2D8 Normal

If the Cooperative
Memory

Over-commitment
Option is implemented
and the calling partition

is authorized.

hcall-cmo

H_REG_SUB_CRQ / 17.2.3.3.5.1 0x2DC Normal If the Subordinate CRQ
Option is implemented hcall-sub-crq

H_FREE_SUB_CRQ / 17.2.3.3.5.2 0x2E0 Normal If the Subordinate CRQ
Option is implemented hcall-sub-crq

H_SEND_SUB_CRQ / 17.2.3.3.5.3 0x2E4 Normal If the Subordinate CRQ
Option is implemented hcall-sub-crq

H_SEND_SUB_CRQ_INDIRECT / 17.2.3.3.5.4 0x2E8 Normal If the Subordinate CRQ
Option is implemented hcall-sub-crq

H_HOME_NODE_ASSOCIATIVITY / 14.11.6.1 0x2EC Normal
If the VPHN Option is

implemented
hcall-vphn

Reserved 0x2F0

H_BEST_ENERGY / 14.14.2.1 0x2F4 Normal
If the Partition Energy
Management Option is

implemented

hcall-best-energy-1<list>
a

SNS Registration (H_REG_SNS) / 14.12.3.8.3.2 0x2F8 Normal
If the Expropriation

Subvention Notification
Option is implemented

hcall-esn

X_XIRR-X / 14.5.4.7.5 0x2FC Critical Yes hcall-interrupt

H_RANDOM / 14.15.1 0x300 Normal

If a random number
generator Platform
Facilities Option is

implemented

hcall-random

Reserved 0x310

14.15.2.1 H_COP_OP: / 14.15.2.1 0x304 Normal

If one or more
Coprocessor Platform
Facilities Options are

implemented

hcall-cop

14.15.2.2 H_STOP_COP_OP / 14.15.2.2 0x308 Normal

If one or more
Coprocessor Platform
Facilities Options are

implemented

hcall-cop

H_GET_MPP_X / 14.12.3.5.1 0x314 Normal

If the Extended
Cooperative Memory

Overcommittment
Option is implemented

hcall-cmo-x

H_SET_MODE / 14.5.4.3.5 0x31C Normal
If the platform supports
POWER ISA version

2.07 or higher
hcall-set-mode

Reserved 0x320

Table 176. Hypervisor Call Function Table (Continued)

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

14.5  Hypervisor Requirements 399

LoPAPR, Version 1.1 (March 24, 2016)

Firmware Implementation Note: The assignment of function tokens is designed such that a single mask operation can
validate that the value is within the range of a reasonable size branch table. Entries within the branch table can
handle unimplemented code points.

The hypervisor routines are optimized for execution speed. In some rare cases, locks are taken, and specific hardware
designs require short wait loops. However, if a needed resource is truly busy, or processing is required by an agent, the
hypervisor returns to the caller, either to have the function retried or continued at a later time. The Performance Class
establishes specific performance requirements against each specific hcall() function as defined below.

Hypervisor Call Performance Classes:

Critical Must make continuous forward progress, encountering any busy resource must cause the func-
tion to back out and return with a “hardware busy” return code. When subsequently called, the
operation begins again. Short loops for larwx and stwcx to acquire an apparently unheld lock
are allowed. These functions may not include wait loops for slow hardware access.

Normal Similar to critical, however, wait loops for slow hardware access are allowed. These functions
may not include wait loops for an agent such as an external micro-processor or message trans-
mission device.

Continued This class of functions is expected to serialize on the use of external agents. If the external agent
is busy the function returns “hardware busy”. If the interface to the external agent is not busy,
the interface is marked busy and used to start the function. The function returns one of the
“function in progress” return codes. Later, the caller may check on the completion of the func-
tion by issuing the “check” Hcall function with the “function in progress” parameter code. If

H_GET_DMA_XLATES_LIMITED / 14.5.4.10 0x324 normal

If the plaform
implements the LRDR

option at LoPAPR
Version 2.7 or higher

hcall-xlates-limited

Reserved for platform-dependent hcall()s / Appendix J 0xF000 - 0xFFFC

ILLEGAL

Any token value
having a one in
either of the low

order two bits

Reserved

0x328 - 0xEFFC
and 0x10000 -

0xFFFFFFFFFFF
FFFFC: RTAS

implementations
may assigns

values in these
ranges to their
own internal

interfaces, as long
as they are

prepared for the
growth of
architected

functions into this
range.

a. The <list> suffix for hcall-best-energy indicates an optional dash delimited series (may be null) of supported resource codes encoded as ASCII
decimal values in addition to the minimal support value of 1 for processors, other values are define in Section 14.14.2.1‚ “H_BEST_ENERGY‚” on
page 495.

Table 176. Hypervisor Call Function Table (Continued)

Hypervisor Call Function Name/Section
Hypervisor Call
Function Token

Hypervisor Call
Performance Class

Function Mandatory? Function Set

400 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

the function completed properly, the hypervisor maintains no status and the “check” Hcall re-
turns success. If the operation is still in process, the same “function in progress” code is re-
turned. If the function completed in error, the completion error code is returned. The hypervisor
maintains room for at least one outstanding error status per external agent interface per proces-
sor. If there is no room to record the error status, the hypervisor returns “hardware busy” and
does not start the function.

Terminal This class of functions is used to manage a partition when the OS is not in regular operation.
These events include postmortems and extensive recoveries.

The hypervisor performance classes are ordered in decreasing restriction.

R1–14.5.3–3. For the LPAR option: The caller must perform properly given that the hypervisor meets the perfor-
mance class specified.

R1–14.5.3–4. For the LPAR option: The hypervisor implementation must meet the specified performance class or
higher.

R1–14.5.3–5. For the LPAR option: Platform hardware designs must take the allowable performance classes into
account when choosing the hardware access technology for the various facilities.

R1–14.5.3–6. For the LPAR option: The hypervisor must have the capability to receive and handle the hypervisor
call interrupts simultaneously on multiple processors in the same or different partitions up to the number of
processors in the system.

R1–14.5.3–7. For the LPAR option: The hypervisor must check the state of the MSR register bits that are not set
to a specific value by the processor hardware during the invoking interrupt per Table 177‚ “MSR State on En-
trance to Hypervisor‚” on page 400.

R1–14.5.3–8. For the LPAR option: The Hcall() flags field must meet the definition in: Table 178‚ “Page Frame
Table Access flags field definition‚” on page 401; the hypervisor may safely ignore flag field values not ex-
plicitly defined by the specific hcall() semantic.

R1–14.5.3–9. For the LPAR option: The platform must ensure that flag field values not defined for a specific
hcall() do not compromise partitioning integrity.

R1–14.5.3–10. For the LPAR option: Implementations that normally choose to ignore invalid flag field values
must provide a “debug mode” that does check for invalid flag field values and returns H_Parameter when any
are found.

Table 177. MSR State on Entrance to Hypervisor

MSR Bit Required State Error-Code

HV - Hypervisor 1 None

Bits 2,4:46, 57, and 60 Reserved Set to 0 by Hardware None

ILE - Interrupt Little Endian As Last set by the hypervisor None

ME - Machine check Enable As last set by the hypervisor None

LE Little-Endian Mode 0 forced by ILE None

14.5  Hypervisor Requirements 401

LoPAPR, Version 1.1 (March 24, 2016)

Architecture Note: The method for invocation of a platform’s “debug mode” is beyond the scope of this architecture.

R1–14.5.3–11. For the LPAR option: The caller of Hcall must be in privileged mode (MSRPR = 0) or the hypervi-
sor immediately returns an H_Privilege return code. See Table 179‚ “Hypervisor Call Return Code Table‚” on
page 402 for this and other architected return codes.

R1–14.5.3–12. For the LPAR option: The caller of hcall() must be prepared for a return code of H_Hardware from
all functions.

R1–14.5.3–13. For the LPAR option: In order for the platform to return H_Hardware, the error must not have re-
sulted in an undetectable state/data corruption nor will continued operation propagate an undetectable
state/data corruption as a result of the original error.

Notes:

1. A detectable corruption, when accessed, results in either a H_Hardware return code, machine check or
check stop per platform policy.

2. Among other implications of Requirement R1–14.5.3–13 are: the effective state of the partition appears to
not change due to the failed hcall() -- (any partial changes to persistent state/data are backed out); and the re-
covery of platform resources that held lost state/data does not hide the state/data loss to subsequent users of
that state/data.

3. The operating system is not expected to log a serviceable event due to an H_Hardware return code from an
hcall(), and treats the hcall() as failing due to nonspecific hardware reasons. Any logging of a serviceable
event in response to the underlying cause is handled by separate platform initiated operations.

Table 178. Page Frame Table Access flags field definition

Bit Function Bit Function Bit Function Bit Function

0-15 NUMA CEC Cookie

16-23 Subfunction Codes

32 AVPN 48 Zero Page

33 andcond 49 Copy Page

34-39 Reserved
50-54 key0-key4a

a. Bits 50-54 (key0 - key4) shall be treated as reserved on platforms that either do not contain an “ibm,processor-storage-keys”
property, or contain an “ibm,processor-storage-keys” property with the value of zero in both cells.

55 pp0b

b. Bit 55 (pp0) shall be treated as reserved on platforms that do not have the “Support for the “110” value of the Page Protection (PP) bits” bit
set to a value of 1 in the “ibm,pa-features” property.

24 Exact 40 I-Cache-Invalidate 56 Compression

25 R-XLATE 41 I-Cache-Synchronize 57 Checksum

26 READ-4 42
 CC (Coalesce

Candidate)
58-60 Reserved

27 Reserved

43-47 Reserved
28-31 CMO Option Flags

61 N

62 pp1

63 pp2

402 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Table 179. Hypervisor Call Return Code Table

Hypervisor Call Return Code
Values (R3)

Meaning

0x0100000 - 0x0FFFFFFF Function in Progress

9905
H_LongBusyOrder100sec - Similar to LongBusyOrder1msec, but the hint is
100 second wait this time.

9904
H_LongBusyOrder10sec - Similar to LongBusyOrder1msec, but the hint is 10
second wait this time.

9903
H_LongBusyOrder1Sec - Similar to LongBusyOrder1msec, but the hint is 1
second wait this time.

9902
H_LongBusyOrder100mSec - Similar to LongBusyOrder1msec, but the hint is
100mSec wait this time.

9901
H_LongBusyOrder10mSec - Similar to LongBusyOrder1msec, but the hint is
10mSec wait this time.

9900

H_LongBusyOrder1msec - This return code is identical to H_Busy, but with
the added bonus of a hint to the partition OS. If the partition OS can delay for 1
millisecond, the hcall will likely succeed on a new hcall with no further busy
return codes. If the partition OS cannot handle a delay, they are certainly free
to immediately turn around and try again.

18 H_CONTINUE

17 H_PENDING

16 H_PARTIAL_STORE

15 H_PAGE_REGISTERED

14 H_IN_PROGRESS

13 Sensor value >= Critical high

12 Sensor value >= Warning high

11 Sensor value normal

10 Sensor value <= Warning low

9 Sensor value <= Critical low

5

 H_PARTIAL (The request completed only partially successful. Parameters
were valid but some specific hcall function condition prevented fully
completing the architected function, see the specific hcall definition for
possible reasons.)

4
 H_Constrained (The request called for resources in excess of the maximum
allowed. The resultant allocation was constrained to maximum allowed)

3 H_NOT_AVAILABLE

2 H_Closed (virtual I/O connection is closed)

1
H_Busy
Hardware Busy -- Retry Later

0 H_Success

-1 H_Hardware (Error)

14.5  Hypervisor Requirements 403

LoPAPR, Version 1.1 (March 24, 2016)

-2 H_Function (Not Supported)

-3 H_Privilege (Caller not in privileged mode).

-4 H_Parameter (Outside Valid Range for Partition or conflicting)

-5 bad_mode (Illegal MSR value)

-6 H_PTEG_FULL (The requested pteg was full)

-7 H_Not_Found (The requested entity was not found)

-8
H_RESERVED_DABR (The requested address is reserved by the hypervisor
on this processor)

-9 H_NOMEM

-10 H_AUTHORITY (The caller did not have authority to perform the function)

-11
H_Permission (The mapping specified by the request does not allow for the
requested transfer)

-12
H_Dropped (One or more packets could not be delivered to their requested
destinations)

-13 H_S_Parm (The source parameter is illegal)

-14 H_D_Parm (The destination parameter is illegal)

-15 H_R_Parm (The remote TCE mapping is illegal)

-16 H_Resource (One or more required resources are in use)

-17 H_ADAPTER_PARM (invalid adapter)

-18 H_RH_PARM (resource not valid or logical partition conflicting)

-19 H_RCQ_PARM (RCQ not valid or logical partition conflicting)

-20 H_SCQ_PARM (SCQ not valid or logical partition conflicting)

-21 H_EQ_PARM (EQ not valid or logical partition conflicting)

-22 H_RT_PARM (invalid resource type)

-23 H_ST_PARM (invalid service type)

-24 H_SIGT_PARM (invalid signalling type)

-25 H_TOKEN_PARM (invalid token)

-27 H_MLENGTH_PARM (invalid memory length)

-28 H_MEM_PARM (invalid memory I/O virtual address)

-29 H_MEM_ACCESS_PARM (invalid memory access control)

-30 H_ATTR_PARM (invalid attribute value)

-31 H_PORT_PARM (invalid port number)

-32 H_MCG_PARM (invalid multicast group)

Table 179. Hypervisor Call Return Code Table (Continued)

Hypervisor Call Return Code
Values (R3)

Meaning

404 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

-33 H_VL_PARM (invalid virtual lane)

-34 H_TSIZE_PARM (invalid trace size)

-35 H_TRACE_PARM (invalid trace buffer)

-36 H_TRACE_PARM (invalid trace buffer)

-37 H_MASK_PARM (invalid mask value)

-38 H_MCG_FULL (multicast attachments exceeded)

-39 H_ALIAS_EXIST (alias QP already defined)

-40 H_P_COUNTER (invalid counter specification)

-41 H_TABLE_FULL (resource page table full)

-42
H_ALT_TABLE (alternate table already exists / alternate page table not
available)

-43 H_MR_CONDITION (invalid memory region condition)

-44 H_NOT_ENOUGH_RESOURCES (insufficient resources)

-45 H_R_STATE (invalid resource state condition or sequencing error)

-46 H_RESCINDED

-54 H_Aborted

-55 H_P2

-56 H_P3

-57 H_P4

-58 H_P5

-59 H_P6

-60 H_P7

-61 H_P8

-62 H_P9

-63 H_NOOP

-64 H_TOO_BIG

-65 Reserved

-66 Reserved

-67
H_UNSUPPORTED (Parameter value outside of the range supported by this
implementation)

-68 H_OVERLAP (unsupported overlap among passed buffer areas)

-69 H_INTERRUPT (Interrupt specification is invalid)

Table 179. Hypervisor Call Return Code Table (Continued)

Hypervisor Call Return Code
Values (R3)

Meaning

14.5  Hypervisor Requirements 405

LoPAPR, Version 1.1 (March 24, 2016)

14.5.4 Hypervisor Call Functions

14.5.4.1 Page Frame Table Access

All hypervisor Page Frame Table (PFT) access routines are called using 64 bit linkage conventions and apply to all
page sizes that the platform supports as specified by the “ibm,processor-page-sizes” property (See
Appendix C, “PA Processor Binding,” on page 753 for more details). The hypervisor PFT access functions carefully
update a given Page Table Entry (PTE) with at least 64 bit store operations since an invalid update sequence could re-
sult in machine checks. To guard against multiple conflicting allocations of a PTE that could result in a check stop con-
dition, the hypervisor PTE allocation routine (H_ENTER) reserves the first two (high order) software PTE bits for use
as PTE locks while the low order two software PTE bits are reserved for OS use (not used by firmware). If a firmware
PTE bit is on, the OS is to assume that the PTE is in use, just as if the V bit were on. The hypervisor PFT access rou-
tines often execute the tlbie instruction, on certain platforms, this instruction may only be executed by one processor in
a partition at a time, the hypervisor uses locks to assure this. The tlbie instruction flushes a specific translate lookaside
buffer (TLB) entry from all processors participating in the protocol. All the processors participating in the tlbie proto-
col are defined as a translation domain. All processors of a given partition that are in a given translation domain share
the same hardware PFT. Book III of the PA specifies the codes sequences needed to safely access the PFT, in its chap-
ter titled “Storage Control Instructions and Table Updates”. These code sequences are part of this specification by ref-
erence. The hypervisor PFT access routines are in the critical performance path of the machine, therefore,
extraordinary care must be given to their performance, including machine dependent coding, minimal run time check-
ing, and code path length optimization. For performance reasons, all parameter linkage is through registers, and no in-
direct parameter linkage is allowed. This requires special glue code on the part of the caller to pick up the return
parameters. The hypervisor PFT access routines modify the calling processor’s partition PFT on the calling node. On
NUMA systems, if an LPAR partition spans multiple Central Electronics Complexes (CECs), the partition’s processors
may be in separate translation domains. Each platform translation domain has a separate PFT. Therefore, the partition’s
OS must modify each PFT individually. This is done either by making hcall() accesses specifying the NUMA CEC
Cookie (which identifies the translation domain) in the high order 16 bits of the flags parameter (H_ENTER and
H_READ only) or by issuing the hcall() from a processor within the translation domain as identified by the processor’s
NUMA CEC Cookie field of the “ibm,pft-size” property.

-70 H_BAD_DATA (uncorrectable data error)

-71 H_NOT_ACTIVE (Not associated with an active operation)

-72 H_SG_LIST (A scatter/gather list element is invalid)

-73
H_OP_MODE (There is a conflict between
the subcommand and the requested operation notification)

-74 H_COP_HW (co-processor hardware error)

-75 H_STATE (invalid state)

-76 H_RESERVED (a reserved value was specified)

-77 : -255 Reserved

-256 -- -511
H_UNSUPPORTED_FLAG (An unsupported binary flag bit was specified.
The returned value is -256 - the bit position of the unsupported flag bit [high
order flag bit is 0 etc.])

Table 179. Hypervisor Call Return Code Table (Continued)

Hypervisor Call Return Code
Values (R3)

Meaning

406 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

The PFT is preallocated based upon the value of the partition’s PFT_size configuration variable. This configuration
variable is initialized to 4 PTEs per node local page frame and 2 PTEs per remote node page frame. The size of the PFT
per node is communicated to the partition’s OS image via the “ibm,pft-size” property of the node.

The value of the configuration variable PFT_size consists of two comma separated integers, the first is the number
of hardware PFT entries to allocate per CEC local page, and the second is the number of hardware PFT entries to allo-
cate per remote CEC page (if NUMA configured). These allocations are made at partition boot time based upon the ini-
tial partition memory allocation, based upon specific situations (such as low page table usage or future need for
dynamic memory addition) the OS may wish to override the platform default values.

R1–14.5.4.1–1. For the LPAR option: The platform must allocate the partition’s page frame table. The size of this
table is determined by the PFT_size configuration variable in the OS image’s “common” NVRAM partition.

R1–14.5.4.1–2. For the LPAR option: The platform must provide the “ibm,pft-size” property in the proces-
sor nodes of the device tree (children of type cpu of the /cpus node).

Register Linkage (For hcall() tokens 0x04 - 0x18)

 On Call

 R3 function call token

 R4 flags (see Table 178‚ “Page Frame Table Access flags field definition‚” on page 401)

 R5 Page Table Entry Index (PTEX)

 R6 Page Table Entry High word (PTEH) (on H_ENTER only)

 R7 Page Table Entry Low word (PTEL) (on H_ENTER only)

 On Return:

 R3 Status Word

 R4 chosen PTEX (from H_ENTER) / High Order Half of old PTE

 R5 Low Order Half of old PTE

 R6

Semantics checks for all hypervisor PTE access routines:

 Hypervisor checks that the caller was in privileged mode or H_Privilege return code.

 On NUMA platforms for the H_ENTER and H_READ calls only, the hypervisor checks that the NUMA CEC
Cookie is within the range of values assigned to the partition else return H_Parameter.

 Hypervisor checks that the PTEX is zero or greater and less than the partition maximum, else H_Parameter return
code.

 Hypervisor checks the logical address contained in any PTE to be entered into the PFT to insure that it is valid
and then translates the logical address into the assigned physical address.

 When hypervisor returns the contents of a PTE, the contents of the RPN are usually architecturally undefined. It
is expected that hypervisor implementations leave the contents of this field as it was read from the PTE since it
cannot be used by the OS to directly access real memory. The exception to this rule is when the R-XLATE flag is
specified to the H_READ hcall(), then the RPN in the PTE is reverse translated into the LPN prior to return.

 Logical addressing:

14.5  Hypervisor Requirements 407

LoPAPR, Version 1.1 (March 24, 2016)

LPAR adds another level of virtual address translation managed by the hypervisor. The OS is never allowed to use the
physical address of its memory this includes System Memory, MMIO space, NVRAM etc. The OS sees System Mem-
ory as N regions of contiguous logical memory. Each logical region is mapped by the hypervisor into a corresponding
block of contiguous physical memory on a specific node. All regions on a specific system are the same size though dif-
ferent systems with different amount of memory may have different region sizes since they are the quantum of memory
allocation to partitions. That is, partitions are granted memory in region size chunks and if a partition’s OS gives up
memory, it is in units of a full region. On NUMA platforms, groups of regions may be associated with groups of pro-
cessors forming logical CECs for allocation and migration purposes.

Logical addresses are divided into two fields, the logical region identifier and the region offset. The region offset is the
low order bits needed to represent the region size. The logical region identifier are the remaining high order bits.

 Logical addresses start at zero. When control is initially passed to the OS from the platform, the first region is the
single RMA. The first region has logical region identifier of zero. This first region is specified by the first address -
length pair of the “reg” property of the /memory node of the OF device tree. Subsequent regions each have their
own address - length pair. At initial program load time, the logical region identifiers are sequential starting at zero
but over time, with dynamic memory reconfiguration, holes may appear in the partition’s address space.

 Logical to physical translation: This translation is based upon a simple indexed table per partition of the physical ad-
dresses associated with the start of each region (in logical region identifier order). At least two special values are
recognized:

1. The invalid value for those regions that do not have a physical mapping (so that there can be holes in the
logical address map for various reasons such as memory expansion).

2. The I/O region value, that calls for further checking against partition I/O address range allocations.

 The logical region identifier is checked for being less than the maximum size, and then used to index the logical
to physical translation table.

 If the physical region identifier is valid (certain values are reserved say 0 and all F’s) then it replaces the logical
region identifier in the PTE and the PTE access function continues.

 If the physical region identifier is the I/O region, then proceed to the I/O translation algorithm (implementation
dependent based upon platform characteristics).

 If the physical region identifier is invalid, return H_Parameter

R1–14.5.4.1–3. For the LPAR option: The OS must make no assumptions about the logical to physical mapping
other than the low order bits.

R1–14.5.4.1–4. For the LPAR option: Each logical region must have its own address - length pair in the “reg”
property of the OF /memory node.

R1–14.5.4.1–5. For the LPAR option: When control is initially passed to the OS from the platform, the first logi-
cal region (having logical region identifier 0) must be the region accessed when the OS operates with trans-
late off.

R1–14.5.4.1–6. For the LPAR option: When control is initially passed to the OS from the platform, the size of the
logical region must be equal to a real mode length size supported by the platform.

R1–14.5.4.1–7. For the LPAR option: Each logical region must start and end on a boundary of the largest page
size that the logical region supports (see “ibm,dynamic-memory” and “ibm,lmb-page-sizes” in
Appendix B, “LoPAPR Binding,” on page 661 as well as R1–14.5.4.1–9 for more details).

R1–14.5.4.1–8. For the LPAR option: The pages that contain the platform’s per processor interrupt management
areas or any other device marked “used-by-rtas” must not be mapped into the partition virtual address space.

408 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.5.4.1–9. For the LPAR option: Each logical region must support all page sizes presented in the
“ibm,processor-page-sizes” property in Appendix C, “PA Processor Binding,” on page 753 that
are less than or equal to the size of the logical region as specified by either the OF standard “reg” property
of the logical region’s OF /memory node, or the “ibm,lmb-size” property of the logical region’s
/ibm,dynamic-reconfiguration-memory node in Appendix B, “LoPAPR Binding,” on page 661.

Implementation Note: 32 bit versions of AIX only support 36 bit logical address memory spaces. Providing such a
partition with a larger logical memory address space may cause OS failures.

Implementation Note: Requirement R1–14.5.4.1–7 may be met by ensuring that all logical regions start and end on a
boundary of the largest page size supported by the platform.

14.5.4.1.1 H_REMOVE

This hcall is for invalidating an entry in the page table. The PTEX identifies a specific page table entry. If the PFO op-
tion is implemented an optional flag causes the hypervisor to compress the page contents to one or more data blocks af-
ter invalidating the page table entry given that a compression coprocessor is available and the page is small enough to
be synchronously compressed. If the compression coprocessor is busy, or the page is too large, the compression can be
subsequently performed using the H_COP_OP hcall() see Section 14.15.2.1‚ “14.15.2.1 H_COP_OP:‚” on page 499. If
the page contents are compressed, then a checksum may be appended by setting the checksum flag – if the compression
flag is not set the checksum flag is ignored.

Syntax:

int64 /* H_Success Expected Return code */
/* H_RESCINDED */
/* H_Function The compression request is not authorized */
/* H_UNSUPPORTED_FLAG */
/* H_P3 The out parameter is invalid */
/* H_P4 The outlen parameter is invalid */
/* H_SG_LIST A scatter/gather list element is invalid */
/* H_TOO_BIG The specified page is too long for the output buffer*/
/* H_PARTIAL The compression portion of the call was not performed because */

/* the compressor was busy */
/* H_Constrained The compression portion of the call was not performed because */
/* the page was too large to be compressed synchronously */
/* H_COP_HW The compressor portion of the call experienced a hardware error */
/* H_Busy The hardware is busy user may call back later */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing */
/* the function */

hcall (const uint64 H_REMOVE,
uint64 flags, /* see Table 178‚ “Page Frame Table Access flags field definition‚” on page 401*/
uint64 PTEX, /* The index of the PTE to be removed */
uint64 AVPN, /*If the AVPN flag is valid else this parameter value is unused */

/*the following two parameters are valid only if the compression flag is on */
uint64 out, /*Output data block logical real address */
int64 outlen /*If non negative the length of the output data block, */

/*If negative the length of the output data descriptor list in bytes *)
)

Parameters:

 flags: AVPN, andcond, and for the CMO option: CMO Option flags as defined in Table 189‚ “CMO Page Usage
State flags Definition‚” on page 479 and for the PFO option the compression and checksum flags.

14.5  Hypervisor Requirements 409

LoPAPR, Version 1.1 (March 24, 2016)

 PTEX (index of the PTE in the page table to be used)

 AVPN: Optional “Abbreviated Virtual Page Number” -- used as a check for the correct PTE

 When the AVPN flag is set, the contents of the AVPN parameter are compared to the first double word of the PTE
(after bits 57-63 of the PTE have been masked). Note, the low order 7 bits are undefined and should be zero oth-
erwise the likely result is a return code of H_Not_Found.

 When the andcond flag is set, the contents of the AVPN parameter are bit anded with the first double word of the
PTE. If the result is non-zero the return code is H_Not_Found.

 out: For the PFO option, the output data block logical real address when the compression flag bit is on.

 outlen: For the PFO option, the length of the compression data block or compression data block descriptor list when
the compression flag bit is on.

Semantics:

 Check that the PTEX accesses within the PFT else return H_Parameter

 If the AVPN flag is set, and the AVPN parameter bits 0-56 do not match that of the specified PTE then return
H_Not_Found.

 If the andcond flag is set, the AVPN parameter is bit anded with the first double word of the specified PTE, if the re-
sult is non-zero, then return H_Not_Found.

 The hypervisor Synchronizes the PTE specified by the PTEX and returns its value

 Use the architected “Deleting a Page Table Entry” sequence such that the first double word of the resultant PFT
entry is all 0s.

 Use the proper tlbie instruction for the page size within a critical section protected by the proper lock (per large
page bit in the specified PTE).

 The synchronized value of the old PTE value ends up in R4 and R5 for return to the caller.

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined in
Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 For the PFO option: If the Compression flag is on:

 Check that the calling partition is authorized to use the compression co-processor else return H_Function.

 If the page is not “main store memory” then return H_UNSUPPORTED_FLAG TBD (value – 312)

 Check that the page size is <= the compression value in “ibm,max-sync-cop” else return H_Constrained.

 Build CRB for compression of the page size indicated in the PTE

 If the checksum flag is on command that a checksum be built

 Verify that the “out” parameter represents a valid logical real address within the caller’s partition else return H_P3

 If the “outlen” parameter is non-negative verify that the logical real address of (out + outlen) is a valid logical real
address within the same 4K page as the “out” parameter else return H_P4.

 If the “outlen” parameter is negative:

Verify that the absolute value of outlen meet all of the follow else return H_P4:

 Is <= the value of “ibm,max-sg-len”

410 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 Is an even multiple of 16

 That out + the absolute value of outlen represents a valid logical real address within the same 4K page as the
out parameter.

Verify that each 16 byte scatter gather list entry meets all of the following else return H_SG_LIST:

Verify that the first 8 bytes represents a valid logical real address within the caller’s partition.

Verify that the logical real address represented by the sum of the first 8 bytes and the second 8 bytes is a
valid logical real address within the same 4K page as the first 8 bytes.

 For the Shared Logical Resource Option if any of the memory represented by the out/outlen parameters have been
rescinded then return H_RESCINDED.

 Fill in the destination DDE list from the converted the out/outlen parameters.

 Issue icswx instruction to execute CRB

 Check coprocessor busy – retry / return H_PARTIAL if execution time expired / return H_COP_HW if compres-
sor is broken

 Wait for coprocessor to complete

 If compressor hardware error return H_COP_HW

 Check that the compressor had enough room to house the compressed image else return H_TOO_BIG

 Save compression block size in R6

 Return H_Success

14.5.4.1.2 H_ENTER

This hcall adds an entry into the page frame table. PTEH and PTEL contain the new entry. PTEX identifies either the
page table entry group or the specific PTE where the entry is to be added, depending upon the setting of the Exact flag.
If the Exact flag is off, the hypervisor selects the first free (invalid) PTE in the page table entry group. For pages with
sizes less than or equal to 64 K, Flags further provide the option to zero the page, and provide two levels of pro-
grammed I-Cache coherence management before activating the page table mapping. This hcall returns the PTE index
of the entered mapping. If the PFO option is implemented an optional compression flag causes the hypervisor to initial-
ize the page from one or more compressed data blocks and optionally (checksum flag) check the end to end block data
integrity prior to adding the entry to the page table. If the compression flag is not set the checksum flag is ignored.

int64 /* H_Success Expected Return code */
/* H_RESCINDED */
/* H_TOO_BIG The specified Input stream is too long */
/* H_Function The compression request is not authorized */
/* H_Aborted The specified input stream was too small to fill the page */
/* H_BAD_DATA The initialization data is corrupted */
/* H_P4 The in parameter is invalid */
/* H_P5 The inlen parameter is invalid */
/* H_SG_LIST A Scatter/gather list element is invalid */
/* H_Busy The hardware is busy user may call back later */
/* PTEX, PTEH, or PTEL parameters are invalid
/* H_Hardware The hcall() experienced a hardware fault potentially preventing */
/* the function */

hcall (const uint64 H_ENTER,

14.5  Hypervisor Requirements 411

LoPAPR, Version 1.1 (March 24, 2016)

uint64 flags, /* Per Table 178‚ “Page Frame Table Access flags field definition‚” on page 401*/
int64 PTEX, /* Index of the first PTE in the page table entry group to be used */
uint64 PTEH, /* The high order 8 bytes of the page table entry */
uint64 PTEL, /* The low order 8 bytes of the page table entry */
uint64 in, /*For the PFO option input data block logical real address */
int64 inlen /*For the PFO option if non negative the length of the input data block, */

/*If negative the length of the input data descriptor list in bytes *)
)

Parameters:

 Flags

 CEC Cookie

 Zero Page: Zero the System Memory page in real mode before placing its mapping into the PTE. This flag is
ignored for memory mapped I/O space pages; as an attempt to zero missing memory might result in a machine
check or worse. This function should use a processor dependent algorithm optimized for maximum perfor-
mance on the specific hardware. This usually is a sequence of dcbz instructions. Setting this flag for a page
with a size larger than 64 K will result in return code of H_TOO_BIG.

 I-Cache-Invalidate: Issue an icbi etc. instruction sequence to manage the I-Cache coherency of the cachable
page. This flag is ignored for memory mapped I/O pages. For use when the D-Cache is known to be clean, be-
fore placing its mapping into the PTE. Setting this flag for a page with a size larger than 64 K will result in re-
turn code of H_TOO_BIG.

 I-Cache-Synchronize: Issue dcbst and icbi, etc., instruction sequence to manage the I-Cache coherency of the
cachable page. This flag is ignored for memory mapped I/O pages. For use when the D-Cache may contain
modified data, before placing its mapping into the PTE. Setting this flag for a page with a size larger than 64 K
will result in return code of H_TOO_BIG.

 Exact: Place the entry in the exact PTE specified by PTEX if it is empty else return H_PTEG_FULL.

 For the CMO option: CMO Option flags as defined in Table 189‚ “CMO Page Usage State flags Definition‚”
on page 479.

 For the PFO option: the compression flag initializes the page content from a compression buffer and the check-
sum flag checks for end to end compression buffer data integrity.

 PTEX (index of the first PTE in the page table entry group to be used for the PTE insertion)

 PTEH -- the high order 8 bytes of the page table entry.

 PTEL -- the low order 8 bytes of the page table entry.

Semantics:

 The hypervisor checks that the logical page number is within the bounds of partition allocated memory resources,
else returns H_Parameter.

 If the Shared Logical Resource option is implemented and the logical page number represents a page that has
been rescinded by the owner, return H_RESCINDED.

 The hypervisor checks that the address boundary matches the setting of the input PTE’s large page bits; else return
H_Parameter.

412 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 The hypervisor checks that the page size described by the setting of the input PTE’s page size bits is less than or
equal to the largest page size supported by the logical region that is being mapped; else return H_Parameter.

 The hypervisor checks that the WIMG bits within the PTE are appropriate for the physical page number else
H_Parameter return. (For System Memory pages WIMG=0010, or, 1110 if the SAO option is enabled, and for IO
pages WIMG=01**.)

 For pages with sizes greater than 64 K, the hypervisor checks that the Zero Page, I-Cache-Invalidate, and
I-Cache_Synchronize bits of the Flags parameter are not set; else return H_TOO_BIG.

 Force off RS mode reserved PTEL bits (11) as well as hypervisor reserved software bits (57 and 58) in PTEH.

 If the Exact flag is off, set the low order 3 bits of the PTEX to zero (insures that the algorithm stays inside partition’s
PFT and is faster than a check and error code response).

 If the Zero Page flag is set, use optimized routine to clear page (usually series of dcbz instructions).

 For the PFO option: if the compression flag is on then

 Check that the calling partition is authorized to use the compression co-processor else return H_Function.

 If the page is not “main store memory” then return H_UNSUPPORTED_FLAG.

 Build CRB for decompression

 If the checksum flag is on command that a checksum be verified.

 Validate the inlen/in parameters and build the source DDE

Verify that the “in” parameter represents a valid logical real address within the caller’s partition else return
H_P4

 If the “inlen” parameter is non-negative verify that the logical real address of (in + inlen) is a valid logical real
address within the same 4K page as the “in” parameter else return H_P5.

 If the “inlen” parameter is negative: Verify that the absolute value of inlen meet all of the follow else return
H_P5:

 Is <= the value of “ibm,max-sg-len”

 Is an even multiple of 16

 That in + the absolute value of inlen represents a valid logical real address within the same 4K page as the in
parameter.

Verify that each 16 byte scatter gather list entry meets all of the following else return H_SG_LIST:

Verify that the first 8 bytes represents a valid logical real address within the caller’s partition.

Verify that the logical real address represented by the sum of the first 8 bytes and the second 8 bytes is a
valid logical real address within the same 4K page as the first 8 bytes.

Verify that the sum of all the scatter gather length fields (second 8 bytes of each 16 byte entry) is <= the decom-
pression value in “ibm,max-sync-cop” else return H_TOO_BIG.

1.In addition, bits 52 and 53 are forced off on platforms that either do not contain an “ibm,processor-storage-keys” property, or contain an
“ibm,processor-storage-keys” property with the value of zero in both cells. Bit 0 is forced off on platforms that do not have the “Support
for the “110” value of the Page Protection (PP) bits” bit set to a value of 1 in the “ibm,pa-features” property.

14.5  Hypervisor Requirements 413

LoPAPR, Version 1.1 (March 24, 2016)

 For the Shared Logical Resource Option if any of the memory represented by the in/inlen parameters have been
rescinded then return H_RESCINDED.

 Fill in the source DDE list from the converted the in/inlen parameters.

 Build the destination DDE referencing the start of the PTE page with the length of the PTE page size.

 Issue icswx instruction to execute CRB

 Check coprocessor busy – retry / return H_Busy if execution time exhausted / return H_Hardware if compressor
is broken

 Wait for coprocessor to complete

 If compressor ran out of destination space return H_TOO_BIG

 Check that the decompression filled the full page else return H_Aborted

 If the checksum flag is on check that the data is valid else return H_BAD_DATA

 If hardware error return H_Hardware

 If the I-Cache-Invalidate flag is set, issue icbi instructions for all of the page’s cache lines

 If the Cache-Synchronize flag is set, issue dcbst and icbi instructions for all of the page’s cache lines. Implementa-
tions may need to issue a sync instruction to complete the coherency management of the I-Cache.

 The hypervisor selects a PTE within the page table entry group using the following.

Algorithm

 if Exact flag is on then set t to 0 else set t to 7

 for i=0;i<= t; i++

 Combine page table base, PTEX and offset base on (i) into R3

 R8 <- ldarx PTEH(R3) /* prepare to take a lock on the PTE */

 if PTE is valid (R8 (bit 63) is set) then continue

 if PTE is locked (R8 (bit 57) is set) then continue

 set R8 (bit 57) /* prepare to lock PTE */

 PTEH(R3) <- stdcx R8 /* attempt to take lock */

 if stdcx failed continue

 goto insert

 return H_PTEG_FULL

 insert: use code sequence from PA Book III

 construct return PTEX (R4 <- (R3 - PFTbase) shifted down 4 places)

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined
in Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 return H_Success

414 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.5.4.1.3 H_READ

This hcall returns the contents of a specific PTE in registers R4 and R5.

 int64 hcall (const uint64 H_READ, uint64 flags, int64 PTEX)

Parameters:

 flags:

 CEC Cookie: Cross CEC PFT access

 READ_4: Return 4 PTEs

 R-XLATE: Include a valid logical page number in the PTE if the valid bit is set, else the contents of the logical
page number field is undefined.

 For the CMO option: CMO Option flags as defined in Table 189‚ “CMO Page Usage State flags Definition‚”
on page 479.

 PTEX (index of the PTE in the page table to be used -- if the READ_4 flag is set the low order two bits of the
PTEX are forced to zero by the hypervisor to insure that they are in the range of the PTEG and it is faster than
checking.)

Semantics:

 Checks that the PTEX is within the defined range of the partition’s PFT else return H_Parmaeter

 If the READ_4 bit is clear Then load the specified PTE into R4 and R5

 If R-XLATE flag is set, then reverse translate the RPN field into the logical page number.

 Else

 clear the two low order bits of the PTEX (faster than checking them)

 load the 4 PTEs starting at PTEX into R4 through R11.

 If R-XLATE flag is set, then reverse translate the RPN fields into the logical page number.

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined in
Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 Set H_Success in R3 and return

14.5.4.1.4 H_CLEAR_MOD

This hcall clears the modified bit in the specific PTE. The second double word of the old PTE is returned in R4.

int64 /* H_Success Expected Return Code */
/* H_PARAMETER The PTE index was out of bounds */
/* H_Not_Found The requested valid PTE Entry was not found */
hcall (const uint64 H_CLEAR_MOD, /* Clears the PTE Modified bit */

uint64 flags, /* None Defined */
int64 PTEX) /* Index of the PTE to be used */

14.5  Hypervisor Requirements 415

LoPAPR, Version 1.1 (March 24, 2016)

Parameters:

 flags: For the CMO option: CMO Option flags as defined in Table 189‚ “CMO Page Usage State flags Defini-
tion‚” on page 479.

 PTEX (index of the PTE in the page table to be used)

Semantics:

 Check that the PTEX accesses within the PFT, else returns H_Parameter

 Check that the “V” bit is one, else return H_Not_Found.

 Fetch the low order double word of the PTE into R4. If the “C” bit is zero, then return H_Success.

 The hypervisor synchronizes the PTE specified by the PTEX, clears the mod bit, and returns its old value:

Use the architected “Modifying a Page Table Entry General Case” sequence from PA Book III.

Only PTE bits to be modified are:

 In double word 0 SW bit 57 and the V bit (63)

 In double word 1, C bit (56).

Use the proper tlbie instruction for the page size (per large page flag within PTE) within a critical section pro-
tected by the proper lock.

 The second double word of the old PTE value ends up in R4.

At the point where the new values are to be activated, use the old values with the “C” bit cleared.

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined
in Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 Return H_Success

14.5.4.1.5 H_CLEAR_REF

This hcall clears the reference bit in the specific PTE. The second double word of the old PTE is returned in R4.

int64 /* H_Success Expected Return Code */
/* H_Parameter The PTE index was out of bounds */
/* H_Not_Found The requested valid PTE Entry was not found */
hcall (const uint64 H_CLEAR_REF, /* Clears the PTE Reference bit */

uint64 flags, /* None Defined */
int64 PTEX) /* index of the PTE to be used */

Parameters:

 flags: For the CMO option: CMO Option flags as defined in Table 189‚ “CMO Page Usage State flags Defini-
tion‚” on page 479.

 PTEX (index of the PTE in the page table to be used)

Semantics:

 Check that the PTEX accesses within the PFT, else return H_Parameter.

 Check that the “V” bit is one, else return H_Not_Found.

416 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 Only PTE bits to be modified are:

 In double word 1 the R bit (55)

 Use the architected “Resetting the Reference Bit” sequence from PA Book III with the original second double
word of the PTE ending up in R4.

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined in
Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 Return H_Success

14.5.4.1.6 H_PROTECT

This hcall sets the page protect bits in the specific PTE.

int64 /* H_Success Expected Return Code */
/* H_Parameter The PTE index was out of bounds */
/* H_Not_Found The requested valid PTE Entry was not found */
hcall (const uint64 H_PROTECT, /* Changes the page protection specification */

uint64 flags, /* Special function indications */
int64 PTEX, /* index of the PTE to be used */
uint64 AVPN) /* Abbreviated virtual page number */

Parameters:

 flags: AVPN, pp01, pp1, pp2, key0-key42, n, and for the CMO option: CMO Option flags as defined in Table 189‚
“CMO Page Usage State flags Definition‚” on page 479.

 PTEX (index of the PTE in the page table to be used)

 AVPN: Optional “Abbreviated Virtual Page Number” -- used as a check for the correct PTE when the AVPN flag
is set.

Semantics:

 Check that the PTEX accesses within the PFT, else return H_Parameter

 Check that the “V” bit is one, else return H_Not_Found.

 If the AVPN flag is set, and the AVPN parameter bits 0-56 do not match that of the specified PTE, then return
H_Not_Found.

 The hypervisor synchronizes the PTE specified by the PTEX, sets the pp03, pp1, pp2, key0-key44, and n bits per
the flags parameter.

Only PTE bits to be modified are:

1.The pp0 portion of the flags parameter is ignored on platforms that do not have the “Support for the “110” value of the Page Protection (PP) bits” bit
set to a value of 1 in the “ibm,pa-features” property.

2.The key0-key4 portion of the flags parameter is ignored on platforms that either do not contain an “ibm,processor-storage-keys” prop-
erty, or contain an “ibm,processor-storage-keys” property with the value of zero in both cells.

3.The pp0 bit is not modified on platforms that do not have the “Support for the “110” value of the Page Protection (PP) bits” bit set to a value of 1 in
the “ibm,pa-features” property.

4.The key0 - key4 bits are not modified on platforms that either do not contain an “ibm,processor-storage-keys” property, or contain an
“ibm,processor-storage-keys” property with the value of zero in both cells.

14.5  Hypervisor Requirements 417

LoPAPR, Version 1.1 (March 24, 2016)

 In double word 0 SW bit 57 and the V bit (63)

 In double word 1 pp0 (see footnote 3 on page 416), pp1, pp2, key0-key4 (see footnote 4 on page 416), and n

Use the architected “Modifying a Page Table Entry General Case” sequence.

Use the proper tlbie instruction for the page size (per value in PTE) within a critical section protected by the
proper lock.

At the point where the new values are to be activated use the old values with the “R” bit cleared and the pp0
(see footnote 3 on page 416), pp1, pp2, key0-key4 (see footnote 4 on page 416), and n bits set as specified in
the flags parameter.

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined
in Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 Return H_Success

14.5.4.1.7 H_BULK_REMOVE

This hcall is for invalidating up to four entries in the page table. The PTEX in the translation specifier high parameters
identifies the specific page table entries.

Prototype:

int64 /* H_Success, expected return code
H_HARDWARE, Hardware Error
H_PARAMETER, One or more parameters were in error first found was flagged */

hcall (const int64 H_BULK_REMOVE, /* Function Code */
uint64 TSH1 /*Translation Specifier High 1*/
uint64 TSL1 /*Translation Specifier Low 1*/
uint64 TSH2 /*Translation Specifier High 2*/
uint64 TSL2 /*Translation Specifier Low 2*/
uint64 TSH3 /*Translation Specifier High 3*/
uint64 TSL3 /*Translation Specifier Low 3*/
uint64 TSH4 /*Translation Specifier High 4*/
uint64 TSL4); /*Translation Specifier Low 4*/

Translation specifiers:

Each is 16 bytes long made up of two 8 byte double words; a translation specifier high and a translation specifier low.

 Translation Specifier High double word:

 First byte (0) is a control/status byte:

High order two bits (0 and 1) are type code:

 00 Unused -- if found stop processing and return H_PARAMETER

 01 Request -- Processes As per H_REMOVE as modified by low order two control bits.

 10 Response -- written by hypervisor as a return status from processing individual “request” translation
specifier

 11 End of String -- if found stop processing and return H_Success.

Next two bits (2 and 3) are response code (in response to processing an individual “request” translation speci-
fier (type code modified to 10)):

418 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 00 Success -- the specified translation was removed as per H_REMOVE with the PTE's RC bits in the next
two status bits.

 01 Not found -- the specified translation was not found as per H_REMOVE.

 10 H_PARM -- one or more of the parameters of the specified translation were invalid per H_REMOVE --
processing of the bulk entries stops at this point and the hypervisor returns H_PARAMETER.

 11 H_HW -- The hardware experienced an uncorrected error processing this translation specifier -- process-
ing of the bulk entries stops at this point and the hypervisor returns H_HARDWARE.

Next two bits (4 and 5) are the Reference/Change bits from the removed PTE (These bits are only valid if bits
0-3 are 1000):

 Low order two bits (6 and 7) are request modification flags:

 00 absolute -- remove the specified PTEX entry unconditionally

 01 andcond -- remove the specified PTEX entry as with the andcond flag of H_REMOVE

 10 AVPN -- remove the specified PTEX entry as with the AVPN flag of H_REMOVE

 11 not used -- if found stop processing and return H_PARAMETER.

 Bytes 1 through 7 are the PTEX (PFT byte offset divided by 16)

 Translation Specifier Low double word:

 Bytes 0 through 7 are the AVPN as per H_REMOVE

Semantics:

 For each translation specifier, while the translation specifier is not “end of string”:

 Check that the PTEX accesses within the PFT else set H_PARM response status in the specific translation speci-
fier high register and return H_Parameter

 If the AVPN flag is set, and the AVPN parameter bits 0-56 do not match that of the specified PTE then set re-
sponse status Not found in the specific translation specifier high register, Continue.

 If the andcond flag is set, the AVPN parameter is bit anded with the first double word of the specified PTE (after
bits 57-63 of the PTE have been masked), if the result is non-zero, then set response status Not found in the spe-
cific translation specifier high register, Continue. (Note the low order 7 bits of the AVPN parameter should be
zero otherwise the likely result is a response status of Not found).

 The hypervisor Synchronizes the PTE specified by the PTEX.

 Use the architected “Deleting a Page Table Entry” sequence.

 Use the proper tlbie instruction for the page size within a critical section protected by the proper lock (per large
page bit in the specified PTE).

 The synchronized value of the old PTE RC bits ends up in bits 4 and 5 of the individual translation specifier high
register along with success response status.

 return H_Success

14.5  Hypervisor Requirements 419

LoPAPR, Version 1.1 (March 24, 2016)

14.5.4.2 Translation Control Entry Access

The Translation Control Entry (TCE) access hcall()s take as a parameters the Logical I/O Bus Number (LIOBN) that is
the logical bus number value derived from the “ibm,dma-window” property associated with the particular IOA.
For the format of the “ibm,dma-window” property, reference Appendix B, “LoPAPR Binding,” on page 661.

14.5.4.2.1 H_GET_TCE

This hcall() returns the contents of a specified Translation Control Entry.

Syntax:

int64 /* H_Success: Expected Return Code */
/* H_PARTIAL: RPN not relative to callers logical address space */
/* H_PARAMETER: LIOBN or IOBA out of range */
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource/
/* H_Hardware: The hardware experienced a fault causing the function to fail. */

hcall (const uint64 H_GET_TCE, /* Return the contents of the specified TCE */
uint32 LIOBN, /* Logical I/O Bus Number for TCE table to be accessed */
uint64 IOBA) /* I/O Bus Address for indexing into the TCE table */

Parameters:

 LIOBN (Logical I/O Bus Number for TCE table to be accessed)

 IOBA (I/O Bus Address for indexing into the TCE table)

Semantics:

 If the LIOBN, or IOBA are outside of the range of calling partition assigned values return H_PARAMETER.

 If the Shared Logical Resource option is implemented and the LIOBN, or IOBA represents a logical resource
that has been rescinded by the owner, return H_RESCINDED.

 Load R4 with the specified TCE contents.

 If specified TCE’s Page Mapping and Control bits (see Section 3.2.2.2‚ “DMA Address Translation and Control
via the TCE Mechanism‚” on page 65) specify “Page Fault” then return H_Success

 Reverse translate the TCE’s RPN field into its logical page number

 If the logical page number is owned by the calling partition then replace the RPN field of R4 with the logical page
number and return H_Success.

 Logically OR the contents of R4 with 0xFFFFFFFFFFFFF000 placing the result into R4.

 Return H_PARTIAL.

14.5.4.2.2 H_PUT_TCE

This hcall() enters the mapping of a single 4 K page into the specified Translation Control Entry.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Parameter: One or more of the parameters were out of range */
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource/
/* H_Hardware: The function failed due to unrecoverable hardware error */

hcall (const uint64 H_PUT_TCE, /* Function Token */

420 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

uint32 LIOBN, /* Logical I/O Bus Number of TCE table to be accessed (from dma window property)
*/

uint64 IOBA, /* I/O Bus Address for indexing into TCE table */
uint64 TCE); /* TCE contents to be stored in the TCE table (contains logical address of storage

page to be mapped*/

Semantics:

 If the LIOBN or IOBA parameters are outside of the range of calling partition assigned values return
H_PARAMETER.

 If the Shared Logical Resource option is implemented and the LIOBN, or IOBA represents a logical resource that
has been rescinded by the owner, return H_RESCINDED.

 If the Page Mapping and Control field of the TCE is not “Page Fault” (see Section 3.2.2.2‚ “DMA Address Transla-
tion and Control via the TCE Mechanism‚” on page 65)

 Then if the logical address within the TCE parameter is outside of the range of calling partition assigned values

 Then return H_PARAMETER.

 Else translate the logical address within the TCE parameter into the corresponding physical real address.

 The hypervisor stores the TCE resultant value in the TCE table specified by the LIOBN and IOBA parameters; re-
turning H_Success. (In the “Page Fault” case the RPN remains untranslated.)

Software Note: The PA requires the OS to issue a sync instruction to proceed the signalling of an IOA to start an IO
operation involving DMA to guarantee the global visibility of both DMA and TCE data. This hcall() does not
include a sync instruction to guarantee global visibility of TCE data and in no way diminishes the requirement for
the OS to issue it.

14.5.4.2.3 H_STUFF_TCE

This hcall() duplicates the mapping of a single 4 K page through out a contiguous range of Translation Control Entries.
Thus, in initializing and/or invalidating many entries. To retain interrupt responsiveness this hcall() should be called
with a count parameter of no more than 512, LoPAPR architecture provides enforcement for this restriction to aid in
client code debug.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Parameter: One or more of the parameters were out of range */
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource
/* H_P4: The count parameter is greater than 512 */
/* H_Hardware: The function failed due to unrecoverable hardware error */

hcall (const uint64 H_STUFF_TCE, /* Function Token */
uint32 LIOBN, /* Logical I/O Bus Number of TCE table to be accessed (from dma window prop.) */
uint64 IOBA, /* The starting I/O Bus Address for indexing into TCE table */
uint64 TCE, /* TCE contents to be stored in the TCE table (contains logical address of storage */

/* page to be mapped*/
uint64 count); /* The number of consecutive TCEs to fill */

Semantics:

 If the LIOBN, or IOBA, are outside of the range of calling partition assigned values return H_PARAMETER.

 If the Shared Logical Resource option is implemented and the LIOBN, or IOBA represents a logical resource that
has been rescinded by the owner, return H_RESCINDED.

14.5  Hypervisor Requirements 421

LoPAPR, Version 1.1 (March 24, 2016)

 If the count parameter is greater than 512 then return H_P4

 If the count parameter added to the TCE index specified by IOBA is outside of the range of the calling partition as-
signed values return H_PARAMETER.

 If the Page Mapping and Control field of the TCE is not “Page Fault” (see Section 3.2.2.2‚ “DMA Address Transla-
tion and Control via the TCE Mechanism‚” on page 65)

 Then if the logical address within the TCE parameter is outside of the range of calling partition assigned values

 Then return H_PARAMETER.

 If the Shared Logical Resource option is implemented and the logical address’s page number represents a
page that has been rescinded by the owner, return H_RESCINDED.

 Else translate the logical address within the TCE parameter into the corresponding physical real address.

 The hypervisor stores the TCE resultant value in the TCE table entries specified by the LIOBN, IOBA and count pa-
rameters; returning H_Success. (In the “Page Fault” case the RPN remains untranslated.)

Implementation Note: The PA requires the OS to issue a sync instruction to proceed the signaling of an IOA to start
an IO operation involving DMA to guarantee the global visibility of both DMA and TCE data. This hcall() does not in-
clude a sync instruction to guarantee global visibility of TCE data and in no way diminishes the requirement for the OS
to issue it.

14.5.4.2.4 H_PUT_TCE_INDIRECT

This hcall() enters the mapping of up to 512 4 K pages into the specified Translation Control Entry. The LIOBN pa-
rameter if positive is the cookie (LIOBN) of the specific TCE table to load. For the Multi-TCE Table (MTT) option, if
the LIOBN parameter is negative, CNT = the absolute value of LIOBN (up to 128), and the first CNT 8 byte entries of
the buffer referenced by the TCE parameter contains the TCE table cookies (LIOBNs) for the various TCE tables to
load (up to a maximum of 128 TCE tables).

Note: Users of the MTT option that are subject to partition migration should be prepared for the loss of support for the
MTT option after partition migration.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Parameter: One or more of the parameters were out of range */
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource/
/* H_Function: The functional extension to multiple LIOBNs is not enabled */
/* H_Hardware: The function failed due to unrecoverable hardware error */

hcall (const uint64 H_PUT_TCE_INDIRECT, /* Function Token */
int64 LIOBN, /* Logical I/O Bus Number of TCE table to be accessed (from dma window property)

or if negative, the number of LIOBN fields in the buffer*/
uint64 IOBA, /* The starting I/O Bus Address for indexing into TCE table */
uint64 TCE, /* The logical address of a page of (4 K long on a 4 K boundary) of TCE contents to

be stored in the TCE table (contains logical address of storage page to be mapped)*/
uint64 count); /* The number of consecutive TCEs to fill */

Semantics:

/* Validate the input parameters */

 If the LIOBN parameter is non-negative then do

 If the count parameter is > 512 then return H_Parameter.

422 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 If the Shared Logical Resource option is implemented and the LIOBN parameter represents a TCE table that has
been rescinded by the owner, return H_RESCINDED.

 If the LIOBN parameter represents a TCE table that is not valid for the calling partition, return H_Parameter.

 Liobns[0] = the LIOBN parameter.

 If the Shared Logical Resource option is implemented and any of the I/O bus address range represented the IOBA
parameter plus count pages within the TCE table represented by the LIOBN parameter represents rescinded re-
source, return H_RESCINDED.

 If any of the I/O bus address range represented the IOBA parameter plus count pages within the TCE table repre-
sented by the LIOBN parameter is not valid for the calling partition then return H_Parameter.

 end

 Else do

 If the MTT Option is not enabled return H_Function.

 If the LIOBN parameter < -128 then return H_Parameter.

 If the sum of the count parameter plus |LIOBN| is > 512 then return H_Parameter.

 end

 If the Shared Logical Resource option is implemented and the TCE parameter represents a logical page address of a
page that has been rescinded by the owner, return H_RESCINDED.

 If the TCE parameter represents the logical page address of a page that is not valid for the calling partition, return
H_Parameter.

 Copy the contents of the page referenced by the TCE table to a temporary hypervisor page (Temp) for validation
without the potential for caller manipulation.

/* Validate the indirect parameters */

 VAL= 0

 If the LIOBN parameter is negative then do

 For CNT = 1,|LIOBN|,1

 T = 8 byte entry Temp [VAL]

 If the Shared Logical Resource option is implemented and T as an LIOBN represents a TCE table that has been
rescinded by the owner, return H_RESCINDED.

 If T as an LIOBN represents a TCE table that is not valid for the calling partition, return H_Parameter.

 Liobns[VAL+] = T.

 If the Shared Logical Resource option is implemented and any of the I/O bus address range represented the
IOBA parameter plus count pages within the TCE table represented by “T” as an LIOBN represents a re-
scinded resource, return H_RESCINDED.

 If any of the I/O bus address range represented the IOBA parameter plus count pages within the TCE table rep-
resented by “T” as an LIOBN is not valid for the calling partition then return H_Parameter.

 loop

14.5  Hypervisor Requirements 423

LoPAPR, Version 1.1 (March 24, 2016)

 end

/* Translate the logical pages addresses to physical*/

 for CNT = 1,count,1

 T = 8 byte entry Temp [VAL+]

 If the Page Mapping and Control field of the 8 byte entry “T” is not “Page Fault” (see Table 8‚ “TCE Definition‚”
on page 66) then do

 If the Shared Logical Resource option is implemented and the value of “T” as a logical address represents a
page that has been rescinded by the owner, then return H_RESCINDED.

 If “T” as a logical address is outside of the range of calling partition assigned values then return
H_PARAMETER.

 Translate the logical address within the TCE buffer entry into the corresponding physical real address.

 Temp[CNT – 1] = translated physical real address.

 end

 loop

/* Fill the TCE table(s) */

 If LIOBN parameter is negative then VAL = |LIOBN| else VAL = 1.

 For TABS = 1, VAL, 1

 The TCE table to fill is that referenced by Liobns[VAL] as an LIOBN.

 INDEX = the page index within the TCE table represented by the IOBA parameter.

 For CNT = 1, count, 1

 TCE_TABLE [Liobns[VAL], INDEX+] = Temp [CNT-1]

 Loop

 Loop

 Return H_Success.

Implementation Note: The PA requires the OS to issue a sync instruction to proceed the signaling of an IOA to start an
IO operation involving DMA to guarantee the global visibility of both DMA and TCE data. This hcall() does not
include a sync instruction to guarantee global visibility of TCE data and in no way diminishes the requirement for
the OS to issue it.

14.5.4.3 Processor Register Hypervisor Resource Access

Certain processor registers are architecturally hypervisor resources, in the following cases the hypervisor provides con-
trolled write access services.

14.5.4.3.1 H_SET_SPRG0

int64 hcall (const uint64 H_SET_SPRG0, uint64 value)

424 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Parameters:

 value: The value to be written into SPRG0. No parameter checking is done against this value.

14.5.4.3.2 H_SET_DABR

Note: Implementations reporting compatibility to ISA versions less than 2.07 are required to implement this interface;
however, this interface is being deprecated in favor of “H_SET_MODE” on page 425 for newer implementations.

int64 hcall (const uint64 H_SET_DABR, uint64 value)

Semantics:

 If the platform does not implement the extended DABR facility then:

Validate the value parameter else return H_RESERVED_DABR and the value in the DABR is not changed:

 The DABR BT bit (Breakpoint Translation) is checked for a value of 1.

 Else (The platform does implement the extended DABR facility):

 Load the DABRX register with 0b0011.

 place the value parameter into the DABR.

 Return H_Success.

14.5.4.3.3 H_PAGE_INIT

int64 hcall (const uint64 H_PAGE_INIT, uint64 flags, addr64 destination, addr64 source)

Parameters:

 flags: zero, copy, I-Cache-Invalidate, I-Cache-Synchronize, and for the CMO option: CMO Option flags as de-
fined in Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 destination: The logical address of the start of the page to be initialized

 source: The logical address of the start of the page use as the source on a page copy initialization. This parameter
is only checked and used if the copy flag is set.

Semantics:

 The logical addresses are checked, they must both point to the start of a 4 K system memory page associated with
the partition or return H_Parameter.

 If the Shared Logical Resource option is implemented and the source/destination logical page number repre-
sents a page that has been rescinded by the owner, return H_RESCINDED.

 If the zero flag is set, clear the destination page using a platform specific routine (usually a series of dcbz instruc-
tions).

 If the copy flag is set, execute a platform specific optimized copy of the full 4 K page from the source to the des-
tination.

 If I-Cache-Invalidate flag is set, issue icbi instructions for all of the page’s cache lines

 If I-Cache-Synchronize flag is set, issue dcbst and icbi instructions for all of the page’s cache lines. Implementa-
tions may need to issue a sync instruction to complete the coherency management of the I-Cache.

14.5  Hypervisor Requirements 425

LoPAPR, Version 1.1 (March 24, 2016)

 For the CMO option: set the page usage state per the CMO Option flags field of the flags parameter as defined in
Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

 Return H_Success

Note: For the CMO option, the CMO option flags may be used to notify the platform of the page usage state of a page
without regard to its hardware page table entry or lack there of independent of any other option flags.

14.5.4.3.4 H_SET_XDABR

Note: Implementations reporting compatibility to ISA versions less than 2.07 are required to implement this interface;
however, this interface is being deprecated in favor of “H_SET_MODE” on page 425 for newer implementations.

This hcall() provides support for the extended Data Address Breakpoint facility. It sets the contents of the Data Address
Breakpoint Register (DABR) and its companion Data Address Breakpoint Register Extension (DABRX). A principal
advantage of the extended DABR facility is that it allows setting breakpoints for LPAR addresses that the hypervisor
had to preclude using the previous facility.

int64 hcall /* H_Success: Expected Return Code */

/* H_Hardware hardware experienced an unrecoverable error */
/* H_Parameter invalid parameter value */

(const uint64 H_SET_XDABR, /*Function Token */
uint64 value, /* Value to be placed in DABR register */
uint64 extended); /* Value to be place in DABRX register */

Semantics:

 Validates the extended parameter else return H_Parameter:

 Reserved Bits (0-59) are zero.

 The HYP bit (61) is off.

 The rest of the PRIVM field (Bits 62-63) is one of those supported:

 0b01 Problem State

 0b10 Privileged non-hypervisor

 0b11 Privileged or Problem State

 (Specifying neither Problem or Privileged state is not supported)

 Load the validated extended parameter into the DABRX

 Load the value parameter into the DABR

 Return H_Success.

14.5.4.3.5 H_SET_MODE

This hcall() is used to set hypervisor processing resource mode registers such as breakpoints and watchpoints. The
modes supported by the hardware processor are a function of the processor architectural level as reported in the
“cpu-version” property. Table 180‚ “H_SET_MODE Parameters per ISA Level‚” on page 427 presents the valid
parameter ranges for the architectural level reported in the “cpu-version” property.

Setting breakpoints: A breakpoint is set for a hardware tread. Should the hardware thread complete an instruction who's
effective address matches that of the set breakpoint a trace interrupt is signaled. When setting the breakpoint resource,
the mflags and value2 parameters are zero. The value1 parameter is the effective address of the breakpoint to be set.

426 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Setting watchpoints: A watchpoint is set for a hardware tread. Should the hardware thread attempt to access within the
specified double word range of the effective address specified by the value1 parameter as qualified by the conditions
specified in the value2 parameter a Data Storage type interrupt is signaled. When setting the watchpoint resource, the
mflags parameter is zero. The value1 parameter is the effective double word address of the watchpoint to be set. The
value2 parameter specifies the qualifying conditions for the access, these are a subset of the POWER ISA conditions
that are relevant within the context of a logical partition. This subset includes the MRD field, DW, DR, WT, WTI,
PNH, and PRO bits. All other value2 fields are zero.

Setting Interrupt Vector Location Modes: The Alternate Interrupt Location (AIL) Mode for the calling partition is set.
Since this function has partition wide scope, it may take longer for the hypervisor to perform the function on all proces-
sors than is permissible during a synchronous call; therefore, the call might return long busy. In that case the caller
should repeat the call with the same parameters after the specified time period until the H_SUCCESS return code is re-
ceived. A call with different parameters indicates the beginning of a new partition wide mode setting. The desired AIL
mode is encoded in the two low order mflags bits (all other mflags bits are 0) while both value1 and value2 parameters
are zero.

int64 / * H_Success: Expected Return Code * /
/ * H_UNSUPPORTED_Flag invalid mflags bit * /
/ * H_P2 invalid resource encoding * /
/ * H_P3 invalid value1 * /
/ * H_P4 invalid value2 * /
/ * H_LongBusyOrder10mSec not done yet * /

hcall (const uint64 H_SET_MODE, /* Set the mode of the specified processing resource */
/* per the specified value*/

uint64 mflags, /* Processing resource specific flags*/
uint64 resource, /* Processing resource identifier */
uint64 value1, /* Value(s) to set the resource */
uint64 value2)

Semantics:

switch (resource) {
case 0: /* not used /

return H_P2;
break;

case 1: /* Completed Instruction Address Breakpoint Register */
if value2 <> 0 the return H_P4;
if mflags <> 0 then return H_UNSUPPORTED_FLAG;
If low order two bits of value1 are 0b11 then return H_P3; /* not hypervisor instruction address */
move value 1 into CIABR; /* note the value2 parameter is not used for this resource */
break;

case2: /* Watch point 0 registers */
if mflags <> 0 then return H_UNSUPPORTED_FLAG;
If value2 bit 61 == 0b1 then return H_P4; /* not hypervisor addresses */
move value1 into DAWR0;
move value2 into DAWRX0;
break;

case3: / * Address Translation Mode on Interrupt * /
if value1 < > 0 then return H_P3;
if value2 < > 0 then return H_P4;
switch (mflags) {

case 0: / * IR = DR = 0 * /
Set LPCR AIL field of calling partition processors to 0b00;
break;

14.5  Hypervisor Requirements 427

LoPAPR, Version 1.1 (March 24, 2016)

case 1: / * reserved * /
return H_UNSUPPORTED_FLAG (- 318);
break;

case 2: / * IR = DR = 1 interrupt vectors at E.A. 0X18000 * /
Set LPCR AIL field of calling partition processors to 0b10;
break;

case 3: / * IR = DR = 1 interrupt vectors at E.A. 0XC000 0000 0000 4000 * /
Set LPCR AIL field of calling partition processors to 0b11;
break;

default: return H_UNSUPPORTED_FLAG (value based on most convenient
unsupported bit);
break;

default:
return H_P2;
break; }

R1–14.5.4.3.5–1. For implementations supporting POWER ISA level 2.07 and beyond: the platform must imple-
ment the H_SET_MODE hcall() per the syntax and semantics of section 14.5.4.3.5, “H_SET_MODE,” on
page 425.

14.5.4.4 Debugger Support hcall()s

The real mode debugger needs to be able to get to its async port and beyond the real mode limit register without turning
on virtual address translation. The following hcall()s provide that capability.

Table 180. H_SET_MODE Parameters per ISA Level

ISA
level

Support
ed

Resourc
e Values

Values
Supported

mflags
Value 1 Value 2

Comments

2.07

1 None
Breakpoint

Address
None

2 None
 Watchpoint

Double Word
Address

Watchpoint
Qualifying
Conditions

3

0 None None IR=DR=0 No offset

1 None None Reserved

2 None None IR=DR=1 offset 0x18000

3 None None IR=DR=1 offset 0xC000 0000 0000 4000

All Others All Others All Others Reserved

All
Others

All Others All Others All Others Reserved

428 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.5.4.4.1 H_LOGICAL_CI_LOAD

int64 hcall (const uint64 H_LOGICAL_CI_LOAD, uint64 size, uint64 addr)

Parameters:

 size: The size of the cache inhibited load:

 byte = 1

 half = 2

 full = 4

 double=8

All other size values are illegal and returns H_Parameter

 addr: The logical address of the cache inhibited location to be read. The hypervisor checks that the address is
within the range of addresses valid for the partition, on a boundary equal to the requested length, is not to the lo-
cation BA+4 within an interrupt management area, and mapped as cache inhibited (cache paradoxes are to be
avoided)-- Else H_Parameter.

 On successful return (H_Success), the read value is low order justified in register R4.

14.5.4.4.2 H_LOGICAL_CI_STORE

int64 hcall (const uint64 H_LOGICAL_CI_STORE, uint64 size, uint64 addr, uint64 value)

Parameters:

 size: The size of the cache inhibited store:

 byte = 1

 half = 2

 full = 4

 double=8

All other size values are illegal and returns H_Parameter

 addr: The logical address of the cache inhibited location to be written. The hypervisor checks that the address is
within the range of addresses valid for the partition, on a boundary equal to the requested length, is not to the lo-
cation BA+4 within an interrupt management area, and mapped as cache inhibited (cache paradoxes are to be
avoided).

 value The value to be written is low order justified in register R6.

14.5.4.5 Virtual Terminal Support

This section has been moved to Section 16.6‚ “Virtual Terminal (Vterm)‚” on page 582.

Architecture and Implementation Note: The requirement to provide the “ibm,termno” property in the /rtas
node, has been removed (it is now necessary to look for vty nodes and use their unit address from the “reg”

14.5  Hypervisor Requirements 429

LoPAPR, Version 1.1 (March 24, 2016)

property to get the same information). The “ibm,termno” property called for sequential terminal numbers,
but with the use of unit addresses from the “reg” property, such is not the case.

14.5.4.6 Dump Support hcall()s

To allow the OS to dump hypervisor data areas in support of field problem diagnosis the hcall-dump support function
set contains the H_HYPERVISOR_DATA hcall(). This hcall() is enabled or disabled (default disabled) via the Hard-
ware Management Console. If the hcall-dump function set is disabled an attempt to make a H_HYPERVISOR_DATA
hcall() returns H_Function. When the function is enabled, the hcall-dump function set is specified in the “ibm,hy-
pertas-functions” property. The requester calls repeatedly starting with a control value of zero getting back 64
bytes per call and setting the control parameter on the next call to the previous call’s return code until the hcall() returns
H_Parameter indicating that all hypervisor data has been dumped. The precise meaning of the sequence of data is im-
plementation dependent. The H_HYPERVISOR_DATA hcall() need only return data in the firmware working storage
that is not contained in the PFT or TCE tables since the contents of these tables are available to the OS.

14.5.4.6.1 H_HYPERVISOR_DATA

int64 hcall (const uint64 H_HYPERVISOR_DATA, uint64 control)

Parameters:

 control: A value passed to establish the progress of the dump.

Semantics:

 If the control value is zero, the data returned is the first segment of the hypervisor’s working storage, with a
non-negative return code.

 If the control value is equal to the return code of the last H_HYPERVISOR_DATA call, and the return code is
non-negative, the data returned in R4 through R11 is the next sequential segment of the hypervisor’s working
storage. The contents of R4 through R11 are undefined if the return code is negative.

Implementation Note: It is expected that the control value is be used by the H_HYPERVISOR_DATA routine as an
offset into the hypervisor’s data area. For the expected implementation, hypervisor checks the value of the control
parameter to insure that the resultant pointer is within hypervisor’s data area else it returns H_Parameter.

14.5.4.7 Interrupt Support hcall()s

Injudicious values written to the interrupt source controller may affect innocent partitions. The following hcall()s mon-
itor the architected functions.

14.5.4.7.1 H_EOI

Software Implementation Note: Issuing more H_EOI calls than actual interrupts may cause undesirable behavior,
including but not limited to lost interrupts, and excessive phantom interrupts.

int64 hcall (const uint64 H_EOI, uint64 xirr)

Parameters:

 xirr: The low order 32 bits is the value to be written into the calling processor’s interrupt management area’s ex-
ternal interrupt request register (xirr).

Semantics:

 If the platform implements the Platform Reserved Interrupt Priority Level Option, and the priority field of the xirr
parameter matches one of the reserved interrupt priorities then return H_Resource.

430 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 If the value of the xirr parameter is such that the low order 3 bytes (xisr) is one of the interrupt source values as-
signed to the partition, and the high order byte xirr byte (cppr) is equal or less favored than the current cppr con-
tents, then the value is written into the calling processor’s xirr causing the interrupt source controller to signal an
“end of interrupt” (EOI) to the specified interrupt source logic, then hypervisor returns H_Success or
H_Hardware (if an unrecoverable hardware error occurred). If the xirr value is not legal, hypervisor returns
H_Parameter.

 If the Shared Logical Resource option is implemented and the xirr parameter represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

14.5.4.7.2 H_CPPR

int64 hcall (const uint64 H_CPPR, uint64 cppr)

Parameters:

 cppr: The low order byte is the value to be written into the calling processor’s interrupt management area’s cur-
rent processor priority register (cppr).

Semantics:

 If the platform implements the Platform Reserved Interrupt Priority Level Option, and the priority field of the xirr
parameter matches one of the reserved interrupt priorities then return H_Resource.

 The value of the cppr parameter is written into the calling processor’s cppr causing the interrupt source controller
to reject any interrupt of equal or less favored priority. Then hypervisor returns H_Success or H_Hardware (if an
unrecoverable hardware error occurred).

14.5.4.7.3 H_IPI

int64 hcall (const uint64 H_IPI, uint64 server#, uint64 mfrr)

Parameters:

 server#: The server number gotten from the “ibm,ppc-interrupt-server#s” property associated with
the processor and/or thread to be interrupted.

 mfrr: The priority value the inter-processor interrupt to be signaled.

Semantics:

 If the platform implements the Platform Reserved Interrupt Priority Level Option, and the priority field of the xirr
parameter matches one of the reserved interrupt priorities then return H_Resource.

 If the value of the server# parameter specifies of one of the processors in the calling processor’s partition, then the
value in the low order byte of the mfrr parameter is written into the mfrr register (BA+12) of the processor’s inter-
rupt management area causing that interrupt source controller to signal an “inter-processor interrupt” (IPI) to the
processor associated with the specified interrupt management area. Hypervisor then returns H_Success or
H_Hardware (if an unrecoverable hardware error occurred). If the server# value is not legal, hypervisor returns
H_Parameter.

 If the Shared Logical Resource option is implemented and the server# parameter represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

14.5.4.7.4 H_IPOLL

int64 hcall (const uint64 H_IPOLL, uint64 server#)

14.5  Hypervisor Requirements 431

LoPAPR, Version 1.1 (March 24, 2016)

Parameters:

 server#: The server number gotten from the “ibm,ppc-interrupt-server#s” property associated with
the processor and/or tread to be interrupted.

Semantics:

 If the value of the server# parameter specifies of one of the processors in the calling processor’s partition, then
hypervisor reads the 4 byte contents of the processor’s interrupt management area port at offset BA+0 into the
low order 4 bytes of register R4 and the one byte of the mfrr (BA+12) into the low order byte of R5. Reading
these addresses has no side effects and is used to poll for pending interrupts. Hypervisor then returns H_Success
or H_Hardware (if an unrecoverable hardware error occurred). If the server# value is not legal, hypervisor returns
H_Parameter.

 If the Shared Logical Resource option is implemented and the server# parameter represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

14.5.4.7.5 H_XIRR / H_XIRR-X

These hcall()s provide the same base function that is they return the interrupt source number associated with the exter-
nal interrupt. H_XIRR-X further supplies the time stamp of the interrupt . Legacy implementations implement only
H_XIRR, returning H_Function for a call to H_XIRR-X. POWER8 implementations also implement H_XIRR-X.

int64 hcall (const uint64 H_XIRR)

int64 /* H_Success: expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially */
/* preventing the function */

hcall (const uint64 H_XIRR-X,/* Accept an interrupt returning the external interrupt request register */
uint8);

Parameters:

 H_XIRR: no input parameters defined.

 H_XIRR-X: cppr: the internal current processor priority of the calling virtual processor. Valid values in the range
of 0x00 – most favored to 0xFF – least favored less those values specified by the
“ibm,plat-res-int-priorities” property in the root node).

Semantics:

 Hypervisor reads the 4 byte contents of the processor’s interrupt management area port at offset BA+4 into the
low order 4 bytes of the register R4. Reading this address has the side effect of accepting the interrupt and raising
the current processor priority to that of the accepted interrupt.

 Place the timestamp when the hypervisor first received the interrupt into R5.

 Hypervisor then returns H_Success or H_Hardware (if an unrecoverable hardware error occurred).

14.5.4.8 Memory Migration Support hcall()s

To assist an OS in memory migration, the following hcall() is provided. During the migration process, it is the respon-
sibility of the OS to not change the DMA mappings referenced by the translations buffer (for example by using the
H_GET_TCE, H_PUT_TCE hcall()s, or other DMA mapping hcall()s). Failure of the OS to serialize such DMA map-
ping access may result in undesirable DMA mappings within the caller’s partition (but not outside of the caller’s parti-
tion). Further, it is the responsibility of the OS to serialize calls to the H_MIGRATE_DMA service relative to the

432 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

logical bus numbers referenced. Failure of the OS to serialize relative to the logical bus numbers may result DMA data
corruption within the caller’s partition.

On certain implementations, DMA read operations targeting the old page may still be in process for some time after the
H_MIGRATE_DMA call returns; this requires that the OS not reuse/modify the data within the old page until the worst
case DMA read access time has expired. The “ibm,dma-delay-time” property (see Section B.6.3.1‚ “RTAS
Node Properties‚” on page 690) gives the OS this implementation dependent delay value. Failure to observe this delay
time may result in data corruption as seen by the caller’s I/O adapter(s).

R1–14.5.4.8–1. For the LPAR option supporting the hcall-migrate function set: The platform must supply the
“ibm,dma-delay-time” property under the /rtas node of the device tree.

Memory pages may be simultaneously mapped by multiple DMA agents, with different translation table formats and
operation characteristics. The H_MIGRATE_DMA hcall() atomically performs the memory migration process so that
the new page contains the old page contents (as updated by any DMA write operations allowed during migration), with
all DMA mappings and engines directed to access the new page. The entries in the mapping list contain the logical bus
number associated with the mapping and the I/O address of the mapping. From these two data, the hcall() associates
the using DMA agent, that agent’s DMA control procedures, the specific mapping table and mapping table entry.

R1–14.5.4.8–2. For the LPAR option supporting the hcall-migrate function set: The platform must support mi-
gration of pages mapped for DMA using any of the platform supported DMA agents.

R1–14.5.4.8–3. For the LPAR option supporting the hcall-migrate function set: All the platform’s DMA agents
must support mechanisms that enable the platform to meet the syntax, semantics and requirements set forth in
section 14.5.4.8.1.

Implementation Note: The minimal hardware mechanisms to support the hcall-migrate function set are to quiesce DMA
operation, flush outstanding data to their targets (both reads and writes), modify their DMA mapping and re-enable
operation utilizing said modified DMA mapping without introducing unrecoverable operational failures.
Provision for the hardware to direct DMA write operations to both old and new pages provides a significantly
more robust implementation.

It is the intent of this architecture to have all memory in the platform have the capability to be migrated. However, on
the rare implementation that cannot meet that intent, the “ibm,no-h-migrate-dma” property may be provided in
memory nodes for which H_MIGRATE_DMA cannot be implemented.

R1–14.5.4.8–4. For the LPAR option supporting the hcall-migrate function set: If a memory node cannot sup-
port H_MIGRATE_DMA, then that memory node must contain the “ibm,no-h-migrate-dma” prop-
erty.

For the I/O Super Page option the I/O page size is an attribute of the specified LIOBN (I/O pages mapped by a given
LIOBN are a uniform size), also the syntax and semantics of H_MIGRATE_DMA are extended to allow migration of
I/O pages that are larger than 4K bytes and have more than 256 xlates translation entries. Specifying more than 256
translation entries requires a sequence of calls to H_MIGRATE_DMA with the same “newpage” address. Making a
call in the sequence with a length parameter of zero terminates the operation – should this termination happen after the
start of the physical migration, the resulting state of the calling partition’s memory is unpredictable. Failure to make a
continuing call in the sequence for more than one second aborts the operation; again the resulting state of the calling
partition’s memory is unpredictable.

The introduction of super pages introduces the case where portions of the super page may be I/O mapped and thus re-
quire the use of H_MIGRATE_DMA to move the logical super page from one physical page to another even though
the super page as a whole may not be I/O mapped. To handle this case, the LIOBN value of 0xFFFFFFFF is reserved to
allow the specification, within an translations entry (passed to H_MIGRATE_DMA via the xlates parameter), of a su-
per page that is not currently I/O mapped. In this case, the normally reserved byte at xlates entry offset 4 is used to
specify the power of two size of the super page.

14.5  Hypervisor Requirements 433

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.5.4.8–5. For the I/O Super Page option: the platform must support the setting by the client of byte 3 bit 0
of the ibm,architecture.vec 5 as input to the ibm,client-architecture-support
method.

14.5.4.8.1 H_MIGRATE_DMA

int64 /*H_Success: Expected completion return code,
H_Parameter: a parameter is invalid,
H_LongBusyOrder1msec,
H_LongBusyOrder10msec,
H_Function
For the Shared Logical Resource Option: H_ H_RESCINDED*/
/* For the I/O Super Page Option, the following additional return
codes are defined:
H_CONTINUE: More translations are needed to complete the

request
H_P3: The length parameter did not contain the next expected

value in the call sequence.
H_Resource: Insufficient resources to perform the request
H_MEM_PARM: The first xlate entry specifying the LIOBN of
 0xFFFFFFFF contains an unsupported page size specification
 or invalid logical real address. */

hcall (const uint64 H_MIGRATE_DMA, /*Migrates a page mapped by one or more DMA mappings*/
uint64 newpage, /*Logical address of new DMA target page*/
uint64 xlates, /*List of translations to current DMA target page*/
uint64 length); /*Length of translation list*/

Parameters:

 newpage (The Logical address of the new page to be the target of the TCE translations)

 xlates (The Logical address of a list of translations against the target page the format of this list is:

 List starts on a page (4 K) boundary.

 Contains up to 256 translation entries:

 First 4 bytes of a translation entry is the logical bus number as from either the:

 “ibm,dma-window” property

 or the reserved LIOBN 0xFFFFFFFF.

Next 12 bytes of a translation entry is the logical bus offset (I/O bus address). The format of the I/O bus address
is dependent upon the DMA agent:

 For 32 bit PCI, the high order 8 bytes are reserved with the low order 4 bytes containing a 4 K aligned ad-
dress (low order 12 bits =zero).

 For 64 bit PCI, the high order 4 bytes are reserved with the low order 8bytes containing a 4 K aligned ad-
dress (low order 12 bits =zero).

 For the I/O Super Page option the very first translation entry passed is for the largest I/O page to be migrated
by this sequence of calls; else all translation entries are for the single 4K byte logical page being migrated.
The first translation entry may either be a current I/O mapping for the largest I/O page that the caller wishes
to migrate, or the first translation entry may use the reserved LIOBN number of 0xFFFFFFFF, with the next
byte indicating the page size as 2**N where N is the numeric value of the byte at offset 4 into the translation

434 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

entry with the low order 8 bytes of the translation entry being the logical real address of the start of the page
to be migrated (the low order N bits = zero).

 length (Number of entries in translation list is less than or equal to 256)

 If the total number of translation entries in the xlates list is less than or equal to 256 then the “length” parameter is
the number of translation entries.

 For the I/O Super Page option and specifying more than 256 translation entries, the client makes a series of calls,
each passing 256 translation entries with the “length” parameter being the negative of the total number of transla-
tion entries yet to be passed until there are less than or equal to 256 remaining then for the final call in the initiat-
ing sequence the “length” parameter is positive as above.

Semantics:

 For the I/O Super Page option: determine if a migration operation is in process for this “newpage” address:

 Then:

 If the previous hcall() for the migration operation was more than 1 second ago, return H_Aborted.

 If the length parameter value is zero then abort the migration operation and return H_TERM.

 If the length parameter value is not the next expected in the sequence return H_P3.

 Record the new xlates

 If the length parameter is less than zero return H_CONTINUE.

 Else

 If the number of outstanding operations is more than an implementation specific number as communicated in
the “ibm,vec-5” property then return H_Resource

 If the length parameter is less than zero, initiate a new migration operation for the “newpage” address. (Note
resources for the operation may be allocated at this point and freed when the operation terminates either nor-
mally, in error, or via timeout. Implementations may, in unusual cases, use a busy return code to wait for the re-
lease of resources from an immanently completing operation.

 The first xlate entry specifies the length and starting address of the page to be migrated, if this specification is
invalid (unsupported length, the address is invalid for the partition, or not aligned to the length) return
H_MEM_PARM.

 If the operation specifies more than an implementation specific number of xlates as communicated in the
“ibm,vec-5” property then return H_Resource.

 Check that the page to be migrated can be migrated, else H_PARAMETER.

 Check that the newpage is within the allocated logical page range of the calling partition and the address is aligned
to the I/O page size of the first translation entry passed else H_PARAMETER.

 If the Shared Logical Resource option is implemented and the newpage parameter represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

 The contents of the xlates buffer are checked.

 This may be done as each entry is used, or it may be done prior to starting the operation.

 If the former, then partial processing must be backed out in the case of a detected parameter error.

14.5  Hypervisor Requirements 435

LoPAPR, Version 1.1 (March 24, 2016)

 If the later, then the translation entries must be copied into an area that is not accessible by the calling OS to
prevent parameter corruption after they have been verified. The OS perceived reentrancy of the function is not
diminished if this option is chosen.

 The xlates buffer starts on a 4 K boundary within the partition’s logical address range else H_PARAMETER.

 The length parameter is between (for the I/O Super Page option: the negative of the maximum number of xlate
entries supported as indicated in the “ibm.architecture-vec-5” property of the /chosen device tree
node else 1) and 256 else H_PARAMETER.

 For the I/O Super Page option: the length of the physical page to be migrated is the length of the I/O page of the
first translation entry; else the length of the physical page to be migrated is 4K bytes.

 Each translation originally references the same physical page, or a portion there of, else H_PARAMETER.

 Each logical bus offset is within the allocated range of the calling partition else H_PARAMETER.

 If the Shared Logical Resource option is implemented and the logical bus offset represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

 Check the logical bus number:

 Is allocated to the calling partition else H_PARAMETER.
Or: If the Shared Logical Resource option is implemented and the logical bus number represents a shared logi-
cal resource location that has been rescinded by the owner, return H_RESCINDED.

 For the I/O Super Page option: if the LIOBN implies a larger page size than that specified by the first transla-
tion entry for this migrate operation, place the index of the translation entry (0-255) into register R4 and return
H_PGSB_PARM.

 If the LIOBN referenced an unsupported DMA agent, place the index of the translation entry (0-255) into reg-
ister R4 and return H_Function.

 If the logical bus number is not supported, return H_PARAMETER.

Note: The following is written from the perspective of a PCI DMA agent; other DMA agents may require a different
sequence of operations to achieve equivalent results.

 The hypervisor disables arbitration for the IOA(s) associated with the translation entries. (In some cases, where mul-
tiple IOAs share a given TCE range, arbitration must be disabled for multiple IOAs. The firmware assigned the bus
address ranges to each IOA so knows which IOAs correspond to which translation.)

 Waits for outstanding DMA write activity to complete. (This is accomplished by doing a load from an appropriate
register the bridge(s) closest to the IOA -- when the load completes (dependency on load data is satisfied) all DMA
write activity has completed.)

 The hypervisor copies the contents of the 4 K page originally accessed by the TCE(s) to the page referenced by the
newpage value.

 The hypervisor translates the logical address within the newpage parameter and stores the resultant value in the TCE
table entries specified by the translation entries.

 Executes a sync operation to ensure that the new TCE data is visible.

 The hypervisor enables arbitration on the IOA(s) associated with the translation entities and returns H_Success.

436 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Notes:

1. The firmware should be written to minimize the arbitration disable time. The old page should be read into
cache (possibly using the data cache touch operations) prior to disabling the arbitration. Implementation de-
pendent algorithms can significantly improve the page copy time.

2. The firmware does not have to serialize this hcall() with other hcall()s as long as it updates the TCE using
atomic eight (8) byte write operations. However, if the OS does not serialize this call with H_PUT_TCE to
the same TCE, and with other H_MIGRATE_DMA calls to the same IOA(s) the calling LPARs DMA buf-
fers could be corrupted.

3. To minimize the effect of such unsupported DMA agents, the platform designer should isolate such agents
on their own bus with their own “ibm,dma-window” property specification.

14.5.4.9 Performance Monitor Support hcall()s

14.5.4.9.1 H_PERFMON

To manage the Performance Monitor Function:

int64 /* H_Success,
H_HARDWARE, Hardware error
H_PARAMETER, Unsupported mode bit
H_BUSY, Try again
H_RESOURCE Conflicting resources in use*/

hcall (const uint64 H_PERFMON, /* Function code */
uint64 mode-set, /* Platform Modes to enable */
uint64 mode-reset); /* Platform Modes to reset */

Parameters:

 mode-setPlatform specific modes to be set by this call

 mode-resetPlatform specific modes to be reset by this call

Semantics:

 mode-set bit(s) check for platform specific validity else H_PARAMETER

 mode-reset bit(s) check for platform specific validity else H_PARAMETER

 if any mode-set bits are set, activate corresponding mode(s) - if logically capable else H_RESOURCE

 if any mode-reset bits are on, deactivate corresponding mode(s) - if logically capable else H_RESOURCE

 place current state of platform specific modes in R4, return H_Success

Defined Perfmon mode bits:

bit 0: 1= Enable Perfmon

bit1: 0= Low threshold granularity 1= High threshold granularity

14.5.4.10 H_GET_DMA_XLATES_LIMITED

This hcall returns the I/O bus address of the first entry defined for the specified LIOBN and the corresponding logical
address within the range beginning with the Start logical address and less than the End logical addresses, the search is
limited to the range of I/O bus addresses specified by the SIOBA and EIOBA parameters.

14.5  Hypervisor Requirements 437

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.5.4.10–1. For the LRDR Option: The platform must implement the H_GET_DMA_XLATES_LIMITED
hcall() per the syntax and semantics specified in section14.5.4.10, “H_GET_DMA_XLATES_LIMITED,” on
page 436.

R1–14.5.4.10–2. For the LRDR Option: The platform must present the "ibm,h-get-dma-xlates-lim-
ited-supported" property in all PCI host bridge OpenFirmware nodes for which the
H_GET_DMA_XLATES_LIMITED hcall() is supported for all child LIOBNs.

Syntax:

int64 /*H_Success: Expected return code */
/*H_PARAMETER: Invalid logical I/O bus number specified*/
/*H_P2: Invalid starting logical address */
/*H_P3: Invalid ending logical address*/
/*H_P4: Invalid start I/O Bus Address*/
/*H_P5: Invalid end I/O Bus Address*/
/*H_IN_PROGRESS: Call is in progress, end of table was not reached*/
/*H_PARTIAL: Partial completion*/
/*H_PAGE_REGISTERED: Page match and last page of table*/

hcall (const uint64 H_GET_DMA_XLATES_LIMITED, /*Return I/O Bus and corresponding logical address*/
uint32 LIOBN, /*Logical I/O Bus Number of a translation table*/
uint64 SLA, /*Starting logical address of a range*/
uint64 ELA, /*Ending logical address of a range*/
uint64 SIOBA, /*Start I/O Bus Address*/
uint64 EIOBA); /*End I/O Bus Address */

Parameters:

 Register R4: Logical I/O Bus Number (LIOBN)

 Bits 0-31are reserved and set to zero.

 Bits 32-63 contain a 32-bit unsigned binary integer that identifies a translation which may have one or more
entries that translate to a page within a range specified by the Start and End logical addresses.

 Register R5: Start Logical Address (SLA)

 Register R6: End Logical Address (ELA)

 Register R7: Start I/O Bus Address (SIOBA) of the translation specified by the LIOBN

 The SIOBA register may specify a special value of -1 or a starting IOBA

 Register R8: End I/O Bus Address (EIOBA) of the translation specified by the LIOBN

 The EIOBA register may specify a special value of -1 or an ending IOBA

Semantics:

 Check that the specified LIOBN is supported and allocated to the calling logical partition, else H_PARAMETER.

 Check that the specified start logical address (SLA) is within the allocated range of the calling logical partition,
and is designated on a 4 K-byte boundary, else H_P2.

 Check that the End logical address (ELA) minus 4K is within the allocated range of the calling logical partition,
and is designated on a 4 K-byte boundary, else H_P3. (May point no further than one page beyond the maximum
partition logical real address in order to stay within the partition yet include the last partition page in the range of
the test.)

438 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 Check that the specified starting logical address (SLA) is less than the specified ending logical address (ELA),
else H_P2.

 Check that the page specified by the logical addresses within the specified range is within the allocated range of
the calling logical partition and the address is 4 K-byte aligned else H_P2.

 Check the content of SIOBA

 If a value other than -1 is specified, check that the specified start I/O bus address (SIOBA) is not outside of the
range of IOBAs for the specified LIOBN, else H_P4.

 If the SIOBA specifies a value of -1, the hypervisor starts the search at the lowest IOBA in the translation table,
otherwise the search starts at the address specified by the SIOBA.

 Check the content of EIOBA

 If a value other than -1 is specified, check that the specified ending I/O bus address (EIOBA) is not outside of the
range of IOBAs for the specified LIOBN, else H_P5.

 If the EIOBA specifies a value of -1, the hypervisor ends the search at the highest IOBA in the translation ta-
ble, otherwise the search ends at the address specified by the EIOBA.

Outputs:

Place the I/O bus address and corresponding logical address into the respective registers:

 Register R4: I/O Bus Address (IOBA)

 This register contains a 64-bit unsigned binary integer that specifies the I/O bus address of the page within the
specified logical address range for the specified LIOBN.

 The IOBA is returned when the hcall() completes with either H_PARTIAL, H_PAGE_REGISTERED, or
H_IN_PROGRESS return codes.

 Register R5: Corresponding Logical Address (CLA)

 This register contains a 64-bit unsigned binary integer that designates the logical address of a page within the speci-
fied range that corresponds to the I/O bus address.

 If the hcall() completes with H_IN_PROGRESS return code, the corresponding logical address (CLA) is not
returned.

 When the hcall() completes with H_PARTIAL or H_PAGE_REGISTERED return code:

 The I/O bus address (IOBA) and corresponding logical address (CLA) are returned.

 When the hcall() completes with H_PAGE_REGISTERED return code:

 The I/O bus address (IOBA) is for the final page of the translation table for the specified LIOBN as limited by
the EIOBA parameter.

 When the hcall() completes with H_IN_PROGRESS return code:

 The current IOBA being searched against the specified range is returned, but the corresponding logical address
is not returned.

 The hcall can be reissued by specifying the IOBA as the starting IOBA without incrementing the IOBA by the
resource page size.

14.6  RTAS Requirements 439

LoPAPR, Version 1.1 (March 24, 2016)

Firmware Implementation Notes:

1. When the H_GET_DMA_XLATES_LIMITED hcall() is issued, the hypervisor searches the translation ta-
ble designated by the specified LIOBN, from the entry for SIOBA through the entry for EIOBA in IOBA
order, for the entries that translate to a page within a given range of logical addresses. If an entry is found,
the hcall() completes with the H_PAGE_REGISTERED return code if the page found is the last entry in the
translation table, or the H_PARTIAL return code for all other pages, and the IOBA with the corresponding
logical address are returned in output registers R4 and R5 respectively.

2. The hypervisor searches the translation table in IOBA order, and proceeds in that order until an entry that
translates to a physical address within the specified range of logical addresses is found, in which case, the
hcall() completes with H_PARTIAL or H_PAGE_REGISTERED return code, or H_Success, if the end of
the translation table, as specified by the EIOBA parameter, is reached.

Software Implementation Notes:

1. When the hcall() completes with H_PARTIAL return code, the stored IOBA is incremented by the page size
of the resource corresponding to the specified LIOBN, and then specified as the starting I/O bus address on
a subsequent call where the hypervisor would then proceed with the search until the end of the translation
table, specified by the EIOBA parameter, is reached. The caller can accumulate a full list of the IOBAs for
the specified LIOBN that translate into the specified range of logical addresses, which then forms part of the
xlate translation entries specified as an input to the H_MIGRATE_DMA function.

2. When the hcall() completes with H_PAGE_REGISTERED return code, this indicates that page is contained
in the specified range of logical addresses, and it is the last page of the translation table such that the search
for that LIOBN is complete.

3. If a value other than -1 is specified in the starting I/O bus address register, the program should check that the
specified SIOBA value is not the same as the returned IOBA.

14.6 RTAS Requirements

RTAS function as specified in this architecture is still required for LoPAPR LPAR partition. RTAS is instantiated via an
OF client interface call. RTAS operates without memory translation, therefore, the OS should instantiate it within the
RMA, however, the OF client interface does not enforce this limitation. The RTAS calling sequences remain un-
changed. However, in LPAR configurations RTAS code is implemented differently than in non-LPAR systems. LPAR
RTAS has a part which is replicated in each partition, and since RTAS has the capability to manipulate hardware sys-
tem resources, RTAS has a part which is implemented in the hypervisor. In the hypervisor, there is a check of the RTAS
parameters for validity before execution. Therefore, the function of the partition replicated RTAS call is to martial the
arguments and make the required hidden hcall()s to the hypervisor. In a non-LPAR system, RTAS calls are assumed to
be made with valid parameters. This cannot be assumed with LPAR. The LPAR RTAS operates by all the rules of
non-LPAR RTAS relative to it running real, with real mode pointers to arguments and the same serialization require-
ment relative to a single partition. However, the hypervisor may not assume that the caller is following these serializa-
tion rules, failure on the part of the OS to properly serialize is allowed to cause unpredictable results within the scope
of the calling partition but may not affect the proper operation of other platform partitions.

The following is a list of RTAS functions that are not defined or implemented when the LPAR option is active:

 restart-rtas

R1–14.6–1. For the LPAR option: The platform must implement the PowerPC External Interrupt option.

R1–14.6–2. For the LPAR option: The Firmware must initialize each processor’s interrupt management area’s
CPPR to the most favored level and its MFRR to the least favored level before passing control of the proces-
sor to the OS.

440 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.6–3. For the LPAR option: The RTAS rules of serialization of RTAS calls must only apply to a partition
and not to the system.

R1–14.6–4. For the LPAR option: The hypervisor cannot trust the RTAS calls to have no errors, therefore, the hy-
pervisor must check a partition’s RTAS call parameters for validity.

R1–14.6–5. For the LPAR option: RTAS must be instantiated within the RMA of partition storage.

R1–14.6–6. For the LPAR option: RTAS arguments must be within the RMA of partition storage unless specifi-
cally specified in the RTAS call definition.

R1–14.6–7. For the LPAR option: If one or more hcalls fail due to hardware error (return status -1), the platform
must make available, prior to the completion of the next boot sequence, via an event-scan/check-exception, an
error log indicating the hardware FRU responsible for such failures. Due to the asynchronous nature of error
analysis, there is not a direct correlation between the log and a specific failing hcall(), indeed the error log
may precede the failing hcall().

14.7 OF Requirements

The hypervisor is initialized and configured prior to the loading of OF into the partition and boot of any client program
(OS) in the partition by OF. The NVRAM data base that describes the platform’s partitioning is used to trigger the
loading and initialization of the hypervisor. When Logical Partitioning is enabled, a copy of OF code is loaded into
each partition where it builds the per partition device tree within the partition’s RAM. The per partition device tree con-
tains only entries for platform components actually assigned to or used by the partition. The invocation of the subset of
the OF Client interface specified below appears the same to the OS image regardless of the state of the LPAR option.

A model of the boot sequence is as follows:

1. Support processor runs chip tests and configures the CPU chips.

2. The support processor loads the boot ROM image into System Memory along with the configuration information.

a. POST code

b. Initialization Firmware

c. Hardware configuration reporting structures

d. OF

e. Hypervisor RTAS

3. boot ROM executes POST and Initialization Firmware.

4. Processor initialization code synchronizes the time bases of all platform processors to a small value (approaching
zero).

5. Initialization Firmware accesses the NVRAM Partition Database to determine if the LPAR option is enabled.

6. Initialization Firmware initializes the hypervisor.

7. The hypervisor configures itself using the hardware configuration reporting structures.

8. The hypervisor configures the various partitions with resources as required by the NVRAM Partition Database.

9. The hypervisor loads a copy of OF into each partition passing to OF a resource reporting structure known as the
NACA/PACA.

14.7  OF Requirements 441

LoPAPR, Version 1.1 (March 24, 2016)

10. OF notices in the NACA/PACA that a specific partition table is specified.

11. OF Scans the configuration and walks the buses to build the partition device tree.

12. OF requests the specific partition table from the NVRAM Partition Database.

13. OF loads RTAS into the partition’s memory.

14. OF pulls in the configuration variables from the partition’s NVRAM area and uses them to determine the parti-
tion’s boot device.

15. OF then loads the client program and starts executing it with one of the partition’s processors.

16. The client program notices that it is running on a LPAR capable machine but does not have the hypervisor bit on
in the MSR so must use hcall() routines for its PFT and TCE accesses. The presence of the “ibm,hyper-
tas-functions” property is a duplicate indication of LPAR mode.

R1–14.7–1. For the LPAR option: The OF code state must be retained after all partitions are initialized pending
future boot requests.

R1–14.7–2. For the LPAR option: The OF code must recognize that logical partitioning is required as opposed to
a non-LPARed system.

R1–14.7–3. For the LPAR option: The OF must generate the device tree for the partition within the partition’s
RAM.

R1–14.7–4. For the LPAR combined with Dynamic Reconfiguration option: The “interrupt-ranges”
property for any reported interrupt source controller must report all possible interrupt source numbers.

R1–14.7–5. For the LPAR option: The OF device tree for a partition must include in the root node, the
“ibm,partition-no” property.

R1–14.7–6. For the LPAR option: The OF device tree for an LPAR capable model not running in a partition must
include in the root node, the “ibm,partition-no” property when the default partition number for the
first partition created is not 1.

R1–14.7–7. For the LPAR option: The “ibm,partition-no” property value must be an integer in the range
of 1 to 220-1.

R1–14.7–8. For the LPAR option: The OF device tree for a partition must include in the root node, the
“ibm,partition-name” property.

R1–14.7–9. For the LPAR option: When the platform does not provide a partition manager and the one and only
partition in the system owns all the partition visible system resources, then the default value of the
“ibm,partition-name” property must be the content of the SE keyword (as displayed in the same form
as the root node “system-id” property) with a hyphen added between the plant of manufacture and se-
quence number.

R1–14.7–10. For the LPAR option: The nodes of the OF device tree for a partition that represent platform re-
sources that are not explicitly allocated for the control of the platform’s OS image must be marked
“used-by-rtas”. This includes, but is not limited to, memory controllers, and IO bridges that are a part of the
platform’s infrastructure common to more than one partition and commonly represented in the OF device
tree. But does not include read only resources such as environmental sensors.

R1–14.7–11. For the LPAR option: The OF must, at the OS’s request, load the required RTAS into the partition’s
real addressable memory region.

R1–14.7–12. For the LPAR option: The OF must use the partition’s segment of the NVRAM to establish the parti-
tion’s boot device and configuration variables.

442 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.7–13. For the LPAR option: The OF must load the client program and choose the partition’s processor on
which to begin execution.

Note: It is the responsibility of the client program to recognize whether or not to use LPAR page management.

R1–14.7–14. For the LPAR option: The platform must initialize the time base of the first processor to a small (ap-
proaching zero) value prior to turning over control of the processor to a client program.

R1–14.7–15. (Merged into Requirement R1–11.1–9)

R1–14.7–16. For the LPAR option: The OF Client Interface must restrict access to only resources contained
within the calling partition’s version of the device tree.

R1–14.7–17. For the LPAR option: The OF Client Interface must prevent the calls of one partition’s client pro-
gram from interfering with the operation of another partition’s client program.

R1–14.7–18. For the LPAR option: The OF Client Interface must restrict its supported calls and methods to those
specified in Table 181‚ “OF Client Interface Functions Supported under the LPAR Option‚” on page 442.

R1–14.7–19. For the LPAR option: Any hidden hcall()s which firmware may use to implement OF functions must
check its parameters to insure compliance with all of the architecturally mandated OF requirements.

R1–14.7–20. For the LPAR option: The OF Client Interface functions “start-cpu” and “resume-cpu” must restrict
their operation to processors assigned to the calling Client’s partition.

14.8 NVRAM Requirements

The NVRAM is divided into multiple partitions each containing different categories of data similar to files in a file sys-
tem (these NVRAM partitions are not to be confused with LPAR partitions). Each NVRAM partition is structured with
a self identifying header followed by its partition unique data. Many of these NVRAM partitions contain data only rel-
evant to the platform firmware, while others contain data that either is for OS image use from boot to boot or is used to
communicate operational parameters from the OS image to the platform. The platform firmware on LPAR supporting
platforms structures the NVRAM as per Table 182‚ “LPAR NVRAM Map‚” on page 443. Each LPAR partition is as-
signed a region of NVRAM space. This includes space for LPAR partition specific configuration variables as well as
the minimum 4 K space reserved for the OS image. The hypervisor restricts access for the LPAR partition, through log-
ical address translation and range checking, to its assigned NVRAM region. Other regions of NVRAM are reserved for
firmware use including, for instance, information about how the system should be partitioned.

Table 181. OF Client Interface Functions Supported under the LPAR Option

test cannon child finddevice

getprop getproplen instance-to-package instance-to-path

nextprop package-to-path parent peer

setprop call-method test-method close

open read seek write

claim release boot enter

exit start-cpu milliseconds size(/chosen/nvram)

get-time instantiate-rtas

14.9  Administrative Application Communication Requirements 443

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.8–1. For the LPAR option: Platform OF must locate configuration variables that the OS must manipulate to
select options as to how the specific OS image interfaces or relates to the platform in the partition’s “system”
partition signature (0x70) named “common”, specifically none may be located in the “OF” signature (0x50).

R1–14.8–2. For the LPAR option: The NVRAM region assigned to an LPAR partition must contain, after any
platform required NVRAM partitions have been allocated, a free space partition a minimum of 4 KB long
prior to the installation of the partition’s OS image.

14.9 Administrative Application Communication Requirements

The platform needs to communicate with the an administrative application (outside of the scope of LoPAPR) to man-
age the platform resources. The administrative application may run in an external computer such as a Hardware Man-
agement Console, or it may be integrated into a service partition. Many system facilities are not dedicated to an LPAR
partition but are managed through the HMC and the administrative application.

Table 182. LPAR NVRAM Map

Real Address Range

Per Partition NVRAM access
routine rtas call Logical

Address Range -- outside of
legal range return 0x00 and

discard write data.

Contents

0x00 to F-1 NA
Firmware only partitions

(Signatures 0x00 to 0x6F)

F to (F-1+P) 0x00 to P
Per LPAR partition copies of
supported NVRAM partitions
with signatures 0x70 to 0x7F

(F+P) to (F-1+2P) 0x00 to P
Per LPAR partition copies of
supported NVRAM partitions
with signatures 0x70 to 0x7F

.

.

.

 (F+(P*(n-1)))
to

((F-1)+ nP)
0x00 to P

Per LPAR partition copies of
supported NVRAM partitions
with signatures 0x70 to 0x7F

Table 183. NVRAM partitions on LPAR platforms

Visible to: Partition Signatures Partition Name Comments

Only to the Platform firmware 0x00 - 0x6F

Only to Platform firmware and
the OS image running in the

owning LPAR Partition.
The read and write NVRAM

RTAS routines

0x70 Common
This partition is duplicated per

partition.

0x7F 0x777777777777777777777777

This partition is duplicated per
partition and is at least 4 KB

long when the OS is first
installed.

444 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.9–1. For the LPAR option: The platform must provide a communications means to the administrative ap-
plication.

R1–14.9–2. For the LPAR option: The platform must respond to messages received from the administrative appli-
cation.

14.10 RTAS Access to Hypervisor Virtualized Resources

All allolcatable platform resources are always assigned to a partition. There always exists a dummy partition that is
never active. Resources assigned to partitions that are inactive may be reassigned to other partitions by mechanisms
implemented in the Hardware Management Console.

R1–14.10–1. For the LPAR option: The nvram-fetch RTAS call must restricted access to only the LPAR partition’s
assigned “OS”, “System” and “Error Log” nvram partitions.

R1–14.10–2. For the LPAR option: The nvram-store RTAS call must restricted accss to only the LPAR partition’s
assigned “OS”, “System” and “Error Log” nvram partitions.

R1–14.10–3. For the LPAR option: The get-time-of-day RTAS call must return the LPAR partition’s specific time
of day clock value.

R1–14.10–4. For the LPAR option: The set-time-of-day RTAS call must set the LPAR partition’s specific time of
day clock value.

Firmware Implementation Note: The model implementation keeps time of day on a partition basis. What is really
changed is the offset from the hardware TOD clock which is not normally written (Only written if for some
reason it is approaching its maximum value, such as after a battery failure).

R1–14.10–5. For the LPAR option: The event-scan RTAS call must report global events to each LPAR partition
and LPAR partition local events only to the affected LPAR partition.

R1–14.10–6. For the LPAR option: The check-exception RTAS call must report global events to each LPAR parti-
tion and LPAR partition local events only to the affected LPAR partition.

R1–14.10–7. For the LPAR option: The rtas-last-error RTAS call must report only RTAS errors affecting the call-
ing LPAR partition.

R1–14.10–8. For the LPAR option: The ibm,read-pci-config RTAS calls must restrict access to only IOAs as-
signed to the calling LPAR partition, and if the configuration address is not available to the caller, must return
a status of Success with all ones as the output value.

R1–14.10–9. For the LPAR option: The ibm,write-pci-config RTAS calls must restrict access to only IOAs as-
signed to the calling LPAR partition, and if the configuration address is not available to the caller, must be ig-
nored and must return a status of Success.

R1–14.10–10. For the LPAR option: The ibm,write-pci-config RTAS calls must prevent changing of the firmware
assigned interrupt message number on IOAs configured to use message signaled interrupts.

R1–14.10–11. For the LPAR option: The platform must virtualize the display-character RTAS call such that the
operator can distinguish and selectively read messages from each partition without interference with mes-
sages from other partitions.

R1–14.10–12. For the LPAR option: The set-indicator RTAS call must restrict access to only indicators assigned
to the calling LPAR partition.

R1–14.10–13. For the LPAR option: The effects of the system-reboot RTAS call must be restricted to only the
calling LPAR partition.

14.10  RTAS Access to Hypervisor Virtualized Resources 445

LoPAPR, Version 1.1 (March 24, 2016)

Firmware Implementation Note: One standard OS response to a machine check is to reboot. Thus expecting the
firmware to reset any error conditions such as in the I/O sub-system. When the I/O sub-system, or parts thereof,
are shared among multiple partitions, the platform cannot allow the boot of one partition to prevent another
partition from detecting that it was also affected by an I/O error.

R1–14.10–14. For the LPAR option: The platform must deliver machine check and other event notifications to all af-
fected partitions before initiating recovery operations such as rebooting and resetting hardware fault isolation cir-
cuits.

R1–14.10–15. For the LPAR option: The start-cpu RTAS call must be restricted to only the processors assigned to
the calling LPAR partition.

R1–14.10–16. For the LPAR option: The query-cpu-stopped-state RTAS call must be restricted to only the proces-
sors assigned to the calling LPAR partition.

R1–14.10–17. For the LPAR option: The power-off and ibm,power-off-ups RTAS calls must deactivate the calling
partition and not power off the platform if other partitions remain active.

R1–14.10–18. For the LPAR option: The set-time-for-power-on RTAS call must activate the platform when the
partition requesting the earliest activation time is to be activated.

R1–14.10–19. For the LPAR option: The ibm,os-term RTAS call must adjust support processor surveillance to ac-
count for the termination of the LPAR partition’s OS.

R1–14.10–20. For the LPAR option: The ibm,set-xive RTAS call must restrict access to only interrupt sources as-
signed to the calling LPAR partition by silently failing if the interrupt source is not owned by the calling par-
tition (return success without modifying the state of the unowed interrupt logic).

R1–14.10–21. For the LPAR option: The ibm,set-xive RTAS call must restrict the written queue values to only in-
terrupt processors assigned to the calling LPAR partition.

R1–14.10–22. For the LPAR option: The ibm,get-xive RTAS call must restrict access to only interrupt sources as-
signed to the calling LPAR partition by silently failing if the interrupt source is not owned by the calling par-
tition (return success with the least favored interrupt level, the interrupt server number is undefined --
possibly all ones).

R1–14.10–23. For the LPAR option: The ibm,int-on RTAS call must restrict access to only interrupt sources as-
signed to the calling LPAR partition by silently failing if the interrupt source is not owned by the calling par-
tition (return success without modifying the state of the unowed interrupt logic).

R1–14.10–24. For the LPAR option: The ibm,int-off RTAS call must restrict access to only interrupt sources as-
signed to the calling LPAR partition by silently failing if the interrupt source is not owned by the calling par-
tition (return success without modifying the state of the unowed interrupt logic).

R1–14.10–25. For the LPAR option: The ibm,configure-connector RTAS call must restrict access to only Dy-
namic Reconfiguration Connectors assigned to the calling LPAR partition.

R1–14.10–26. For the LPAR option: The platform must either define or virtualize the power domains used by the
set-power-level RTAS call such that power level settings do not affect other partitions.

R1–14.10–27. For the LPAR option: The set-power-level and get-power-level RTAS calls must restrict access to
only power domains assigned to the calling partition.

R1–14.10–28. For the LPAR option: The platform must restrict the availability of the ibm,exti2c RTAS call to at
most one partition (like any IOA slot).

R1–14.10–29. For the LPAR option: The ibm,set-eeh-option RTAS call must restrict access to only IOAs assigned
to the calling partition.

446 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.10–30. For the LPAR option: The ibm,set-slot-reset RTAS call must restrict access to only IOAs assigned
to the calling partition.

R1–14.10–31. For the LPAR option: The ibm,read-slot-reset-state2 RTAS call must restrict access to only IOAs
assigned to the calling partition.

R1–14.10–32. For the LPAR option: The ibm,configure-bridge RTAS call must restrict access to only configura-
tion addresses assigned to the calling partition.

R1–14.10–33. For the LPAR option: The ibm,set-eeh-option RTAS call must restrict access to only IOAs assigned
to the calling partition.

R1–14.10–34. For the LPAR option: The platform must restrict the ibm,open-errinjct, ibm,close-errinjct, and
ibm,errinjct RTAS calls as well as the errinjct properties be available on at most one partition as defined by a
platform wide firmware configuration variable.

R1–14.10–35. For the LPAR option: Any hidden hcall()s which firmware may use to implement RTAS functions
must check its parameters to insure compliance with all of the architecturally mandated RTAS requirements.

14.11 Shared Processor LPAR Option

The Shared Processor LPAR (SPLPAR) option allows the hypervisor to generate multiple virtual processors by time
slicing a single physical processor. These multiple virtual processors may be assigned to one or more OS images. There
are two primary customer advantages to SPLPAR over the standard LPAR. Most obviously, the assigned processing ca-
pacity of the partition can scale downwards to allow for more OS images to be supported on a single platform. The sec-
ond customer advantage is that a SPLPAR platform can achieve higher processor utilization by providing partitions,
that can use extra processing capacity, with the spare capacity ceded from other partitions. This allows the customer to
take advantage of the variable nature of the instantaneous load on any one OS image to achieve an increase in the aver-
age utilization of the platform’s capacity. While the peak capacity (directly related to the platform cost) stays constant,
the customer may see a significant improvement in the average capacity among all the platform’s workloads. However,
since the peak capacity cannot be physically exceeded, the customer may experience a wider variance in performance
when exercising the SPLPAR option.

In principal, the OS images running on the virtual processors of an SPLPAR platform need not be aware that they are
sharing their physical processors, however, in practice, they experience significantly better performance if they make a
few optimizations. Specifically, if the OS images cedes their virtual processor to the platform when they are idle, and
confers their processor to the holder of a spin lock for which the virtual processor must wait. Another significant
change due to SPLPAR is that there may not be a fixed relationship between a virtual processor and the physical pro-
cessor that actualizes it. In those cases, such physical information as location codes are undefined, affinity and associa-
tivity values are indistinguishable, relationships to secondary caches are meaningless, and any attempt by an OS to
characterize the quality of its processor (such as running diagnostics or performance comparisons to other virtual pro-
cessors) provide unreliable results. OF entities, that represent physical characteristics of a virtual processor that do not
remain fixed, take on altered definitions/ requirements in an SPLPAR environment.

To provide input to the capacity planning and quality of service tools, the hypervisor reports to an OS certain statistics,
these include the minimum processor capacity that the OS can expect (the OS may cede any unused capacity back to
the platform), the maximum processor capacity that the platform grants to the OS, the portion of spare capacity (up to
the maximum) that the platform grants to the OS, and the maximum latency to a dispatch via an hcall().

The OS image optionally registers a data area (VPA) for each virtual processor using the H_REGISTER_VPA hcall().
The hypervisor maintains a variable, within the data area, that is incremented each time the virtual processor is dis-
patched/preempted, such that the dispatch variable is always even when the virtual processor is dispatched and always
odd when it is not dispatched. The achitectural intent for the usage of the dispatch count variable is describe below in

14.11  Shared Processor LPAR Option 447

LoPAPR, Version 1.1 (March 24, 2016)

the paragraph devoted to conferring the processor. Additionally this hcall() may register a trace buffer which the OS
may activate to gain detailed information about virtual processor preemption and dispatching.

Both the VPA and the trace log buffer contain statistics on how long the virtual processor has waited (not been dis-
patched on a physical processor). Architecturally, the virtual processor wait time is divided into three intervals:

1. The time that the virtual processor waited to become logically ready to run again, for example:

a. The time needed to resolve a fault

b. The time needed to process a hypervisor preemption

c. The time until a wake up event after voluntarily relinquishing the physical processor

2. The time spent waiting after interval 1 until virtual processor capacity was available. Shared processor partitions
are granted a quantum of virtual processor capacity (execution time) each dispatch wheel rotation; thus if the par-
tition has used its capacity, the ready to run virtual processor has to wait until the next quantum is granted.

3. The time spent waiting after interval 2 until the virtual processor was dispatched on a physical processor. This is
arises from the fact that multiple ready to run virtual processors with virtual processor capacity may be competing
for a single physical processor.

Two other performance statistics are available via hcall()s these are the Processor Utilization Register, and Pool Idle
Count returned by the H_PURR and H_PIC hcall()s respectively. These two statistics are counts in the same units as
counted by the processor time base. Like the time base, the PUR and PIC are 64 bit values that are set to a numerically
low value during system initialization. The difference between their values at the end and beginning of monitored op-
erations provides data on virtual processor performance. The value of the PUR is a count of processor cycles used by
the calling virtual processor. The PUR count is intended to provide an indication to the partition software of the compu-
tation load supported by the virtual processor. SPLPAR virtual processors are created by dispatching the virtual proces-
sor’s architectural state on one of the physical processors from a pool of physical processors. The value of the PIC is
the summation of the physical processor pool idle cycles, that is the number of time base counts when the pool could
not dispatch a virtual processor. The PIC count is intended to provide an indication to platform management software
of the pool capacity to perform more work.

A well behaved OS image normally cedes its virtual processor to the platform using the H_CEDE hcall() after it deter-
mines that it currently has run out of useful work. The H_CEDE hcall() gives up the virtual processor until either an ex-
ternal interrupt (including decrementer, and Inter Processor Interrupt) or another one of the partition’s processors
executes an H_PROD hcall() see below. Note the decrementer appears to continue to run during the time that the vir-
tual processor is ceded to the platform. The H_CEDE hcall() always returns to the next instruction, however, prior to
executing the next instruction, any pending interrupt is taken. To simulate atomic testing for work, the H_CEDE call
may be called with interrupts disabled, however, the H_CEDE call activates the virtual processor’s MSREE bit to avoid
going into a wait state with interrupts masked.

A multi-processor OS uses two methods to initiate work on one processor from another, in both cases the requesting
processor places a unit of work structure on a queue, and then either signals the serving processor via an Inter-Proces-
sor interrupt to service the work queue, or waits until the serving processor polls the work queue. The former method
translates directly to the SPLPAR environment, the second method may experience significant performance degrada-
tion if the serving processor has ceded. To provide a solution to this performance problem, the SPLPAR provides the
H_PROD hcall(). The H_PROD hcall() takes as a parameter the virtual processor number of the serving processor.
Waking a potentially ceded or ceding processor is subject to many race conditions. The semantic of the H_PROD
hcall() attempts to minimize these race conditions. First the H_CEDE and H_PROD hcall()s serialize on each other per
target virtual processor. Secondly by having the H_PROD firmware set a per virtual processor memory bit before at-
tempting to determine if the target virtual processor is preempted. If the processor is not preempted the H_PROD
hcall() immediately returns, else the processor is dispatched and the memory bit is reset. If the processor was dis-
patched, and subsequently the virtual processor does a H_CEDE operation, the H_CEDE hcall() checks the virtual pro-
cessor’s memory bit and if set, resets the bit and returns immediately (not ceding the physical processor to another

448 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

virtual processor). An OS might choose to always do an H_PROD after an enqueue to a polled queue or it might qual-
ify making the H_PROD hcall() with a status bit set by the by the target processor when it decides to cede its virtual
processor.

Locking in a SPLPAR environment presents a problem for multi-programming OSs, in that the virtual processor that is
holding a lock may have been preempted. In that case, spinning, waiting for the lock, simply wastes time since the lock
holder is in no position to release the lock -- it needs processor cycles and cannot get them for some period of time and
the spinner is using up processor cycles waiting for the lock. The condition is known as a live lock, however, it eventu-
ally resolves itself. The SPLPAR optimization to alleviate this problem is to have the waiting virtual processor “con-
fer” its processor cycles to the lock holder’s virtual processor until the lock holder has had a chance to run another
dispatch time slice.

As with the cede/prod pair of functions above, the confer function is subject to timing window races between the wait-
ing process determining that the lock holder has been preempted and execution of the H_CONFER hcall() during
which time the originally holding virtual processor may have been dispatched, released the lock and ceded the proces-
sor. To manage this situation, the H_CONFER takes two parameters, one that specifies the virtual processor(s) that are
to receive the cycles and the second parameter (valid only when a single processor is specified) which represents the
dispatch count of the holding virtual processor atomically captured when the waiting processor decided to confer its
cycles to the waiting processor.

The semantic of H_CONFER checks the processor parameter for validity, then if it is the “all processors” code pro-
ceeds to the description below. If the processor parameter refers to a valid virtual processor owned by the calling vir-
tual processor’s partition, that is not dispatched, that has not conferred its cycles to all other processors, and who’s
current dispatch count matches that of the second parameter, the time remaining from the calling processors time slice
is conferred to the specified virtual processor.

If the first parameter of H_CONFER specifies the “all processors” code, then it marks the calling virtual processor to
confer all its cycles until all of the partition’s virtual processors, that have not ceded or conferred their cycles, have had
a chance to run a dispatch time slice. The “all processors” version may be viewed as having the hypervisor record the
dispatch counts for all the other platform processors in the calling virtual processor’s hypervisor owned “confer struc-
ture”, then prior to any subsequent dispatch of the calling processor, if the confer structure is not clear, the hypervisor
does the equivalent of removing one entry from the confer structure and calling H_CONFER for the specific virtual
processor. If the specific virtual processor confer is rejected (because the virtual processor is running, ceded, conferred,
or the dispatch count does not match) then the next entry is tried until the confer structure is clear before the originally
calling virtual processor is re-dispatched.

Virtual processors may migrate among the physical processor pool from one dispatch cycle to the next. OF device tree
properties that relate the characteristics of the specific physical processor such as location codes, and other vital prod-
uct data cannot be consistent and are not reported in the nodes of type cpu if the partition is running in SPLPAR
mode. Most processor characteristics properties such as time base increment rate, are consistent for all processors in
the system physical and virtual so are still reported via their standard properties. Additionally nodes of type L2 are not
present in the tree since they are shared with other virtual processors making optimizations based upon their character-
istics impossible. The Processor Identification Register (PIR) should not be accessed by the OS since from cycle to cy-
cle the OS may get different readings, instead the virtual processor number (the number from the
“ibm,ppc-interrupt-server#s” property, contained in the nodes of type cpu, associated with this virtual
processor) is used as the processor number to be passed as parameters to RTAS and hcall() routines for managing inter-
rupts etc.

Software Note: When the client program (OS) first gets control during the boot sequence, the virtual processor number
of the single processor that is operational is identified by the /chosen node of the device tree. The cpu nodes
list the other virtual processors that the first processor may start. These are started one at a time, giving the virtual
processor number as an input parameter to the call. As each processor starts, it starts executing a program that
picks up its virtual processor number from a memory structure initialized by the processor that called the start-cpu

14.11  Shared Processor LPAR Option 449

LoPAPR, Version 1.1 (March 24, 2016)

function. The newly started processor then records the location of its per processor memory structure (where it
saves its virtual processor number) in one of the SPRG registers.

14.11.1 Virtual Processor Areas

The per processor areas are registered with the H_REGISTER_VPA hcall() that takes three parameters. The first pa-
rameter is a flags field that specifies the specific sub function to be performed, the second is the virtual processor num-
ber of one of the processors owned by the calling virtual processor’s partition for whom the area is being registered.
The third parameter is the logical address, within the calling virtual processor’s partition, of the contiguous logically
addressed storage area to be registered. Registered areas are aligned on a cache line (l1) size boundary and may not
span an LMB boundary and for the CMO option may not span an entitlement granule boundary. The length of the area
is provided to the hcall() in starting in byte offset 4 of the area being registered. The H_REGISTER _VPA hcall() reg-
isters various types of areas, and after verifying the parameters, initializes the structure’s variables.

Per Virtual Processor Area: This area contains shared processor operating parameters as defined in Table 184‚ “Per Vir-
tual Processor Area‚” on page 449. A shared processor LPAR aware OS registers this area early
in its initialization. The other types of virtual processor areas can only be registered after the
Per Virtual Processor Area has been successfully registered. The minimum length of the Per
Virtual Processor Area is 640 bytes and the structure may not span a 4096 byte boundary.

Dispatch Trace Log Buffer: This area is optionally registered by OS’s that desire to collect performance measurement
data relative to its shared processor dispatching. The minimum size of this area is 48 bytes while
the maximum is 4 GB. See 14.11.1.2, “Dispatch Trace Log Buffer,” on page 452 for more de-
tails

SLB Shadow Buffer: This area is optionally registered by OS’s that support the SLB-shadow function set. The structure
may not span a 4096 byte boundary. This function set allows the hypervisor to significantly re-
duce the overhead associated with virtual processor dispatch in a shared processor LPAR envi-
ronment, and to provide enhanced recovery from SLB hardware errors. See 14.11.1.3, “SLB
Shadow Buffer,” on page 453 for more details.

Software Note: Registering, deregistering or changing the value of a variable in one of the Virtual Processor Areas for a
different virtual processor (i.e. changing a value in the VPA of processor A from processor B) may be problematic.
In no cases is partition integrity be compromised, but results may be imprecise if such a change is made during
the virtual processor preempt/dispatch window. If the owning processor is started, registration or deregistration
should only be done by the owning processor, if the processor is stopped, registration or deregistration can safely
be done by other processors. Also, for example, changing the number of persistent SLB Shadow Buffer entries
cause uncertainty in the number of currently valid SLB entries in that virtual processor. In some cases, such as
turning on and off dispatch tracing, such uncertainty may be acceptable.

14.11.1.1 Per Virtual Processor Area

Table 184. Per Virtual Processor Area

Byte Offset Length in Bytes Variable Description

0x00 4
Descriptor: This field is supplied for OS identification use, it may be set to any value that may be useful (such
as a pattern that may be identified in a dump) or it may be left uninitalized.
Historic values include: 0xD397D781

0x04 2 (unsigned) Size: The size of the registered structure (640)

0x6 - 0x17 18 Reserved for Firmware Use

0x18 - 0x1B 4 Physical Processor FRU ID

450 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

0x1C - 0x1F 4 Physical Processor on FRU ID

0x20 - 0x57 56 Reserved for Firmware Use

0x58 - 0x5F 8
Virtual processor home node associativity changes counters (changes in the 8 most important associativity
levels)

0x60 - 0xAF 80 Reserved for Firmware Use

0xB0 1 Cede Latency Specifier

0xB1 7 Reserved For LoPAPR Expansion

0xB8 1

Dispatch Trace Log Enable Mask: (Note this entry is valid only if a Dispatch Trace Log Buffer has been
registered). A Trace Log Entry is created when the virtual processor is dispatched following its preemption
for an enabled cause.
=0 no dispatch trace logging
Bit 7 =1 Trace voluntary (OS initiated) virtual processor waits
Bit 6 =1 Trace time slice preempts
Bit 5 = 1 Trace virtual partition memory page faults.
All other values are reserved

0xB9 1
Bits 0-6 Reserved
Bit 7 = 0 -- Dedicated processor cycle donation disabled
Bit 7 = 1 -- Dedicated processor cycle donation enabled.

0xBA 1

Maintain FPRs:
=0 architected state of floating point registers may be discarded at any time,
=1 architected state of floating point registers must be maintained,
all other values are reserved

Note: When set in conjunction with offset 0xFF the 128 bit VSX space is saved on processors supporting the
VSX option (Power ISA [1] 2.06 and beyond).

0xBB 1

Maintain PMCs:
=0 architected state of performance monitor counters may be discarded at any time,
=1 architected state of performance monitor counters must be maintained,
all other values are reserved

0xBC-0xD7 28 Reserved For Firmware Use

0xD8-0xDF 8
Any non-zero value is taken by the firmware to be the OS, estimate, in PURR units, of the cumulative
number of cycles that it has consumed on this virtual processor, while idle, since it was initialized.

0xE0 - 0xFB 28 Reserved for Firmware Use

0xFC 2 (unsigned)

Maintain #SLBs:
This number of Segment Lookaside Buffer Registers (up to the platform implementation maximum) are
maintained, all others (up to the platform implementing maximum) may be discarded at any time.
The value 0xFFFF maintains all SLBs

0xFE 1

Idle:
=0 The OS is busy on this processor
=1 The OS is idle on this processor
All other values are reserved

0xFF 1

Maintain VMX state:
=0 architected state of the processor’s VMX facility, may be discarded at any time
=1 architected state of the processor’s VMX facility, must be maintained
All other values are reserved

Note: When set in conjunction with offset 0xBA the 128 bit VSX space is saved on processors
supporting the VSX option (Power ISA [1] 2.06 and beyond).

Table 184. Per Virtual Processor Area (Continued)

Byte Offset Length in Bytes Variable Description

14.11  Shared Processor LPAR Option 451

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.11.1.1–1. For the SPLPAR option: If the OS registers a Per Virtual Processor Area, it must correspond to
the format specified in Table 184‚ “Per Virtual Processor Area‚” on page 449.

0x100 4 (unsigned)
Virtual Processor Dispatch Counter:
 (Even when virtual processor is dispatched odd when it is preempted/ceded/conferred)

0x104 4 (unsigned)
Virtual Processor Dispatch Dispersion Accumulator:
Incremented on each virtual processor dispatch if the physical processor differs from that of the last dispatch.

0x108 8 (unsigned)
Virtual Processor Virtual Partition Memory Fault Counter: Incremented on each Virtual Partition Memory
page fault.

0x110 8 (unsigned)
Virtual Processor Virtual Partition Memory Fault Time Accumulator: Time, in Time Base units, that the
virtual processor has been blocked waiting for the resolution of virtual Partition Memory page faults.

 0x118 - 0x11F 8 Unsigned accumulation of PURR cycles expropriated by the hypervisor when VPA byte offset 0xFE = 1

0x120 - 0x127 8 Unsigned accumulation of SPURR cycles expropriated by the hypervisor when VPA byte offset 0xFE = 1

0x128 - 0x12F 8 Unsigned accumulation of PURR cycles expropriated by the hypervisor when VPA byte offset 0xFE = 0

0x130 - 0x137 8 Unsigned accumulation of SPURR cycles expropriated by the hypervisor when VPA byte offset 0xFE = 0

0x138 - 0x13F 8 Unsigned accumulation of PURR cycles donated to the processor pool when VPA byte offset 0xFE = 1

0x140 - 0x147 8 Unsigned accumulation of SPURR cycles donated to the processor pool when VPA byte offset 0xFE = 1

0x148 - 0x14F 8 Unsigned accumulation of PURR cycles donated to the processor pool when VPA byte offset 0xFE = 0

0x150 - 0x157 8 Unsigned accumulation of SPURR cycles donated to the processor pool when VPA byte offset 0xFE = 0

0x158-0x15F 8 Accumulated virtual processor wait interval 3 timebase cycles. (waiting for physical processor availability)

0x160 – 0x167 8 Accumulated virtual processor wait interval 2 timebase cycles. (waiting for virtual processor capacity)

0x168 – 0x16F 8 Accumulated virtual processor wait interval 1 timebase cycles. (waiting for virtual processor ready to run)

 0x170 - 0x177 8 Reserved for Firmware Use

0x178 - 0x17F 8 Reserved for Firmware Use

0x180 – 0x183 4
For the CMO option: The OS may report in this field as a hint to the hypervisor the accumulated number,
since the virtual processor was started, of ‘page in’ operations initiated for pages that were previously
swapped out.”

0x184 – 0x187 4 Reserved for Firmware Use

0x188 – 0x18F 8 Reserved for Firmware Use

0x190 – 0x197 8 .Reserved for Firmware Use

0x198 – 0x217 128 Reserved for Firmware Use

0x218 - 0x21F 8 Dispatch Trace Log buffer index counter.

0x220 - 0x27F 96 Reserved for Firmware Use

Table 184. Per Virtual Processor Area (Continued)

Byte Offset Length in Bytes Variable Description

452 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.11.1.2 Dispatch Trace Log Buffer

The optional virtual processor dispatch trace log buffer is a circularly managed buffer containing individual 48 byte en-
tries, with the first entry starting at byte offset 0. Therefore, the 4 byte registration size field is overwritten by the first
Trace Log Buffer entry. (Note the hypervisor rounds down the dispatch trace log buffer length to a multiple of 48 bytes
and wraps when reaching that boundary.) A vpa location Table 184‚ “Per Virtual Processor Area‚” on page 449 con-
tains the index counter that the hypervisor increments each time that it makes a dispatch trace log entry such that it al-
ways indicates the next entry to be filled. The low order bits (modulo the buffer length divided by 48) of the counter
provide the index of the next entry to be filled, therefore, the buffer wraps each (buffer length divided by 48 entries),
while the high order counter bits indicate how many buffer wraps have occurred. Prior to enabling dispatch trace log-
ging, the OS should initialize the vpa index counter to the value of 0. The format of dispatch trace log buffer entries is
given in Table 185‚ “Dispatch Trace Log Buffer Entry‚” on page 452.

The architectural intent is that OS trace tools keep a shadow index counter into the log buffer of the next entry to be
filled by the hypervisor. Prior to making an entry of their own, such tools compare their index counters with that of the
hypervisor from the vpa, if they are equal, no preempts/dispatches have occurred since the last OS trace hook. If the
two index counters are not equal, then the OS trace tool processes the intermediate time stamps into the OS’s trace log,
updating its dispatch trace log buffer index until all have been processed, then the new trace entry is added to the OS’s
trace log. Note, because of races, the processor may be preempted just prior to the OS trace tool adding the new trace
log entry, to handle this case, the OS trace tool can examine the dispatch trace log buffer index immediately after the
adding of the new trace log entry and if needed adjust its own trace log. In the extremely unlikely event that the two
counters are off by trace buffer length divided by forty eight or more counts, the OS trace tool can detect that a dispatch
trace log buffer overflow has occurred, and trace data has been lost.

Table 185. Dispatch Trace Log Buffer Entry

Byte Offset Length in Bytes Variable Description

0x0 1

Reason Code for the virtual processor dispatch:
0: The virtual processor was dispatched at the external interrupt vector location to handle an IOA interrupt,
Virtual interrupt, or interprocessor interrupt.
1: The virtual processor was dispatched to handle firmware internal events.
2: The virtual processor was dispatched at the next sequential instruction due to an H_PROD call by another
partition processor.
3: The virtual processor was dispatched at the DECR interrupt vector due to a decrementer interrupt.
4: The processor was dispatched at location specified in load module (boot) or at the system reset interrupt
vector. (virtual yellow button).
5: The virtual processor was dispatched to handle firmware internal events
6: The virtual processor was dispatched at the next sequential instruction to use cycles conferred from
another partition processor
7: The virtual processor was dispatched at the next sequential instruction for its entitled time slice.
8: The virtual processor was dispatched at the faulting instruction following a virtual partition memory page
fault.

0x1 1

Reason Code for virtual processor preemption:
 0: Not used (for compatibility with earlier versions of the facility)
 1: Firmware internal event
 2: Virtual processor called H_CEDE
 3: Virtual processor called H_CONFER
 4: Virtual processor reached the end of its timeslice (HDEC)
 5: Partition Migration/Hibernation page fault
6: Virtual memory page fault

0x2 - 0x3 2 Processor index of the physical processor actualizing the thread on this dispatch.

0x4 - 0x7 4 Time Base Delta between enqueued to dispatcher and actual dispatch on a physical processor

0x8 - 0xB 4 Time Base Delta between ready to run and enqueue to dispatcher

14.11  Shared Processor LPAR Option 453

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.11.1.2–1. For the SPLPAR option: If the OS registers a Dispatch Trace Log Buffer, it must correspond to
the format specified in Table 185‚ “Dispatch Trace Log Buffer Entry‚” on page 452.

14.11.1.3 SLB Shadow Buffer

On platforms supporting the SLB-Buffer function set, the OS may optionally register an SLB shadow buffer area.
When the OS takes this option, it allows the hypervisor to optimize the saving of SLB entries, thus reducing overhead
and providing more processor capacity for the OS, and also allows the platform to recover from certain SLB hardware
faults. When the OS registers an SLB shadow buffer for its virtual processor, the processor’s SLB is architecturally di-
vided into three categories relative to their durability as depicted in Figure ‚ “‚” on page 453.

Figure 13. Processor SLB relationship to the OS registered VPA and SLB Shadow Buffer

0xC - 0xF 4 Time Base Delta between waiting and ready to run (preempt/fault resolution time)

0x10 - 0x17 8 Time Base Value at the time of dispatch/wait

0x18 - 0x1F 8 For virtual processor preemption reason codes 5 & 6: Logical real address of faulting page; else reserved.

0x20 - 0x27 8 SRR0: At the time of preempt/wait

0x28 - 0x2F 8 SRR1: At the time of preempt/wait

Table 185. Dispatch Trace Log Buffer Entry

Byte Offset Length in Bytes Variable Description

Processor SLB
Index
Max.

Transient Entries

Volatile Entries

Persistent Entries
0

N

M

Virtual Processor Area

Maintain#SLBs = M

#PersistentSLBs (4 Bytes @ offset 0) = N
Length of SLB Shadow Buffer (4 Bytes @ offset 4)

N*16 byte SLB Shadow Entries

.

OS may dynamically change M and N (for (N+1)*16 <= Length of SLB Shadow Buffer)

SLB Shadow Buffer

Increasing

SLB

Index(First SLB Shadow entry @ offset 16)

8 Bytes Reserved for alignment

First 8 Bytes = RB field of
slbmte instruction

Second 8 Bytes = RS field of
slbmte instruction

Note: SLB is filled sequentially starting at index 0
from the shadow buffer ignoring the contents of
RB field bits 52-63

454 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Each category of SLB entries consists of 0-n contiguous SLBs.

Persistent Entries: The first N (starting at SLB index 0, N specified by the numeric content of the first 4 bytes of the
registered SLB Shadow Buffer) SLBs are maintained persistent across all virtual processor dis-
patches unless an unrecovered SLB error is noted. OS maintains a shadow copy of those SLB
entries in the registered SLB shadow buffer. The OS sizes its SLB Shadow buffer for the largest
number of persistent entries it can ever maintain. If the OS registers an SLB Shadow buffer, the
hypervisor does not save the contents of the Persistent entries on virtual processor preempt,
cede, or confer. The OS should minimally record as persistent the entries it needs to handle its
SLB fault interrupts to fill in required Volatile (and potentially) Transient entries.

Volatile Entries: The next M-N SLBs (beginning at the next higher SLB index after the last Persistent entry up through
the entry specified by the “maintain#SLBs” parameter of the VPA) may disappear. The OS
needs to be prepared to recover these entries via SLB fault interrupts. For performance optimi-
zation, the hypervisor normally maintains the state of these entries across H_DECR interrupts
and most hcalls(), they may be lost on H_CEDE calls.

Transient Entries: The platform makes no attempt to maintain the state of these entries and they may be lost at any time.

The OS may dynamically change the number of Persistent entries by atomically changing the value of the 4 byte pa-
rameter at SLB Shadow Buffer offset 0.

The hypervisor does not explicitly check the value of this parameter, however, the hypervisor limits the number of
SLBs that it attempts to load from the shadow buffer to the lesser of the maximum number of SLB entries implemented
by the platform, or the maximum number of entries containable in the SLB Shadow buffer length when it was regis-
tered.

R1–14.11.1.3–1. For the SPLPAR option: If the OS registers an SLB Shadow Buffer, it must correspond to the
format specified in Figure 13‚ “Processor SLB relationship to the OS registered VPA and SLB Shadow Buf-
fer‚” on page 453.

14.11.2 Shared Processor LPAR OF Extensions

14.11.2.1 Shared Processor LPAR Function Sets in “ibm,hypertas-functions”

1. hcall-splpar

2. hcall-pic

3. SLB-Buffer

14.11.2.2 Device Tree Variances

If an SPLPAR implementation does not maintain a fixed relationship between the virtual processor that it reports to the
OS image in the OF device tree properties and the physical processor that it uses to actualize the virtual processor, then
OF entities that imply a fixed physical relationship are not reported. These may include those listed in Table 186‚ “OF
Variances due to SPLPAR‚” on page 455.

14.11  Shared Processor LPAR Option 455

LoPAPR, Version 1.1 (March 24, 2016)

R1–14.11.2.2–1. For the SPLPAR option: If the platform does not maintain a fixed relationship between its virtual
processors and the physical processors that actualize them, then the platform must vary the device tree ele-
ments as outlined in Table 186‚ “OF Variances due to SPLPAR‚” on page 455.

14.11.3 Shared Processor LPAR Hypervisor Extensions

14.11.3.1 Virtual Processor Preempt/Dispatch

A new virtual processor is dispatched on a physical processor when one of the following conditions happens:

 The physical processor is idle and a virtual processor was made ready to run (interrupt or prod)

 The old virtual processor exhausted its time slice (HDECR interrupt).

 The old virtual processor ceded/conferred its cycles.

When one of the above conditions occurs, the hypervisor, by default, records all the virtual processor architected state
including the Time Base and Decrementer values and sets the hypervisor timer services to wake the virtual processor
per the setting of the decrementer. The virtual processor’s Processor Utilization Register value for this dispatch is com-
puted. The VPA’s dispatch count is incremented (such that the result is odd). Then the hypervisor selects a new virtual
processor to dispatch on the physical processor using an implementation dependent algorithm having the following
characteristics given in priority order:

1. The virtual processor is “ready to run” (has not ceded/conferred its cycles or exhausted its time slice).

2. Ready to run virtual processors are dispatched prior to waiting in excess of their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual processor that is most likely to have its
working set in the physical processor’s cache or for other reasons runs most efficiently on the physical processor.

If no virtual processor is “ready to run” at this time, start accumulating the Pool Idle Count (PIC) of the total number of
idle processor cycles in the physical processor pool.

Optionally, flags in the VPA may be set by the OS to indicate to the hypervisor that selected architected state of the vir-
tual processor need not be maintained (that is, the contents of these architected facilities may be lost at any time with-
out notice). The hypervisor may then optimize its preempt/dispatch routines accordingly. Refer to Table 184‚ “Per
Virtual Processor Area‚” on page 449 and SLB Shadow Buffer description for the definition of these flags and values.

Table 186. OF Variances due to SPLPAR

Entity Variance to standard definition

“ibm,loc-code” property
If the physical relationship between virtual processors and physical processors is not constant this
property is omitted from the virtual processor’s node. If missing, the OS should not run diagnostics on
the virtual processor

“l2-cache” property
If the physical relationship between virtual processors and physical processors is not constant the
secondary cache characteristics are not relevant and this property is omitted from the virtual processor’s
node.

Nodes named l2-cache
If the physical relationship between virtual processors and physical processors is not constant the
secondary cache characteristics are not relevant and this node is omitted from the partition’s device tree.

“ibm,associativity”
property

If the physical relationship between virtual processors and physical processors is not constant the
“ibm,associativity” property reflects the same domain for all virtual processors actualized by a
given physical processor pool. Note, even though the associativity of virtual processors may be
indistinguishable, the associativity among other platform resources may be relevant.

456 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

The hypervisor modifies any such OS setable and readable processor state that is not explicitly saved and restored on a
virtual processor dispatch so as to prevent a covert channel between partitions.

When the virtual processor is dispatched, the virtual processor’s “prod” bit is reset, the saved architected state of the
virtual processor is restored from that saved when the virtual processor was preempted, ceded, or conferred, except for
the time base which retains the current value of the physical processor and the decrementer which is reduced from the
state saved value per current Time Base value minus saved Time Base value. The hypervisor sets up for computing the
PUR value increment for the dispatch.

At this time, the hypervisor increments the virtual processor’s VPA dispatch count (such that the value is even). The
hypervisor checks the VPA’s dispatch log flag, if set, the hypervisor creates a pair of log entries in the dispatch log and
stores the circular buffer index in the first buffer entry.

If the virtual processor was signaled with an interrupt condition and the physical interrupt has been reset, then the hy-
pervisor adjusts the virtual processor architected state to reflects that of a physical processor taking the same interrupt
prior to executing the next sequential instruction and execution starts with the first instruction in the appropriate inter-
rupt vector. If no interrupt has been signaled to the virtual processor or the physical interrupt is still active, then execu-
tion starts at the next sequential instruction following the instruction as noted by the hypervisor when the virtual
processor ceded, conferred, or was preempted.

The Platform allocates processor capacity to a partition’s virtual processors using the architectural metaphor of a “dis-
patch wheel” with a fixed implementation dependent rotation period. Each virtual processor receives a time slice each
rotation of the dispatch wheel. The length of the time slice is determined by a number of parameters, the OS image has
direct control, within constraints, over three of these parameters (number of virtual processors, Entitled Processor Ca-
pacity Percentage, Variable Processor Capacity Weight). The constraints are determined by partition and partition ag-
gregate configurations that are outside the scope of this architecture. For reference, partition definitions provide the
initial settings of these parameters while the aggregation configurations provide the constraints (including the degener-
ate case where an aggregation encapsulates only a single member LPAR).

Entitled Processor Capacity Percentage:The percentage of a physical processor that the hypervisor guarantees to be
available to the partition’s virtual processors (distributed in a uniform manner among the parti-
tion’s virtual processors -- thus the number of virtual processors affects the time slice size) each
dispatch cycle. Capacity ceded or conferred from one partition virtual processor extends the
time slices offered to other partition processors. Capacity ceded or conferred after all of the par-
tition’s virtual processors have been dispatch is added to the variable capacity kitty. The initial,
minimum and maximum constraint values of this parameter are determined by the partition con-
figuration definition. The H_SET_PPP hcall() allows the OS image to set this parameter within
the constraints imposed by the partition configuration definition minimum and maximums plus
constraints imposed by partition aggregation.

Variable Processor Capacity Weight:The unitless factor that the hypervisor uses to assign processor capacity in addition
to the Entitled Processor Capacity Percentage. This factor may take the values 0 to 255. A vir-
tual processor’s time slice may be extended to allow it to use capacity unused by other parti-
tions, or not needed to meet the Entitled Processor Capacity Percentage of the active partitions.
A partition is offered a portion of this variable capacity kitty equal to: (Variable Processor Ca-
pacity Weight for the partition) / (summation of Variable Processor Capacity Weights for all
competing partitions). The initial value of this parameter is determined by the partition config-
uration definition. The H_SET_PPP hcall() allows the OS image to set this parameter within
the constraints imposed by the partition configuration definition maximum. Certain partition
definitions may not allow any variable processor capacity allocation.

Unallocated Processor Capacity Percentage: The amount of processor capacity that is currently available within the
constraints of the LPAR's current environment for allocation to Entitled Processor Capacity
Percentage. Race conditions may change the current environment before a request for this ca-
pacity can be performed, resulting in a constrained return from such a request.

14.11  Shared Processor LPAR Option 457

LoPAPR, Version 1.1 (March 24, 2016)

Unallocated Variable Processor Capacity Weight: The amount of variable processor capacity weight that is currently
available within the constraints of the LPAR's current environment for allocation to the parti-
tion's variable processor capacity weight. Race conditions may change the current environment
before a request for this capacity can be performed, resulting in a constrained return from such
a request.

System Parameters readable via the ibm,get-system-parameter RTAS call (see Section 7.3.16.1‚ “ibm,get-system-pa-
rameter‚” on page 211) communicate a variety of configuration and constraint parameters among which are determined
by the partition definition.

By means that are beyond the scope of this architecture, various partitions may be organized into aggregations, for ex-
ample “LPAR groups”, for the purposes of load balancing. These aggregations may impose constraints such as: “The
summation of the minimum available capacity for all virtual processors supported by the LPAR group cannot exceed
100% of the group’s configured capacity”.

R1–14.11.3.1–1. For the SPLPAR option: The platform must dispatch each partition virtual processors each dis-
patch cycle unless prevented by the semantics of the H_CONFER hcall().

R1–14.11.3.1–2. For the SPLPAR option: The summation of the processing capacity that the platform dispatches
to the virtual processors of each partition must be at least equal to that partition's Entitled Processor Capacity
Percentage unless prevented by the semantics of the H_CONFER and H_CEDE hcall()s.

R1–14.11.3.1–3. For the SPLPAR option: The processing capacity that the platform dispatches to each of the par-
tition's virtual processors must be substantially equal unless prevented by the semantics of the H_CONFER
and H_CEDE hcall()s.

R1–14.11.3.1–4. For the SPLPAR option: The platform must distribute processor capacity allocated to SPLPAR
virtual processor actualization not consumed due to Requirements R1–14.11.3.1–1, R1–14.11.3.1–2, and R1–
14.11.3.1–3 to partitions in strict accordance with the definition of Variable Processor Capacity Weight unless
prevented by the LPAR's definition (capped) or the semantics of the H_CONFER and H_CEDE hcall()s.

NOTE: A value of 0 for a Variable Processor Capacity Weight effectively caps the partition at its Entitled Processor
Capacity Percentage value.

R1–14.11.3.1–5. For the SPLPAR option on platforms: The platform must increment the counters in VPA offsets
0x158-0x16F per their definitions in Section 184‚ “Per Virtual Processor Area‚” on page 449.

R1–14.11.3.1–6. For the SPLPAR option on platforms : To maintain compatibility across partition migration and
firmware version levels the OS must be prepared for platform implementations that do not increment VPA
offsets 0x158 – 0x16F.

14.11.3.2 H_REGISTER_VPA

Register Virtual Processor Areas (these include the parameter area known as the VPA, the Dispatch Trace Log Buffer,
and if the SLB-Buffer function set is supported, the SLB Shadow Buffer). Note if the caller makes multiple registration
requests for a given per virtual processor area for a given virtual processor, the last registration wins, and if the same
memory area is registered for multiple processors, the area contents are unpredictable, however, LPAR isolation is not
compromised.

The syntax of the H_REGISTER_VPA hcall() is given below.

int64 /* H_Success,
/* H_Parameter,
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource/
/* H_RESOURCE -- a required resource was not available */

 /* (probable cause is registering a trace buffer without a VPA */

458 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 /* or deregistering a VPA with a registered trace buffer) */
/* H_Hardware -- a hardware event prevented operation */
/* H_MLENGTH_PARM: For the CMO option, the requested area to be registered crossed a */

/* memory entitlement granule boundary */
hcall (const unit64 H_REGISTER_VPA, /* Register the specified per virtual Processor Area */

uint64 flags /* The sub functions for this hcall() are encoded in bits 16-18 */
/* 000 = Reserved */
/* 001 = Register Virtual Processor Area */
/* 010 = Register Dispatch Trace Log Buffer*/
/* 011 = Register SLB Shadow Buffer (if SLB-Buffer function */
/* set is supported) */
/* 100 = Reserved */
/* 101 = Deregister Virtual Processor Area */
/* 110 = Deregister Dispatch Trace Log Buffer */
/* 111 = Reserved */
/* 111 = Deregister SLB Shadow Buffer (if SLB-Buffer /*
/* function set is supported) */

uint64 proc-no, /* Virtual Processor Number */
uint64 vpa); /* Logical Address of the VPA being registered */

Semantics:

 Verify that the flags parameter is a supported value else return H_Parameter. (That the subfunction field (Bits 16-23)
is one of the values supported by this call. Optionally that all other bits are zero. Callers should not set any bits other
than those specifically defined, however, implementations are not required to check the value of bits outside of the
subfunction field.)

 Verify that the proc-no parameter references a virtual processor owned by the calling virtual processor’s partition
else return H_Parameter

 If the sub function is a register, verify that the addr parameter is an L1 cache line aligned logical address within the
memory owned by the calling virtual processor’s partition else return H_Parameter.

 If the Shared Logical Resource option is implemented and the addr parameter represents a shared logical re-
source location that has been rescinded by the owner, return H_RESCINDED.

 Case on subfunction in flags parameter:

 Register VPA:

 Verify that the size field (2 bytes) at offset 0x4 is at least 640 bytes else return H_Parameter.

 Verify that the entire structure (per the size field and vpa) does not span a 4096 byte boundary else return
H_Parameter.

 Record the specified processor’s vpa logical address for access by other SPLPAR hypervisor functions.

 Initialize the contents of the area per Section 14.11.1‚ “Virtual Processor Areas‚” on page 449.

 Return H_Succes

 Register Dispatch Trace Log Buffer:

 Verify that the size field (4 bytes) at offset 0x4 is at least 48 bytes else return H_Parameter.

 For the CMO option, verify that the entire structure (per the size field and vpa parameter) does not span a memory
entitlement granule boundary else return H_MLENGTH_PARM.

14.11  Shared Processor LPAR Option 459

LoPAPR, Version 1.1 (March 24, 2016)

 Verify that a VPA has been registered for the specified virtual processor else return H_RESOURCE.

 Initialize the specified processor’s preempt/dispatch trace log buffer pointers and index.

 Return H_Success.

 Register SLB Shadow Buffer (if SLB-Buffer function set is supported):

 Verify that the size field (4 bytes) at offset 0x4 is at least 8 bytes and that the entire structure (per the size and vpa
parameters) does not span a 4096 byte boundary else return H_Parameter.

 Verify that a VPA has been registered for the specified virtual processor else return H_RESOURCE.

 Initialize the specified processor’s SLB Shadow buffer pointers and set the maximum persistent SLB restore in-
dex to the lesser of the maximum number of processor SLBs or the maximum number of entries in the registered
SLB Shadow buffer.

 Return H_Success.

 Deregister VPA:

 Verify that a Dispatch Trace Log buffer is not registered for the specified processor else return H_RESOURCE.

 Verify that an SLB Shadow buffer is not registered for the specified processor else return H_RESOURCE.

 Clear any partition memory pointer to the specified processor’s VPA (note no check is made that a valid VPA reg-
istration exists).

 Return H_Success.

 Deregister Dispatch Trace Log Buffer:

 Clear any partition memory and/ or hypervisor pointer to the specified processor’s Dispatch Trace Buffer (note no
check is made that a valid Dispatch Trace Buffer registration exists).

 Return H_Success.

 Deregister SLB Shadow Buffer (if SLB-Buffer function set is supported):

 Clear any hypervisor pointer(s) to the specified processor’s SLB Shadow buffer (note no check is made that a
valid SLB Shadow buffer registration exists).

 Zero the hypervisor’s maximum persistent SLB restore index for the specified processor.

 Return H_Success.

 Else Return H_Function.

R1–14.11.3.2–1. For the SPLPAR option: The platform must implement the H_REGISTER_PVA hcall() follow-
ing the syntax and semantics of Section 14.11.3.2‚ “H_REGISTER_VPA‚” on page 457.

R1–14.11.3.2–2. For the SLPAR plus SLB Shadow Buffer options: The platform must register, and deregister the
optional SLB Shadow buffer per the syntax and semantics of Section 14.11.3.2‚ “H_REGISTER_VPA‚” on
page 457.

R1–14.11.3.2–3. For the SLPAR plus SLB Shadow Buffer options: The platform must make persistent the SLB
entries recorded by the OS within the SLB Shadow buffer as described in 14.11.1.3, “SLB Shadow Buffer,”
on page 453.

460 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.11.3.3 H_CEDE

The architectural intent of this hcall() is to have the virtual processor, which has no useful work to do, enter a wait state
ceding its processor capacity to other virtual processors until some useful work appears, signaled either through an in-
terrupt or a prod hcall(). To help the caller reduce race conditions, this call may be made with interrupts disabled but
the semantics of the hcall() enable the virtual processor’s interrupts so that it may always receive wake up interrupt sig-
nals. As a hint to the hypervisor, the cede latency specifier Table 184‚ “Per Virtual Processor Area‚” on page 449 indi-
cates how long the OS can tolerate the latency to an H_PROD hcall() or interrupt, this may affect how the hypervisor
chooses to use or even power down the actualizing physical processor in the mean time.

Software Note: The floating point registers may not be preserved by this call if the “Maintain FPRs” field of the VPA =0,
see Table 184‚ “Per Virtual Processor Area‚” on page 449

Syntax:

int64 /* H_Success: Expected return code upon return when more work is potentially available */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_CEDE); /*Cede the calling virtual processor’s cycles to the platform */

Semantics:

 Enable the virtual processor’s MSREE bit as if it was on at the time of the call.

 Serialize for the virtual processor’s control structure with H_PROD.

 If the virtual processor’s “prod” bit is set, then:

 Reset the virtual processor’s “prod” bit.

 Release the virtual processor’s control structure.

 Return H_Success.

 Record all the virtual processor architected state including the Time Base and Decrementer values.

 Set hypervisor timer services to wake the virtual processor per the setting of the decrementer.

 Mark the virtual processor as non-dispatchable until the processor is the target of an interrupt (system reset, external
including decrementer or IPI) or PROD.

 Cede the time remaining in the virtual processor’s time slice preferentially to the virtual processor’s partition.

 Release the virtual processor’s control structure.

 Dispatch some other virtual processor

 Return H_Success.

R1–14.11.3.3–1. For the SPLPAR option: The platform must implement the H_CEDE hcall() following the syntax
and semantics of Section 14.11.3.3‚ “H_CEDE‚” on page 460.

14.11.3.4 H_CONFER

The architectural intent of this hcall() is to confer the callers processor capacity to the holder of a lock or the initiator of
an event that the caller is waiting upon. If the caller knows the identity of the lock holder then the holder’s virtual pro-
cessor number is supplied as a parameter, if the caller does not know the identity of the lock holder then the “all proces-
sors” value of the proc parameter is specified. If the caller is conferring to the initiator of an event the proc parameter
value of the calling processor. This call may be made with interrupts enabled or disabled. This call provides a reduced
“kill set” of volatile registers, GPRs r0 and r4-r13 are preserved.

14.11  Shared Processor LPAR Option 461

LoPAPR, Version 1.1 (March 24, 2016)

Software Note: The floating point registers may not be preserved by this call if the “Maintain FPRs” field of the VPA =0,
see Table 184‚ “Per Virtual Processor Area‚” on page 449

Syntax:

int64 /* H_Success: Expected return code upon return when more work is potentially available */
/* H_Parameter: The specified processor is not owned by the partition */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint32 H_CONFER, /*Confer the calling virtual processor’s cycles to the specified processor*/
int32 proc, /*Target Processor number -- minus 1 is all partition processors */
uint32 dispatch); /* The dispatch number (ignored if proc=caller) */

Semantics:

 Validate the proc number else return H_Parameter. Valid Values:
-1 (all partition processors)
0 through N one of the processor numbers of the calling processor's partition
The calling processor's number forces a confer until the calling processor is PRODed

 If the proc number is for a single processor and the single processor is not the calling processor, then

 If the dispatch parameter is not equal to the specified processor’s hypervisor copy of the dispatch number or the
hypervisor copy of the dispatch number is even, then return H_Success.

 If the target processor has conferred its cycles to all others, then return H_Success.

Firmware Implementation Note: If one were to confer to a processor that had conferred to all, then a dead lock could
occur, however, there are valid cases with nested locks were this could happen, therefore, the hypervisor call
silently ignores the confer.

 Record all the virtual processor architected state including the Time Base and Decrementer values.

 If the MSREE bit is on, set hypervisor timer services to wake the virtual processor per the setting of the decrementer.

 Mark the virtual processor as non-dispatchable until one of the following:

 System reset interrupt.

 The MSREE bit is on and the virtual processor is the target of an external interrupt (including decrementer or IPI).

 The virtual processor is the target of a PROD operation.

 The specified target processor (or all partition processors if the proc parameter value is a minus 1) have had the
opportunity of a dispatch cycle.

 Confer the time remaining in the virtual processor’s time slice to the virtual processor’s partition.

 Dispatch the/a partition target virtual processor.

 Return H_Success.

R1–14.11.3.4–1. For the SPLPAR option: The platform must implement the H_CONFER hcall() following the
syntax and semantics of Section 14.11.3.4‚ “H_CONFER‚” on page 460.

R1–14.11.3.4–2. For the SPLPAR option: The platform must implement the H_CONFER hcall() such that the
only GPR that is modified by the call is r3.

462 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.11.3.5 H_PROD

Awakens the specific processor. This call provides a reduced “kill set” of volatile registers, GPRs r0 and r4-r13 are pre-
served.

Syntax:

int64 /* H_Success: Expected return code upon return when more work is potentially available */
/* H_Parameter: The specified processor is not owned by the partition */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_PROD, /*Mark the target processor runable */
int64 proc); /*Target Processor number */

Semantics:

 Verify that the target virtual processor specified by the proc parameter is owned by the calling virtual processor’s
partition.

 Serialize for the Target Virtual Processor’s control structure with H_CEDE.

 Set “prod” bit in the target virtual processor’s control structure.

 If the target virtual processor is not ready to run, mark the target virtual processor ready to run.

 Release the target virtual processor’s control structure.

 Return H_Success.

R1–14.11.3.5–1. For the SPLPAR option: The platform must implement the H_PROD hcall() following the syn-
tax and semantics of Section 14.11.3.5‚ “H_PROD‚” on page 462.

R1–14.11.3.5–2. For the SPLPAR option: The platform must implement the H_PROD hcall() such that the only
GPR that is modified by the call is r3.

14.11.3.6 H_GET_PPP

This hcall() returns the partition’s performance parameters. The parameters are packed into registers:

 Register R4 contains the Entitled Processor Capacity Percentage for the partition. In the case of a dedicated proces-
sor partition this value is 100* the number of processors owned by the partition.

 Register R5 contains the Unallocated Processor Capacity Percentage for the calling partition’s aggregation.

 Register R6 contains the aggregation numbers of up to 4 levels of aggregations that the partition may be a member.

 Bytes 0-1: Reserved for future aggregation definition, and set to zero -- in the future this field may be given mean-
ing.

 Bytes 2-3: Reserved for future aggregation definition, and set to zero -- in the future this field may be given mean-
ing.

 Bytes 4-5: 16 bit binary representation of the “Group Number”.

 Bytes 6-7: 16 bit binary representation of the “Pool Number”. In the case of a dedicated processor partition the
“Pool Number” is not applicable which is represented by the code 0xFFFF.

 Register R7 contains the platform resource capacities:

14.11  Shared Processor LPAR Option 463

LoPAPR, Version 1.1 (March 24, 2016)

 Bytes 0 Reserved for future platform resource capacity definition, set to zero -- in the future this field may be
given meaning.

 Byte 1 is a bit field representing the capping mode of the partition’s virtual processor(s):

 Bits 0-6 are reserved, and set to zero -- in the future these bits may be given meaning as new capping modes are
defined

 Bit 7 -- The partition’s virtual processor(s) are capped at their Entitled Processor Capacity Percentage. In the
case of dedicated processors this bit is set.

 Byte 2: Variable Processor Capacity Weight. In the case of a dedicated processor partition this value is 0x00.

 Byte 3: Unallocated Variable Processor Capacity Weight for the calling partition’s aggregation.

 Bytes 4-5 16 bit unsigned binary representation of the number of processors active in the caller’s Processor Pool.
In the case of a dedicated processor partition this value is 0x00.

 Bytes 6-7 16 bit binary representation of the number of processors active on the platform.

 When the value of the “ibm,partition-performance-parameters-level” (see Table B.6.2.1‚ “Root
Node Properties‚” on page 673) is >=1 then register R8 contains the processor virtualization resource allocations. In
the case of a dedicated processor partition R8 contains 0:

 Bytes 0-1: 16 bit unsigned binary representation of the number of physical platform processors allocated to pro-
cessor virtualization.

 Bytes 2-4: 24 bit unsigned binary representation of the maximum processor capacity percentage that is available
to the partition's pool.

 Bytes 5-7: 24 bit unsigned binary representation of the entitled processor capacity percentage available to the par-
tition's pool.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_GET_PPP); /*Returns in R4 - R7 the Platform Performance Parameters. */

Semantics:

 Place the partition’s performance parameters for the calling virtual processor’s partition into the respective registers:

 R4: The calling partition’s Entitled Processor Capacity Percentage

 R5: The calling partition’s aggregation’s Unallocated Processor Capacity Percentage.

 R6: The aggregation numbers

 R7: The platform resource capacities

 R8: When “ibm,partition-performance-parameters-level” is >= 1 in the device tree, R8 is
loaded with the processor virtualization resource allocations

 Return H_Success.

R1–14.11.3.6–1. For the SPLPAR option: The platform must implement the H_GET_PPP hcall() following the
syntax and semantics of Section 14.11.3.6‚ “H_GET_PPP‚” on page 462.

464 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.11.3.7 H_SET_PPP

This hcall() allows the partition to modify its entitled processor capacity percentage and variable processor capacity
weight within limits. If one or both request parameters exceed the constraints of the calling LPAR’s environment, the
hypervisor limits the set value to the constrained value and returns H_Constrained. The H_GET_PPP call may be used
to determine the actual current operational values. By the hypervisor constraining the actual values, the calling parti-
tion does not need special authority to make the H_SET_PPP hcall().

See Section 14.11.3.1‚ “Virtual Processor Preempt/Dispatch‚” on page 455 for definitions of these values.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Parameter: One or both the input parameters were invalid*/
/* H_Constrained: One or both of the input parameters exceeded the partition’s constraints*/
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_SET_PPP, /* Modifies the specified partition’s performance parameters*/
uint64 entitled, /* Entitled Processor Capacity Percentage*/
uint8 variable); /* Variable Processor Capacity Weight*/

Semantics:

 Verify that the variable processor capacity weight is between 0 and 255 else return H_Parameter.

 Verify that the capacities specified is within the constraints of the partition:

 If yes, atomically set the partition’s entitled and variable capacity per the request and return H_Success.

 If not set the partition’s entitled and variable capacity as constrained by the partition’s configuration and return
H_Constrained.

Firmware Implementation Note: If the dispatch algorithm requires that the summation of variable capacities be
updated, it is atomically updated with the set of the partition’s weight.

R1–14.11.3.7–1. For the SPLPAR option: The platform must implement and make available to selected partitions,
the H_SET_PPP hcall() following the syntax and semantics of Section 14.11.3.7‚ “H_SET_PPP‚” on
page 464.

14.11.3.8 H_PURR

The Processor Utilization of Resources Register (PURR) is compatibly read through the H_PURR hcall(). In those im-
plementations running on processors that do not implement the register in hardware, firmware simulates the function.
On platforms that present the property “ibm,rks-hcalls” with bit 2 set (see Appendix B.6.3.1, “RTAS Node
Properties,” on page 690), this call provides a reduced “kill set” of volatile registers, GPRs r0 and r5-r13 are preserved.

Syntax:

uint64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_PURR); /*Returns in R4 the value of the Processor Utilization Register */

Semantics:

 If the platform presents the “ibm,rks-hcall” property with bit 2 set; then honor a kill set of volatile registers r3
& r4.

 Compute the PURR value for the calling virtual processor up to the current point in time and place in R4

14.11  Shared Processor LPAR Option 465

LoPAPR, Version 1.1 (March 24, 2016)

 Return H_Success.

R1–14.11.3.8–1. For the SPLPAR option: The platform must implement the H_PURR hcall() following the syntax
and semantics of Section 14.11.3.9‚ “H_POLL_PENDING‚” on page 465.

14.11.3.9 H_POLL_PENDING

Certain implementations of the hypervisor steal processor cycles to perform administrative functions in the back-
ground. The purpose of the H_POLL_PENDING hcall() is to provide a OS, running atop such an implementation, with
a hint of pending work so that it may more intelligently manage use of platform resources. The use of this call by an
OS is totally optional since such an implementation also uses hardware mechanisms to ensure that the required cycles
can be transparently stolen. It is assumed that the caller of H_POLL_PENDING is idle, if all threads of the processor
are idle (as indicated by the idle flag at byte offset 0xFE of Table 184‚ “Per Virtual Processor Area‚” on page 449), the
hypervisor may choose to perform a background administrative task. The hypervisor returns H_PENDING if there is
pending administrative work, at the time of the call, that it could dispatch to the calling processor if the calling proces-
sor were ceded, if there is no such pending work, the return code is H_Success. Due to race conditions, this pending
work may have grown or disappeared by the time the calling OS makes a subsequent H_CEDE call.

There is NO architectural guarantee that ceding a processor exempts a virtual processor from preemption for a given
period of time. That may indeed be the characteristic of a given implementation, but cannot be expected from all future
implementations.

Syntax:

int64 /* H_Success No pending platform work at this time */
/* H_PENDING There exists pending platform work */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_POLL_PENDING); /* Poll for the presence of pending platform work */

Semantics:

 Return H_PENDING if there is work pending that could be dispatched to the calling processor if it were ceded, else
return H_Success.

R1–14.11.3.9–1. For the SPLPAR option: The platform must implement the H_POLL_PENDING hcall() follow-
ing the syntax and semantics of Section 14.11.3.9‚ “H_POLL_PENDING‚” on page 465.

14.11.4 Pool Idle Count Function Set

The hcall-pic function set may be configured via the partition definition in none or any number of partitions as the
weights administrative policy dictates.

14.11.4.1 H_PIC

Syntax:

int64 /* H_Success: Expected return code */
/* H_Function: The function is not allowed from the calling partition */
/* H_Authority: The calling partition is not authorized to make the call at this time */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_PIC); /*Returns in R4 the value of the Pool Idle Count */

Semantics:

 Verify that calling partition has the authority to make the call else return H_Authority.

466 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 Compute the PIC value for the processor pool implementing the calling virtual processor up to the current point in
time and place into R4

 Place the number of processors in the caller’s processor pool in R5.

 When the value of the “ibm,partition-performance-parameters-level” (see Table B.6.2.1‚ “Root
Node Properties‚” on page 673) is >=1 then:

 Place the summation of time base ticks for all platform processors, allocated to the caller's processor pool, into
register R6.

 Place the summation of all PURR ticks accumulated by all dispatched (not idle) platform processor threads, allo-
cated to the caller's processor pool, into register R7.

 Place the summation of all SPURR1 ticks accumulated by all dispatched (not idle) platform processor threads, al-
located to the caller's processor pool, into register R8.

 Place the caller's processor pool ID into low order two bytes of register R9 (high order 6 bytes are reserved - set to
0x000000).

 If the calling partition has the authority to monitor total processor virtualization then:

 Place the summation of time base ticks for all platform physical processors, allocated to processor virtualiza-
tion, in register R10.

 Place the summation of all PURR ticks accumulated by all dispatched (not idle) platform physical processor
threads, allocated to processor virtualization, in register R11.

 Place the summation of all SPURR1 ticks accumulated by all dispatched (not idle) platform physical processor
threads, allocated to processor virtualization, in register R12.

 Else load R10, R11 and R12 with -1.

 Return H_Success.

R1–14.11.4.1–1. For the SPLPAR option: The platform must implement and make available to selected partitions,
the H_PIC hcall() following the syntax and semantics of Section 14.11.4.1‚ “H_PIC‚” on page 465.

14.11.5 Thread Join Option

14.11.5.1 H_JOIN

The H_JOIN hcall() performs the equivalent of a H_CONFER (proc=self) hcall() (see Section 14.11.3.4‚
“H_CONFER‚” on page 460) unless called by the sole unjoined (active) processor thread, at which time the H_JOIN
hcall() returns H_CONTINUE. H_JOIN is intended to establish a single threaded operating environment within a par-
tition; to prevent external interrupts from complicating this environment, H_JOIN returns “bad_mode” if called with
the processor MSR[EE] bit set to 1. Joined (inactive) threads are activated by H_PROD (see Section 14.11.3.5‚
“H_PROD‚” on page 462) which starts execution at the instruction following the hcall; or a system reset non-maskable
interrupt which appears to interrupt between the hcall and the instruction following the hcall.

Syntax:

int64 /* H_Success Return value to all processor threads in the calling partition except the final active
processor thread in the calling partition. */

1.Machines that do not have a SPURR mechanism are assumed to run at a constant speed, at which time the PURR value is substituted.

14.11  Shared Processor LPAR Option 467

LoPAPR, Version 1.1 (March 24, 2016)

/* bad_mode MSR.EE=1 in addition to other illegal MSR bit values.
/* H_CONTINUE Return value to final active processor thread in the calling partition. */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing the function. */

hcall (const uint64 H_JOIN);/* Join active threads and return H_CONTINUE to final calling thread. */

Semantics:

 If MSR.EE=1 return bad_mode.

 If other processor threads are active in the calling partition, then emulate H_CONFER (proc=self)

 Else return H_CONTINUE.

R1–14.11.5.1–1. For the Thread Join option: The platform must implement the H_JOIN hcall() following the
syntax and semantics of Section 14.11.5.1‚ “H_JOIN‚” on page 466.

R1–14.11.5.1–2. For the Thread Join option: The platform must implement the hcall-join and hcall-splpar func-
tion sets.

R1–14.11.5.1–3. For the Thread Join option: The platform must support the H_PROD hcall even if the partition
is operating in dedicated processor mode.

14.11.6 Virtual Processor Home Node Option (VPHN)

The SPLPAR option allows the platform to dispatch virtual processors on physical processors that due to the variable
nature of work loads are temporarily free, thus improving the utilization of computing resources. However, SPLPAR
implies inconsistent mapping of virtual to physical processors; defeating resource allocation software that attempts to
optimize performance on platforms that implement the NUMA option.

To bridge the gap between these two options, the VPHN option maintain a substantially consistent mapping of a given
virtual processor to a physical processor or set of processors within a given associativity domain. Thus the OS can,
when allocating computing resources, take advantage of this statistically consistent mapping to improve processing
performance.

VPHN mappings are substantially consistent but not static. For any given dispatch cycle, a best effort is made to dis-
patch the virtual processor on a physical processor within a targeted associativity domain (the virtual processor's home
node). However, if processing capacity within the home node is not available, some other physical processor is as-
signed to meet the processing capacity entitlement. From time to time, to optimize the total platform performance, it
may be necessary for the platform to change the home node of a given virtual processor.

To enable the OS to determine the associativity domain of the home node of a virtual processor, platforms implement-
ing the VPHN option provide the H_HOME_NODE_ASSOCIATIVITY hcall(). The presence of the hcall-vphn func-
tion set in the “ibm,hypertas-functions” property indicates that the platform supports the VPHN option. The
OS should be prepared for the support of the VPHN option to change with functions such partition migration, after
which a call to H_HOME_NODE_ASSOCIATIVITY may end with a return code of H_FUNCTION. Additionally, the
VPHN option defines a VPA field that the OS can poll to determine if the associativity domain of the home node has
changed. When the home node associativity domain changes, the OS might choose to call the
H_HOME_NODE_ASSOCIATIVITY hcall() and adjust its resource allocations accordingly.

R1–14.11.6–1. For the Virtual Processor Home Node option: The platform must support the
H_HOME_NODE_ASSOCIATIVITY hcall() per the syntax and semantics specified in section 14.11.6.1,
“H_HOME_NODE_ASSOCIATIVITY,” on page 468.

R1–14.11.6–2. For the Virtual Processor Home Node option: For the OS to operate properly across such func-
tions as partition migration, the OS must be prepared for the target platform to not support the Virtual Proces-
sor Home Node option.

468 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.11.6–3. For the Virtual Processor Home Node option: The platform must support the “virtual processor
home node associativity changes counters” field in the VPA per section 14.11.6.2, “VPA Home Node Asso-
ciativity Changes Counters,” on page 469.

R1–14.11.6–4. For the Virtual Processor Home Node option: The platform must support the “Form 1” of the
“ibm,associativity-reference-points” property per Section 15.3.2‚ “Form 1‚” on page 508. The
client program may call H_HOME_NODE_ASSOCIATIVITY hcall() with a valid identifier input parameter
(such as from the device tree or from the ibm,configure-connector RTAS call) even if the corresponding vir-
tual processor has not been started so that the client program can allocate resources optimally with respect to
the to be started virtual processor.

14.11.6.1 H_HOME_NODE_ASSOCIATIVITY

The H_HOME_NODE_ASSOCIATIVITY hcall() returns the associativity domain designation associated with the
identifier input parameter. The client program may call H_HOME_NODE_ASSOCIATIVITY hcall() with a valid
identifier input parameter (such as from the device tree or from the ibm,configure-connector RTAS call)
even if the corresponding virtual processor has not been started so that the client program can allocate resources opti-
mally with respect to the to be started virtual processor.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Function: The function is not supported (support may change following partition migration) */
/* H_Parameter: Unsupported flag parameter value */
/* H_P2: Invalid id parameter */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_HOME_NODE_ASSOCIATIVITY), /*Returns in R4-R9 the home node associativity */
/*domain IDs */

uint64 flags, /* Type of id parameter */
/* 0x00 not used */
/* 0x01 proc-no as used in the H_REGISTER_VPA hcall */
/* 0x02 processor index as from byte offsets 0x2-0x3 of a trace log entry */

uint64 id); /* processor id in the form specified by the flags parameter*/

Parameters:

 Input:

 flags:

NOTE: this parameter does not share format with the flags parameter of the Page Frame Table Access hcall()s.

Defined Values:

 0x0 Invalid

 0x1 id parameter is as proc-no parameter of H_REGISTER_VPA hcall()

 0x2 id parameter is as processor index from byte offsets 0x2-0x3 of a trace log buffer entry

 all other values reserved.

 id: processor identifier per the form indicated by the flags parameter.

 Output:

 R3: return code

14.12  Virtualizing Partition Memory 469

LoPAPR, Version 1.1 (March 24, 2016)

 R4-R9: associativity domain identifier list of the specified processor’s home node.

Only the “primary” connection (as would be reported in the first string of the “ibm,associativity” prop-
erty) is reported.

 The associativity domain numbers are reported in the sequence they would appear in the “ibm,associa-
tivity” property; starting from the high order bytes of R4 proceeding toward the low order bytes of R9.

 Each of the registers R4-R9 is divided into 4 fields each 2 bytes long.

 The high order bit of each 2 byte field is a length specifier:

 1: The associativity domain number is contained in the low order 15 bits of the field,

 0: The associativity domain number is contained in the low order 15 bits of the current field concatenated
with the 16 bits of the next sequential field)

All low order fields not required to specify the associativity domain identifier list contain the reserved value of
all ones.

Semantics:

 Verify that the “flags” parameter is valid else return H_Parameter.

 Verify that the “id” parameter is valid for the “flags” and the partition else return H_P2.

 Pack the associativity domain identifiers for the home node associated with the “id” parameter starting with the
highest level reported in the “ibm,associativity” property in the high order field of R4.

 All remaining fields through the low order field of R9 are filled with 0xFFFFFFFF.

 Return H_Success.

14.11.6.2 VPA Home Node Associativity Changes Counters

For the VPHN option, the platform maintains within each VPA the Virtual Processor Home Node Associativity
Change Counters field. See Table 184, “Per Virtual Processor Area,” on page 449. This eight (8) byte field is main-
tained as 8 one byte long counters. The number of counters that are supported is implementation dependent up to 8, and
corresponds to the entries in the form 1 of the “ibm,associativity-reference-points” property. If the plat-
form implements fewer than 8 associativity reference points, only the corresponding low offset counters within the field are
used and the remaining high offset counters within the field are unused.

Should the associativity of the home node of the virtual processor change, for each changed associativity level that cor-
responds to a level reported in the “ibm,associativity-reference-points” property, the corresponding coun-
ter in the Virtual Processor Home Node Associativity Change Counters field is incremented.

14.12 Virtualizing Partition Memory

This section describes the various high level functions that are enabled by the virtualization of the logical real memory
of a partition. In principle, virtualization of partition memory can be totally transparent to the partition software; how-
ever, partition software that is migration aware can cooperate with the platform to achieve higher performance, and en-
hanced functionality.

470 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.12.1 Partition Migration/Hibernation

Virtualizing partition memory allows a partition to be moved via migration or hibernation. In the case of partition mi-
gration from one platform to another, the source and destination platforms cooperate to minimize the time that the par-
tition is non-responsive; the goal is to be non-responsive no more than a few seconds. In the case of hibernation, the
intent is to put the partition to sleep for an extended period; during this time the partition state is stored on secondary
storage for later restoration.

R1–14.12.1–1. For the Partition Migration and Partition Hibernation options: The platform must implement
the Partition Suspension option (See Section 7.4.6‚ “ibm,suspend-me RTAS Call‚” on page 243).

R1–14.12.1–2. For the Partition Migration and Partition Hibernation options: The platform must implement
the VASI option (See Section 17.8‚ “Virtual Asynchronous Services Interface (VASI)‚” on page 715).

R1–14.12.1–3. For the Partition Migration and Partition Hibernation options: The platform must implement
the Update OF Tree option.

R1–14.12.1–4. For the Partition Migration and Partition Hibernation options: The platform must implement
the Version 6 Extensions of Event Log Format for all reported events (See Section 10.3.2.2‚ “Version 6 Ex-
tensions of Event Log Format‚” on page 294).

R1–14.12.1–5. For the Partition Migration and Partition Hibernation options: The platform must prevent the
migration/hibernation of partitions that own dedicated platform resources in addition to processors and mem-
ory, this includes physical I/O resources, the BSR facility, physical indicators and sensors (virtualized I/O, in-
dicators (such as tone) and sensors (such as EPOW) are allowed).

R1–14.12.1–6. For the Partition Migration and Partition Hibernation options: The platform must implement
the Client Vterm option.

R1–14.12.1–7. For the Partition Migration and Partition Hibernation options: The platform “time-
base-frequency” must be 512 MHz. +/- 50 parts per million.

R1–14.12.1–8. For the Partition Migration and Partition Hibernation options: The platform must present the
“ibm,nominal-tbf” property (See Section C.6.1.4‚ “CPU Node Properties‚” on page 760) with the
value of 512 MHz.

R1–14.12.1–9. For the Partition Suspension option: The platform must present the properties from Appendix C,
“PA Processor Binding,” on page 753, as specified by Table 187‚ “Properties Related to the Partition Suspen-
sion Option‚” on page 470, to a partition.

R1–14.12.1–10. For the Partition Suspension option: The presence and value of all properties in Table 187‚
“Properties Related to the Partition Suspension Option‚” on page 470 must not change while a partition is
suspended except for those properties described by Section 7.4.8‚ “ibm,update-properties RTAS Call‚” on
page 249.

Table 187. Properties Related to the Partition Suspension Option

Property Name Requirement

“ibm,estimate-precision”
Shall be present. “ibm,estimate-precision”
shall contain the “fre”, “fres”, frsqrte”, and “frsqrtes”
instruction mnemonics.

“ibm,processor-page-sizes” Shall be present.

“reservation-granule-size” Shall be present.

14.12  Virtualizing Partition Memory 471

LoPAPR, Version 1.1 (March 24, 2016)

“cache-unified”

Shall be present if the cache is physically or logically
unified and thus does not require the architected
instruction sequence for data cache stores to appear in
the instruction cache (See “Instruction Storage”
section of Book II of PA); else shall not be present.

“i-cache-size” Shall be present.

“d-cache-size” Shall be present.

“i-cache-line-size” Shall be present.

“d-cache-line-size” Shall be present.

“i-cache-block-size” Shall be present.

“d-cache-block-size” Shall be present.

“i-cache-sets” Shall be present.

“d-cache-sets” Shall be present.

“timebase-frequency”
Shall be present if the timebase frequency can fit into
the “timebase-frequency” property; else shall
not be present.

“ibm,extended-timebase-frequency”
Shall be present if the timebase frequency cannot fit
into the “timebase-frequency” property; else
shall not be present.

“slb-size” Shall be present.

“cpu-version” Shall be present.

“ibm,ppc-interrupt-server#s” Shall be present.

“l2-cache”
Shall be present if another level of cache exists; else
shall not be present.

“ibm,vmx”
Shall be present if VMX is present for the partition;
else shall not be present.

“clock-frequency”
Shall be present if the processor frequency can fit into
the “clock-frequency” property; else shall not
be present.

“ibm,extended-clock-frequency”
Shall be present if the processor frequency cannot fit
into the “clock-frequency” property; else shall
not be present.

“ibm,processor-storage-keys” Shall be present.

“ibm,processor-vadd-size” Shall be present.

“ibm,processor-segment-sizes” Shall be present.

“ibm,segment-page-sizes” Shall be present.

“64-bit” Shall be present.

“ibm,dfp”
Shall be present if DFP is present for the partition;
else shall not be present.

Table 187. Properties Related to the Partition Suspension Option (Continued)

Property Name Requirement

472 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,purr”
Shall be present if a PURR is present; else shall not be
present.

“performance-monitor”
Shall be present if a Performance Monitor is present;
else shall not be present.

“32-64-bridge” Shall be present.

“external-control” Shall not be present.

“general-purpose” Shall be present.

“graphics” Shall be present.

“ibm,platform-hardware-notification” Shall be present.

“603-translation” Shall not be present.

“603-power-management” Shall not be present.

“tlb-size” Shall be present.

“tlb-sets” Shall be present.

“tlb-split” Shall be present.

“d-tlb-size” Shall be present.

“d-tlb-sets” Shall be present.

“i-tlb-size” Shall be present.

“i-tlb-sets” Shall be present.

“64-bit-virtual-address” Shall not be present.

“bus-frequency”
Shall be present if the bus frequency can fit into the
“bus-frequency” property; else shall not be
present.

“ibm,extended-bus-frequency”
Shall be present if the processor frequency cannot fit
into the “bus-frequency” property; else shall
not be present.

“ibm,spurr”
Shall be present if an SPURR is present; else shall not
be present.

“name” Shall be present.

“device_type” Shall be present.

“reg” Shall be present.

“status” Shall be present.

“ibm,pa-features” Shall be present.

“ibm,negotiated-pa-features” Shall be present

“ibm,ppc-interrupt-gserver#s” Shall be present

“ibm,tbu40-offset” Shall be present

Table 187. Properties Related to the Partition Suspension Option (Continued)

Property Name Requirement

14.12  Virtualizing Partition Memory 473

LoPAPR, Version 1.1 (March 24, 2016)

Note on Table 187: The values of the properties in Table 187 shall be consistent with implementation and design of the
processor and the platform upon boot as well as before and after partition suspension.

Programming Note: The “cpu-version” property may contain a logical processor version value. Therefore, code
designed to handle processor errata should read the “ibm,platform-hardware-notification”
property of the root node to obtain the physical processor version numbers allowed in the platform.

14.12.2 Virtualizing the Real Mode Area

PA requires implementations to provide a Real Mode Area of memory that is accessed when not in hypervisor state (ei-
ther MSR[HV] = 0, or MSR[HV] = 1 and MSR[PR] = 1) and the OS address translation mechanism is disabled
(MSR[IR] = 0 or MSR[DR] = 0). PA provides mechanisms to allow the RMA to consist of discontiguous pages of se-
lectable sizes. Such an RMA is known as a virtualized RMA. The H_VRMASD hcall() allows the OS to change the
characteristics of the mappings the address translation mechanism uses to access a virtualized RMA.

14.12.2.1 H_VRMASD

The caller may need to invoke the H_VRMASD hcall() multiple times for it to return with a return code of H_Success.
Upon receiving a return code of H_LongBusyOrder10mSec, the caller should attempt to invoke H_VRMASD in 10
mSec with the same Page_Size_Code value used on the previous H_VRMASD hcall(). Invoking H_VRMASD with a
different Page_Size_Code value indicates that the caller wants to transition to the Page_Size_Code value of the most
recent H_VRMASD call.

When changing the page size used to map the VRMA using the H_VRMASD hcall(), the caller is responsible for es-
tablishing HPT entries for any potential real mode accesses prior to calling H_VRMASD with a new value of
Page_Size_Code, and maintaining any HPT entries for the old value of Page_Size_Code until the hcall() returns
H_Success.

R1–14.12.2.1–1. For the VRMA option: The platform must include the “ibm,vrma-page-sizes” property
(See Appendix C, “PA Processor Binding,” on page 753) in the /cpu node.

R1–14.12.2.1–2. For the VRMA option: The platform must implement the H_VRMASD hcall() following the
syntax and semantics of Section 14.12.2.1‚ “H_VRMASD‚” on page 473.

R1–14.12.2.1–3. For the VRMA option: In order to prevent a storage exception, the calling partition must estab-
lish page table mappings for the Real Mode Area using entries with a page size corresponding to the new
Page_Size_Code value prior to making an H_VRMASD hcall() and must maintain the old page table map-
pings using the page size corresponding to the old Page_Size_Code value until the H_VRMASD hcall() re-
turns H_Success.

Syntax:

int64 /* H_Success, Expected Return Code.*/
/* H_LongBusyOrder10mSec Retry calling the hcall() in 10 milliseconds.
/* H_Parameter, PAGE_SIZE_CODE parameter is invalid.*/
/* H_Hardware, The hcall() experienced a hardware fault preventing the function. */

“ibm,pi-features“ Shall be present

“ibm,pa-optimizations” Shall be present

Table 187. Properties Related to the Partition Suspension Option (Continued)

Property Name Requirement

474 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

hcall (const uint64 H_VRMASD, /* Change the page mapping characteristics of the VRMA*/
uint64 Page_Size_Code); /* Contains a VRMASD field value */

Parameters:

 Page_Size_Code: A supported VRMASD field value. Supported VRMASD field values are described by the
“ibm,vrma-page-sizes” property.

Semantics:

 Verify that the Page_Size_Code parameter corresponds to a supported VRMASD field value; else return
H_Parameter.

 If the Real Mode Area page size specified by the Page_Size_Code parameter does not match the operating RMA
page size of the partition, then set the operating RMA page size of the partition to the value specified by the
Page_Size_Code parameter and initiate the transition of the operating RMA page size of all active processing
threads to the value specified by the Page_Size_Code parameter.

 If all active threads have transitioned to the partition operating RMA page size, then return H_Success; else return
H_LongBusyOrder10mSec.

14.12.3 Cooperative Memory Over-commitment Option (CMO)

The over-commitment of logical memory is accomplished by the platform reassigning pages of memory among the
partitions to create the appearance of more memory than is actually present. This is commonly known as paging. While
paging can, in certain cases, be accomplished transparently, significantly better memory utilization and platform per-
formance can be achieved with cooperation from the partition OS.

CMO introduces the following LoPAPR terms:

 Expropriation: The act of the platform disassociating a physical page from a logical page.

 Subvention: The act of the platform associating a physical page with a logical page.

 Loaned Memory: Logical real memory that a partition lends to the hypervisor for reuse. The partition should not
gratuitously access loaned memory as such accesses are likely to experience a significant delay.

 Memory entitlement: The amount of memory that the platform guarantees that the partition is able to I/O map at
any given time.

R1–14.12.3–1. For the CMO option: The partition must be running under the SPLPAR option.

R1–14.12.3–2. For the CMO option: The platform must transparently (except for time delays) handle all effects of
any memory expropriation that it may introduce unless the CMO option is explicitly enabled by the setting of
architecture.vec option vector 5 byte 4 bit 0 (See Table 244‚ “ibm,architecture.vec option vectors‚” on
page 681 for details).

The CMO option consists of the following LoPAPR extensions:

 Define ibm,architectue.vec-5 option Byte 4 bit 0 as “Client supports cooperative logical real memory
over-commitment”.

 Define page usage states to assist the platform in selecting good victim pages and mechanisms to set such states.

 Extend the syntax and semantics defined for the I/O mapping hcall()s

 Return codes (H_LongBusyOrder1msec, H_LongBusyOrder10msec, and H_NOT_ENOUGH_RESOURCES)

 Return parameter extension for memory entitlement management

14.12  Virtualizing Partition Memory 475

LoPAPR, Version 1.1 (March 24, 2016)

 Define a simulated Special Uncorrectable memory Error machine check for the case where a page can not be re-
stored due to an error.

R1–14.12.3–3. For the CMO option: The architected interface syntax and semantics of all LoPAPR hcall()s and
RTAS calls except as explicitly modified per the CMO option architecture must remain invariant when operating in
CMO mode; any accommodation to memory over-commitment by these firmware functions (potentially any func-
tion that takes a logical real address as an input parameter) is handled transparently.

NOTE: Requirement R1–14.12.3–3 specifically applies to the debugger support hcall()s.

For maximum performance benefit, an OS that indicates via the ibm,client-architecture-support inter-
face that it supports the CMO option will strive to maintain in the “loaned” state (See Section 14.12.3.2‚ “CMO Page
Usage States‚” on page 477), the amount of logical memory indicated by the value returned in R9 from the
H_GET_MPP hcall (See Section 14.12.3.5‚ “H_GET_MPP‚” on page 482), as well as provide page usage state infor-
mation via the interfaces defined in Section 14.12.3.2.1‚ “Setting CMO Page Usage States using HPT hcall() flags Pa-
rameter‚” on page 478 and Section 14.12.3.2.2‚ “Setting CMO Page Usage States with H_BULK_REMOVE‚” on
page 479.

The Extended Cooperative Memory Over-commitment Option (XCMO) provides additional features to manage page
coalescing. These features are activated via setting architecture.vec vector 5 byte 4 bit 1 to the value of 1 in the
ibm,client-architecture-support interface. Given that the platform supports the XCMO option, the CC
flag for page frame table Accesses see Table 178‚ “Page Frame Table Access flags field definition‚” on page 401and
the H_GET_MPP_X hcall() see Section 14.12.3.5.1‚ “H_GET_MPP_X‚” on page 483 may be used by the OS. An OS
might understand that a given page is a great candidate for page coalescing perhaps because the page contains OS and
or common library code which is likely to be duplicated in other partitions; if so it might choose to set the Coalesce
Candidate (CC) flag in the page table access or H_PAGE_INIT hcall()s as a hint to the hypervisor. Should a given log-
ical page be mapped multiple times with conflicting Coalesce Candidate hints, the value in the last mapping made
takes precedence.

For a variety of reasons outside the scope of LoPAPR, a platform supporting the XCMO option for a given platform
might not actually perform page coalescing. If this is the case, the first return value from the H_GET_MPP_X hcall()
see Section 14.12.3.5.1‚ “H_GET_MPP_X‚” on page 483 is the reserved value zero.

R1–14.12.3–4. For the XCMO Option: The platform must implement the CMO Option.

R1–14.12.3–5. Reserved for Compatibility For the XCMO Option: The platform must implement the CC (Co-
alesce Candidate) flag bit see Table 178‚ “Page Frame Table Access flags field definition‚” on page 401.

R1–14.12.3–6. For the XCMO Option: The platform must implement the H_GET_MPP_X hcall() see
Section 14.12.3.5.1‚ “H_GET_MPP_X‚” on page 483.

R1–14.12.3–7. For the XCMO Option with the Partition Migration and Partition Hibernation options: to en-
sure proper operation after partition migration or hibernation, the OS must stop setting the CC flag bit see
Table 178‚ “Page Frame Table Access flags field definition‚” on page 401 and stop calling the
H_GET_MPP_X hcall() see Section 14.12.3.5.1‚ “H_GET_MPP_X‚” on page 483 prior to calling ibm,sus-
pend-me RTAS and not do so again until after the OS has determined that the XCMO option is supported on
the destination platform.

14.12.3.1 CMO Background (Informative)

The following information is provided to be informative of the architectural intent. Implementations may vary, but
should make a best effort to achieve the goals described.

Ideally, the hypervisor does not expropriate any logical memory pages that it must later read in from disk; this is based
upon the belief that the OS is in a better position to determine its working set relative to the available memory and page
its memory than the hypervisor thus, when possible, the OS pager should be used. The ideal is approximated, since it

476 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

cannot be achieved in all cases. The “Overage” is defined as the amount of logical address space that cannot be backed
by the physical main storage pool. The overage is equal to the summation of the logical address space for all partitions
using a given VRM main storage pool (the main storage that the hypervisor uses to back logical memory pages for a set
of partitions) plus the high water mark of the hypervisor free page list (the free list high water mark is some implemen-
tation dependent ratio of the pool size) less the size of the VRM main storage pool.

If the summation of the space freed by page coalescing and page donation is equal to the overage, in the steady state the
hypervisor need not page. In reality the system is seldom, if ever, in the steady state, but with the free list pages the hy-
pervisor has enough buffer space to take up most of the transient cases.

Page coalescing is a transparent operation where in the hypervisor detects duplicate pages, directs all user reads to a
single copy and may reclaim the other duplicate physical memory pages. Should the page owner change a coalesced
page the hypervisor needs to transparently provide the page owner with a unique copy of the page. Read only pages are
more likely to remain identical for a longer period of time and are thus better coalescing candidates.

To set the value for the partition's page donation, the algorithm needs to be “fair” and responsive to the partition's
“weight” so that more important work can be helped along. To be “fair”, the donation needs to be somewhat propor-
tional to the partition's size since donating x pages is likely to cause greater pain to a small partition than a large one;
yet the reason for “weight” is to cause greater pain to certain partitions relative to others.

Thus the initial donation for a partition is set at the partition's logical address space size as a percentage of the total pool
logical space subscription times the overage.

Each implementation dependent time interval (say single digit seconds or so), the hypervisor randomly selects 100
pages from each partition and monitors how many of them were accessed during the next interval. This, after normal-
ization to account for partition CPU utilization relative to its recent maximum, becomes an estimate of the partition's
page utilization. It is expected that a partition with higher page utilization has a higher page fault rate and a lower per-
centage of its working set resident -- thus experiences more pain from VRM.

The page utilization method described above may over estimate memory pressure in certain cases; specifically it may
be slow to realize that the partition has gone idle. An idle partition reduces its CPU utilization which after normaliza-
tion makes it appear that the partition memory pressure has risen rather than lowered. For this reason, the results of the
page utilization method is further compared with the OS reported count of faults against pages that were previously
swapped out as reported in offsets 0x180 – 0x183 of the VPA for each of the partition processors. The partition fault
count when normalized with respect to processor cycles allows comparisons among the reported values from other par-
titions. Since the partition fault count is OS reported, and thus can not be trusted, it can not be the primary value used
to determine page allocation, but since if the OS is misreporting the statistic, it is likely to be high, the memory pres-
sure estimate derived from the OS reported fault counts can be used to reduce (but not increase) the partition memory
allocation. Note since the hint might not be reported by a given OS, a filter should be put in place to detect that the OS
is not reporting faults and appropriate default values substituted.

This initial donation is then modified over time to force the pain of higher page utilization upon lower weight partitions
based upon comparing the following ratios:

A: The average partition page utilization over the last interval of all partitions in the pool / the partition's page utiliza-
tion over the last interval

B: The partition's weight/average partition weight of all partitions in the pool

If A > B Increase the partition's donation by 1/256 of the partition's logical address space (limited to the partition’s log-
ical address size)

If A < B Reduce the partition's donation by 1/256 of the partition's logical address space provided that the summation
of all donations >= Overage.

14.12  Virtualizing Partition Memory 477

LoPAPR, Version 1.1 (March 24, 2016)

The hypervisor maintains a per partition count of loaned pages (incremented when a page is removed from the PFT
with a “loaned” state and decremented when/if the page state is changed) thus it can keep track of how well a partition
is doing against the donation request that has been made of it. Partitions that do not respond to donation requests need

to have their pages stolen to make up the difference. Pages that are “unused” or “loaned” are automatically applied to
the free list. “Loaned” pages are expected to raise the partition's free list low water mark so that the OS only reclaims
them in a transient situation which will then result in the OS paging out some of its own virtual memory to restore the
total donation in the steady state. When the platform free list gets to the low water mark, pages are expropriated start-
ing with the partition that has the greatest percentage discrepancy between its loaned plus expropriated count and is do-
nation tax. The algorithm used is implementation dependent. The following is given for reference and is loosely based
upon the AIX method.

1. For this algorithm, pages that are newly restored are marked as “referenced” and all “unused” have already been
harvested

2. Step through the partition logical address space until either the hypervisor free list has gotten to its high water
mark or the partition has been taxed to its donation.

a. If the page is I/O mapped and not expropriatable, continue to the next page.

b. If this is the first pass through the address space on this harvest, and the page is marked critical, continue to
the next page.

c. If the page is marked “referenced”, clear the reference bit and continue to the next page.

d. If the page is backed in the VPM paging space and not modified since then, expropriate the page and continue
to the next page.

e. Queue the page to be copied into the VPM paging space.

Thus partitions that keep up with their page donations seldom, if ever, experience a hypervisor page in delay. Those
that do not keep up, will not get a free lunch and will be taxed up to the value of their assigned donation, with the real
possibility that they will experience the pain of hypervisor page in delays.

14.12.3.2 CMO Page Usage States

The CMO option defines a number of page states that are set by the cooperating OS using the flags parameter of the
HPT hcall()s. The platform uses these page states to estimate the overhead associated with expropriating the specific
page.

Note: that the first two definitions below represent base background page states; the 3rd definition is the foreground state
of I/O mapped which is acquired as result of an I/O mapping hcall (such as H_PUT_TCE); and the last two are
caller specifiable state modifiers/extended semantics of the base states.

 Unused – the page contains no information that is needed in the future, its contents need not be maintained by the
platform, normally set only when the page is unmapped.1

 Active – the page retains data that the OS has no reasonable way to regenerate. This is the state traditionally as-
sumed by the OS when mapping a page.2

 I/O Mapped – the page is mapped for access by another agent. This state is the side effect of registration and/or I/O
mapping functions. The page returns to its background state automatically when unmapped or deregistered.3

1.Expropriation of “Unused” pages should be a low overhead operation. However, the OS is likely to reuse these pages which means that a clean free
page will have to be assigned to the corresponding logical address.

2.“Active” pages should be expropriated only as a last resort since they must be paged out and paged back in on a subsequent access.

478 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 Critical – the page is critical to the performance of the OS, and the hypervisor should avoid expropriating such
pages while other pages are available.1

 Loaned – the page contains no information and the OS warrants that it will not gratuitously access this page such
that the hypervisor may expect to use it for an extended period of time. When the OS does access the page, it is likely
that the access will result in a subvention delay.2

R1–14.12.3.2–1. For the CMO option: The platform must at partition boot initialize the page usage state of all
platform pages to “Active”.

R1–14.12.3.2–2. For the CMO option: The platform must preserve data in pages that are in the “Active” state.

R1–14.12.3.2–3. For the CMO option: When the OS accesses a page in the “Unused” state, the platform must
present either the preserved page data or all zeros.

R1–14.12.3.2–4. For the CMO option: When the OS specifies as input to an I/O mapping or the
H_MIGRATE_DMA hcall() a page in either the “Unused” or “Loaned” states, the platform must upgrade the
page’s background page state to “Active”.

14.12.3.2.1 Setting CMO Page Usage States using HPT hcall() flags Parameter

The CMO option defines additional flags parameter combinations for the HPT hcall()s that take a flags parameter.
Turning on flags bit 28 activates the changing of page state. Leaving bit 28 at the legacy value of zero maintains the
page state setting, thus allowing legacy code to operate unmodified with all pages remaining in the initialized “Active”
state.

R1–14.12.3.2.1–1. For the CMO option: The platform must extend the syntax and semantics of the HPT access
hcall()s that take a flags parameter, see Table 188‚ “HPT hcall()s extended with CMO flags‚” on page 478, to set
the page usage state of the specified page per Table 189‚ “CMO Page Usage State flags Definition‚” on page 479.

3.Pages in the I/O Mapped state normally may not be expropriated since they are potentially the target of physical DMA operations.

1.Expropriating pages marked “Critical” may result in the OS being unable to meet its performance goals.

2.Expropriating pages in the “Loaned” state should result in the lowest overhead.

Table 188. HPT hcall()s extended with CMO flags

hcall

Section 14.5.4.1.1‚ “H_REMOVE‚” on page 408

Section 14.5.4.1.2‚ “H_ENTER‚” on page 410

Section 14.5.4.1.3‚ “H_READ‚” on page 414

Section 14.5.4.1.4‚ “H_CLEAR_MOD‚” on page 414

Section 14.5.4.1.5‚ “H_CLEAR_REF‚” on page 415

Section 14.5.4.1.6‚ “H_PROTECT‚” on page 416

Section 14.5.4.3.3‚ “H_PAGE_INIT‚” on page 424

14.12  Virtualizing Partition Memory 479

LoPAPR, Version 1.1 (March 24, 2016)

Table 189. CMO Page Usage State flags Definition

14.12.3.2.2 Setting CMO Page Usage States with H_BULK_REMOVE

R1–14.12.3.2.2–1. For the CMO option: The platform must extend the syntax and semantics of the
H_BULK_REMOVE hcall (see 14.5.4.1.7, “H_BULK_REMOVE,” on page 417) to set the page usage state
of the specified pages per Table 190‚ “H_BULK_REMOVE Translation Specifier control/status Byte Ex-
tended Definition for CMO Option‚” on page 480.

Flag bit 28 Flag bits 29 - 30 Flag bit 31 Comments

0 Don’t Care Don’t Care Inhibit Page State Change

1

00 0 Set page state to Active

00 1 Set page State to Active Critical

01 both 0 and 1 Reserved

10 both 0 and 1 Reserved

11 0 Set page state to Unused

11 1 Set page state to Unused Loaned

480 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.12.3.3 CMO Extensions for I/O Mapping Hcall()s

If an OS were to map an excessive amount of its memory for potential physical DMA access, little of its memory
would be left for paging; conversely, if the OS was totally prevented from I/O mapping its memory, it could not do I/O
operations. The CMO option introduces the concept of memory entitlement. The partition’s memory entitlement is the
amount of memory that the platform guarantees that the partition is able to I/O map at any given time. A given page
may be mapped multiple times through different LIOBNs yet it only counts once against the partition’s I/O mapping
memory entitlement. The syntax of certain I/O mapping hcall()s is extended to return the change in the partition’s I/O
mapped memory total. The entitlement is intended to be used to ensure forward progress of I/O operations.

R1–14.12.3.3–1. For the CMO option: When the partition is operating in CMO mode, the platform must extend
the syntax and semantics of the I/O mapping hcall()s specified in Table 191‚ “I/O Mapping hcall()s Modified
by the CMO Option.‚” on page 481 as per the specifications in Section 14.12.3.3.1‚ “CMO I/O Mapping Ex-

Table 190. H_BULK_REMOVE Translation Specifier control/status Byte Extended Definition for CMO Option

0 1 2 3 4 5 6 7 Bit Numbers

type code

0 0 r0 r0 r0 r0 r0 r0 Unused

0 1
page
state

r0 r0 req. mod. Request

0 0 Absolute

0 1 andcon

1 0 APVN

1 1 not used

0 0 Inhibit page usage state change

0 1 Reserved

1 0 For CMO option set page usage state to “Unused” if Success

1 1 For CMO option set page usage state to “Loaned” if Success

1 0
return
code

Response

0 0 R C

r r

Success

0 1

r r

Not Found

1 0 H_PARM

1 1 H_HW

1 1 Reserved (to be zero) End of String

Legion R=Reference Bit, C=Change Bit, r=reserved ignore, r0=reserved to be zero

14.12  Virtualizing Partition Memory 481

LoPAPR, Version 1.1 (March 24, 2016)

tended Return Codes‚” on page 481 and Section 14.12.3.3.2‚ “CMO I/O Mapping Extended Return Parame-
ter‚” on page 481.

NOTE: The I/O mapping hcalls H_PUT_RTCE and H_PUT_RTCE_INDIRECT do not change the number of pages that
are I/O mapped since they simply create copies of the I/O mappings that already exist.

14.12.3.3.1 CMO I/O Mapping Extended Return Codes

R1–14.12.3.3.1–1. For the CMO option: The platform must ensure that the DMA agent operating through the I/O
mappings established by the hcall()s specified in Table 191‚ “I/O Mapping hcall()s Modified by the CMO
Option.‚” on page 481 can appear to successfully access the associated page data of any expropriated page
referenced by the input parameters of the hcall() prior to returning the code H_Success.

R1–14.12.3.3.1–2. For the CMO option: The platform must either extend the return code set for the hcall()s spec-
ified in Table 191‚ “I/O Mapping hcall()s Modified by the CMO Option.‚” on page 481 to include
H_LongBusyOrder1msec and/or H_LongBusyOrder10msec or transparently suspend the calling virtual pro-
cessor for cases where the function is delayed pending the restoration of an expropriated page.

R1–14.12.3.3.1–3. For the CMO option: The platform must extend the return code set for the hcall()s specified in
Table 191‚ “I/O Mapping hcall()s Modified by the CMO Option.‚” on page 481 to include
H_NOT_ENOUGH_RESOURCES for cases where the function would cause more memory to be I/O
mapped than the caller is entitled to I/O map and the platform is incapable of honoring the request.

14.12.3.3.2 CMO I/O Mapping Extended Return Parameter

The syntax and semantics of the hcall()s in Table 191‚ “I/O Mapping hcall()s Modified by the CMO Option.‚” on
page 481 are extended when the partition is operating in CMO mode by returning in register R4 the change in the par-
tition’s total number of I/O mapped memory bytes due to the execution of the hcall(). The number may be positive (in-
crease in the amount of memory mapped) negative or zero (the page was/remains mapped for I/O access by another
agent).

R1–14.12.3.3.2–1. For the CMO option: The platform must extend the syntax and semantics of the hcall()s speci-
fied in Table 191‚ “I/O Mapping hcall()s Modified by the CMO Option.‚” on page 481 when operating in
CMO mode, to return in register R4 the change to the total number of bytes that were I/O mapped due to the
hcall().

14.12.3.4 H_SET_MPP

This hcall() sets, within limits, the partition’s memory performance parameters. If the request parameter exceeds the
constraint of the calling LPAR’s environment, the hypervisor limits the value set to the constrained value and returns
H_Constrained. The memory weight is architecturally constrained to be within the range of 0-255.

Table 191. I/O Mapping hcall()s Modified by the CMO Option.

hcall() Base Definition on

H_PUT_TCE H_PUT_TCE / 14.5.4.2.2

H_STUFF_TCE H_STUFF_TCE / 14.5.4.2.3

H_PUT_TCE_INDIRECT H_PUT_TCE_INDIRECT / 14.5.4.2.4

482 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Syntax:

int64 /* H_Success: Expected return code */
/* H_Constrained: The input parameter exceeds the partition’s constraints*/
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_SET_MPP), /*Sets the Memory Performance Parameters within constraints. */
uint64 entitled, /* I/O mapping memory entitlement in bytes */
uint8 variable; /* The memory weight used to determine the page victim partition */

Semantics:

 Verify that the memory performance parameters specified are within the constraints of the partition:

 If yes, atomically set the partition’s memory performance parameters per the request and return H_Success.

 If not, set the partition’s memory performance parameters as constrained by the partition’s configuration and re-
turn H_Constrained.

R1–14.12.3.4–1. For the CMO option: The platform must initially set the partition memory performance parame-
ters to their configured maximums at partition boot time.

R1–14.12.3.4–2. For the CMO option: The platform must implement the H_SET_MPP hcall() following the syn-
tax and semantics of Section 14.12.3.4‚ “H_SET_MPP‚” on page 481.

R1–14.12.3.4–3. For the CMO option: The platform must constrain the partition memory weight to the range
0-255.

14.12.3.5 H_GET_MPP

This hcall() reports the partition’s memory performance parameters. The returned parameters are packed into registers.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_GET_MPP); /*Returns in R4 - R10 the Memory Performance Parameters. */

Semantics:

 Place the partition’s memory performance parameters for the calling virtual processor’s partition into the respective
registers:

 R4: The number of bytes of main storage that the calling partition is entitled to I/O map. In the case of a dedicated
memory partition this shall be the size of the partition’s logical address space.

 R5: The number of bytes of main storage that the calling partition has I/O mapped. In the case of a dedicated
memory partition this is not applicable which is represented by the code -1.

 R6: The calling partition’s virtual partition memory aggregation identifier numbers, up to 4 levels:

 Bytes 0-1: Reserved for future aggregation definition, and set to zero -- in the future this field may be given
meaning.

 Bytes 2-3: Reserved for future aggregation definition, and set to zero -- in the future this field may be given
meaning.

 Bytes 4-5: 16 bit binary representation of the “Group Number”.

14.12  Virtualizing Partition Memory 483

LoPAPR, Version 1.1 (March 24, 2016)

 Bytes 6-7: 16 bit binary representation of the “Pool Number”. In the case of a dedicated memory partition the
“Pool Number” is not applicable which is represented by the code 0xFFFF.

 R7: Collection of short memory performance parameters for the calling partition:

 Byte 0: Memory weight (0-255). In the case of a dedicated processor partition this is not applicable which is
represented by the code 0.

 Byte 1: Unallocated memory weight for the calling partition’s aggregation.

 Bytes 2-7: Unallocated I/O mapping entitlement for the calling partition’s aggregation divided by 4096.

 R8: The calling partition’s memory pool main storage size in bytes. In the case of a dedicated processor partition
this is not applicable which is represented by the code -1.

 R9: The signed difference between the number of bytes of logical storage that are currently on loan from the call-
ing partition and the partition’s overage allotment (a positive number indicates a request to the partition to loan
the indicated number of bytes else they will be expropriated as needed).

 R10: The number of bytes of main storage that is backing the partition logical address space. In the case of a ded-
icated processor partition this is the size of the partition’s logical address space.

 Return H_Success.

R1–14.12.3.5–1. For the CMO option: The platform must implement the H_GET_MPP hcall() following the syn-
tax and semantics of Section 14.12.3.5‚ “H_GET_MPP‚” on page 482.

14.12.3.5.1 H_GET_MPP_X

This hcall() provides additional information over and above (not duplication of) that which is returned by the
H_GET_MPP hcall() See Section 14.12.3.5‚ “H_GET_MPP‚” on page 482. The syntax of this hcall() is specifically
designed to be seamlessly extensible and version to version compatible both from the view of the caller and the called
on an invocation by invocation basis. To this end, all return registers (R3 (return code) through R10) are defined from
the outset, some are defined as reserved and are set to zero upon return by the hcall(). The caller is explicitly prohibited
from assuming that any reserved register contains the value zero, so that there will be no incompatibility with future
versions of the hcall() that return non-zero values in those registers. New definitions for returned values will define the
value zero to indicate a benign or unreported setting.

Syntax:

Int64 /* H_Success: Expected return code */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing the */
/* function */
/* H_Function The platform does not implement the hcall() */

Hcall (const H_GET_MPP_X); /* Returns in R4-R10 extended Memory Performance/*
/* Parameters */

Semantics:

 Place the partition’s extended memory performance parameters for the calling virtual processor’s partition into the
respective registers:

 R4: The number of bytes of the calling partition’s logical real memory coalesced because they contained dupli-
cated data.

 R5: If the calling partition is authorized to see pool wide statistics (set by means that are beyond the scope of Lo-
PAPR) then The number of bytes of logical real memory coalesced because they contained duplicated data in the
calling partition’s memory pool else set to zero.

484 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 R6:: If the calling partition is authorized to see pool wide statistics (set by means that are beyond the scope of Lo-
PAPR) then PURR cycles consumed to coalesce data else set to zero.

 R7: If the calling partition is authorized to see pool wide statistics (set by means that are beyond the scope of Lo-
PAPR) then SPURR cycles consumed to coalesce data else set to zero.

 R8: Reserved shall be set to zero – shall not be read by the caller

 R9: Reserved shall be set to zero – shall not be read by the caller

 R10: Reserved shall be set to zero – shall not be read by the caller

 Return H_Success:

R1–14.12.3.5.1–1. For the XCMO option: If the platform coalesces memory pages that contain duplicated data it
must implement the H_GET_MPP_X hcall() following the syntax and semantics of Section 14.12.3.5.1‚
“H_GET_MPP_X‚” on page 483.

R1–14.12.3.5.1–2. For the XCMO option: the caller must be prepared for H_GET_MPP_X to return H_Function
or to have a return parameter that was previously non-zero be consistently returned with the value zero if the
caller wishes to operate properly in a partition migration or fail-over environment.

14.12.3.6 Restoration Failure Interrupt

R1–14.12.3.6–1. For the CMO option: When the platform experiences an unrecoverable error restoring the associ-
ation of a physical page with an expropriated logical page following an attempted access of the expropriated
page by the partition, the platform must signal a Machine Check Interrupt by returning to the partition’s inter-
rupt vector at location 0x0200. Note the subsequent firmware assisted NMI and check exception processing
returns a VPM SUE error log (See Section 10.3.2.2.12‚ “Platform Event Log Format, Failing Memory Ad-
dress‚” on page 311).

14.12.3.7 H_MO_PERF

This hcall() applies an artificial memory over-commitment to the specified pool while monitoring the pool perfor-
mance for overload, removing the applied over-commitment if an overload trigger point is reached. The overload trig-
ger point is designed to double as a dead man switch, eventually ending the over-commitment condition should the
experiment terminate ungracefully. Only the partition that is authorized to run platform diagnostics is authorized to
make this call.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */
/* H_AUTHORITY: The caller lacked the authority to make this call*/
/* H_Parameter: The Pool number parameter is invalid */

hcall (const uint64 H_MO_PERF), /*Returns the accumulated pool memory and performance load*/
uint16 pool, /* Pool number being loaded */
int mem, /* The change to the accumulated “bench” from the memory pool */
int lows); /* The change to the accumulated permissible pool memory low events */

Semantics:

This description is based upon the architectural model of 14.12.3.1, “CMO Background (Informative),” on page 475,
and must be adjusted to achieve the intent for the specific implementation.

 Validate that the caller has the required authority; else return H_AUTHORITY.

14.12  Virtualizing Partition Memory 485

LoPAPR, Version 1.1 (March 24, 2016)

 Validate that the pool parameter references an active memory pool else; return H_Parameter.

 Raise the pool’s free list low water mark above its base value by the signed amount in the mem parameter. (The re-
sult is constrained to not less than the base low water mark value and no more then the amount of memory in the
pool.)

 Change the permissible pool memory low event counter by the signed value of the lows parameter.

 Return in R4 the accumulated rise in the pool’s free list low water mark above its base value.

 Return in R5 the current value of the permissible pool memory low event counter.

 On each subsequent low memory event (page allocation where the free list is at or below the low water mark), the
permissible pool memory low event counter is decremented. Should the counter ever reach zero, the pool’s free list
low water mark is returned to its base value.

14.12.3.8 Expropriation/Subvention Notification Option

The Expropriation/Subvention Notification Option (ESN) sub option of the CMO option allows implementing plat-
forms to notify supporting OS’s of delays due to their access of an expropriated VPM page (such as would be experi-
enced during a “page in” operation). With an expropriation notification, the OS may block the affected process and
dispatch another rather than having the platform block the virtual processor that happened to be running the affected
process. An expropriation notification is paired with a subsequent subvention notification signaled when the original
access succeeds. Additionally new page states allow the OS to indicate pages that it can restore itself, thus relieving the
platform from the burden of making copies of those pages when they are expropriated and potentially side stepping the
“double paging problem” wherein the platform pages in a page in response to a touch operation in preparation for an
OS page in only to have the OS immediately discard the page data without looking at it.

The ESN option includes the following LoPAPR extensions:

 Define augmented CMO page states

 Define the per partition Subvention Notification Structure (SNS)

 Define H_REG_SNS hcall() to register the SNS

 Define Expropriation Notification field definitions within the VPA

 Define expropriation and subvention event interrupts.

R1–14.12.3.8–1. For the ESN option: The partition must be running under the CMO option.

R1–14.12.3.8–2. For the ESN option: The platform must ignore/disable all other ESN option functions and fea-
tures unless the OS has successfully registered the Subvention Notification Structure via the H_REG_SNS hcall.
See Section 14.12.3.8.3.2‚ “SNS Registration (H_REG_SNS)‚” on page 489 for details.

14.12.3.8.1 ESN Augmentation of CMO Page Usage States

The ESN option augments the set of page states defined by the CMO option that are set by the cooperating OS using
the flags parameter of the HPT hcall()s. The platform uses these page states to estimate the overhead associated with
expropriating the specific page.

Active – An Expropriation notification on this type of page allows the OS to put the using process to sleep, until the
page is restored, as signaled by a corresponding subvention notification, at which time the af-
fected instruction is retried.

Expendable – the page retains data that the OS can regenerate, for example, a text page that is backed up on disk; usually
the page is mapped read only. A reflected expropriation notification on this type of page re-

486 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

quires the OS to restore the page – thus the platform presents somewhat different interrupt status
from that used by an Active page.1 2

Latent – the page contains data that the OS can regenerate unless the contents have been modified – at which time the
page state appears to be “Active”, this is similar to “Expendable” for pages mapped read/write.
For example, a page of a mapped file. Expropriation Notification is like “Active” or “Expend-
able” above.

Loaned – When the OS does access the page, it is likely that the access will result in an expropriation notification

14.12.3.8.2 Expropriation Notification

Under the ESN option, notice of an attempt to access an expropriated page is given when the Expropriation Interrupt is
enabled in the virtual processor VPA. Additionally the virtual processor VPA Expropriation Correlation Number and
Expropriation Flags fields are set to allow the affected program to determine when the access may succeed and if the
program needs to restore data to the Subvened page, see details in Section 14.12.3.8.2.1‚ “ESN VPA Fields‚” on
page 486. Once the VPA has been updated, the platform presents an Expropriation Fault interrupt to the affected virtual
processor see details in Section 14.12.3.8.2.2‚ “Expropriation Interrupt‚” on page 487.

14.12.3.8.2.1 ESN VPA Fields

R1–14.12.3.8.2.1–1. For the ESN option: The platform must support the VPA field definitions of Table 193‚ “VPA
Byte Offset 0xB9‚” on page 486, Table 194‚ “Firmware Written VPA Starting at Byte Offset 0x178‚” on
page 487, and Table 195‚ “Expropriation Flags at VPA Byte Offset 0x17D‚” on page 487.

1.Expropriating an “Expendable” page should result in lower overhead than expropriating an “Active” page since the contents need not be paged out
before the page is reused.

2.An Expendable page that is Bolted while not illegal has to be treated as an “Active” page since an access to a Bolted page may not result in an expro-
priation notification.

Table 192. ESN Augmentation of CMO Page Usage State flags Definition

Flag bit 28 Flag bits 29 - 30 Flag bit 31 Comments

1

01 0 Set page state to Latenta

a. NOTE: If Expropriation Notification is disabled, or the bolted bit (HPT bit 59) is set to 1, the page state to Active
(Active Critical if flag bit 31=1).

01 1 Set page State to Latent Criticala

10 0 Set page state to Expendablea

10 1 Set page state to Expendable Criticala

Table 193. VPA Byte Offset 0xB9

0 1 2 3 4 5 6 7 Bit Number

Reserved (0)

0 Dedicated processor cycle donation inhibited

1 Dedicated processor cycle donation enabled

0 Expropriation interrupt disabled

1 Expropriation interrupt enabled

14.12  Virtualizing Partition Memory 487

LoPAPR, Version 1.1 (March 24, 2016)

Note: The Expropriation Flags and Expropriation Correlation Number Fields are volatile with respect to Expropriation
Notifications thus it should be saved by the OS before executing any instruction that may access unbolted pages.

14.12.3.8.2.2 Expropriation Interrupt

When the platform is running with real memory over-commitment, eventually a partition virtual processor will access
a stolen page. The transparent solution is to block the virtual processor until the platform has restored the page. By en-
abling the Expropriation Interrupt via the Expropriation Interrupt Enable field of the VPA (see Section 14.12.3.8.2.1‚
“ESN VPA Fields‚” on page 486) the cooperating OS indicates that it is prepared to make use of its virtual processors
for other purposes during the page restoration and/or restore the contents of “expendable” and unmodified “latent”
pages.

R1–14.12.3.8.2.2–1. For the ESN option: When the partition accesses an expropriated page and either the page
was bolted (PTE bit 59=1) or the Expropriation Interrupt Enable bit of the affected virtual processor’s VPA is
off see Section 14.12.3.8.2.1‚ “ESN VPA Fields‚” on page 486, then the platform must recover the page
transparently without an Expropriation Interrupt.

R1–14.12.3.8.2.2–2. For the ESN option: When the partition accesses an expropriated page and the summation of
the partition’s in use subvention event queue entries plus outstanding subvention events is equal to or greater
than the size of the partition’s subvention event queue, the platform must recover the page prior to issuing any
associated Expropriation Interrupt.

Note: Requirement R1–14.12.3.8.2.2–2 prevents the overflow of the subvention queue.

R1–14.12.3.8.2.2–3. For the ESN option: When the partition accesses an expropriated “Unused” or “Expendable”
page, the platform must, unless prevented by R1–14.12.3.8.2.1–1, set bit 7 of the affected processor’s Expro-
priation Flags VPA byte (see Table 195‚ “Expropriation Flags at VPA Byte Offset 0x17D‚” on page 487) to
0b0; else the platform must set the bit to 0b1.

R1–14.12.3.8.2.2–4. For the ESN option: When the partition accesses an expropriated page and the platform asso-
ciates a physical page with the logical page prior to returning control to the affected virtual processor, the
platform must, unless prevented by R1–14.12.3.8.2.1–1, set the Expropriation Correlation Number field of
the affected virtual processor’s VPA to 0x0000 (see Table 194‚ “Firmware Written VPA Starting at Byte Off-
set 0x178‚” on page 487).

Table 194. Firmware Written VPA Starting at Byte Offset 0x178

0x178 F 0x179 0x17A 0x17B 0x17C 0x17D 0x17E 0x17

Reserved for
firmware locks

Reserved

Expropriation Correlation
Number Field

Expropriation Flags -- See Table 195‚
“Expropriation Flags at VPA Byte Offset 0x17D‚”
on page 487.

Table 195. Expropriation Flags at VPA Byte Offset 0x17D

0 1 2 3 4 5 6 7 Bit Number

Reserved (0)
0 The Subvened page data is/will be zero

1 The Subvened page data will be restored.

488 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

R1–14.12.3.8.2.2–5. For the ESN option: When the partition accesses an expropriated page, the platform is not
prevented by R1–14.12.3.8.2.1–1, does not associate a physical page with the logical page prior to returning
control to the affected virtual processor, and the restoration of the logical page has NOT previously been re-
ported to the OS with an expropriation notification, the platform must, set the Expropriation Correlation
Number field of the VPA to a non-zero unique value for all outstanding recovering pages for the affected par-
tition.

R1–14.12.3.8.2.2–6. For the ESN option: When the partition accesses an expropriated page, the platform is not pre-
vented by R1–14.12.3.8.2.1–1, does not associate a physical page with the logical page prior to returning control
to the affected virtual processor, and the restoration of the logical page has previously been reported to the OS with
an expropriation notification, the platform must set the Expropriation Correlation Number field of the VPA to the
same value as was supplied with the previous expropriation notification event associated with the outstanding re-
covering page for the affected partition.

R1–14.12.3.8.2.2–7. For the ESN option: When the partition performs an instruction fetch from an expropriated page,
the platform must, unless prevented by R1–14.12.3.8.2.1–1, signal the affected virtual processor with an Expropri-
ation Interrupt by returning to the affected virtual processor’s interrupt vector at location 0x0400 with the proces-
sor’s MSR, SRR0 and SRR1 registers set as if the instruction fetch had experienced a translation fault type of
Instruction Storage Interrupt except that SRR1 bit 46 (Trap) is set to a one.

R1–14.12.3.8.2.2–8. For the ESN option: When the partition performs a load or store instruction that accesses an ex-
propriated page, the platform must, unless prevented by R1–14.12.3.8.2.1–1, signal the affected virtual processor
with an Expropriation Interrupt by returning to the affected virtual processor’s interrupt vector at location 0x0300
with the processor’s MSR, DSISR, DAR, SRR0 and SRR1 registers set as if the storage access had experienced a
translation fault type of Data Storage Interrupt except that SRR1 bit 46 (Trap) is set to a one.

14.12.3.8.3 ESN Subvention Event Notification

ESN uses an event queue within the Subvention Notification Structure (SNS) to notify the OS of page subvention op-
erations. Subvention events have a two byte SNS-EQ entry which has the value of the expropriation correlation num-
ber from the associated expropriation notification event

R1–14.12.3.8.3–1. For the ESN option: The platform must implement the structures, syntax and semantics de-
scribed in Section 14.12.3.8.3.1‚ “SNS Memory Area‚” on page 488, Section 14.12.3.8.3.2‚ “SNS Registra-
tion (H_REG_SNS)‚” on page 489, and Section 14.12.3.8.3.3‚ “SNS Event Processing‚” on page 490.

14.12.3.8.3.1 SNS Memory Area

R1–14.12.3.8.3.1–1. For the ESN option: The platform must support the 4K byte aligned SNS not spanning its
page boundary defined by Table 196‚ “Subvention Notification Structure‚” on page 488.

Table 196. Subvention Notification Structure

Access Offset Usage

Written by OS Read by
Hypervisor

0x00

Bit Notification Control

0 Notification Trigger

1-7 Reserved

Written by Hypervisor Read by
OS

0x01

Bit Event Queue State

0
0 = Operational
1 = Overflow

1-7 Reserved

14.12  Virtualizing Partition Memory 489

LoPAPR, Version 1.1 (March 24, 2016)

14.12.3.8.3.2 SNS Registration (H_REG_SNS)

Syntax:

int64 /* H_Success: Expected return code */
/* H_Function: The function is not allowed from the calling partition */
/* H_RESCINDED: The Address parameter refers to a rescinded shared logical resource */
/* H_Parameter: The Address parameter is invalid (4K aligned in the caller’s memory)*/
/* H_P2: The Length parameter is odd or not within the limits of: */
/* (256 <= Length <= distance to Page Boundary) */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_REG_SNS), /* Registers the SNS structure returning virtual interrupt parameters*/
int64 Address, /* Logical address of the SNS structure */
uint64 Length); /* Length of the SNS structure */

Semantics:

 If the Address parameter is -1 then deregister any previously registered SNS for the partition, disable ESN functions
and return H_Success. (Care is required on the part of the OS not to create any Restoration Paradox Failures prior to
registering a new SNS. See Section 14.12.3.8.4.2‚ “Restoration Paradox Failure‚” on page 490 for details.)

 If the Shared Logical Resource option is implemented and the Address parameter represents a shared logical re-
source that has been rescinded, then return H_RESCINDED.

 If the Address parameter is not 4K aligned in the valid logical address space of the caller, then return H_Parameter.

 If the Length parameter is less than 256 or the Address plus Length spans the page boundary of the page containing
the starting logical address, then return H_P2.

 Register the SNS structure for the calling partition by saving the partition specific information:

 Record the SNS starting address

 Record the SNS ending address

 Record the next EQ entry to fill address (SNS starting address +2)

 Set the SNS interrupt toggle = SNS Notification Trigger

 Set the SNS Event Queue State to “Operational”

 Return:

 R3: H_Success

 R4: Value to be passed in the “unit address” parameter of the H_VIO_SIGNAL hcall() to enable/disable the vir-
tual interrupt associated with the transition of the SNS from empty to non-empty.

Set to non-zero by Hypervisor
Read and cleared to zero by OS

0x02-0x02 First SNS EQ Entry

.

.

.

(SNS Length -2) - SNS Length - 1) Last SNS EQ Entry

Table 196. Subvention Notification Structure

Access Offset Usage

490 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 R5: Interrupt source number associated with the SNS empty to non-empty virtual interrupt.

14.12.3.8.3.3 SNS Event Processing

The following sequence is used by the platform to post an SNS event. The SNS-EQ used corresponds to the EEN event
type. This sequence refers to fields described in Table 196‚ “Subvention Notification Structure‚” on page 488.

1. If the SNS EQ overflow state is set, exit.
/* An EQ overflow drops all new events until software recovers the EQ*/

2. Using atomic update protocol, store the event identifier into the location indicated by the SNS next EQ entry to fill
pointer if the original contents of the location were zero; else set the associated EQ overflow state and exit.
/* The value of zero is reserved for an unused entry -- an EQ overflow drops the new event */

3. Increment the SNS next EQ entry to fill pointer by the size of the EQ entry (2) modulo the size of the EQ
/* Adjust fill pointer */

4. If the SNS interrupt toggle = SNS Notification Trigger then exit.
/* Exit on no event queue transition */

5. Invert the SNS interrupt toggle.
/* Remember event queue transition */

6. If the SNS interrupt is enabled, signal a virtual interrupt to the associated partition.
/* Signal transition when enabled */

14.12.3.8.4 ESN Interrupts

The ESN option may generate several interrupts to the partition OS. Defined in this section are those in addition to the
Expropriation Notification interrupts defined above.

14.12.3.8.4.1 Subvention Notification Queue Transition Interrupt

R1–14.12.3.8.4.1–1. For the ESN option: When the platform has restored the association of a physical page with
the logical page that caused an Expropriation Notification interrupt with a non-zero Expropriation Correlation
Number, the platform must post the corresponding Expropriation Correlation Number to the Subvention Event
Queue see Section 14.12.3.8.3.3‚ “SNS Event Processing‚” on page 490.

14.12.3.8.4.2 Restoration Paradox Failure

Restoration Paradox Failures result in an unrecoverable memory failure machine check.

R1–14.12.3.8.4.2–1. For the ESN option: When the platform finds that Expropriation Notification has been dis-
abled after it has discarded the contents of an “Expendable” page, it must treat any access to such a page as an un-
recoverable error restoring the association of a physical page with the expropriated logical page.

14.12.4 Virtual Partition Memory Pool Statistics Function Set

The hcall-vpm-pstat function set may be configured via the partition definition in none or any number of partitions as the
VPM administrative policy dictates.

14.12.4.1 H_VPM_PSTAT

This hcall() returns statistics on the physical shared memory pool. Since these statistics can be manipulated by the pro-
cessing of a single partition, there is a risk of creating a covert channel through this call. To mitigate this risk, the call is
contained in a separate function set that can be protected by authorization methods outside the scope of LoPAPR.

14.13  Logical Partition Control Modes 491

LoPAPR, Version 1.1 (March 24, 2016)

Syntax:

int64 /* H_Success: Expected return code */
/* H_Function: The function is not allowed from the calling partition */
/* H_Authority: The calling partition is not authorized to make the call at this time */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing */

/* the function */
hcall (const uint64 H_VPM_PSTAT); /* Returns the memory pool performance statistics */

Parameters:

 Input: None

 Output:

 R4: Total VM Pool Page Faults

 R5: Total Page Fault Wait Time (Time Base Ticks)

 R7: Total Pool Physical Memory

 R8: Total Pool Physical Memory that is I/O mapped

 R9: Total Logical Real Memory that is Virtualized by the VM Pool

Semantics:

 Verify that calling partition has the authority to make the call else return H_Authority.

 Report the statistics for the memory pool used to instantiate the virtual real memory of the calling partition.

 Place in R4 the summation of the virtual partition memory page faults against the memory pool since the initial-
ization of the pool.

 Place in R5 the summation of timebase ticks spent waiting for the page faults indicated in R4.

 Place in R6 the total amount of physical memory in the memory pool.

 Place in R7 the summation of the entitlement of all active partitions served by the memory pool.

 Place in R8 the summation of the I/O mapped memory of all active partition served by the memory pool.

 Place in R9 the summation of the logical real memory of all active partitions served by the memory pool.

 Return H_Success.

14.13 Logical Partition Control Modes

Selected logical partition control modes may be modified by the client program.

14.13.1 Secondary Page Table Entry Group (PTEG) Search

The page table search algorithm, described by the Power ISA [1], consists of searching for a Page Table Entry (PTE) in
up to two PTEGs. The first PTEG searched is the “primary PTEG”. If a PTE match does not occur in the primary
PTEG, the hardware may search the “secondary PTEG”. If a PTE match is not found in the searched PTEGs, the hard-
ware signals a translation exception.

492 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Code is not required to place any PTEs in secondary PTEGs. Therefore, if a PTE match does not occur in a primary
PTEG there is no need for the hardware to search a secondary PTEG to determine that a search has failed. The “Sec-
ondary Page Table Entry Group” bit of “ibm,client-architecture-support” allows code to indicate that
there is no need to search secondary PTEGs to determine that a PTE search has failed.

14.14 Partition Energy Management Option (PEM)

This section describes the functional interfaces that are available to assist the partition Operating System optimize
trade offs between energy consumption and performance requirements.

14.14.1 Long Term Processor Cede

To enable the hypervisor to effectively reduce the power draw from unused partition processors, the concept of cede
wakeup latency is introduced with the Partition Energy Management Option. A one byte cede latency specifier VPA
field communicates the maximum latency class that the OS can tolerate on wakeup from H_CEDE. In general the lon-
ger the wakeup latency the greater the savings that can be made in power drawn by the processor during a cede opera-
tion. However, due to implementation restrictions, the platform might be unable to take full advantage of the latency
that the OS can tolerate thus the cede latency specifier is considered a hint to the platform rather than a command. The
platform may not exceed the latency state specified by the OS. Calling H_CEDE See Section 14.11.3.3‚ “H_CEDE‚”
on page 460, with value of the cede latency specifier set to zero denotes classic H_CEDE behavior. Calling H_CEDE
with the value of the cede latency specifier set greater than zero allows the processor timer facility to be disabled (so as
not to cause gratuitous wake-ups – the use of H_PROD, or other external interrupt is required to wake the processor in
this case). An External interrupt might not awake the ceded process at some of the higher (above the value 1) cede la-
tency specifier settings. Platforms that implement cede latency specifier settings greater than the value of 1 implement
the cede latency settings system parameter see Section 7.3.16.18‚ “Cede Latency Settings Information‚” on page 230.
The hypervisor is then free to take energy management actions with this hint in mind.

R1–14.14.1–1. For the PEM option: The platform must honor the OS set cede latency specifier value per the defi-
nition of Section 14.14.1‚ “Long Term Processor Cede‚” on page 492.

R1–14.14.1–2. For the PEM option: The platform must map any OS set cede latency specifier value into one of its
implemented values that does not exceed the latency class set by the OS.

R1–14.14.1–3. For the PEM option: The platform must implement the cede latency specifier values of 0 and 1 per
Section 14.14.1‚ “Long Term Processor Cede‚” on page 492.

R1–14.14.1–4. For the PEM option: If the platform implements cede latency specifier values greater than 1 it must
implement the cede latency settings values sequentially without holes.

R1–14.14.1–5. For the PEM option: If the platform implements cede latency specifier values greater than 1 each
sequential cede latency settings value must represent a cede wake up latency not less than its predecessor, and
no less restrictive than its predecessor.

R1–14.14.1–6. For the PEM option: If the platform implements cede latency specifier values greater than 1 it must
implement the cede latency settings system parameter see Section 7.3.16.18‚ “Cede Latency Settings Infor-
mation‚” on page 230.

14.14.2 H_GET_EM_PARMS

This hcall() returns the partition’s energy management parameters. The return parameters are packed into registers.

14.14  Partition Energy Management Option (PEM) 493

LoPAPR, Version 1.1 (March 24, 2016)

Programming Note: On platforms that implement the partition migration option, after partition migration:

1. The support for this hcall() might change, the caller should be prepared to receive an H_Function return
code indicating the platform does not implement this hcall().

2. Fields that were defined as “reserved” might contain data; calling code should be tested to ensure that it ig-
nores fields defined as “reserved” at the time of its design, and that it operates properly when encountering
“zeroed” defined fields that indicate that the field does not contain useful data.

Implementation Note: To aid the testing of calling code, implementations would do well to include debug tools that seed
reserved return fields with random data.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function */

hcall (const uint64 H_GET_EM_PARMS); /*Returns in R4 – R9 the Platform Energy Management Parameters. */

Parameters: (on return)

 Status Codes (bit offset within 2 byte field): Bits 0:5 Reserved (zero)

 Bits 6:8 Energy Management major code:

 0b000: Non – floor modes:

 Bits 9:15 Energy Management minor code:

 0x00: The energy management policy for this aggregation level is not specified.

 0x01: Maximum Performance (Energy Management enabled – performance may exceed nominal)

 0x02: Nominal Performance (Energy Management Disabled)

 0x03: Static Power Saving Mode

 0x04: Deterministic Performance (Energy Management enabled – consistent performance on a given work-
load independent of environmental factors and component variances)

 0x05 – 0x7F Reserved

 0b001: Dynamic Power Management:

 Bits 9:15 Performance floor as a percentage of nominal (0% - 100%).

 0b010:0b111 Reserved

Register R3: Return code

Register R4: Platform Group Pool Partition

494 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Status Code Fields are determined by means outside the scope of LoPAPR. Platform designs may
define a hierarchy of aggregations in which lower levels by default inherit the energy management policy of their
parent.

 Bytes 0:3 four byte Power Draw Status/Limit for the platform

 Bit 0: Power Draw Limit is hard/soft: 0 = Soft, 1 = Hard

 Bits 1:7 Reserved.

 Bits 8:31 unsigned binary Power Draw Limit times 0.1 watts

 The total processor energy consumed by the calling partition since boot in Joules times 2**-16. The value zero indi-
cates that the platform does not support reporting this parameter.

 The total memory energy consumed by the calling partition since boot in Joules times 2**-16. The value zero indi-
cates that the platform does not support reporting this parameter.

 The total I/O energy consumed by the calling partition since boot in Joules times 2**-16. The value zero indicates
that the platform does not support reporting this parameter.

Semantics:

 Place the partition’s performance parameters for the calling virtual processor’s partition into the respective registers:

 R4: Energy Management Status Codes

 R5: Power Draw Limits (Platform and Group)

 R6: Power Draw Limits (Pool and Partition)

 R7: Partition Processor Energy Consumption

Register R5: Platform Power Draw Reserved 0x00000000

A value of all zeros indicates that no Power Draw limit is set

Register R6: Reserved

Register R7: Total processor energy consumed

Register R8: Total memory energy consumed

Register R9: Total I/O energy consumed

14.14  Partition Energy Management Option (PEM) 495

LoPAPR, Version 1.1 (March 24, 2016)

 R8: Partition Memory Energy Consumption

 R9: Partition I/O Energy Consumption

 Return H_Success.

R1–14.14.2–1. For the PEM option: The platform must implement the H_GET_EMP hcall() following the syntax
and semantics of Section 14.14.2‚ “H_GET_EM_PARMS‚” on page 492.

14.14.2.1 H_BEST_ENERGY

This hcall() returns a hint to the caller as to the probable impact toward the goal of minimal platform energy consump-
tion for a given level of computing capacity that would result from releasing or activating various computing resources.
The returned value is a unitless priority, the lower the returned value; the more likely the goal will be achieved. The ac-
curacy of the returned hint is implementation dependent, and is subject to change based upon actions of other parti-
tions; thus the implementation can only provide a “best effort” to be “substantially correct”. Implementation dependent
support for this hcall() and supported resource codes might change during partition suspension as in partition hiberna-
tion or migration; the client program should be coded to gracefully handle H_Function, H_UNSUPPORTED, and
H_UNSUPPORTED_FLAG return codes.

H_BEST_ENERGY may be used in one of two modes, “inquiry” or “ordered” specified by the setting of bit 54 of the
eflags parameter. It is intended that ordered mode be used when the client program is largely indifferent to the specific
resource instance to be released or activated. In ordered mode, H_BEST_ENERGY returns a list of resource instances
in the order from the best toward worst to choose to release/activate to achieve minimal energy consumption starting
with an initial resource instance in the ordered list (if the specified initial resource is the reserved value zero the re-
turned list starts with the resource having the greatest probability of minimizing energy consumption). It is intended
that inquiry mode be used when the client program wishes to compare the energy advantage of making a resource se-
lection from among a set of candidate resource instances. In inquiry mode, H_BEST_ENERGY returns the unitless
priority of releasing/acquiring each of the specified resource instances. It is expected that in the vast majority of cases,
the client code will receive data on a sufficient number of resource instances in one H_BEST_ENERGY call to make
its activate/release decision; however, in those rare cases where more information is needed, a series of
H_BEST_ENERGY calls can be made to accumulate information on an arbitrary number of computing resource in-
stances.

Platforms may optionally support “buffered ordered” return data mode. If the platform supports “buffered ordered” re-
turn data mode, a “b” suffix appears at the end of the list that terminates the hcall-best-energy-1 function set entry. If
the “buffered ordered” return data mode is supported the caller may specify the “B” bit in the eflags parameter and sup-
ply in P3 the logical address of a 4K byte aligned return buffer.

The probable effects of a given resource instance selection might vary depending upon the intention of the client pro-
gram to take other actions. These other actions include the ability to reactivate a released resource within a given time
latency and number of resources the client program intends to activate/release as a group. The eflags parameter to
H_BEST_ENERGY contains fields that convey hints to the platform of the client program intentions in these areas;
implementations might take these hints into consideration as appropriate. The high order four (4) bytes of the eflags pa-
rameter contain the unsigned required reactivation latency in time base ticks (the reserved value of all zeros indicates
an unspecified reactivation latency).

Calling H_BEST_ENERGY with the eflags “refresh” flag (bit 54) equal to a one causes the hypervisor to compute the
relative unitless priority value (1 being the best to activate/release with increasing numbers being poorer choices from
the perspective of potential energy savings) for each instance of the specified resource that is owned by the calling par-
tition. If the hypervisor can not distinguish a substantially different estimate for the various resource instances the call
returns H_Not_Available. If the “refresh” flag is equal to a zero, the list as previously computed is used. Care should be
exercised when using the non-refresh version to ensure that the state of the partition’s owned resource list has been ini-
tialized at some point and has not changed due to resource instance activation/release (including dynamic reconfigura-

496 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

tion) activities by other partition threads else the results of the H_BEST_ENERGY call are unpredictable (ranging
from inaccurate prediction values up to and including error code responses).

The return values for H_BEST_ENERGY are passed in registers. Following standard convention, the return code is in
R3. Register R4 contains the response count. If the call is made in “inquiry” mode the response count equals the num-
ber of non-zero requested resource instance entries in the call. If the call is made in “ordered” mode, the response count
contains the number of entries in the ordered list from the first entry returned until the worst choice entry. If the re-
sponse count is <= 8 (512 for ordered buffer mode) then the response count also indicates how many resource instances
are being reported by this call, if the response count is >8 (512 for ordered buffer mode) then this call reports eight (512
for ordered buffer mode) resource instances. Each response consists of three fields: bytes 0 -- 2 are reserved, byte 3
contains the unitless priority for selecting the indicated resource instance, and bytes 4 -- 7 contain the resource instance
identifier value corresponding to that passed in the “ibm,my-drc-index” property.

In order to represent more accurately the significance of certain priority values relative to others, the platform might
leave holes in the ranges of reported priority values. As an example there may be a gap of several priority numbers be-
tween the value associated with a resource that can be powered down versus one that can only be placed in an interme-
diate energy mode, and yet again another gap to a resource that represents a necessary but not sufficient condition for
reducing energy consumption.

Syntax:

Int64 /* H_Success: Expected return code */
/* H_Hardware: The hcall() experienced a hardware fault potentially preventing the function*/
/* H_Function: The hcall() is not supported */
/* H_Busy: The hcall() is not complete call again */
/* H_Not_Available: Differentiated energy estimates are not available for this resource */
/* H_UNSUPPORTED_FLAG: Unsupported eflags parameter bits (32 -- 39 & 48 -- 56) */
/* H_UNSUPPORTED: The specified resource code is not supported by */
/* this implementation*/
/* H_P2 -- H_P9 Invalid resource identifier value for the calling partition */

hcall (uconst64 H_BEST_ENERGY,
int64 eflags, /* Bits 0 -- 31 Required wakeup latency in time base ticks. */

/* Bits 32 -- 39 Reserved for expansion */
/* Bits 40 -- 47 1 Byte count of the number of resources that the */
/* caller intends to activate / release*/
/* Bits 48 -- 51 Reserved for expansion */
/* Bit 52 = 0b0 return in registers = 0b1 ordered buffer mode
/* Bit 53 = 0b0 use established list = 0b1 refresh list */
/* Bit 54 = 0b0 inquiry; = 0b1 ordered */
/* Bit 55 = 0b0 release; = 0b1 activate resource */
/* Bits 56 -- 63 resource code: */

/* 0 Reserved */
/* 1 Processor */
/* 2 Memory LMB */

int64 P2, /* The parameters P2 -- P9 are all the same format, */
/* except in ordered buffer mode when P3 contains the logical */
/* address of a 4K byte aligned caller partition memory buffer. */

int64 P3, /* On input they contain either the reserved value of zero or */
int64 P4, /* the resource instance identifier value as reported in the */
int64 P5, /* “ibm,my-drc-index” property. */
int64 P6, /* In “inquiry” mode they list resource instances */
int64 P7, /* queried; from the contents of P2 up to the first parameter */
int64 P8, /* containing all zeros – from there on to P9 all the rest are */
int64 P9); /* ignored. */

14.14  Partition Energy Management Option (PEM) 497

LoPAPR, Version 1.1 (March 24, 2016)

/* In “ordered” mode P2 contains the resource instance */
/* identifier of the first resource instance to be reported */
/* the reserved value of zero indicates the list starts from the */
/* best resource instance available – from there on to P9 all */
/* the rest are ignored. */

Parameters: (on entry)

(on return)

 R3: Return code

 R4: Response Count Value <8 indicate the number of returned values in registers starting with R5. The contents of
registers after the last returned value as indicated by the Response Count Value are undefined.

 R5 -- R12 Bytes 0-2 Reserved

 Byte 3: 1 – 255 -- unitless priority value relative to lowest total energy consumption for selecting the corresponding
resource ID.

 Bytes 4-7 Resource instance ID to be used as input to dynamic reconfiguration RTAS calls as would the value pre-
sented in the “ibm,my-drc-index” property.

Semantics:

 If the resource code in the eflags parameter is not supported return H_UNSUPPORTED

 If other binary eflags values are not valid then return H_UNSUPPORTED_FLAG with the specific value being
(-256 – the bit position of the highest order unsupported bit that is a one);

 If the eflags parameter “refresh” bit is zero and the list has not been refreshed since the last return of
H_Not_Available then return H_Not_Available.

 If the eflags parameter “refresh” bit is a one then:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Required wake up latency Reserved Number of
Resources

rrrrBROA Resource
Code

r=reserved B=Buffered R=Refresh O=Ordered A=Active

eflags

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

P2 -- P9

Reserved Resource ID (as in “ibm,my-drc-index”)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

R5 -- R12

Reserved Resource ID (as in “ibm,my-drc-index”)Priority

498 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 If energy estimates for the partition owned resources are substantially indistinguishable then return
H_Not_Available.

 Assign a priority value to each resource of the type specified in the resource code owned by the calling partition
relative to the probable effect that selecting the specified resource to activate/release (per eflags code) within the
specified latency requirements would have on achieving minimal platform energy consumption. (1 being the best
increasing values being worse – implementations may choose to use an implementation dependent subset of the
available values)

 Order the specified resources owned by the calling partition starting with those having a priority value of 1; set-
ting the resource pointer to reference that starting resource.

 If the eflags parameter bit 54 is a one (“ordered”) then

 If P2 == 0 then set pointer to best resource in ordered list

 Else

 If P2 <> the drc-index of one of the resources in the ordered list then return H_P2

 Else set pointer to the resource corresponding to P2

 Set R4 to the number of resources in the ordered list from the pointer to the end

 If eflags “B” bit == 0b0 then /* this assumes that the ordered buffer option is supported */:

 If R4 > 8 set count to 8 else set count to R4

 Load “count” registers starting with R5 with the priority value and resource IDs of the “count” resource in-
stances from the ordered list starting with the resource instance referenced by “pointer”.

 Else

 If P3 does not contain the 4K aligned logical address of a calling partition memory page then return H_P3

 If R4 > 512 set count to 512 else set count to R4

 Load “count” 8 byte memory fields starting with logical address in R3 with the priority value and resource IDs
of the “count” resource instances from the ordered list starting with the resource instance referenced by
“pointer”.

 Return H_SUCCESS

 Else /* “inquiry” mode */

 Set R4 to zero

 For each input parameter P2 -- P9 or until the input parameter is zero

 If the input parameter Px <> the drc-index of one of the resources in the ordered list then return H_Px

 Fill in byte 3 of the register containing Px with the priority value of the resource instance corresponding to the
drc-index (bytes 4 -- 7) of the register.

 Increment R4

 Return H_SUCCESS

R1–14.14.2.1–1. For the PEM option: The platform must implement the H_BEST_ENERGY hcall() following
the syntax and semantics of Section 14.14.2.1‚ “H_BEST_ENERGY‚” on page 495.

14.15  Platform Facilities 499

LoPAPR, Version 1.1 (March 24, 2016)

14.15 Platform Facilities

This section documents the hypervisor interfaces to optional platform facilities such as special purpose coprocessors.

14.15.1 H_RANDOM

If the platform supports a random number generator platform facility the “ibm,hypertasfunctions” property
of the /rtas node contains the function set specification “hcall-random” and the following hcall() is supported.

int64 /* H_Success Expected Return code */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing the function */

hcall (const H_RANDOM) /* Returns a random number in R4 */

14.15.2 Co-Processor Facilities

If the platform supports a co-processor platform facility the “ibm,hypertas-functions” property of the /rtas
node contains the function set specification “hcall-cop” and the following hcall()s are supported.

For asynchronous coprocessor operations the caller may either specify an interrupt source number to signal at comple-
tion or the caller may poll the completion code in the CSB. The hypervisor and caller need to take into account the pro-
cessor storage models with explicit memory synchronization to ensure that the rest of the return data from the
operation is visible prior to setting the CSB completion code, and that any operation data that might have been fetched
prior to the setting of the CSB completion code is discarded.

Note: The H_MIGRATE_DMA hcall() does not handle data pages subject to co-processor access, it is the caller’s re-
sponsibility to make sure that outstanding co-processor operations do not target pages that are being migrated by
H_MIGRATE_DMA.

14.15.2.1 14.15.2.1 H_COP_OP:

The architectural intent of this hcall() is to initiate a co-processor operation. Co-processor operations may complete
with either synchronous or asynchronous notification. In synchronous notification, all platform resources associated
with the operation are allocated and released between the call to H_COP_OP and the subsequent return. In asynchro-
nous notification, operation associated platform resources may remain allocated after the return from H_COP_OP, but
are subsequently recovered prior to setting the completion code in the CSB. For the partition migration option no asyn-
chronous notification operation may be outstanding at the time the partition is suspended.

int64 /* H_Success Expected Return code */
/* H_RH_PARM Invalid resource id handle for the caller */
/* H_UNSUPPORTED_FLAG Reserved flags field bit is non-zero */
/* H_ST_PARM Invalid operation specification.*/
/* H_OP_MODE Function code invalid in synchronous notification */
/* H_TOO_BIG The specified Input stream is too long */
/* or can not be completed synchronously*/
/* H_OVERLAP There exists an unsupported overlap among passed buffer areas */
/* H_NOT_ENOUGH_RESOURCES For the CMO option and asynchronous */
/* operations the memory entitlement is exhausted */
/* H_RESCINDED a data/status area references a rescinded shared logical resource */
/* H_P2 Invalid in parameter */
/* H_P3 Invalid inlen parameter */
/* H_P4 Invalid out parameter */
/* H_P5 Invalid outlen parameter */

500 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

/* H_P6 Invalid csbcpb parameter */
/* H_SG_LIST Invalid Scatter/Gather List element */
/* H_Resource Insufficient hypervisor resources to perform function */
/* H_Busy The hardware is busy user may call back later */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing the function */

hcall (const H_COP_OP,
uint64 flags, /* sub functions and modifiers: */

/* Bit Number(s) */
/* 0 - 38 = 0b0s Reserved for function expansion */
/* 39 =1 on Asymmetric Encryption operations indicating that the */
/* High order 16 bits of the “in” parameter contain the */
/* “Rc” field specifying the encoded operand length */
/* while the remainder of the “in” and “inlen” */
/* parameter bits are reserved and should be 0b0 */
/* 40-41 Notification of operation */
/* 00 Synchronous: Hypervisor waits for completion */
/* 01 Reserved */
/* 10 Asynchronous: Hypervisor returns after start */
/* 11 Async Notify: Hypervisor starts with interrupt */
/* 42-55 For Async Notify = index of the interrupt */
/* descriptor to be used to signal completion */
/* else =0x0000 */
/* 56-63 FC field */

uint32 rid /*Resource identifier as from the “ibm,resource-id” property*/
int64 in, /*Input data block logical real address */
int64 inlen /*If non negative the length of the input data block, */

/*If negative the length of the input data descriptor list in bytes */
int64 out /*Output data block logical real address */
int64 outlen, /*If non negative the length of the output data block, */

/*If negative the length of the output data descriptor list in bytes */
uint64 csbcpb /*The logical real address of the 4k naturally aligned storage block */

/* containing the CSB & optional FC field specific CPB */
);

Syntax:

 Flags:

 Reserved (bits 0-- 38)

 “Rc” (bit 39) On Asymmetric Encryption operations the “Rc” bit indicates that the high order 16 bits of the “in”
parameter contain the “Rc” field specifying the encoded operand length while the remainder of the “in” and “in-
len” parameter bits are reserved and should be 0b0

 Notification of Operation (bits 40-- 41):

 00 Synchronous: In this mode the hypervisor synchronously waits for the coprocessor operation to complete.
To preserve Interrupt service times of the caller and quality of service for other callers, the length of synchro-
nous operations is restricted (see inlen parameter).

 01 Reserved

 10 Asynchronous: In this mode the hypervisor starts the coprocessor operation and returns to the caller. The
caller may poll for operation completion in the CSB.

14.15  Platform Facilities 501

LoPAPR, Version 1.1 (March 24, 2016)

 11 Async Notify: In this mode the hypervisor starts the coprocessor operation as with the Asynchronous notifi-
cation above however the operation is flagged to generate a completion interrupt to the interrupt source number
given in the “ibm,copint” property. When the interrupt is signaled the caller may check the operation com-
pletion status in the CSB.

 Interrupt descriptor index for Async Notify (bits 42-- 55)

 FC field: The FC field is the co-processor name specific function code (bits 56-- 63)

 Resource identifier (bits 32-- 63(as from the “ibm,resource-id” property))

 in/inlen and out/outlen parameters:

 If the *len parameter is non-negative; the respective in/out parameter is the logical real address of the start of the
respective buffer. The starting address plus the associated length may not extend beyond the bounds of a 4K page
owned by the calling partition. For synchronous notification operations, the parameter values may not exceed an
implementation specified maximum; in some cases these are communicated by the values of the “ibm,max-
sync-cop” property of the device tree node that represents the co-processor to the partition.

 If the *len parameter is negative; the respective in/out parameter is the logical real address of the start of a scat-
ter/gather list that describes the buffer with a length equal to the absolute value of the *len parameter. The starting
address of the scatter/gather list plus the associated length may not extend beyond the bounds of a 4K page owned
by the calling partition. Further the scatter/gather list shall be a multiple of 16 bytes in length not to exceed the
value of the “ibm,max-sg-len” property of the device tree node that represents the coprocessor to the parti-
tion. Each 16 byte entry in the scatter gather list consists of an 8 byte logical real address of the start of the respec-
tive buffer segment. The starting address plus the associated length may not extend beyond the bounds of a 4K
page owned by the calling partition. For synchronous notification operations, the summation of the buffer seg-
ment lengths for the in scatter/gather list may be limited; in some cases these limitations are communicated by the
value of the “ibm,max-sync-cop” property of the device tree node that represents the coprocessor to the par-
tition.

 csbcpb: logical real address of the 4K naturally aligned memory block used to house the co-processor status block
and FC field dependent co-processor parameter block.

 Output parameters on return

 R3 contains the standard hcall() return code: if the return code is H_Success then the contents of the 4K naturally
aligned page specified by the csbspb parameter are filled from the hypervisor csb and cpb with addresses con-
verted from real to calling partition logical real

Semantics:

 The hypervisor checks that the resource identifier parameter is valid for the calling partition else returns
H_RH_PARM.

 The hypervisor checks that for the coprocessor type specified by the validated resource identifier parameter there are
no non-zero reserved bits within the function expansion field of the flags parameter else returns
H_UNSUPPORTED_FLAG for the highest order non-zero unsupported flag.

 If the operation notification is asynchronous, check that there are sufficient resources to initiate and track the opera-
tion else return H_Resource.

 The hypervisor checks that the flag parameter notification field is not a reserved value and FC field is valid for the
specified coprocessor type else returns H_ST_PARM

 If the notification field is “synchronous” the hypervisor checks that the FC field is valid for synchronous operations
else return H_OP_MODE.

502 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

 The hypervisor builds the CRB CCW field per the coprocessor type specified by the validated resource identifier pa-
rameter and by copying the coprocessor type defined number of FC field bits from the low order flags parameter FC
field to the corresponding low order bits of CCW byte 3.

 If the resource ID is an asymmetric encryption then (If the Flags Parameter “Rc” bit is on then check the High order
16 bits of the “in” parameter for a valid “Rc” encoding and transfer to the CRB starting at byte 16 else return H_P2)
else Validate the inlen/in parameters and build the source DDE

 Verify that the “in” parameter represents a valid logical real address within the caller’s partition else return H_P2

 If the “inlen” parameter is non-negative:

Verify that the logical real address of (in + inlen) is a valid logical real address within the same 4K page as the
“in” parameter else return H_P3.

 If the operation notification is synchronous verify that the combination of parameter values request a suffi-
ciently short operation for synchronous operation else return H_TOO_BIG.

 If the “inlen” parameter is negative:

Verify that the absolute value of inlen meet all of the follow else return H_P3:

 Is <= the value of “ibm,max-sg-len”

 Is an even multiple of 16

 That in + the absolute value of inlen represents a valid logical real address within the same 4K caller parti-
tion page as the in parameter.

Verify that each 16 byte scatter gather list entry meets all of the following else return H_SG_LIST:

Verify that the first 8 bytes represents a valid logical real address within the caller’s partition.

Verify that the logical real address represented by the sum of the first 8 bytes and the second 8 bytes is a
valid logical real address within the same 4K byte page as the first 8 bytes.

 If the operation notification is synchronous verify that the sum of all the scatter gather length fields (second 8
bytes of each 16 byte entry) request a sufficiently short operation for synchronous operation else return
H_TOO_BIG.

 For the Shared Logical Resource Option if any of the memory represented by the in/inlen parameters have been
rescinded then return H_RESCINDED.

 Fill in the source DDE list from the converted the in/inlen parameters.

 Validate the outlen/out parameters and build the target DDE

 Verify that the “out” parameter represents a valid logical real address within the caller’s partition else return H_P4

 If the “outlen” parameter is non-negative verify that the logical real address of (out + outlen) is a valid logical real
address within the same 4K page as the “out” parameter else return H_P5.

 If the “outlen” parameter is negative:

Verify that the absolute value of outlen meet all of the follow else return H_P5:

 Is <= the value of “ibm,max-sg-len”

 Is an even multiple of 16

14.15  Platform Facilities 503

LoPAPR, Version 1.1 (March 24, 2016)

 That out + the absolute value of outlen represents a valid logical real address within the same 4K caller par-
tition page as the out parameter

Verify that each 16 byte scatter gather list entry meets all of the following else return H_SG_LIST:

Verify that the first 8 bytes represents a valid logical real address within the caller’s partition.

Verify that the logical real address represented by the sum of the first 8 bytes and the second 8 bytes is a
valid logical real address within the same 4K page as the first 8 bytes.

 For the Shared Logical Resource Option if any of the memory represented by the out/outlen parameters have been
rescinded then return H_RESCINDED.

 Fill in the destination DDE list from the converted the out/outlen parameters.

 If the operation notification is asynchronous then verify that the input and output buffers do not overlap else return
H_OVERLAP (makes the operations transparently restartable)

 Check that the csbcpb parameter is page aligned within the calling address space of the calling partition else return
H_P6

 If the operation specifies a CPB and the specified CPB is invalid for the operation then return H_ST_PARM.

 Set the CRB CSB address field & C bit to indicate a valid CCB

 If the operation notification is asynchronous notify, then:

 Check that the flags parameter interrupt index value is within the defined range for the validated rid and is not
currently in use for another outstanding COP operation else return H_INTERRUPT.

 Set the CRB CM field to command a completion interrupt,.

 Set the job id field in the Co-processor Completion Block to command the signaling via the interrupt source num-
ber contained the interrupt specifier indicated by the interrupt index value.

 For the CMO option, if the number of entitlement granules pinned for this operation causes the partition memory
entitlement to be exhausted then return H_NOT_ENOUGH_RESOURCES; else pin and record the entitlement
granules used by this operation, and increment the partition consumed memory entitlement for the number of en-
titlement granules pinned for this operation.

 Set the completion code field in the passed (via csbcpb parameter) CSB to invalid (it is subsequently set to valid at
the end of the operation just after the rest of the contents of the 4k naturally aligned page specified by the csbcpb pa-
rameter are filled).

 Issue icswx

 If busy response to icswx implementation dependent (may be null) retry after backoff based upon some usage equal-
ity/priority mechanisms else return H_Busy.

 If the operation notification is asynchronous then Return H_Success

 Wait for completion posting in CSB (CSB valid bit. 1)

 The contents of the 4K naturally aligned page specified by the csbcpb parameter are filled from the hypervisor csb
and cpb with addresses converted from real to calling partition logical real

 Return H_Success.

504 Logical Partitioning Option

 LoPAPR, Version 1.1 (March 24, 2016)

14.15.2.2 14.15.2.2 H_STOP_COP_OP

The architectural intent of this hcall() is to terminate a previously initiated co-processor operation.

int64 /* H_Success Expected Return code */
/* H_RH_PARM Invalid resource id handle for the caller */
/* H_Parameter Reserved flags field bit is non-zero */
/* H_RESCINDED a data/status area references a rescinded shared logical resource */
/* H_P3 Invalid csbcpb parameter */
/* H_Busy The hardware is busy user may call back later */
/* H_Hardware The hcall() experienced a hardware fault potentially preventing the

function */
hcall (const H_STOP_COP_OP,

uint64 flags, /* sub functions and modifiers: Bits 0-- 63 reserved */
uint32 rid, /* identifier as from the “ibm,resource-id” property*/
uint64 csbcpb /*The logical real address of the 4k page aligned storage block */

/* containing the CSB & optional FC field specific CPB */
);

Semantics:

 Check the rid parameter for validity for the caller else return H_RH_PARM

 If any reserved flags parameter bits are non zero then return H_Parameter.

 Check the csbcpb parameter for pointing within the caller’s partition and 4K aligned else return H_P3

 For the shared logical resource option if the csbcpb parameter references a rescinded shared logical resource then re-
turn H_RESCINDED

 If the csbcpb parameter is not associated with an outstanding coprocessor operation then return H_NOT_ACTIVE.

 Send a kill operation to the coprocessor handling the outstanding operation

 Wait for the outstanding kill operation to complete.

 For the CMO option, unpin any entitlement granules still pinned for this operation and decrement the consumed par-
tition memory entitlement for the number of entitlement granules pinned for this operation.

 Return H_Success.

LoPAPR, Version 1.1 (March 24, 2016)

15 Non Uniform Memory Access
(NUMA) Option

15.1 Summary of Extensions to Support NUMA

NUMA platforms to a first level approximation are simply a large scale Symmetric Multi-Processor. However to tune
system performance and to aid in platform maintenance, the OS needs additional information and mechanisms. These
include:

 Associativity -- to determine the platform resource groupings.

 Relative Performance Distances -- to determine the performance between resources within different groupings.

 Performance Monitor -- to provide usage data on the NUMA fabric.

 Dynamic Reconfiguration -- due to such causes as platform upgrade, reallocation of resources, or a repair of a fail-
ure.

There are two NUMA support options: the “NUMA” option and its proper subset the “Associativity Information” op-
tion.

15.2 NUMA Resource Associativity

Associativity Codes represent the groupings of the various platform resources into domains of substantially similar
mean performance relative to resources outside of that domain. Resources subsets of a given domain that exhibit better
performance relative to each other than relative to other resources subsets, are represented as being members of a
sub-grouping domain. Such sub-domain grouping is represented to any level deemed significant by the platform de-
sign. Figure 14‚ “Example NUMA configuration with domains and corresponding “ibm,associativity” values‚” on
page 506 presents a simple system configuration with one possible decomposition into associativity domains. From the
decomposition provided the “ibm,associativity” value string for each resource is enumerated.

506 Non Uniform Memory Access (NUMA) Option

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 14. Example NUMA configuration with domains and corresponding “ibm,associativity” values

The OF Device Tree node for each allocable resource (processor, memory region, and IO slot) conveys information
about the resources statically assigned to the client program; and contains the “ibm,associativity” property
(see Section B.6.2.2‚ “Properties of the Children of Root‚” on page 679). This property allows the client program to
determine the associativity between any two of it’s resources. The greater the associativity the greater the expected per-
formance when using those two resources in a given operation.

The legal form of the “ibm,associativity” property is dependent upon the setting of the “ibm,architec-
ture-vec-5” property byte 5 bit 0. The bit value of zero allows the “ibm,associativity” property string to
be sequenced in priority order; this form is being deprecated for new implementations in favor of the form indicated by
the “ibm,architecture-vec-5” property byte 5 bit 0 having the value of one in which the “ibm,associa-
tivity” property string represents the strict physical hierarchy of the platform.

When the LPAR option is also implemented, the partition virtual resources may be mapped onto physical resources
with in a very dynamic manor. Given that the resource mapping to the associativity domain is substantially consistent,
the client program can make use of the associativity information to on the average optimize performance. If the re-
source mapping to the associativity domain is substantially inconsistent, then associativity information for the re-
sources is not provided to prevent erroneous operation. If the long term mapping changes the client program can be
made aware of the new associativity information using the ibm,update-properties RTAS call (See Section 7.4.8‚
“ibm,update-properties RTAS Call‚” on page 249).

R1–15.2–1. For the NUMA or Associativity Information option: The platform must include the “ibm,asso-
ciativity” in the OF device tree memory node and the nodes of each processor, memory region, and PCI
bridge onto which IOAs may be plugged if the component is dedicated to the partition. (The device tree node

Mem X Proc X

Mem Z Proc Z

Proc YIOA Y

Mem A Proc A

Mem C Proc C

Proc BIOA B

4

5

6

7

8

9

2

3

1

Mem A 1, 2, 4
Mem C 1, 2, 6
Mem X 1, 3, 7
Mem Z 1, 3, 9
Proc A 1, 2, 4
Proc B 1, 2, 5
Proc C 1, 2, 6
Proc X 1, 3, 7
Proc Y 1, 3, 8
Proc Z 1, 3, 9
IOA B 1, 2, 5
IOA Y 1, 3, 8

Resource ibm,associativity

15.3  Relative Performance Distance 507

LoPAPR, Version 1.1 (March 24, 2016)

for a component that the platform intends to virtualize should include an “ibm,associativity” prop-
erty if the associativity domain information is substantially accurate.)

R1–15.2–2. For the NUMA option and SPLPAR option: In the case that both the NUMA and SPLPAR options
are implemented, Requirement R1–15.2–1 is modified to remove processors from the list of system elements
that must include the respective properties or interfaces described by that requirement. (The platform is en-
couraged to provide processor associativity information if it is substantially accurate.)

The “ibm,associativity” property contains one or more lists of numbers representing the resource’s platform
grouping domains. Each list, starts with a number representing the domain number of the highest level grouping within
which the platform is capable of supporting direct access. This highest level may be a NUMA collective or possibly a
cluster of machines with direct DMA access. Successive numbers represent sub-divisions of the previous higher level
within which the expected mean value of the performance relative to outside resources is substantially similar. Imple-
mentations determine the number of levels that they report, subject to Requirements R1–15.2–1 and R1–15.2–3. The
lowest level always being that of the allocable resource itself. The user of this information is cautioned not to imply
any specific physical/logical significance of the various intermediate levels.

R1–15.2–3. For the NUMA or Associativity Information option: Differing levels of resource grouping repre-
sented in the “ibm,associativity” property must reflect statistically repeatable differences in the ex-
pected mean of measured performance.

R1–15.2–4. For the NUMA or Associativity Information option: The expected mean performance of any re-
source of a given type within the same grouping domain represented in the “ibm,associativity” prop-
erty relative to resources outside of that grouping domain must be substantially similar.

The reason that the “ibm,associativity” property may contain multiple associativity lists is that a resource may
be multiply connected into the platform. This resource then has a different associativity characteristics relative to its
multiple connections. To determine the associativity between any two resources, the OS scans down the two resources
associativity lists in all pair wise combinations counting how many domains are the same until the first domain where
the two list do not agree. The highest such count is the associativity between the two resources.

15.3 Relative Performance Distance

An OS applies its NUMA tuning techniques based upon associativity and relative performance distance attributes. As a
guide to relative performance distance, RISC Platforms provide the “ibm,associativity-refer-
ence-points” property. The information in this property represents a first order approximation to points having as-
sociativity and relative performance distance characteristics deemed to be of significant interest to optimizing client
program performance.

The contents of the “ibm,associativity-reference-points” property is dependent upon the setting of
the “ibm,architecture-vec-5” property byte 5 bit 0. The bit value of zero allows the “ibm,associativ-
ity-reference-points” property string to indicate logical structure points; this form is being deprecated for
new implementations in favor of the form indicated by the “ibm,architecture-vec-5” property byte 5 bit 0
having the value of one in which the “ibm,associativity-reference-points” property string represents
boundaries between associativity domains presented by the “ibm,associativity” property containing “near”
and “far” resources.

R1–15.3–1. For the NUMA or Associativity Information option: The RTAS OF device tree node must contain
the “ibm,associativity-reference-points”.

15.3.1 Form 0

When the “ibm,architecture-vec-5” property byte 5 bit 0 has the value of zero, the “ibm,associativ-
ity-reference-points” property defines reference points in the “ibm,associativity” property (see

508 Non Uniform Memory Access (NUMA) Option

 LoPAPR, Version 1.1 (March 24, 2016)

Section B.6.3.1‚ “RTAS Node Properties‚” on page 690) which roughly correspond to traditional notions of platform
topology constructs. It is important for the user to realize that these reference points are not exact and their characteris-
tics vary among implementations.

The first integer in the “ibm,associativity-reference-points” property relates the 1 based ordinal in the
associativity lists of the platform’s “ibm,associativity” property associated with the traditional notion of a
symmetric multi-processor within a NUMA platform. That is the level that represents building blocks of processors
and memory that have the following characteristics:

 An OS is likely to view all members having roughly uniform access characteristics.

 Represents the highest level before an OS is likely to notice major Non-Uniformity of access.

The second integer in the “ibm,associativity-reference-points” property relates the 1 based ordinal in
the associativity lists of the platform’s “ibm,associativity” property associated with the traditional notion of a
processor group which is sometimes packaged in a multi-chip module. A processor group has similar characteristics to
an SMP, however, several processor groups get packaged densely within the same physical enclosure forming an SMP.
While the intra processor group accesses are measurably greater than inter processor group accesses they are a second
order effect.

Subsequent ibm,associativity-reference-points entries are reserved.

15.3.2 Form 1

When the “ibm,architecture-vec-5” property byte 5 bit 0 has the value of one, the “ibm,associativ-
ity-reference-points” property indicates boundaries between associativity domains presented by the
“ibm,associativity” property containing “near” and “far” resources. The first such boundary in the list repre-
sents the 1 based ordinal in the associativity lists of the most significant boundary, with subsequent entries indicating
progressively less significant boundaries.

Note: Platforms are encouraged to report boundaries of actual significance. Thus if a platform has only a single significant
boundary to report, the preferred form of the “ibm,associativ¬ity-reference-points” would
contain a single entry. However, providing two or more entries that reference the same associativity domains
provides equivalent information and is a legal representation.

15.4 Dynamic Reconfiguration with Cross CEC I/O Drawers

Should the configuration change in such a way that the associativity between an OS image’s resources changes, the
platform notifies the OS via an event scan log. See Chapter 10, “Error and Event Notification,” on page 281.

R1–15.4–1. For the NUMA or Associativity Information option: If the platform configuration changes in such a
way that the associativity between an OS image’s resources might have changed, the platform must notify the
OS via an event scan or check exception log.

15.5 Maximum Associativity Domains

Since the number of associativity domains that a platform may exhibit is not apparent from the associativity properties
presented at boot time, the platform provides the “ibm,max-associativity-domains” property in the /rtas
node of the device tree (see Section B.6.3.1‚ “RTAS Node Properties‚” on page 690).

R1–15.5–1. For the NUMA or Associativity Information option: The platform must provide the
“ibm,max-associativity-domains” property in the /rtas node of the device tree.

15.6  Platform Resource Reassignment Notification Option (PRRN) 509

LoPAPR, Version 1.1 (March 24, 2016)

15.6 Platform Resource Reassignment Notification Option
(PRRN)

LoPAPR platforms that implement the LPAR option are allowed to transparently reassign the platform resources that
are used by a partition. For instance, if a processor or memory unit is predicted to fail, the platform may transparently
move the processing to an equivalent unused processor or the memory state to an equivalent unused memory unit.
However, reassigning resources across NUMA boundaries may alter the performance of the partition. When such reas-
signment is necessary, the PRRN option provides mechanisms that inform the supporting OS of changes to the affinity
among its platform resources. It is expected that handling such notifications will involve significant OS processing,
therefore, changing affinity should be avoided, and when it is necessary to change the affinity of several of the re-
sources owned by a partition, a single notification after all such changes have occurred is preferred.

The OS and platform firmware negotiate their mutual support of the PRRN option via the ibm,client-archi-
tecture-support interface (See Section B.6.2.3‚ “Root Node Methods‚” on page 679). Should a partition be mi-
grated from a platform that did not support the PRRN option, the target platform does not notify the partition’s OS of
any PRRN events and, when possible avoids changing the affinity among the partition’s resources. Partitions that are
about to be migrated complete/abort any in-process affinity change processing prior to the migration, and if the target
platform does not support the PRRN option the partition will simply see no more PRRN events.

A PRRN event is signaled via the RTAS event-scan mechanism, which returns a Hot Plug Event message “fixed part”
(See Section 10.3.2.1.9‚ “RTAS Event Return Format Fixed Part‚” on page 292) indicating “Platform Resource Reas-
signment”. In response to the Hot Plug Event message, the OS may call ibm,update-nodes to determine which re-
sources were reassigned, and then ibm,update-properties to obtain the new affinity information about those resources.

The PRRN event-scan RTAS message contains only the “fixed part” with the “Type” field set to the value 160 and no
Extended Event Log. The four (4) byte Extended Event Log Length field is repurposed, since no Extended Event Log
message is included, to pass the “scope” parameter that causes the ibm,update-nodes to return the nodes affected by the
specific resource reassignment.

Requirements:

R1–15.6–1. For the PRRN Option: The platform must support the negotiation of the Associativity Information
Option Control Platform Resource Reassignment Notification (Affinity Change) flag via the ibm,cli-
ent-architecture-support interface.

R1–15.6–2. For the PRRN Option: If the client code did not claim support for the PRRN option via the
ibm,client-architecture-support interface the platform must not present PRRN events per sec-
tion Section 15.6‚ “Platform Resource Reassignment Notification Option (PRRN)‚” on page 509.

R1–15.6–3. For the combination of the PRRN and Partition Suspension Options: To avoid firmware function
conflicts the client code must complete or abort any PRRN processing prior to exercising the Partition Sus-
pension option.

R1–15.6–4. For the PRRN Option: The platform must inform the client code of platform resource reassignments
via the event-scan RTAS mechanism with a “fixed part” only event return message as presented in Table 197‚
“RTAS Event Return Format (Fixed Part) for PRRN events‚” on page 510

R1–15.6–5. For the PRRN Option: The platform must support the Platform Resource Reassignment scope (nega-
tive of the value contained in bits 32:64 of the RTAS Event Return Format (Fixed Part) for PRRN events) in-
put parameter to input the ibm,update-nodes RTAS call.

510 Non Uniform Memory Access (NUMA) Option

 LoPAPR, Version 1.1 (March 24, 2016)

Table 197. RTAS Event Return Format (Fixed Part) for PRRN events

Bit Field Name (bit
number(s))

Description, Values (Described in Section 10.3.2.1‚ “Reporting and
Recovery Philosophy, and Description of Fields‚” on page 289})

Version (0:7) A distinct value used to identify the architectural version of message

Severity (8:10) EVENT (1)

RTAS Disposition (11:12) FULLY_RECOVERED(0)

Optional_Part_Presence (13) NOT_PRESENT (0): The optional Extended Error Log is not present.

Reserved (14:15) 0b00

Initiator (16:19) HOT PLUG (6)

Target (20:23) UNKNOWN (0): Not Applicable

Type (24:31)
Platform Resource Reassignment (160) – includes Change Scope in bits
32:63

Extended Event Log Length /
Change Scope (32:63)

The scope parameter to be input the ibm,update-nodes RTAS to retrieve the
nodes that were changed by selected “Hot Plug” events.

LoPAPR, Version 1.1 (March 24, 2016)

16 Service Indicators

This chapter defines service indicators1 relative to:

 Which service indicators may be exposed to an OS and which may not

 The usage model for service indicators, regardless of whether they are exposed to the OS or not

16.1 General

This section gives some general background information required to understand the service indicator requirements.
The service indicator requirements can be found starting in Section 16.2‚ “Service Indicator Requirements‚” on
page 524.

16.1.1 Basic Platform Definitions

The following are the definitions of some of the terms used in this architecture. See also the Glossary on page 891 ,
“Glossary,” on page 891.

16.1.1.1 “Enclosure”, Packaging, and Other Terminology

In order to abstract specific packaging differences between different products, this architecture uses a number of terms
that denote a unit of packaging.

The term enclosure means something different, depending on the product line. Generally this is an entity that can be
unplugged and be removed from the system, but may include the entire system, and generally encloses other FRUs. It
is, however, possible to have a FRU that contains one other FRU, and not have it be an enclosure. See below, for more
information.

The concept of the enclosure is very key to this architecture, because the enclosure provides the anchor point for the
Enclosure Fault, Enclosure Identify, and (when applicable) the Error Log indicators.

 For a blade system, a base blade plus any attached sidecars.

 A sidecar is a blade that plugs into a blade slot, but which is physically connected to the base blade and which
cannot be removed without also removing the base blade and any other attached sidecars.

 The Enclosure Identify indicator is located on the base blade. Sidecars do not have an Enclosure Identify indica-
tor.

 A stand-alone computing box, like a deskside unit.

 A separately powered box that attaches to a stand-alone computing box (for example, an I/O expansion tower).

1.Note that many times “indicators” are referred to as “LEDs” as this is one of the most common implementations for indicators at the current time.

512 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

 For a rack system, a drawer or partial drawer, with its own power domains, within a rack system (but not a chassis,
in blade system terms).

FRUs that have one or no internal FRUs are a possible exception to the above definition of enclosure. The general re-
quirements are that the enclosing FRU does not need an Error Log indicator (see also Requirement R1–16.2.1.1–1),
implements the full xipSIA Lightpath architecture including FRU Identify, has the enclosing FRU Fault/Identify and
internal (if any) FRU Fault/Identify indicators visible from the outside of the system the same way that enclosure indi-
cators would be, and rolls-up the FRU Fault/Identify indicators to the next level of indicators when there is a next level
(for example, chassis level indicators). Examples of the type of FRUs that the xipSIA architecture team might approve
as a non-enclosures is:

 Appliance drawers (“appliance” means that there are no field serviceable parts inside).

 Appliance Blades, except if they require an Error Log indicator.

 A power supply which comprises two or fewer FRUs.

 Fans, but not fan assemblies when the fan assemblies have three or more Fault indicators.

In addition, the term System Enclosure (also known as a Primary Enclosure) is used to denote the enclosure of a system
that contains the one and only Error Log indicator1 for the system. An enclosure that is not a System Enclosure is
called a secondary enclosure. The System Enclosure is expected to be one that contains at least some of the system
processors for the platform.

In this chapter, the term chassis will refer to a blade system chassis.

Other terminology used in this chapter includes:

activate To activate an indicator (physical or virtual) means to set it to a non-off state (blink, blip, or on).
An indicator does not need to be in the off (deactivated) state prior to being activated (for ex-
ample a second request to activate an already active indicator, is also considered to be an acti-
vation of that indicator).

active state An indicator in an active state is in a non-off state. Different indicator types can be set to a dif-
ferent set of active states. For each of the following indicators, the following states are applica-
ble in the indicator active state (See Section 16.2.1.9‚ “Service Indicator State Diagrams‚” on
page 533 for more detail on when each state is applicable and for the conditions under which a
state transition is made):
FRU Identify: blink
FRU Fault: on
Blue Enclosure Identify: on or blink
Enclosure Fault: on or blip
Error Log: on
Blue Rack Identify: on
Blue Row Identify: on

blip A blink state with a short duty cycle used in the “remind” state for Enclosure Fault Indicators.
See also Requirement R1–16.2.1.7–4.

Chassis Enclosure Identify
An Enclosure Identify indicator at the blade system chassis level.

CRU See FRU.

1.Previously known as the System Information (Attention) indicator.

16.1  General 513

LoPAPR, Version 1.1 (March 24, 2016)

deactivate To deactivate an indicator (physical or virtual) means to set it to the off state. Deactivating a
virtual indicator may or may not deactivate the physical indicator associated with that virtual
indicator (see Section 16.2.1.9‚ “Service Indicator State Diagrams‚” on page 533).

Enclosure Fault An amber indicator which indicates, when activated, that there is a FRU Fault indicator in the
enclosure that is active.

Enclosure Identify An indicator that is used to identify an enclosure in an installation or an enclosure in a group.
This indicator is blue in color and is turned on in the active identify state.

FRU Field Replaceable Unit. Used to also mean CRU (Customer Replaceable Unit) in this chapter.

FRU Fault An amber indicator that is used to point to a failing FRU in an enclosure.

FRU Identify An amber indicator that is used to identify a FRU in an enclosure or a place where a FRU is to
be plugged (for example, for an upgrade operation).

Guiding Light Mode A platform implementation that provides FRU Identify indicators for identifying failing FRUs.
See Section 16.1.1.4‚ “Service Indicator Modes‚” on page 515 for more information.

ID Shorthand used some places (mainly figures) in this chapter for “Identify” or “Identify indica-
tor”.

Lightpath Mode A platform implementation that provides FRU Fault indicators as the general way to identify
failing FRUs. See Section 16.1.1.4‚ “Service Indicator Modes‚” on page 515 for more informa-
tion.

not visible to the OS See transparent to the OS.

primary level indicators The enclosure level indicators. For example, for rack systems, the enclosure is either the blade,
for blade systems, or the drawer level, for non-blade systems.

roll-down This term is not used by this architecture, but some people refer to roll-up as the action of acti-
vating a higher level indicator and roll-down as the action of deactivating a lower level indica-
tor. This architecture will use roll-up for both activation and deactivation. See roll-up.

roll-up The action of activating a higher level indicator, when a lower level indicator is activated, and
deactivating it when all the lower level indicators that roll-up to that indicator are deactivated.
For example, if a FRU Fault indicator is activated, it rolls-up and turns on the Enclosure Fault
indicator, and when the last FRU Fault indicator in an enclosure is deactivated, the Enclosure
Fault indicator for that enclosure is deactivated.

secondary level indicators
The indicators on levels below the Primary Level and above the FRU level.

SFP Service Focal Point. See also Section 16.1.1.6‚ “Service Focal Point (SFP) and Service Parti-
tion‚” on page 517.

Error Log

An amber indicator that indicates that the user needs to look at the error log or problem deter-
mination procedures, in order to determine the cause.

tertiary level indicators The FRU level indicators.

transparent to the OS Indicators whose state cannot be modified or sensed by OS or application level software. For
example, power supply Fault indicators.

turn off To turn off a physical indicator means exactly like it sounds. Turning off a virtual or logical
indicator may or may not turn off the physical indicator, depending on the state diagram for the
physical one (see Section 16.2.1.9‚ “Service Indicator State Diagrams‚” on page 533).

514 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

visible to the OS Indicators whose state can be modified or sensed by OS or application level software. For PCI
Hot Plug indicators. See also Section 16.1.1.2‚ “Service Indicator Visibility and Transparency
to the OS‚” on page 514.

16.1.1.2 Service Indicator Visibility and Transparency to the OS

An indicator is said to be transparent or not visible to the OS when its state cannot be modified or sensed by OS or ap-
plication level software (for example, power supply Fault indicators). An indicator is said to be visible to the OS when
its state can be modified and sensed by OS or application level software (for example, PCI Hot Plug indicators).

Requirements on visibility can be found in Section 16.2‚ “Service Indicator Requirements‚” on page 524.

16.1.1.3 Service Indicator

A service indicator is defined as any indicator that is used in the course of servicing a system. The intent of service in-
dicators is not, in general, to increase system Error Detection and Fault Isolation (EDFI), but rather to guide the user in
performance of a service action. Usages include (but are not limited to):

 Dynamic Reconfiguration (LoPAPR indicator type 9002) to indicate the status of DR operations on a Field Replaca-
ble Unit (FRU). More information on DR indicators can be found in Chapter 13, “Dynamic Reconfiguration (DR)
Architecture,” on page 355. This indicator is amber1 in color except for some legacy implementations which com-
bined this indicator with the power indicator, where the color was green.

 An indication of a fault condition of a FRU (LoPAPR indicator type 9006, when OS visible). This indicator is amber
in color. The FRU Fault indicator is handled differently by the platform based on whether or not the platform is
Lightpath Mode platform or Guiding Light Mode:

 For Guiding Light Mode platforms, FRU fault indicators are transparent to the software and therefore have some
very specific requirements relative to their very localized behavior. In this case, although FRU Fault indicators
themselves are transparent to the software, the associated failure itself, which would activate a FRU Fault indica-
tor, will be available to the software that handles serviceable events.

 For Lightpath Mode platforms, a FRU fault indicator will be available to the software and is activated by the de-
tector of the error. In addition, the FRU Fault rolls up to an Enclosure Fault indicator.

 A system-wide indication of a fault or some condition needing attention in the system. An Error Log indicator (Lo-
PAPR indicator type 9006) is an example of an OS-visible2 indicator of this class of indicators. The Error Log indi-
cator is a flag to the user that there is something in the system needing attention, and therefore a starting point to
indicate that they should begin the isolation procedures to determine what needs attention. In a partitioned system,
the physical Error Log3 indicator may be the logical OR of individual virtual Error Log indicators (one virtual Error
Log indicator per logical partition and one for each other separate entity that is non-partition related). This indicator
is amber in color.

 An indication of an Identify (locate) operation. An Identify indicator (LoPAPR indicator type 9007) is an example of
an indicator of this class. These indicators may or may not be visible to an OS. In this capacity, the indicator is acti-
vated4 at the user’s request in order to help them locate a component in the system (for example, a FRU, a connector,

1.The term “amber” will be used in this chapter to mean any wavelength between yellow and amber.

2.For a definition of the visibility or transparency of an indicator, see Section 16.1.1.2‚ “Service Indicator Visibility and Transparency to the OS‚” on
page 514.

3.If the term “virtual” does not appear before “Error Log”, then the text is referring to the physical Error Log indicator.

4.For a definition of what “activate” means, see Section 16.1.1.1‚ ““Enclosure”, Packaging, and Other Terminology‚” on page 511.

16.1  General 515

LoPAPR, Version 1.1 (March 24, 2016)

an enclosure, etc.). This indicator is amber in color, except for the Enclosure, Rack, and Row Identify indicators,
which are blue in color.

 An indication of the power state of an entity. This indicator is platform controlled and is transparent to the OS(s). In
addition to the power state, this indicator may be used to indicate a power failure or fault. This indicator is green in
color.

 Environmental indicators such as ambient temperature too high. These are transparent to the OS.

 Hardware only indicators such as Ethernet activity indicators. These are transparent to the OS.

16.1.1.4 Service Indicator Modes

There are two modes that a platform can operate in relative to service indicators: Lightpath Mode and Guiding Light
Mode. Any particular platform operates in one and only one mode relative to service indicators: Lightpath Mode or
Guiding Light Mode. A component (hardware, firmware, or software) which is designed to be used in both a Lightpath
Mode and a Guiding Light Mode platform needs to be able to operate in both modes.

For guidance in which mode a platform should be designed to operate, see Section 16.1.2‚ “Machine Classes and Ser-
vice Strategy‚” on page 518.

The following sections give an overview of these two modes. For specific requirements of each mode, see
Section 16.2‚ “Service Indicator Requirements‚” on page 524.

16.1.1.4.1 Lightpath Mode

The Lightpath Mode specifies a platform implementation of service indicators much like what industry-standard serv-
ers originally implemented with its Lightpath, except that FRU indicators also implement an Identify state along with
the current Fault state. The Identify state overrides the Fault state while the Identify is active for an indicator, and the
indicator is put into the Fault state, if one is pending, when the Identify is removed.

A summary of the Lightpath Mode is as follows (see Section 16.2‚ “Service Indicator Requirements‚” on page 524 for
detailed requirements):

 FRU Fault indicators are used as the general way to identify failing FRUs.

 The physical indicator that implements the Fault indicator states also implements the Identify indicator states (that
is, a FRU Fault indicator is also a FRU Identify indicator for the same FRU).

 This mode is basically a superset of the Guiding Light Mode.

 FRU Fault indicators are presented to the OS for FRUs for which the OS image is expected to detect errors for either
the entire FRU or part of the FRU. In the latter case, this represents a shared FRU, in which case the FRU Fault indi-
cator is virtualized, so that one partition cannot view the setting by another partition, which would allow a covert
storage channel (see also Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516).

 The OS and firmware are responsible for activating the FRU Fault indicator for a FRU for which they detect an er-
ror. Fault indicators are reset by the service action on the failing part that they represent.

 FRU Identify indicators are presented to the OS for FRUs that are fully owned by the OS image. They may also be
presented for FRUs that are partially owned by the OS image. Ownership of a FRU by the OS image is defined as
being the condition of the FRU being under software control by the OS, a device driver associated with the OS, or
application software running on the OS. In the partially owned case, this represents a shared FRU, in which case the
FRU Identify indicator is virtualized, so that one partition cannot view the setting by another partition, which would
allow a covert storage channel (see also Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516).

516 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

 Connector Identify indicators are presented to the OS for connectors that are fully owned by the OS image. Owner-
ship of a connector by the OS image is defined as being the condition of the connector being under software control
by the OS, a device driver associated with the OS, or application software running on the OS.

 Enclosure Identify indicators are available to the OS when the OS fully owns a FRU in the enclosure. This indicator
is virtualized in a partitioned system, so that one partition cannot view the setting by another partition, which would
allow a covert storage channel.

 The Error Log indicator or virtual copy thereof (for LPARed platforms) is available to each OS image.

See Requirement R1–16.2.1.1–1 for more information for requirements on activation of the Fault indicators.

The Triple-S UI, when implemented, also adds additional requires to Lightpath Mode implementations. See
Section 16.2.3‚ “Lightpath User Interface (UI) Requirements‚” on page 544.

16.1.1.4.2 Guiding Light Mode

A summary of the Guiding Light Mode is as follows (see Section 16.2‚ “Service Indicator Requirements‚” on page 524
for detailed requirements):

 FRU Identify indicators are used as the way of identifying service procedures like repair, reconfiguration, and up-
grade. FRU Identify indicators are activated/deactivated by user via a user interface, to identify the FRU(s) involved
in the service procedure.

 FRU Identify indicators are presented to the OS for FRUs that are fully owned by the OS image. Ownership of a
FRU by the OS image is defined as being the condition of the FRU being under software control by the OS, a device
driver associated with the OS, or application software running on the OS.

 Connector Identify indicators are presented to the OS for connectors that are fully owned by the OS image. Owner-
ship of a connector by the OS image is defined as being the condition of the connector being under software control
by the OS, a device driver associated with the OS, or application software running on the OS.

 Fault indicators are allowed, but not required, but if provided, must be transparent to any OS image, and are reset by
the service action on the failing part that they represent. To be transparent to an OS means that they cannot be con-
trolled by the OS, nor will they interfere with any other indicator that is controlled by the OS.

 Enclosure Identify indicators are provided as part of the Identify roll-up. Enclosure Identify indicators are available
to the OS when the OS fully owns a FRU in the enclosure. This indicator is virtualized in a partitioned system, so
that one partition cannot view the setting by another partition, which would allow a covert storage channel.

 The Error Log indicator, or a virtual copy thereof (for LPARed platforms), is available to the OS.

16.1.1.5 Covert Storage Channels

A covert storage channel is a path between two entities that can be used to pass data outside the normal data sharing
paths like LANs. For example, if two OS images were given access to the same physical indicator and if each OS im-
age could read the state of the indicator, then the indicator can become a single-bit covert storage channel between co-
operating entities in the two OS images, to pass data back and forth. This cannot be allowed, for security reasons, and
therefore this architecture defines the concept of virtual indicators.

A virtual indicator is provided to each OS image for each physical indicator that is shared between OS images. The
physical indicator is activated when any virtual indicator for that physical indicator is activated and the physical indica-
tor is deactivated when all virtual indicators for that physical indicator are deactivated. The general OS image can
sense what it is trying to set the indicator to, but cannot sense what the other virtual indicators are set to, and hence no
covert storage channel exists. The exception to the shared access is by a trusted Service Focal Point (see
Section 16.1.1.6‚ “Service Focal Point (SFP) and Service Partition‚” on page 517 for more details). For more informa-

16.1  General 517

LoPAPR, Version 1.1 (March 24, 2016)

tion on how virtual indicators affect the physical indicator state, see the physical indicator state diagrams later in this
chapter.

An OS image in a partitioned system needs to realize that it may not have full control over all physical indicators to
which it has access (that is, needs to realize that the indicators may be virtualized in some cases), and in those cases it
should not attempt to indicate to the user via a user interface the state of the physical indicator which is controlled by a
virtual indicator.

Virtual indicators are controlled by the OS for which they are generated, except that the platform may activate an OS’
virtual Error Log indicator if the partition in which the OS resides abnormally terminates.

16.1.1.6 Service Focal Point (SFP) and Service Partition

The Service Focal Point (SFP), when it exists, will ultimately be the exclusive common point of control in the system
for handling all service actions which are not resolved otherwise (for example, via Fault indicators). It interfaces with
the error log where all the serviceable events are stored from the various OS and service processor diagnostics. The
SFP, among other things, allows resetting of the Error Log light by the user, allows controlling the activation and deac-
tivation of the FRU, connector, and Enclosure Identify indicators, and allows the clearing of the service actions in the
error log.

The SFP shares access to some of the same indicators as one or more OS images, but needs access to the physical indi-
cator state, and sometimes the state of all the virtual indicators for that physical indicator. If the SFP in a partitioned
system were to be implemented on an OS image that runs non-trusted applications, then the SFP partition could not be
given access to the physical and other OS’ virtual service indicators, or covert storage channels would exist (see
Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516) between the SFP partition and the other OS partitions. This
architecture assumes that the SFP is implemented as trusted or privileged entity which does not allow non-trusted ap-
plications running on the same OS image as the SFP, and therefore covert storage channels are not considered to exist
between the SFP’s privileged OS image and other OS images in the system.

The SFP may also be implemented on as a separate entity from the one being monitored. A system management entity
like an HMC interfacing to the platform via firmware interfaces, or an external system management entity, are exam-
ples of such implementations.

For Lightpath Mode, the Triple-S UI is a user interface that is associated with a SFP. See Section 16.2.3‚ “Lightpath
User Interface (UI) Requirements‚” on page 544.

The platform’s physical indicators are accessible to the SFP through the normal indicator interface (LoPAPR indicator
types 9006 and 9007).

16.1.1.7 Logical Indicators vs. Physical Indicators

A physical indicator is, in many cases, used to represent several logical and/or virtual indicators. For example, a physi-
cal FRU indicator can be used in Lightpath Mode to represent both a FRU Identify indicator and a FRU Fault indicator.

The hardware/firmware that implements the physical indicator’s state machine is the entity which knows about the
combining of the logical and virtual into the physical, and higher level software (OS and applications) that are given
control of a logical or virtual indicator are only aware of the control of that logical or virtual indicator, and may not be
even able to sense the state of the physical indicator (that is, can only sense the state of their logical or virtual ones).

The physical indicator state diagrams in Section 16.2.1.9‚ “Service Indicator State Diagrams‚” on page 533 indicate
how logical and virtual indicators are merged into the physical ones. See also Section 16.1.1.5‚ “Covert Storage Chan-
nels‚” on page 516 relative to virtual indicators.

518 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

16.1.2 Machine Classes and Service Strategy

Two broad classifications of computer implementations are defined here for purposes of defining service indicator im-
plementations. Table 198‚ “Machine Classifications and Service Characteristics‚” on page 518 shows the comparison
of these classes.

Determining whether a platform’s classification, and therefore the service mode of the platform is dependent on the
product requirements, and is beyond the scope of this architecture, but might include:

 The RAS requirements for the platform. The considerations for this come from Table 198‚ “Machine Classifications
and Service Characteristics‚” on page 518.

 The mixture of machines expected in the environment. Although the Lightpath Mode and the Guiding Light Mode
both contain the identify capability, and that could be considered to be the common denominator in servicing in a
mixed environment, it could be that there are more Lightpath Mode platforms in the environment for which a new
platform design is targeted, and therefore it might be desirable to make that new platform’s mode of operation be the
Lightpath Mode for that reason.

16.1.3 General Information about Service Indicators

Indicators may serve multiple uses, but only as defined by this architecture. For example, a physical indicator used for
a FRU is used for both the FRU Fault and FRU Identify indicators. Non-architected usages of an architected indicator
are specifically disallowed by this architecture.

In some cases, an indicator may not be visible directly by the user without removing covers, components, etc. In this
case, there is required to be one or more indicators that are higher in the hierarchy which get activated in conjunction
with the target indicator. This functionality is called indicator roll-up. Due to the hierarchy, there might be multiple in-
dicators that get rolled-up into a single indicator. The platform (not the OS) is responsible for indicator roll-up. An ex-

Table 198. Machine Classifications and Service Characteristics

Characteristic Simple Class Complex Class

Number of FRUs Few Many

Servicing performed by Customer, generally CE more than customer

Deferred maintenance Very little Enabled as much as possiblea

a. Deferred maintenance is one of the big drivers towards use of Guiding Light mode or Lightpath
Mode with Triple-S. That is, having many Fault indicators active at one time (FRUS waiting
for service actions) can lead to confusion when service is being performed.

Concurrent maintenance
Generally limited to redundant

components (fans, power
supplies) and I/O devices

Generally a higher level of
concurrent maintenance

Value of a FRU Fault indicator High
Questionable value due to
complexity of the system

FRU Fault indicator
implementation

Realistic
Complex, given the higher level

of deferred and concurrent
maintenance

Console interface Rare Standard

Platform service mode Lightpath Mode platform
Guiding Light Mode platform

or
Lightpath Mode with Triple-S UI

16.1  General 519

LoPAPR, Version 1.1 (March 24, 2016)

ample of a roll-up is that on the front of an enclosure1 in a rack there is a summary LED that summarizes the Identify
LEDs within or on the back of the enclosure in a rack, and then the multiple enclosure summary LEDs are summarized
at the rack level with a light on the top of the rack. Another example of a roll-up indicator is the Enclosure Fault indi-
cator on each enclosure in Lightpath Mode platforms, which summarizes the Fault indicators within the enclosure.
These roll-up indicators are transparent to the OS, and sometimes to the firmware, with the exception that the enclosure
level Identify indicators (or virtual versions thereof, in the case of partitioned systems) may be accessible to the OS via
the 9007 indicator type. The indicators that are provided for roll-up from FRU to enclosure to rack are identified by this
architecture. Platforms may have unique indicators which are not visible to the OS and which are not defined by this
architecture. These will not share the same indicator as used by one of the indicators which is architected, including in-
dicators in the roll-up path, except as explicitly allowed by the architectural requirements in this architecture. In addi-
tion to the roll-up to a higher level indicator for visibility, the platform may also provide duplicate indicators for some
of the indicators. For example, there may be a front and rear indicator for the enclosure indicators. These duplicate in-
dicators are not defined by this architecture except that as for roll-up indicators, the platform is responsible for control-
ling any duplicate indicators and for not making the duplicates visible to the controlling entities. Finally, FRU
indicators are required to be visible to the user during a service action. This may require, for example, that the indicator
be able to be lit after power is removed from the system, requiring storage of power on the component with the indica-
tor (for example, via a capacitor) and activation of the indicators by a push button by the user.

An OS image is given access to the FRU Identify indicators when the OS image fully owns the resources, and is given
access to the Enclosure Identify indicator for any enclosure in which the OS image fully owns any resource. An OS im-
age is given access to the FRU Fault indicators when the OS image owns all or part of the FRU. The Enclosure Fault
indicators are roll-up only indicators and access to these indicators are not given to the OS.

In a partitioned system (logical or physical), there may be several virtual Enclosure Identify indicators and one physi-
cal Enclosure Identify indicator. In this case, the OS images are only given access to their copy of the virtual Enclosure
Identify indicator, and do not have direct access to the physical Enclosure Identify indicator. Activating any virtual En-
closure Identify indicator which is associated with an enclosure activates the physical one for that drawer (if not al-
ready activated). Turning off the last virtual Enclosure Identify indicator for an enclosure turns off the physical one for
that enclosure, providing all other Identify indicators in the enclosure are also off. If software in a partition senses the
state of the virtual Enclosure Identify indicator, it needs to take into consideration that it may be seeing the virtual state
and not the real state of the indicator, with the virtual state being what the partition set the indicator to, and this is not
necessarily what the physical indicator is actually displaying.

The Error Log indicator is located on the System Enclosure (the CEC enclosure) and is used to indicate that there was
a failure in the system. This indicator may also be used by the system to indicate that some other attention is needed in
the system. This Error Log indicator is the starting point for the determination of the necessary action by the user.

In a partitioned system (logical or physical), there may be several virtual Error Log indicators and one physical Error
Log indicator. Activating a virtual Error Log indicator activates the physical one. Turning off the last virtual Error Log
indicator turns off the physical one. If software in a partition senses the state of the Error Log indicator, it needs to take
into consideration that it may be seeing the virtual state and not the real state of the indicator, with the virtual state be-
ing what the partition set the indicator to, and this is not necessarily what the physical indicator is actually displaying.

For Guiding Light Mode platforms, the FRU Identify indicators are the primary method for pointing to failing FRUs.
For Lightpath Mode platforms, it is expected that the FRU Identify indicators will be used as a secondary assistance for
FRU fault identification (the FRU Fault indicators being the primary). In both cases, the FRU Identify indicators can
be used to assist with such things as identifying where an upgrade should be inserted.

The general rules for activation and deactivation of indicators can be found in Requirements R1–16.2.1.1–3 and R1–
16.2.1.1–4, and more explicit requirements of individual indicators in the state diagrams in Section 16.2.1.9‚ “Service

1.Note that the enclosure is sometimes called the “unit,” but a unit is not necessarily a drawer and a drawer is not necessarily a unit, so the term “unit”
is not be used here. Also note that an enclosure might be a drawer in a rack or might be part of a drawer. For example, some I/O drawers consist of two
separate and independent enclosures. So, sometimes there may be multiple enclosure indicators per rack drawer. See also Section 16.1.1.1‚ ““Enclo-
sure”, Packaging, and Other Terminology‚” on page 511.

520 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Indicator State Diagrams‚” on page 533. When the Triple-S UI is implemented, see also Section 16.2.3‚ “Lightpath
User Interface (UI) Requirements‚” on page 544.

This architecture assumes that the control of multiple users doing identify operations at the same time, is under proce-
dural control, and is not handled or controlled in any way by this architecture, OS, or firmware.

For Guiding Light Mode platforms, if a FRU contains a Fault indicator, then the Fault indicator is transparent to the OS
and control of the FRU-level Fault indicator is entirely up to the FRU or to some OS-transparent method. For example,
some power supplies contain a Fault indicator that does not get reported directly to the system controlling entity and
which is turned off by a button on the power supply which is pushed when the service is complete.

16.1.4 Secondary Light Panels

A secondary light panel may be used to house roll-up indicators as indicated in the “intermediate” level or “secondary”
level indicators in Figure 15‚ “Representation of the Indicators -- Lightpath Mode Platform‚” on page 521 and
Figure 16‚ “Representation of the Indicators -- Guiding Light Mode Platform‚” on page 522. These panels may also
house other indicators which would otherwise not have a home (for example, an over-temperature indicator).

Secondary light panels indicators are not to be used as replacement for FRU-level indicators. However, if an indicator
is not directly visible when the unit is placed into the service position (for example, blocked by covers, baffles, cables,
etc.), then the secondary light panel is one implementation to get around this restriction (other implementations may
exist, for example light pipes, etc.).

16.1.5 Group Identify Operation

In some systems it may be desirable to identify a set of enclosures as being part of a group. This is called a group iden-
tify operation and can be performed by activating the appropriate Enclosure Identify indicators.

For platform or systems that consist of multiple enclosures, it may be necessary to change the state of one enclosure be-
fore servicing another enclosure. For example, a system drawer (primary enclosure) may need to be powered down be-
fore servicing an I/O drawer (secondary enclosure). It may be useful in this case for the servicer to be able to identify
the various enclosures that are linked. In such implementations, the enclosures should be designed with a method to ac-
tivate the Group Identify function, with the “group” being all linked enclosures. One implementation of this is to put a
pushbutton in proximity to the blue Enclosure Identify indicator, which is then used to activate the blue Enclosure
Identify indicators of all connected enclosures, and subsequently to deactivate all of them. It is suggested that with this
implementation of the Group Identify function, that this switch toggle the Group Identify function for this set of enclo-
sures, with each push toggling the Group Identify function. If it takes awhile to activate all the blue Enclosure Identify
indicators in the group, it may be useful to give the user feedback that the button has been pressed. One way to do this
is to put the blue Enclosure Identify indicator next to the pushbutton into the blink state (momentarily) until all the
other blue Enclosure Identify indicators in the group have been activated, and when that is complete, to put this indica-
tor into the Identify state (on solid).

16.1.6 System-Level Diagrams

The following figures are conceptual diagrams showing indicator roll-ups:

 Figure 15‚ “Representation of the Indicators -- Lightpath Mode Platform‚” on page 521.

 Figure 16‚ “Representation of the Indicators -- Guiding Light Mode Platform‚” on page 522.

 Figure 17‚ “Representation of the Indicators -- Rack System‚” on page 523.

16.1  General 521

LoPAPR, Version 1.1 (March 24, 2016)

Figure 15. Representation of the Indicators -- Lightpath Mode Platform

FRU
ID+Fault

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID+Fault

FRU
ID+Fault

FRU
ID+Fault

ID+Fault ID+Fault

Error Log

Enclosure Fault

FRU
ID+Fault

Fault path
Identify Path

Single Enclosure System

Enclosure ID

FRU
ID+Fault

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID+Fault

FRU
ID+Fault

FRU
ID+Fault

ID+Fault ID+Fault

Error Log

Enclosure Fault

FRU
ID+Fault

Multiple Enclosure System

Enclosure ID

FRU
ID+Fault

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID+Fault

FRU
ID+Fault

FRU
ID+Fault

ID+Fault ID+Fault

FRU
ID+Fault

Enclosure ID

System Enclosure

Secondary Enclosure

**** Platform Specific intermediate level indicators
may be located in the same enclosure or in
multiple enclosures.

P
ri

m
ar

y
S

ec
on

da
ry

Te
rt

ia
ry

Pr
im

ar
y

S
ec

on
da

ry
Te

rt
ia

ry
P

ri
m

ar
y

S
ec

on
da

ry
Te

rt
ia

ry

(Secondary level)

(Secondary level)****

(Secondary level)****

Enclosure Fault

ID = Identify
NOTE: All indicators shown are amber except for
the Enclosure ID, which is blue

522 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 16. Representation of the Indicators -- Guiding Light Mode Platform

FRU
ID

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID

FRU
ID

FRU
ID

ID ID

Error Log

FRU
ID

Identify Path

Single Enclosure System

Enclosure ID

FRU
ID

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID

FRU
ID

FRU
ID

ID ID

FRU
ID

Multiple Enclosure System

Enclosure ID

FRU
ID

Platform Specific
Intermediate level
Indicators (roll-up)

FRU
ID

FRU
ID

FRU
ID

ID ID

FRU
ID

Enclosure ID

System Enclosure

Secondary Enclosure

P
ri

m
ar

y
S

ec
on

da
ry

Te
rt

ia
ry

P
ri

m
ar

y
S

ec
on

da
ry

Te
rt

ia
ry

P
ri

m
ar

y
S

ec
on

da
ry

Te
rt

ia
ry

(Secondary level)

(Secondary level)****

(Secondary level)****

**** Platform Specific intermediate level indicators
may be located in the same enclosure or in
multiple enclosures.

ID = Identify

Error Log

NOTE: All indicators shown are amber except for
the Enclosure ID, which is blue

Enclosure Fault
(optional)

Enclosure Fault
(optional)

Enclosure Fault
(optional)

Note: For Guiding Light Mode
the Enclosure Fault
indicator is required if a fault condition within
the enclosure is to be indicated

16.1  General 523

LoPAPR, Version 1.1 (March 24, 2016)

Figure 17. Representation of the Indicators -- Rack System

Rack Indicator
Rack Indicator

Error Log

Roll-up
ID

Roll-up
ID

Roll-up
Error Log

Rack Rack

FRU
FRU
Fault

Roll-up
ID

ID

ID

FRU
ID

Example Two-rack System (single CEC)

Row Indicator (optional)
Error Log

Roll-up
Error Log/ID

FRU
FRU
Fault

ID FRU
ID

Enclosure
Fault

Notes: Guiding Light Mode platform shown, with optional Enclosure Fault indicators. For Lightpath Mode platforms,
FRU Fault indicators would always exist and would roll up to the Enclosure Fault indicator, and additionally,
the Rack and Row Identify indicators would have an additional Fault indicator (not shown) and the Fault
indicators at the enclosure level would roll up to those.

Error Log path
Identify Path

Enclosure ID Enclosure ID

Drawer

Enclosure ID

Drawer

Enclosure ID

(System Enclosure)

ID

Error Log
(not used) Error Log

ID

(optional)
(optional)

(Secondary Enclosure)

Drawer
(Secondary Enclosure)

Drawer
(Secondary Enclosure)

ID
Roll-up

NOTE: All indicators shown are amber except for
the Enclosure, Rack, and Row IDs, which are blue

Enclosure
Fault

Enclosure
Fault

Enclosure
Fault

524 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

16.2 Service Indicator Requirements

Service indicators are required on all platforms.

R1–16.2–1. All platforms must implement either the Lightpath Mode or the Guiding Light Mode of service indica-
tors, and all components and enclosures (the primary enclosure and any secondary enclosures (for example,
I/O expansion drawers)) within the platform must be operating in the same mode.

R1–16.2–2. Indicators defined by this architecture must not be used for any purpose other than is what is specified
by this architecture, and only with the specific states defined by this architecture.

R1–16.2–3. All platforms must provide the “ibm,service-indicator-mode” property in the Open Firm-
ware Device Tree root node.

16.2.1 Service Indicator General Requirements

This section details requirements of indicators that are not specifically LoPAPR indicator type 9006 or 9007 related.
These are true even if the platform does not present any 9007 indicators to the OS. This includes requirements for plat-
form actions like roll-up. For 9006 and 9007 specific requirements, see Section 16.2.2‚ “Requirements for 9002, 9006,
and 9007 Indicators‚” on page 543.

Requirements which are prefaced by “For Lightpath Mode platforms:” only apply to Lightpath Mode platforms. Re-
quirements which are prefaced by “For Guiding Light Mode platforms:” only apply to Guiding Light Mode plat-
forms. Requirements that are prefaced by neither, apply to both Lightpath Mode and Guiding Light Mode platforms.
Components which are designed to work in both Lightpath Mode and Guiding Light Mode platforms, need to be able
to comply with both Lightpath Mode and Guiding Light Mode sets of requirements, as well as the requirements that
apply to all.

16.2.1.1 Fault Detection and Problem Determination Requirements

There are two general classifications of problems which are indicated by Service Indicators:

 An indication for FRUs that have failed and need to be replaced

 An indication of other system problems that may be causing performance degradation or which might cause failures
in the future, for example:

 A FRU that is predicted to fail (may be treated as a failing FRU by some implementations)

 An over temperature conditions

 A loss of redundancy that is not caused directly by a FRU failure (for example, greater than 100% of the power of
the base power being used)

 A configuration problem such as a missing resource, resource plugged into the wrong slot, or invalid configura-
tion

The general model for use of the Error Log1 and Enclosure Fault indicators is to indicate problems as follows:

 Activation of either the Error Log or Enclosure Fault indicators is accompanied by a log entry in an error log that
can be queried by the user

1.Previously called the System Information (Attention) indicator.

16.2  Service Indicator Requirements 525

LoPAPR, Version 1.1 (March 24, 2016)

 Activation of the Error Log indicator is used when the user needs to perform some procedure, or acknowledge some
condition, prior to taking corrective action

 For most types of problems, this requires the user to look into the error log at the start of the procedure

 In some cases (generally for more common or more urgent problems), additional indicators may be provided by a
system and activated to allow the user to determine the problem without looking into the error log (these addi-
tional indicators are generally not allowed to be the same indicators as defined by this architecture, except as al-
lowed by this architecture)

 The procedure performed by the user may include items like:

Activation of FRU Identify indicators (for example, as in Guiding Light Mode systems)

 Removal and re-connection of cables, reseating of cards, etc.

 Activation of an Enclosure Fault (Lightpath Mode systems) is only allowed in the following cases:

 As an indication of the roll-up of a FRU Fault indicator

 In conjunction with a system error that prevents a FRU Fault indicator from being activated (this requires some
other indication of the global failure problem, for example, an error code on an op panel)

The following requirements define the actions to be taken by a system on the detection of a fault.

R1–16.2.1.1–1. The detector of a fault condition must do the following:

 If the a fault occurs which cannot be isolated appropriately without the user performing some procedure,
then activate the Error Log indicator.

 If a fault occurs which can be isolated to a single FRU and if there exists a Fault indicator for the FRU, then
activate that FRU Fault indicator, otherwise activate the Error Log indicator.

 If a fault occurs which cannot be isolated to a single FRU and if there exists a Fault indicator for the most
likely FRU in the FRU list, then activate that FRU Fault indicator, otherwise activate the Error Log indica-
tor.

 If a fault occurs which is isolated to a group of FRUs (called a FRU group) and if there exists a Fault indi-
cator for each of the FRUs, then activate all the FRU Fault indicators, otherwise activate the Error Log in-
dicator.

See also, Appendix L, “When to use: Fault vs. Error Log Indicators (Lightpath Mode),” on page 885.

R1–16.2.1.1–2. (Requirement Number Reserved For Compatibility)

R1–16.2.1.1–3. Service Indicators (Error Log, Fault, and Identify) must be activated appropriately to guide a user to
or through a service action or procedure.

R1–16.2.1.1–4. Service Indicators (Error Log, Fault, and Identify) must be deactivated appropriately, as follows:

a. A Service Indicator activated by an entity must be automatically deactivated by that entity when that entity
can determine that the activation is no longer necessary, or

b. A Service Indicator must be automatically deactivated by the platform when the platform can determine
that the activation is no longer necessary or may be necessary but will be redetected and therefore reacti-
vated a reasonable time later, or

c. A Service Indicator must be automatically deactivated by a service procedure which fixes the issue that
caused the indicator to be automatically activated in the first place, or

526 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

d. A Error Log or Identify indicator must be deactivated when a user request it to be deactivated by a sys-
tem-level user interface.

e. For the Lightpath UI Base Enablement, as indicated in Requirement R1–16.2.3.1–1d and R1–16.2.3.1–2b.

R1–16.2.1.1–5. For each activation of the Error Log and Enclosure Fault Indicators, one of the following must be
true:

a. If the platform is functional enough to allow it, then an associated entry must be made in an error log that
can be queried by a user interface.

b. In the case where the platform is not functional enough to allow logging of an error log entry, then there
must exist a way for the user to determine the failure associated with the indicator activation (for exam-
ple, an error code on an op panel on the system).

Implementation Notes:

1. Requirement R1–16.2.1.1–4 are intentionally written general enough so that different platform types have
some latitude in implementation of Service Indicators. However, see the state diagrams, Section 16.2.1.9‚
“Service Indicator State Diagrams‚” on page 533, for some explicit requirements for activation and deacti-
vation of the various Service Indicators. Those state diagrams take precedence over Requirement R1–
16.2.1.1–4. When the state diagrams and Requirement R1–16.2.1.1–4 do not give explicit direction for im-
plementation, implementers should consider compatibility with existing implementations when making de-
cisions about activation and deactivation.

2. In Requirement R1–16.2.1.1–4, the physical indicator may not be turned off when deactivated from an OS
interface (versus a system-level interface), if another entity outside of that OS also has the physical indicator
activated. That is, if the physical indicator is the combination of several logical indicators.

R1–16.2.1.1–6. The Error Log indicator must be activated only for Serviceable Events. Serviceable Events are plat-
form, global, regional and local error events that require a service action and possibly a call home when the
serviceable event must be handled by a service representative or at least reported to the service provider. Ac-
tivation of the Error Log indicator notifies the customer of the event and the event indicates to the customer
that there must be some intervention to rectify the problem. The intervention may be a service action that the
customer can perform or it may require a service provider.

16.2.1.2 FRU-Level and Connector Indicator Requirements

The indicators specified in this section represent the lowest level indicators in the indicator roll-up hierarchy.

See also requirements in Section 16.2.1.7‚ “Additional Indicator Requirements‚” on page 531.

For the Lightpath UI, see also the requirements in Section 16.2.3‚ “Lightpath User Interface (UI) Requirements‚” on
page 544.

R1–16.2.1.2–1. For Lightpath Mode platforms: All of the following must be true:

a. A FRU Fault indicator must be implemented for every replaceable FRU, with the states of “off” and “on,”
except for FRUs which are excepted in Requirement R1–16.2.1.2–4.

b. Clearing of the FRU Fault indicator from the Fault state must be the result of part of the repair action and
must be transparent to the OS(s) and SFP (that is, the OS or SFP is not required to automatically clear a
FRU Fault indicator).

c. The physical indicator which implements the FRU Fault indicator must also be Identify indicator and fol-
low the requirements for Identify indicators.

R1–16.2.1.2–2. FRU indicators (Fault and Identify) must be visible to the user during a service action.

16.2  Service Indicator Requirements 527

LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Requirement R1–16.2.1.2–2 may require, for example, that the indicator be able to be lit after
power is removed from the system, requiring storage of power on the component with the indicator (for example,
via a capacitor) and activation of the indicators by a push button by the user (see Requirement R1–16.2.1.7–10 for
requirements on this implementation). Another example would be via the use of a light pipe from the indicator to
a visible place.

R1–16.2.1.2–3. For Guiding Light Mode platforms: If a FRU Fault indicator exists, then it must be transparent to
the OS, SFP, and HMC and it must be independent of, and not physically combined into the same indicator
with, any indicator defined by this architecture, including the setting of, resetting of, and displaying of the
state of that indicator, except that a FRU Identify indicator may be activated to the Fault state (on solid) as a
result of a FRU failure if all of the following are true:

a. The failure that is being indicated must be a failure which prevents the user from activating the said FRU
Identify indicator to the Identify state.

b. Clearing of the FRU Fault indicator must be the result of part of the repair action and must be transparent
to the OS, SFP, and HMC.

Architecture Notes:

1. For Guiding Light Mode platforms, the only FRU-level indicators that are allowed to be visible to an OS,
SFP, or HMC are the FRU Identify indicators.

2. For Guiding Light Mode platforms, the only Fault indicator that is allowed to be visible to an OS, SFP, or
HMC is the Error Log indicator.

3. Examples of the exception of the use of FRU and enclosure indicators in Requirement R1–16.2.1.2–3 as an
indication of a fault are: when the path for controlling an Enclosure Identify indicator or FRU indicator in
that enclosure is broken, or when the power supply in the enclosure is broken and the indicator cannot be ac-
tivated to the Identify state. In these cases the FRU and/or enclosure indicators may be activated (transpar-
ently) to the Fault state to indicate the failure, and would be returned to the Normal state as a result of the
repair action that fixes the problem.

R1–16.2.1.2–4. All platforms designs, except very low end servers,1 must include an Identify indicator for every
FRU with the states of “off” and “blink,” except for the following classes of FRUs:

a. If a device driver has access to some standard form of Identify/Fault indicators for the DASD devices it
controls (for example, some standard form of enclosure services), then the platform does not need to pro-
vide FRU indicators for these devices.

b. If a device driver has access to some standard form of Identify/Fault indicators for the removable media
devices it controls (for example, some standard form of enclosure services), then the platform does not
need to provide FRU indicators for these devices.

c. External enclosures other than PCI expansion enclosures, and external devices (for example, keyboard,
mice, tablets) that attach via cable to IOAs, do not require FRU indicators.

d. Cables that connect from IOAs to the devices defined in parts a, b, and c of this requirement do not require
FRU indicators.

e. Internal cables, interposers, and other FRUs which do not contain active components do not require FRU
indicators.

1.The term “very low end servers” is not explicitly defined here, but is used to refer to implementations where FRU-level indicators cannot reasonably
be implemented (for example, due to size constraints) or where the product can show explicit financial justification for not implementing.

528 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Even though an item falls into the list of possible exceptions in Requirement R1–16.2.1.2–4, the
designer of such a component should verify that leaving off the FRU Identify indicator from their component will
not prevent the systems in which that component is used from meeting their serviceability requirements.

R1–16.2.1.2–5. All FRU-level Identify indicators must implement the state diagram shown in Figure 18‚ “FRU or
Connector Fault/Identify Indicator State Diagram‚” on page 535, except that the Fault state is not required for
Guiding Light Mode platforms.

R1–16.2.1.2–6. All platforms must include an Identify indicator with the states of “off” and “blink” for every con-
nector that is to be involved in an Identify operation.

R1–16.2.1.2–7. FRU-level and connector-level indicators must be made visible to the OS(s) as follows, and must be
made transparent otherwise:

a. For Lightpath Mode platforms: FRU Fault indicators must be made visible to the OS for FRUs for
which the OS image is expected to detect errors for either the entire FRU or part of the FRU.

b. FRU Identify indicators must be made visible to the OS for FRUs that are fully owned by the OS image.

c. Connector Identify indicators must be made visible to the OS for connectors that are fully owned by the OS
image and for which a connector Identify indicator exists.

Implementation Notes:

1. In Requirement R1–16.2.1.2–7a, for FRU Fault indicators that are shared, the FRU Fault indicator is virtu-
alized, so that one partition cannot view the setting by another partition, which would allow a covert storage
channel (see also Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516 and Section 16.2.1.6‚ “Shared
Indicator (Multiple Partition System) Requirements‚” on page 531).

2. Ownership of a FRU or connector by the OS image is defined as being the condition of the FRU or
connector being under software control by the OS, a device driver associated with the OS, or applica-
tion software running on the OS.

R1–16.2.1.2–8. An OS which activates a FRU Identify indicator must provide a method of deactivating that indica-
tor.

R1–16.2.1.2–9. (Requirement Number Reserved For Compatibility)

16.2.1.3 Enclosure-Level Indicator Requirements

See also requirements in Section 16.2.1.7‚ “Additional Indicator Requirements‚” on page 531

For the Lightpath UI, see also the requirements in Section 16.2.3‚ “Lightpath User Interface (UI) Requirements‚” on
page 544.

R1–16.2.1.3–1. On the System Enclosure: The platform must implement an Error Log indicator and all of the fol-
lowing must be true:

a. The states of “off” and “on” must be implemented and must be used for the Error Log function

b. (Requirement Number Reserved For Compatibility)

c. This indicator must roll-up to the rack indicator, when the rack indicator is implemented, and for blade im-
plementations, to the Chassis Error Log indicator.

d. The indicator must implement the state diagram shown in Figure 19‚ “Error Log Indicator State Diagram‚”
on page 536.

e. The platform must provide a mechanism to allow the user to put the Error Log indicator into the off state.

16.2  Service Indicator Requirements 529

LoPAPR, Version 1.1 (March 24, 2016)

R1–16.2.1.3–2. Except for enclosures that contain only FRUs that are exempted from FRU-level indicators as spec-
ified by Requirement R1–16.2.1.2–4 parts a, b, and c, and which also do not have any Connector Identify in-
dicators, the platform must implement an Enclosure Identify indicator on all enclosures, and all the following
must be true:

a. The states of “off,” “blink,” and “on” must be implemented and must be used for the Identify function.

b. This indicator must roll-up to the rack indicator, when the rack indicator is implemented, and for blade im-
plementations, to the Chassis Enclosure Identify indicator.

c. The indicator must implement the state diagrams shown in Figure 20‚ “Enclosure Identify Indicator State
Diagram for Scalable Systems‚” on page 537 and Figure 21‚ “Enclosure Identify Indicator State Dia-
gram‚” on page 538.

R1–16.2.1.3–3. For Lightpath Mode Platforms: All the following must be true for the Enclosure Fault indicator:

a. The platform must implement an Enclosure Fault indicator on each enclosure in which there exists at least
one FRU Fault indicator.

b. These indicators must implement the states of “off,” “on,” and “blip”.

c. These indicators must implement the state diagram as shown in Figure 22‚ “Enclosure Fault Indicator State
Diagram‚” on page 539.

d. These indicators must not be visible to any OS image.

e. The platform must provide a mechanism to allow the user to put each Enclosure Fault indicator into the
blip state.

f. This indicator must roll-up to the rack indicator, when the rack indicator is implemented, and for blade im-
plementations, to the Chassis Enclosure Fault indicator.

Implementation Note: One way of achieving Requirement R1–16.2.1.3–3e is to provide a pushbutton (for example, on
the secondary indicator panel).

R1–16.2.1.3–4. (Requirement Number Reserved For Compatibility)

R1–16.2.1.3–5. (Requirement Number Reserved For Compatibility)

R1–16.2.1.3–6. Enclosure-level indicators must be made visible to the OS(s) as follows, and must be made trans-
parent otherwise:

a. Enclosure Identify indicators must be made visible to the OS when the OS fully owns a FRU in the enclo-
sure.

b. The Error Log indicator must be made visible to each OS image.

Implementation Notes:

1. In Requirement R1–16.2.1.3–6, for indicators that are shared, the indicator is virtualized, so that one parti-
tion cannot view the setting by another partition, which would allow a covert storage channel (see also
Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516 and Section 16.2.1.6‚ “Shared Indicator (Multi-
ple Partition System) Requirements‚” on page 531).

2. Ownership of a FRU by the OS image is defined as being the condition of the FRU being under soft-
ware control by the OS, a device driver associated with the OS, or application software running on the
OS.

R1–16.2.1.3–7. An OS which activates an Error Log indicator must provide a method of deactivating that indicator,
when such an activation is not be deactivated automatically as part of the service action.

530 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Implementation Note: Relative to Requirement R1–16.2.1.3–7, it is recommended that an OS that activates an Error Log
indicator, provide a way to deactivate that indicator, regardless of whether that indicator would be reset as part of
a service action.

R1–16.2.1.3–8. An OS which activates an Enclosure Identify indicator must provide a method of deactivating that
indicator.

R1–16.2.1.3–9. (Requirement Number Reserved For Compatibility)

R1–16.2.1.3–10. For Guiding Light Mode Platforms: If a FRU Fault indicator exists, then it must not roll-up to
the Enclosure Identify or Error Log indicator, and if there is such a requirement to roll-up such an indicator,
then the enclosure must implement an Enclosure Fault indicator, with the same requirements as the Enclosure
Fault indicator for Lightpath Mode platforms.

16.2.1.4 Rack-Level Indicator Requirements

See also requirements in Section 16.2.1.7‚ “Additional Indicator Requirements‚” on page 531

R1–16.2.1.4–1. If a platform implements a rack-level indicator then all of the following must be true:

a. The rack indicator must be transparent to the OS, SFP, and HMC.

b. The rack indicator must be Highly visible1 (distance and viewing angle) with covers in place.

c. For Lightpath Mode: The rack tower indicator must implement the state diagram indicated in Figure 26‚
“Rack-level Error Log Indicator State Diagram‚” on page 542, Figure 27‚ “Rack-level Fault State Indi-
cator Diagram‚” on page 542, and Figure 28‚ “Rack-level Enclosure Identify Indicator State Diagram‚”
on page 542.

d. For the Guiding Light Mode: The rack tower indicator must implement the state diagram indicated in
Figure 26‚ “Rack-level Error Log Indicator State Diagram‚” on page 542, Figure 28‚ “Rack-level Enclo-
sure Identify Indicator State Diagram‚” on page 542, and if the optional Enclosure Fault indicators are
implemented, then Figure 27‚ “Rack-level Fault State Indicator Diagram‚” on page 542.

16.2.1.5 Row-Level Indicator Requirements

R1–16.2.1.5–1. If a system implements a row-level indicator to roll-up a row of rack-level indicators, then the fol-
lowing must be true for these indicators:

a. The indicator must be transparent to the OS, SFP, and HMC.

b. For Lightpath Mode: This indicator must implement the state diagram indicated in Figure 29‚
“Row-level Error Log State Diagram‚” on page 543, Figure 30‚ “Row-level Fault State Diagram‚” on
page 543, and Figure 31‚ “Row-level Identify State Diagram‚” on page 543.

c. For the Guiding Light Mode: This indicator must implement the state diagram indicated in Figure 29‚
“Row-level Error Log State Diagram‚” on page 543, Figure 31‚ “Row-level Identify State Diagram‚” on
page 543, and if the optional Enclosure Fault indicators are implemented, then Figure 30‚ “Row-level
Fault State Diagram‚” on page 543.

1.As defined by our usability groups

16.2  Service Indicator Requirements 531

LoPAPR, Version 1.1 (March 24, 2016)

16.2.1.6 Shared Indicator (Multiple Partition System) Requirements

To avoid covert storage channels (see Section 16.1.1.5‚ “Covert Storage Channels‚” on page 516), virtual indicators
are required for physical indicators which are shared between OS images.

R1–16.2.1.6–1. If a physical indicator (Fault or Identify) is shared between more than one partition, all the follow-
ing must be true:

a. Except where there is explicit trust between the partitions, the platform must provide a separate virtual in-
dicator to each non-trusted partition for each shared physical indicator and must control the physical in-
dicator appropriately, as indicated in the state diagrams in Section 16.2.1.9‚ “Service Indicator State
Diagrams‚” on page 533.

b. If software in a partition senses the state of the virtual indicator, it must take into consideration that it is
seeing the virtual state and not the real state of the indicator, with the virtual state being what the parti-
tion set the indicator to, and this is not necessarily what the physical indicator is actually displaying.

c. The SFP must be given access (sense and set) to the physical FRU level indicators, and the platform must
clear all the corresponding virtual indicators when physical indicator is cleared by the SFP.

d. The SFP must be given access (sense and set) to the physical Error Log indicator, and the platform must
not clear the corresponding virtual indicators when physical indicator is cleared by the SFP.

Architecture Note:

1. In Requirement R1–16.2.1.6–1, an example of “explicit trust” is where the sharing partitions are the SFP
and one other partition, where the SFP is running in an OS where all the applications and drivers can be
trusted to not open a covert channel to the other OS or application in that other partition.

2. In Requirement R1–16.2.1.6–1, it may be possible for the SFP to get direct access to the virtual indicators,
but such access is beyond the scope of this architecture.

16.2.1.7 Additional Indicator Requirements

R1–16.2.1.7–1. A user interface which presents to a user the state of the Identify indicators or which allows the user
to set the state of the Identify indicators, must be prepared for an indicator to disappear from the list of indica-
tors available to the OS image (for example, a “no such indicator” response to a set request), and must pro-
vide the user with an appropriate message and recovery (for example, prompt the user whether they want to
refresh the list of available indicators).

R1–16.2.1.7–2. The color of indicators must be as follows:

a. FRU Identify, FRU Fault, Enclosure Fault, Error Log indicators, and any roll-up indicators for Error Log
(rack-level, blade system chassis-level, and row-level) must be amber.

b. The Enclosure Identify indicators and any roll-up indicators for these indicators (rack-level, blade system
chassis-level, and row-level) must be blue.

R1–16.2.1.7–3. The blink rate of all Identify indicators which blink, must be nominally 2 Hz (minimum 1 Hz) with
a nominal 50% duty cycle.

Implementation Note: The 1 Hz rate should not be used unless absolutely necessary. The 1 Hz rate is put in to be
consistent with the industry standard SHPC specification, which specifies 2 Hz with 1 Hz minimum.

R1–16.2.1.7–4. The “blip” rate for the Enclosure Fault indicators when in the “remind” state must be nominally 0.5
Hz with a duty cycle of 0.2 seconds on, 1.8 seconds off.

532 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.2.1.7–5. All indicator roll-up (activate and deactivate) must be controlled entirely by the platform and must
be transparent to the OS, SFP, and HMC.

R1–16.2.1.7–6. Duplicate indicators that are implemented to reflect the same state as another indicator in the sys-
tem (for example, an indicator on the back of an enclosure that is to reflect the same visible state as the enclo-
sure indicator on the front of the enclosure) must be transparent to the OS and must be kept synchronized by
the platform.

R1–16.2.1.7–7. The platform must provide a way to light all the indicators (Identify, Fault, Error Log, etc.) without
any OS present, for test purposes (manufacturing, field service, etc.).

R1–16.2.1.7–8. The hardware must provide the firmware a way to read the state of the indicators (that is, the regis-
ter which controls the visual state, not the actual visual state) as well as to set the state of the indicators.

R1–16.2.1.7–9. The platform must be designed such that permanently removing a FRU does not remove the capa-
bility to use the Identify indicator(s) remaining in the platform or affect any roll-up.

R1–16.2.1.7–10. In reference to Requirement R1–16.2.1.3–3e, if a capacitor and pushbutton are used to be able to
activate the indicator after removal of the part, then all the following must be true:

a. For Lightpath Mode platforms: Both the Identify and the Fault states must be supported, and the indica-
tor must activate when the push button is depressed and must go off (with the remaining capacitor charge
maintained) when the pushbutton is released (Identify state is displayed as “blink” and Fault state as
“on”).

b. For Guiding Light Mode platforms: The Identify state must be supported, and the indicator must acti-
vate (“blink”) when the push button is depressed and must go off (with the remaining capacitor charge
maintained) when the pushbutton is released.

c. There must be a green indicator next to the pushbutton and the indicator must get turned on when the but-
ton is pressed and when there is charge in the capacitor, and must be off when the button is not pressed.

d. The capacitor must have the capability to store enough charge for two hours and after that period must be
able to light for 30 seconds the green indicator and enough other indicators to be able to identify any nec-
essary group of FRUs (for example, four additional indicators if a group of four DIMM locations is to be
identified simultaneously).

Implementation Note: As part of Requirement R1–16.2.1.7–10, it is not necessary to roll-up any activated indicators
to the next level when the button is pressed.

R1–16.2.1.7–11. All indicators which are under standby power must work the way they do when full power is ap-
plied to the system, including all of the following:

a. The indicators must continue to display the last state displayed when the system power went to
standby-only power, unless the state is changed during the standby state by the user or by a service ac-
tion.

b. The changing of the state to the Identify state and then back to the previous state by the user must be sup-
ported, when that functionality is supported during full system power.

Implementation Note: Internal to the platform firmware, it will most likely be required to have a common control point
for all service indicators in order to meet the requirements and meet the necessary state information

R1–16.2.1.7–12. Any secondary (intermediate) level roll-up indicator (see Section 16.1.4‚ “Secondary Light Pan-
els‚” on page 520) must behave as follows:

 Be blinking, if any Identify indicator that it represents is blinking

 Be on solid if any Fault indicator that it represents is on and no Identify indicator that it represents is blinking

16.2  Service Indicator Requirements 533

LoPAPR, Version 1.1 (March 24, 2016)

 Be off if all indicators that it represents are off

R1–16.2.1.7–13. The icons used for the following indicators, and any roll-up of the same, must be as follows (see
the usability specifications for size, color, and placement):

a. For the Error Log indicator:

b. For the Enclosure Fault indicator:

c. For the Enclosure Identify indicator:

16.2.1.8 Blade Systems Chassis-level Indicator Requirements

The following describes the chassis-level Error Log and Enclosure Identify indicator requirements for blade chassis
implementations. These are basically the same as for the rack and row level indicators, except that the Enclosure Iden-
tify indicators are required to be able to be turned on/off by a user interface, unlike the rack and row level indicators.

For the Lightpath UI, see also the requirements in Section 16.2.3‚ “Lightpath User Interface (UI) Requirements‚” on
page 544.

R1–16.2–1. The blade chassis must implement an amber Error Log indicator, with the state diagram indicated in
Figure 23‚ “For Blade Systems: Chassis-level Error Log Indicator State Diagram‚” on page 540.

R1–16.2–2. The blade chassis must implement an amber Enclosure Fault indicator, with the state diagram indicated
in Figure 24‚ “For Blade Systems: Chassis-level Fault Indicator State Diagram‚” on page 540.

R1–16.2–3. The blade chassis must implement an blue Enclosure Identify indicator, with the state diagram indi-
cated in Figure 25‚ “For Blade Systems: Chassis-level Enclosure Identify Indicator State Diagram‚” on
page 541.

16.2.1.9 Service Indicator State Diagrams

The following state diagrams show the transitions and states for the service indicators in the system.

Implementation Note: Activation of an indicator by a roll-up operation from a lower level indicator will prevent a user
from turning off such an indicator from a user interface without turning off the lower level indicator. It is
recommended, if possible, that in the user interface that allows the user to attempt to deactivate an indicator,
provide to the user a message that the indicator cannot be deactivated, if attempted, when a roll-up to that indicator
is active. That is, something better than just silently not turning off the indicator. Alternatively, the user can be

534 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

shown that the option of turning off such an indicator is not possible, when a roll-up to that indicator is active (for
example, by graying out the option on the user interface).

16.2  Service Indicator Requirements 535

LoPAPR, Version 1.1 (March 24, 2016)

Figure 18. FRU or Connector Fault/Identify Indicator State Diagram

Normal
Identify

(blink)(off)

Notes:
1. Not being available means the failure that is being indicated must be a failure which prevents the user from

activating the Identify for the FRU.

2. Transition to Fault state may occur if a failure occurs which would prevent the activation of the indicator into
one of the Identify states. Not all FRU Fault indicators in an enclosure get activated like this simultaneously;
only those that are directly involved with the fault (for example, like the FRU Fault indicator associated with
the indicator controller hardware)

3. OS is not expected to change an indicator from Fault to Normal, but is permitted to do so (providing that it has
access to the indicator because it owns the resource).

4. Transition from Fault to the Identify or Normal states by the OS may not be possible if a hardware fault causes
a failure which prevents access to the indicator.

5. Format on the above diagram of “xxxx,y” means a call to the set-indicator or ibm,set-dynamic-indicator
RTAS call with an indicator token of “xxxx” and a state value of “y” (only the token applicable for the spe-
cific indicator causes a state transition).

6. The 9002 Identify and Action are the same state.

7. 9006 FRU-level indicators only provided in Lightpath Mode platforms.

8. Fault indicators may be virtualized, with several OS images and firmware given access to a virtual FRU Fault
indicator which controls the same physical Fault/Identify indicator. These get combined as shown in the state
diagram, above; all virtual Fault indicators basically get ORed together.

9. This indicator may be forced to the Normal (off) state under certain circumstances (for example, see Require-
ment R1–16.2.1.1–4).

10. For the Lightpath UI, when implemented, other transition conditions are possible. See Section 16.2.3‚ “Light-
path User Interface (UI) Requirements‚” on page 544 for requirements.

Physical Fault/Identify Indicator

User request via user interface

FRU-Level or Connector-Level

Fault

(on)

FRU indicator
not available
(Note 1)

FRU ID not available (Note 2)

Platform detected fault or
FRU indicator not available

User request via system user interface (Note 4)

(Repair action
complete or

(Note 2)

User request via user interface or

or user request via system user interface to

Black = All platforms
Red = Additional state transitions
added for Lightpath Mode platforms

Identify

(blink)

No Fault

With Fault

remove ID or

(Repair action
complete or
9006,0)
(Notes 3, 5, 8)

Platform detected fault
FRU ID

 not available (N
ote 2)

FRU indica
tor availa

ble and Id
entify

 request a
ctive (N

ote 1)

9002,2 or
9002,3 or
9007,1 or (Notes 5-6)

9002,0 or
9002,1 or
9007,0 or

(Notes 5-6)

9006,0)

or 9006,1 (Note 5)

9002,2 or
9002,3 or
9007,1 or (Notes 5-6)

9006,1 (Notes 3, 5)
and all virtual
FRU Fault
indicators
inactive

and all virtual
FRU Fault
indicators
inactive

(Logical Fault and
Identify Indicators
Combined)

(Note 9)

9002,1 or
9002,1 or (Notes 5-7)
9007,0

(Notes 3, 5, 8)

536 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 19. Error Log Indicator State Diagram

Normal Error Log

(on)(off)

Notes:

1. Format on the above diagram of “xxxx,y” means a call to the set-indicator or ibm,set-dynamic-indicator
RTAS call with an indicator token of “xxxx” and a state value of “y” (only the token applicable for the
specific indicator causes a state transition).

2. This indicator may be forced to the Normal (off) state under certain circumstances (for example, see Re-
quirement R1–16.2.1.1–4).

3. See Requirement R1–16.2.1.3–1e.

4. For the Lightpath UI, when implemented, other transition conditions are possible. See Section 16.2.3‚
“Lightpath User Interface (UI) Requirements‚” on page 544 for requirements.

Physical Error Log Indicator
(System Enclosure Only)

9006,1 or new Error Log active

User request to clear

Enclosure-Level

Error Log
(Note 2)

(Note 2)

16.2  Service Indicator Requirements 537

LoPAPR, Version 1.1 (March 24, 2016)

Figure 20. Enclosure Identify Indicator State Diagram for Scalable Systems

Normal

Enclosure

(on)

(blink)

(off)

Identify

Optional

Physical Enclosure Identify Indicator
Enclosure-Level

(All enclosures except chassis level

POST process com
plete

Notes:

1. This indicator may be forced to the Normal (off) state under certain circumstances (for example,
see Requirement R1–16.2.1.1–4). This indicator is off at the end of POST.

2. The states in this diagram overlay the corresponding states in Figure 21‚ “Enclosure Identify In-
dicator State Diagram‚” on page 538. This figure represents the POST states and Figure 21 the
after-POST states.

3. The use of the Optional Identify state to indicate boot identify is only to be used for boot servers
for scalable system nodes or blades of a blade system (for example, NUMA system nodes), and
not for stand-alone systems or blades

Identify

Boot Enclosure identify
(Note 1)

Scalable (NUMA) System POST (pre-boot) Usage of

(optional)

Non
-B

oo
t E

nc
los

ur
e

ide
nti

fy
POST pr

oc
es

s c
om

ple
te

(Note 3)

of Blade Systems)

(End of POST)

538 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 21. Enclosure Identify Indicator State Diagram

Normal

Enclosure

(on)

(blink)

(off)

Identify

Physical Enclosure Identify Indicator
Enclosure-Level

User
 re

qu
est

 to
 ac

tiv
ate

 a

(All enclosures except

U
se

r
re

qu
es

t t
o

tu
rn

 o
ff

 t h
e

ph
ys

ic
al

 E
n c

lo
su

re
 I

D
 a

nd
Notes:

1. This indicator may be activated to the on state by any OS which is given access to the indicator per Requirements.
For indicators that are shared by multiple OS instances, this indicator is virtualized (see Section 16.1.1.5‚ “Covert
Storage Channels‚” on page 516 and Section 16.2.1.6‚ “Shared Indicator (Multiple Partition System) Require-
ments‚” on page 531). LoPAPR compliant OSs are only given the capability to activate the Enclosure ID to the on
state, not to the blink state. The blink state may be activated through an external platform management interface by
a user request through that interface to blink the physical Enclosure ID.

2. This indicator may be forced to the off state under certain circumstances (for example, see Requirement R1–
16.2.1.1–4). This indicator is off at the end of POST.

3. A user is not allowed to deactivate the Enclosure ID if there are still FRU IDs still active.

4. A user request through a privileged user interface (for example, via an SFP) to set the physical Enclosure ID to off,
forces any virtual Enclosure ID indicators that are active (on or blink) to their off state, but this does not override
any FRU ID roll-ups (see Note 3).

5. For Scalable (NUMA) systems, the states in this diagram overlay the corresponding states in Figure 20. This figure
represents the after-POST states and Figure 20 the POST states.

6. A virtual Enclosure ID can be activated or turned off by the 9007 indicator token for the target Enclosure ID.

Identify

FRU ID
 in

 th
e e

nc
los

ur
e o

r

the
 E

nc
los

ur
e I

D its
elf

tur
ne

d o
ff

(al
l F

RU an
d

vir
tua

l E
nc

los
ur

e I
Ds a

re
off

)

(ph
ys

ica
l o

r v
irt

ua
l)

(Note 2)

After-POST States for

User request to turn off the

physical Enclosure ID and

all FRU IDs in the enclosure are

(End of POST)

at
 le

as
t o

n e
 F

R
U

 I
D

 w
it h

i n
 th

e
en

c l
o s

u r
e

is
 a

ct
iv

e
(N

o t
e

3 ,
 4

)

off (Notes 3, 4)

U
se

r
re

qu
es

t s
 I

D
 (

b l
in

k)
of

 th
e

p h
y s

i c
a l

 E
nc

lo
s u

r e
 I

D

User requests to blink

 (Note 1)
the physical Enclosure ID

Use
r r

eq
ue

st
to

tur
n o

ff
the

ph
ys

ica
l E

nc
los

ur
e I

D an
d a

ll F
RU ID

s

in
the

 en
clo

su
re

are
 of

f (
Note

s 3
, 4

),
or

Las
t I

D in
 th

e e
nc

los
ur

e

U
se

r
re

qu
e s

t t
o

s e
t t

he
 p

h y
si

c a
l E

n c
lo

su
r e

 I
D

 t o
 o

n,
 o

r

chassis level of Blade Systems)

(N
ote

 6)

(N
ote

s 1
, 6

)

16.2  Service Indicator Requirements 539

LoPAPR, Version 1.1 (March 24, 2016)

Figure 22. Enclosure Fault Indicator State Diagram

Normal

Remind

Immediate

(on)

(blip)

(off)

Service

Mode

Physical Enclosure Fault Indicator

U
se

r
re

qu
es

ts
 R

e m
i n

d
m

od
e

ac
t iv

at
i o

n
(N

ot
e

2)

Enclosure-Level

en
clo

su
re

tur
ne

d o
ff

Las
t F

RU Fau
lt i

nd
ica

tor

(p
hy

sic
al

an
d v

irt
ua

l)
in

the

en
clo

su
re

ac
tiv

ate
d,

or

Firs
t F

RU Fau
lt i

nd
ica

tor

(All enclosures)

N
ew

 F
R

U
 f

a u
l t

There are no FRU

Fault roll-up active

Note:

1. There is no direct activation or deactivation of this indicator by any OS.

2. See Requirement R1–16.2.1.3–3e and the Implementation Note below that requirement.

3. This indicator may be forced to the Normal (off) state under certain circumstances (for example,
see Requirement R1–16.2.1.1–4).

4. Activation of an Enclosure Fault indicator without activating a FRU Fault indicator within the
enclosure is to be used only in exceptional cases where the FRU Fault cannot be activated. In
such cases the system is required to also provide further direction to the user on how to resolve
the fault (for example, by providing an error code on an op panel on the system).

(p
hy

sic
al

or
vir

tua
l)

in

(Note 3)

Fail
ur

e i
n t

he
 en

clo
su

re

whic
h p

rev
en

ts
FRU

Fau
lt a

cti
va

tio
n (

Note
 4)

540 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 23. For Blade Systems: Chassis-level Error Log Indicator State Diagram

Figure 24. For Blade Systems: Chassis-level Fault Indicator State Diagram

Normal Error Log

(on)(off)

Physical Error Log
Chassis-Level

An Error Log

Indicator for Blade Systems

indicator on one of the blades

Last Active Error Log
indicator in the chassis deactivates

in the chassis activates

or a user requests the indicator to be deactivated

Normal

(on)(off)

Physical Enclosure Fault

Fault

Chassis-Level

An Enclosure Fault indicator on one of the

Indicator for Blade Systems

blades in the chassis activates, or a FRU Fault

Last active Fault indicator
in the chassis deactivates

in the chassis (not on a blade) activates

16.2  Service Indicator Requirements 541

LoPAPR, Version 1.1 (March 24, 2016)

Figure 25. For Blade Systems: Chassis-level Enclosure Identify Indicator State Diagram

Physical Enclosure Identify
Chassis-Level

Indicator for Blade Systems

Notes:

1. This indicator may be forced to the Normal (off) state under certain circumstances (for example, see Re-
quirement R1–16.2.1.1–4).

2. A user is not allowed to deactivate the chassis Enclosure ID if there are still FRU Identify or Blade En-
closure Identify indicators still active (see state transition qualifiers in the above diagram).

3. A user request to set the Chassis Enclosure ID to the Identify (blink) state temporarily overrides roll-up
operations (roll-up operations set the indicator to the on state).

4. A user request to change state of the Chassis Enclosure ID cancels any previous user request against the
same indicator, replacing the user requested state with the new state.

Normal

Enclosure

(on)

(blink)

(off)

Identify

U
se

r
re

q u
e s

t t
o

se
t t

he
 C

h a
s s

is
 E

nc
lo

s u
r e

 I
D

 to
 th

e
b l

in
k

st
a t

e

Identify

(Note 1)

User request to turn off the Chassis

User requests the Chassis Enclosure

User
 re

que
st

to
tur

n o
ff

the C
hass

is

An E
nc

los
ur

e I
D on

 on
e o

f t
he

 bl
ad

es
 in

(Note 3)

Enclo
su

re
ID

 (N
ote

 4)
 an

d a
ll B

lad
e E

nclo
su

re

ID
s a

nd
 C

ha
ssi

s F
RU ID

s a
re

off
(N

ote
 2)

, o
r

Last
 ID

 in
 en

clo
su

re
tur

ne
d o

ff
(in

clu
ding B

lad
e

Enclo
su

re
ID

s a
nd

 C
ha

ssi
s F

RU ID
s)

an
d

the
re

is
no

 ac
tiv

e u
ser

 re
qu

est
 to

 pu
t

the
 C

ha
ssi

s E
nclo

su
re

ID
 in

to
the

Enc
los

ure
 Id

en
tif

y (
on

) s
tat

e (
Notes

 2, 4
)

the
 ch

as
sis

 go
es

 ac
tiv

e (
on

 or
 bl

ink
),

or

A F
RU ID

 in
 th

e c
ha

ssi
s g

oe
s a

cti
ve

, o
r

Use
r r

eq
ue

st
to

tur
n o

n t
he

 C
ha

ssi
s

Enc
los

ur
e I

D

ID be set to the Identify

(blink) stateEnclosure ID (Note 4) and all Blade

Enclosure IDs and Chassis FRU IDs are off

(Note 2)
U

se
r

re
qu

es
t t

o
tu

rn
 o

n
t h

e
C

ha
ss

i s
 E

nc
lo

su
re

 I
D

 (
N

ot
e

4)
, o

r

U
s e

r
re

q u
es

t t
o

tu
rn

 o
f f

 t h
e

C
h a

s s
is

 E
nc

lo
su

r e
 I

D
 (

N
ot

e
4)

 a
nd

a t
 le

as
t o

ne
 B

la
d e

 E
n c

lo
su

re
 I

D
 o

r
C

h a
ss

is
 F

R
U

 I
D

 r
em

ai
ns

 a
c t

iv
e

(N
ot

e
2)

(N
o t

e
4)

542 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 26. Rack-level Error Log Indicator State Diagram

Figure 27. Rack-level Fault State Indicator Diagram

Figure 28. Rack-level Enclosure Identify Indicator State Diagram

Normal Error Log

(on)(off)

Physical Error Log
Rack-Level

An Error Log

Indicator

indicator in the rack activates

Last Active Error Log
indicator in the rack deactivates

Normal

(on)(off)

Physical Fault Indicator

Fault

Rack-Level

An Enclosure Fault indicator on one of the
enclosures in the rack activates, or a FRU Fault

Last active Fault indicator
in the rack deactivates

in the rack (not in an enclosure) activates

Normal

(on)(off)

Physical Identify Indicator
Rack-Level

Last Enclosure ID indicator in the
rack goes inactive

An Enclosure ID indicator in the
rack goes active Identify

16.2  Service Indicator Requirements 543

LoPAPR, Version 1.1 (March 24, 2016)

Figure 29. Row-level Error Log State Diagram

Figure 30. Row-level Fault State Diagram

Figure 31. Row-level Identify State Diagram

16.2.2 Requirements for 9002, 9006, and 9007 Indicators

See Section 16.2.1‚ “Service Indicator General Requirements‚” on page 524 for service indicator requirements that are
not 9006 and 9007 specific.

R1–16.2.2–1. When the platform presents a 9006 indicator to an OS, the following must be true:

Normal Error Log

(on)(off)

Physical Error Log
Row-Level

An Error Log

Indicator

indicator in the row activates

Last Active Error Log
indicator in the row deactivates

Normal

(on)(off)

Physical Fault Indicator

Fault

Row-Level

An Enclosure Fault indicator on one of the
racks activates

Last active Fault indicator
in the racks in the row deactivates

Normal

(on)(off)

Physical Identify Indicator
Row-Level

Last Enclosure ID indicator in the
row goes inactive

An Enclosure ID indicator in the
row goes active

Identify

Note: A blinking Enclosure ID is assumed to be “active” for purposes of the Row Enclosure ID indicator state.

544 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

a. The platform must set the location code of the Error Log (9006) indicator and sensor to be the location
code of the system and this indicator or sensor must be the first one in the list of 9006 indicators or sen-
sors.

b. For Lightpath Mode platforms: The platform must set the location code of each FRU Fault indicator and
sensor to be the location code of the component to which that indicator or sensor is associated.

c. For every 9006 indicator, there must be a corresponding 9006 sensor which has the same index as the cor-
responding indicator.

R1–16.2.2–2. When 9007 indicators are to be provided to an OS, the platform must implement the ibm,get-indices
RTAS call and must present that call in the device tree for the OS, and the OS needing access to the 9007 in-
dicators and sensors must use the ibm,get-indices call to get the indices of the 9007 indicators and sensors
available to the partition at the time of the call.

Software Implementation Notes:

1. Relative to Requirement R1–16.2.2–2, due to Dynamic Reconfiguration, the indicators available at any
point in time might be different than on a previous call to ibm,get-indices.

2. 9007 indicators may need to be provided to the OS in the order in which they are best displayed to the user,
because the OS or the UI may not reorder them (for example, sort them) before presenting them to the user.
This is true regardless of the method of presentation to the OS (OF device tree or ibm,get-indices RTAS
call). Relative to presentation order, see also Requirement R1–16.2.2–3b.

R1–16.2.2–3. If a platform provides any 9007 indicators to the OS, then the following must be true:

a. The platform must set the location code of each Identify (9007) indicator and sensor (Enclosure, FRU, or
connector) to be the location code of the enclosure, FRU, or connector to which that indicator is associ-
ated.

b. The System Enclosure Identify (9007) indicator must be the first indicator in the list of 9007 indicators.

c. For every 9007 indicator, there must be a corresponding 9007 sensor which has the same index as the cor-
responding indicator.

R1–16.2.2–4. A DR indicator (9002) must only be provided to an OS if that particular OS image owns that resource
and is going to control the physical add, remove, and replace operations on the FRU which is pointed to by
that particular DR indicator.

R1–16.2.2–5. If a PCI Hot Plug slot implements a single physical amber indicator for use as both the PCI Hot Plug
DR indicator (for concurrent maintenance) and as the FRU Identify indicator, then that indicator must be pre-
sented to a LoPAPR compliant OS as both a 9002 and 9007 indicator.

R1–16.2.2–6. All platforms must provide the “ibm,fault-behavior” and “ibm,fru-9006-deacti-
vate” properties in the root node of the OF device tree, both with a value of 1.

16.2.3 Lightpath User Interface (UI) Requirements

The base Lightpath architecture does not provide a User Interface (UI), per se, when one considers a UI as being an in-
teractive entity; that is, where the user can input requests as well as just see the faults. When enabling the Identify indi-
cators of the Lightpath mode, a UI is necessary. This architecture will call this the Lightpath UI. The Lightpath UI is an
interface between the Service Focal Point (SFP) and the user of the SFP, and at a minimum, provides an interface to
show hidden Fault indicators (for example, see Section 16.2.3.2‚ “See/Select/Service (Triple-S) User Interface Re-
quirements‚” on page 547). A slightly more sophisticated Lightpath UI -- one with a General UI (GUI) such as an LCD
or general display like provided by IBM Director -- is required to provide access to the Identify indicators.

16.2  Service Indicator Requirements 545

LoPAPR, Version 1.1 (March 24, 2016)

Enablement of the Identify portion of Lightpath is important in larger systems for reasons of deferred maintenance and
guided maintenance. In a system with deferred maintenance and Lightpath, many Fault indicators may remain lit, re-
quiring directed repair via an Identify operation in order to see the component against which to do a particular repair
action. In addition, guided maintenance may be required even if there is no failing component, to indicate to the user
where to plug or un-plug components or cables.

When a Lightpath UI is available, the platform does not display logical Fault or Error Log on the physical indicators
until a user requests such a display of the indicators, with the exception that the highest level roll-up indicators will be
lit as a flag for the user to use the Lightpath UI to identify the problem. The request to display Fault and Error Log in-
dicators may be made, for example, by pressing a button or series of buttons, or by checking a check-box on a more so-
phisticated Lightpath UI. The button(s) may be physical or may be on a device like an LCD panel or other Service
Focal Point (SFP) display, like an IBM Director display.

Section 16.1.1.6‚ “Service Focal Point (SFP) and Service Partition‚” on page 517 defines an SFP as: “…common point
of control in the system for handling all service actions which are not resolved otherwise (for example, via Fault indi-
cators).” SFPs may or may not exist lower end systems, and may exhibit different levels of sophistication in larger sys-
tems. The following are some (not all) system implementation examples:

 For simple systems, there may be no SFP and no Lightpath UI, which means everything needs to be resolved by
Fault indicators.

 For simple systems implementing Triple-S (see Section 16.2.3.2‚ “See/Select/Service (Triple-S) User Interface Re-
quirements‚” on page 547), there may exist a simple SFP with a simple Lightpath UI like one or more physical
push-buttons. This could be the System Error indicator with a physical button associated with it, with the SFP being
firmware underlying the button to communicate with lower layers of firmware (for example, turn off FRU Fault in-
dicators as they are activated by the firmware, turn on all active FRU Faults indicators on a button press). There may
also be buttons for enabling the lower layers of the Fault indicator hierarchy, and these buttons inform the SFP firm-
ware of the user’s request to display Fault indicators on the physical indicators. In this case, the Lightpath UI is not
full-function and does not provide for enablement of the Identify indicators. In this case, the firmware driving the
Lightpath UI would use the Lightpath UI base enablement (see Section 16.2.3.1‚ “Lightpath UI Base Enablement
Requirements‚” on page 545).

 For intermediate systems, the Lightpath UI could be an LCD panel. In this case, the firmware driving the Lightpath
UI would use the Lightpath UI base enablement (see Section 16.2.3.1‚ “Lightpath UI Base Enablement Require-
ments‚” on page 545). The Triple-S UI is also possible (see Section 16.2.3.2‚ “See/Select/Service (Triple-S) User In-
terface Requirements‚” on page 547).

 For larger systems, the Lightpath UI could be part of a more sophisticated interface, like IBM Director. This more
sophisticated interface would use the Lightpath UI base enablement (see Section 16.2.3.1‚ “Lightpath UI Base En-
ablement Requirements‚” on page 545). The Triple-S UI is also possible (see Section 16.2.3.2‚ “See/Select/Service
(Triple-S) User Interface Requirements‚” on page 547).

16.2.3.1 Lightpath UI Base Enablement Requirements

This section defines the base enablement requirements for all Lightpath UI implementations. The Triple-S UI is one
example of such a Lightpath UI that uses the Lightpath UI Base Enablement. Other Lightpath UIs are possible, and are
not limited by this architecture.

R1–16.2.3.1–1. For the Lightpath UI Base Enablement: The platform must do all of the following:

a. Implement Lightpath Mode, as defined by this architecture, lighting FRU Fault indicators or Error Log in-
dicator associated with a fault. Lightpath Mode includes the implementation of Identify indicators.

b. If the SFP is separate from the platform, then report to the SFP that the platform implements the Lightpath
UI Base Enablement (explicitly or implicitly). (see implementation note, below)

546 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

c. Whenever possible, report all fault conditions which activate a FRU Fault indicator or Error Log indicator,
up to the SFP, with enough information to allow determination by the SFP as to which FRU or Error Log
indicators are activated and the possible failing FRU(s). See the implementation note, below, for the only
exception cases allowed to this requirement.

d. Accept commands from the Service Focal Point (SFP) to put each indicator (FRU, Enclosure, etc.), into
the Off, Fault and Identify states (that is, the SFP can control each indicator), and not report an activation
or deactivation error to the SFP if the SFP requests putting the indicator into a state to which the indica-
tor is already activated. See the implementation note, below, for the only exception cases allowed to this
requirement.

e. Prevent multiple reports of same error, whenever possible. (see implementation note, below)

Implementation Notes:

1. Requirement R1–16.2.3.1–1b allows a SFP to manage multiple platforms that implement different Service
Indicator modes. Note that this requirement can be implemented implicitly from other information reported
to the SFP (for example, machine type/model).

2. In Requirement R1–16.2.3.1–1c and R1–16.2.3.1–1d, acceptable reasons for not being able to report errors
to the SFP or have the SFP control the LEDs may include:

 Loss of communications between the component and the SFP.

 A fault indicator that is entirely controlled by an OS, hardware, or code, or an entity which is not in com-
munications with the platform firmware or the SFP.

3. Requirement R1–16.2.3.1–1e prevents continual “blinking” of Fault indicator and the flooding of the SFP’s
event or error log.

R1–16.2.3.1–2. For the Lightpath UI Base Enablement: The Service Focal Point (SFP) must exist and must do
all of the following:

a. Receive and log fault conditions reported by the platform. (see implementation note, below)

b. Turn off each Fault indicator or Error Log indicator associated with a fault condition, as soon as possible
after the fault is reported, except as required to remain on by user request user request (for example, see
Requirement R1–16.2.3.2–3).

c. Accept direction from a user to show any faults on the Fault and Error Log indicators (for example, see Re-
quirement R1–16.2.3.2–3).

d. If the SFP contains a GUI (for example, an LCD display or a display like provided by IBM Director), ac-
cept direction from a user to Identify a FRU or connector for a service operation, and then turn off all ac-
tivated FRU Fault and Error Log indicators, unless otherwise directed by the user (for example, by a
check-box on the UI), and activate the FRU Identify (blink), along with the normal FRU roll-up defined
by the base Lightpath Mode.

Implementation Notes:

1. Relative to Requirements R1–16.2.3.1–2a, a SFP may (but is not required to) do additional failure analysis,
or may apply policy rules, on the failure(s) reported, and by doing so may change or re-prioritize the list of
failures, such that the most likely failure(s) is (are) different than the fault indicator(s) that were initially
turned on by the detecting entity. In which case, when the user requests that the indicators be reactivated, a
different set may be activated than those that were originally activated.

2. In simpler systems, it is expected that there may only be one push-button implemented, and that would be
associated with the highest level Fault roll-up indicator. For systems, or collection of systems that are man-
aged by a SFP, which consist of many enclosures, it may be useful for an implementation to implement sev-

16.2  Service Indicator Requirements 547

LoPAPR, Version 1.1 (March 24, 2016)

eral levels of buttons. For example, a SFP that manages multiple systems may (at least) implement one
button per system.

16.2.3.2 See/Select/Service (Triple-S) User Interface Requirements

The Triple-S UI architecture is built on top of the Lightpath UI Base Enablement architecture, which is in turn built on
top of the Lightpath architecture. The Triple-S architecture is basically defined as follows (see Requirements for spe-
cifics):

 Do not display Fault or Error Log on the physical indicators until user pushes a button or series of buttons.

 Except that the highest level roll-up for the Enclosure Fault indicators and Error Log indicators will be activated
if a lower level one of the same type was activated.

 After seeing the highest level roll-up for Enclosure Fault or Error Log being on, the user pushes one or more buttons
(logical or physical) associated with those, and then the user Sees the Faults available for servicing.

 The user Selects the item they want to service, by observing the FRU Faults and selecting they want to then Service.

 The Selects part of Triple-S may also involve activation of the FRU Identify indicator from the Lightpath UI.

 The user completes the Service action on that component which was selected.

R1–16.2.3.2–1. For the Triple-S UI: The Lightpath UI Base Enablement requirements must be met, as defined in
Section 16.2.3.1‚ “Lightpath UI Base Enablement Requirements‚” on page 545.

R1–16.2.3.2–2. For the Triple-S UI: The platform must provide one or more push-buttons (physical button, or log-
ical on a GUI), each associated with a set of Fault indicators or Error Log indicators which is (are) to be used
by the user to display (“show”) or not display (“hide”) fault conditions on those group of indicators, as de-
fined by Requirement R1–16.2.3.2–3.

R1–16.2.3.2–3. For the Triple-S UI: The Service Focal Point (SFP) must accept direction from a user from a
push-button (physical or logical) press to show any fault conditions on, or hide all fault conditions from, the
physical indicators (FRU Faults and any associated roll-up indicators for those indicators), which are associ-
ated with the push-button (Fault or Error Log indicators). The fault conditions must represent any open prob-
lems known by the SFP related to the set of indicators associated with the push-button. The push of the button
must be a toggle operation, with each press either going from the show state to the hide state or from the hide
state to the show state, based on the state prior to the push-button press. The platform must turn off any indi-
cators turned on by these push-button activations after a pre-set period of time after the button activation, un-
less the pre-set time is set to 0, in which case the indicators are left on until the button is press again or until
the platform determines they are no longer needed to be on. (see implementation note, below).

R1–16.2.3.2–4. For the Triple-S UI: For more complex systems, and as determined by the RAS requirements for
those systems, the SFP must implement a GUI (for example, an LCD or IBM Director display) and provide
the capability to activate the Identify indicators, as defined in Requirement R1–16.2.3.1–2d.

Implementation Notes:

1. Relative to Requirement R1–16.2.3.2–3, a SFP may (but is not required to) do additional failure analysis,
or may apply policy rules, on the failure(s) reported, and by doing so may change or re-prioritize the list of
failures, such that the most likely failure(s) is (are) different than the fault indicator(s) that were initially
turned on by the detecting entity. In which case, when the user requests that the indicators be reactivated, a
different set may be activated than those that were originally activated.

2. Relative to Requirement R1–16.2.3.2–3, the set of indicators associated with a given push-button will nor-
mally be hierarchical, based on the FRU Fault or Error Log roll-up path. For example, if a push-button is as-
sociated with the Chassis Enclosure fault indictor, pressing that button would toggle the show/hide state for
all fault indicators within that Chassis. Another example is pressing of a button associated with the System

548 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

Error roll-up indicator for a system, putting that system into the “show” state could put that system basically
into a Lightpath (without Triple-S) mode, or “Lightpath Classic” mode. In this latter example, it is not quite
like previous implementations of Lightpath because (1) service procedures may be different, (2) based on
Implementation note (a) the set of FRU Faults activated by the SFP may be different than those activated by
the entity detecting the error originally, and (3) the Identify function can be used.

16.3 Green Indicator Requirements

This chapter defines the platform requirements for green indicators.

The usage of green indicators has been separated from the rest of this chapter, because even though green indicators are
used in some service procedures (for example, to check for presence or absence of power on a component or system),
they are not to be used in lieu of amber FRU Fault and Identify indicators. That is, they should supplement, not replace,
the amber indicators.

There are several exceptions to having all the green indicator requirements in this chapter:

 The green indicator associated with a capacitor and pushbutton implementation is specified in Requirement R1–
16.2.1.7–10c.).

 The capability to light all green indicators, as well as the amber and blue indicators, for test purposes, is specified in
Requirement R1–16.2.1.7–7.

 Unless indicated otherwise in this chapter, the blink rate for green indicators, when they blink, is specified in Re-
quirement R1–16.2.1.7–3.

16.3.1 Green Indicator Uses and General Requirements

Green indicators generally are not used for indicating a fault condition.

R1–16.3.1–1. A green indicator must not be used in place of an amber Fault/Identify indicator, except when use of
amber Fault/Identify indicator is not possible, and in this exceptional case, the green must be off or blinking
to indicate the error condition.

Implementation Note: Examples where a green indicator might be used instead of an amber Fault/Identify indicator are:

 In a power supply to indicate lack of AC power (green off).

 In the case where there is insufficient power to power the component (green blinking).

R1–16.3.1–2. There must exist a green power indicator for every FRU that is to participate in concurrent mainte-
nance (“hot plug” operation), unless that FRU does not require the removal of power to remove or insert that
FRU.

16.3.2 Green Indicator States

This section attempts to capture the state requirements for all usages of green indicators. If a state or usage is not spec-
ified, then the user needs to get with the Architecture team for this architecture in order to add or replace any state or
usage of that state.

16.3  Green Indicator Requirements 549

LoPAPR, Version 1.1 (March 24, 2016)

16.3.2.1 Power Supply Green Indicators

R1–16.3.2.1–1. For power supply indicators, the platform must implement the states defined in Table 199‚ “Power
Supply Green Indicator States and Usage‚” on page 549 for each green indicator, and must use those states
only for the usages stated in Table 199.

16.3.2.2 System Power Green Indicators

R1–16.3.2.2–1. For system power indicators, the platform must implement the states defined in Table 200‚ “System
Power Green Indicator States and Usage‚” on page 549 for each green indicator, and must use those states
only for the usages stated in Table 200.

16.3.2.3 HDD Green Indicators

R1–16.3.2.3–1. For Hard Disk Drives (HDD) the platform must implement the states defined in Table 201‚ “HDD
Green Indicator States and Usage‚” on page 550 for each green indicator, and must use those states only for
the usages stated in Table 201.

Table 199. Power Supply Green Indicator States and Usage

Green Indicator State Usage

Any not already covered in this table Consult with the xipSIA architecture team for the proper usage/behavior.

Off
 For the input power indicator: no input power.

 For the output power indicator: no output power.

On
 For the input power indicator: input power good.

 For the output power indicator: output power good.

Slow blink (1 Hz, 50% duty cycle)
Power supply (or supplies) are in the standby state. A power supply must not blink
its green output power indicator unless that particular supply is in the standby state.

Table 200. System Power Green Indicator States and Usage

Green Indicator State Usage

Any not already covered in this table Consult with the xipSIA architecture team for the proper usage/behavior.

Off System is off (no standby power).

On System is on (operational state).

Fast blink (4 Hz, 50% duty cycle)

A determination is being made as to whether the system (for example, a Blade in a
Blade System) has enough power available to it, in order to power up, or a
determination has already been made that there is not enough power, and the
indicator remains in this state.

Slow blink (1 Hz, 50% duty cycle) System is in the standby power state.

Fade-in/fade-out cycling of the power LED as done
in various PC and notebook manufacturers:

the period of this fade-in/fade-out cycle is 2 seconds,
gradually ranging from fully on to fully off

Systems that support system-level sleep states (such as the S3 sleep state) must use
this state as a way to indicate the system is sleeping but still powered on.

550 Service Indicators

 LoPAPR, Version 1.1 (March 24, 2016)

16.3.2.4 Other Component/FRU Green Indicators

This section attempts to capture the state requirements for usages of green indicators that are not specifically called out
as special cases elsewhere in Section 16.3.2‚ “Green Indicator States‚” on page 548. To reiterate what was specified,
above: if a state or usage is not specified, then the user needs to get with the Architecture team for this architecture in
order to add or replace any state or usage of that state.

R1–16.3.2.4–1. For FRUs or components other than specific ones specified elsewhere in Section 16.3.2‚ “Green In-
dicator States‚” on page 548, which require power indicators, the platform must implement the states defined
in Table 202‚ “Sub-Unit (Component) Green Indicator States and Usage‚” on page 550 for each green indica-
tor, and must use those states only for the usages stated in Table 202.

16.3.2.5 Communication Link Green Indicators

R1–16.3.2.5–1. For communication links, the platform must implement the states defined in Table 203‚ “Communi-
cation Link Green Indicator States and Usage‚” on page 550 for each green indicator, and must use those
states only for the usages stated in Table 203.

Table 201. HDD Green Indicator States and Usage

Green Indicator State Usage

Any not already covered in this table Consult with the xipSIA architecture team for the proper usage/behavior.

Off Platform specific.

On Platform specific.

Flickering (randomly blinking) HDD activity (HDD is powered on and is being used).

Table 202. Sub-Unit (Component) Green Indicator States and Usage

Green Indicator State Usage

Any not already covered in this table Consult with the xipSIA architecture team for the proper usage/behavior.

Off Component/FRU is powered off and/or is not in operation.

On Component/FRU is powered on.

Blink 1 Hz, 50% duty cycle

(Optional) Component/FRU is in transition to the off state. Note that although this is
an optional state, it is highly recommended (for Human Factors reasons) for cases
where it takes awhile to power off the component (for example, for hardware like a
Blade in a Blade System that has to be quiesced before powering off).

Table 203. Communication Link Green Indicator States and Usage

Green Indicator State Usage

Any not already covered in this table Consult with the xipSIA architecture team for the proper usage/behavior.

Off No link connection or link connected but no activity.

Flickering (randomly blinking) Communication link activity.

16.4  Interpartition Logical LAN (ILLAN) Option 551

LoPAPR, Version 1.1 (March 24, 2016)

16.4 Interpartition Logical LAN (ILLAN) Option

The Interpartition Logical LAN (ILLAN) option provides the functionality of IEEE VLAN between LPAR partitions.
Partitions are configured to participate in the ILLAN. The participating partitions have one or more logical IOAs in
their device tree.

The hypervisor emulates the functionality of an IEEE VLAN switch. That functionality is defined in IEEE 802.1Q.
The following information on IEEE VLAN switch functionality is provided for informative reference only with the
referenced document being normative. Logical Partitions may have one or more Logical LAN IOA’s each of which ap-
pears to be connected to one and only one Logical LAN Switch port of the single Logical LAN Switch implemented by
the hypervisor. Each Logical LAN Switch port is configured (by platform dependent means) as to whether the attached
Logical LAN IOA supports IEEE VLAN headers or not, and the allowable VLAN numbers that the port may use (a
single number if VLAN headers are not supported, an implementation dependent number if VLAN headers are sup-
ported). When a message arrives at a Logical LAN Switch port from a Logical LAN IOA, the hypervisor caches the
message’s source MAC address (2nd 6 bytes) to use as a filter for future messages to the IOA. Then the hypervisor pro-
cesses the message differently depending upon whether the port is configured for IEEE VLAN headers, or not. If the
port is configured for VLAN headers, the VLAN header (bytes offsets 12 and 13 in the message) is checked against the
port’s allowable VLAN list. If the message specified VLAN is not in the port’s configuration, the message is dropped.
Once the message passes the VLAN header check, it passes onto destination MAC address processing below. If the
port is NOT configured for VLAN headers, the hypervisor (conceptually) inserts a two byte VLAN header (based upon
the port’s configured VLAN number) after byte offset 11 in the message.

Next, the destination MAC address (first 6 bytes of the message) is processed by searching the table of cached MAC
addresses (built from messages received at Logical LAN Switch ports see above). If a match for the MAC address is
not found and if there is no Trunk Adapter defined for the specified VLAN number, then the message is dropped, oth-
erwise if a match for the MAC address is not found and if there is a Trunk Adapter defined for the specified VLAN
number, then the message is passed on to the Trunk Adapter. If a MAC address match is found, then the associated
switch port is configured and the allowable VLAN number table is scanned for a match to the VLAN number con-
tained in the message’s VLAN header. If a match is not found, the message is dropped. Next, the VLAN header config-
uration of the destination Switch Port is checked, and if the port is configured for VLAN headers, the message is
delivered to the destination Logical LAN IOA including any inserted VLAN header. If the port is configured for no
VLAN headers, the VLAN header is removed before being delivered to the destination Logical LAN IOA.

The Logical LAN IOA’s device tree entry includes Unit Address, and “ibm,my-dma-window” properties. The
“ibm,my-dma-window” property contains a LIOBN field that represents the RTCE table used by the Logical IOA.
The Logical LAN hcall()s use the Unit Address field to imply the LIOBN and, therefore, the RTCE table to reference.

When the logical IOA is opened, the device driver registers, with the hypervisor, as the “Buffer List”, a TCE mapped
page of partition I/O mapped memory that contains the receive buffer descriptors. These receive buffers are mapped
via a TCE mechanism from partition memory into contiguous I/O DMA space. The first descriptor in the buffer list
page is that of the receive queue buffer. The rest of the descriptors are for a number of buffer pools organized by in-
creasing size of receive buffer. The format of the descriptor is a 1 byte control field, 3 byte buffer length, followed by a
4 byte I/O address. The number of buffer pools is determined by the device driver (up to an architected maximum of
254). The control field in all unused descriptors is 0h00. The last 8 bytes are reserved for statistics.

When a new message is received by the logical IOA, the list of buffer pools is scanned starting from the second de-
scriptor in the buffer list looking for the first available buffer that is equal to or greater than the received message. That
buffer is removed from the pool, filled with the incoming message, and an entry is placed on the receive queue noting
the buffer status, message length, starting data offset, and the buffer correlator.

The sender of a logical LAN message uses an hcall() that takes as parameters the Unit Address and a list of up to 6 buf-
fer descriptors (length, starting I/O address pairs). The sending hcall(), after verifying the sender owns the Unit Ad-
dress, correlates the Unit Address with its associated Logical LAN Switch port and copies the message from the send
buffer(s) into a receive buffer, as described above, for each target logical LAN IOA that is a member of the specified

552

 LoPAPR, Version 1.1 (March 24, 2016)

VLAN. If a given logical IOA does not have a suitable receive buffer, the message is dropped for that logical IOA (a
return code indicates that one or more destinations did not receive a message allowing for a reliable datagram service).

The logical LAN facility uses the standard H_GET_TCE and H_PUT_TCE hcall()s to manage the I/O translations ta-
bles along with H_MIGRATE_DMA to aid in dynamic memory reconfiguration.

16.4.1 Logical LAN IOA Data Structures

The Logical LAN IOA defines certain data structures as described in following paragraphs. Figure 32‚ “Logical LAN
IOA Structures‚” on page 552 outlines the inter-relationships between several of these structures. Since multiple
hcall()s as well as multiple partitions access the same structures, careful serialization is essential.

Implementation Note: During shutdown or migration of TCE mapped pages, implementations may choose to atomically
maintain, within a single, two field variable, a usage count of processors currently sending data through the
Logical LAN IOA combined with a quiesce request set to the processor that is requesting the quiesce (if no quiesce
is requested, the value of this field is some reserved value). Then a protocol, such as the following, can manage
the quiesce of Logical LAN DMA. A new sender atomically checks the DMA channel management variable --
spinning if the quiesce field is set and subsequently incrementing the usage count field when the quiesce variable
is not set. The sender atomically decreases the use count when through with Logical Remote DMA copying. A
quiesce requester, after atomically setting the quiesce field with its processor number (as in a lock), waits for the
usage count to go to zero before proceeding.

Figure 32. Logical LAN IOA Structures

Buffer List

RTCE table

Receive Queue

Empty 5 page receive buffer (most TCE pointers not shown)

Full 3 page buffer

Empty 5 page receive buffer (most TCE pointers not shown)

Receive Queue Entry

lin
k

co
rr

el
at

or
co

pi
ed

 o
n

en
qu

eu
e

co
rr

el
at

or
co

rr
el

at
or

Each block
above is a
Buffer
Descriptor

Received Message

MAC Multicast filter table

16.4  Interpartition Logical LAN (ILLAN) Option 553

LoPAPR, Version 1.1 (March 24, 2016)

16.4.1.1 Buffer Descriptor

The buffer descriptor is an 8 byte quantity, on an 8 byte boundary (so that it can be written atomically). The high order
byte is control, the next 3 bytes consist of a length field of the buffer in bytes, the low order 4 bytes are a TCE mapped
I/O address of the start of the buffer in I/O address space.

Bit 0 of the control field is the valid indicator, 0 means not valid and 1 is valid. Bits 2-5 are reserved.

Bit 1 is used in the receive queue descriptor as the valid toggle if the descriptor specifies the receive queue, else it is re-
served. If the valid toggle is a 0, then the newly enqueued receive buffer descriptors have a valid bit value of 1, if the
valid toggle is a 1, then the newly enqueued receive buffer descriptors have a valid bit value of 0. The hypervisor flips
the value of the valid toggle bit each time it cycles from the bottom of the receive queue to the top.

Bit 6 is the No Checksum bit and indicates that there is no checksum in this packet. See Section 16.4.6.2‚ “ILLAN
Checksum Offload Support Option‚” on page 572 for more information on the usage of this bit.

Bit 7 is the Checksum Good bit and indicates that the checksum in this packet has already been verified. See
Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on page 572 for more information on the usage of this
bit.

16.4.1.2 Buffer List

This structure is used to record buffer descriptors of various types used by the Logical LAN IOA. Additionally, running
statistics about the logical LAN adapter are maintained at the end of the structure. It consists of one 4 KB aligned TCE
mapped page. By TCE mapping the page, the H_MIGRATE_DMA hcall() is capable of migrating this structure.

The first buffer descriptor (at offset 0) contains the buffer descriptor for the receive queue.

The second buffer descriptor (at offset 8) contains the buffer descriptor for the MAC multicast filter table.

It is the architectural intent that all subsequent buffer descriptors in the list head a pool of buffers of a given size. Fur-
ther, it is the architectural intent that descriptors are ordered in increasing size of the buffers in their respective pools.
The rest of the description of the ILLAN option is written assuming this intent. However, the contents of these descrip-
tors are architecturally opaque, none of these descriptors are manipulated by code above the architected interfaces.
This allows implementations to select the most appropriate serialization techniques for buffer enqueue/dequeue, migra-
tion, and buffer pool addition and subsequent garbage collection.

The final 8 bytes in the buffer list is a counter of frames dropped because there was not a buffer in the buffer list capa-
ble of holding the frame.

16.4.1.3 Receive Queue

The receive queue is a circular buffer used to store received message descriptors. The device driver sizes the buffer
used for the receive queue in multiples of 16 bytes, starting on an 16 byte boundary (to allow atomic store operations)
with, at least, one more 16 byte entry than the maximum number of possible outstanding receive buffers. Failure to
have enough receive queue entries, may result in receive messages, and their buffers being lost since the logical IOA
assumes that there are always empty receive queue elements and does not check. When the device driver registers the
receive queue buffer, the buffer contents should be all zeros, this insures that the valid bits are all off.

If a message is received successfully, the next 16 byte area (starting with the area at offset 0 for the first message re-
ceived after the registration of the receive queue and looping back to the top after the last area is used) in the receive
queue is written with a message descriptor as shown in Table 204‚ “Receive Queue Entry‚” on page 554. Either the en-
tire entry is atomically written, or the write order is serialized such that the control field is globally visible after all
other fields are visible.

554

 LoPAPR, Version 1.1 (March 24, 2016)

So that the device driver never has to write into the receive queue, the VLAN logical IOA alternates the value of the
valid bit on each pass through the receive queue buffer. On the first pass following registration, the valid bit value is
written as a 1, on the next as a zero, on the third as a 1, and so on. To allow the device driver to follow the state of the
valid bit, the Logical LAN IOA maintains a valid bit toggle in bit 1 of the receive queue descriptor control byte. The
Logical LAN IOA increments its enqueue pointer after each enqueue. If the pointer increment (modulo the buffer size)
loops to the top, the valid toggle bit alternates state.

Following the write of the message descriptor, if enqueue interrupts are enabled and there is not an outstanding inter-
rupt signaled from the Logical LAN IOA’s interrupt source number, an interrupt is signaled.

It is the architectural intent that the first 8 bytes of the buffer is a device driver supplied opaque handle that is copied
into the receive queue entry. One possible format of the opaque handle is the OS effective address of the buffer control
block that pre-ends the buffer as seen by the VLAN Logical IOA. Within this control block might be stored the total
length of the buffer, the 8 byte buffer descriptor (used to enqueue this buffer using the
H_ADD_LOGICAL_LAN_BUFFER hcall()) and other control fields as deemed necessary by the device driver.

When servicing the receive interrupt, it is the architectural intent that the device driver starts to search the receive
queue using a device driver maintained receive queue service pointer (initially starting, after buffer registration, at the
offset zero of the receive queue) servicing all receive queue entries with the appropriate valid bit, until reaching the
first invalid receive queue entry. The receive queue service pointer is also post incremented, modulo the receive queue
buffer length, and the device driver’s notion of valid bit state is also toggled/read from the receive queue descriptor’s
valid bit toggle bit, on each cycle through the circular buffer. After all valid receive queue entries are serviced, the de-
vice driver resets the interrupt. See Section 16.4.3.9‚ “Other hcall()s extended or used by the Logical LAN Option‚” on
page 568. After the interrupt reset, the device driver again scans from the new value of the receive queue service
pointer to pick up any entries that may have been enqueued during the interrupt reset window.

16.4.1.4 MAC Multicast Filter List

This one 4 KB page (aligned on a 4 KB boundary) opaque data structure is used by firmware to contain multicast filter
MAC addresses. The table is initialized by firmware by the H_REGISTER_LOGICAL_LAN hcall(). Any modifica-
tion of this table by the partition software (OS or device driver) is likely to corrupt its contents which may corrupt/af-
fect the OS’s partition but not other partitions, that is, the hypervisor may not experience significant performance

Table 204. Receive Queue Entry

Field Name
Byte

Offset
Length Definition

Control 0 1

Bit 0 = the appropriate valid indicator.
Bit 1 = 1 if the buffer contains a valid message. Bit 1 = 0 if the buffer does not contain a valid message,
in which case the device driver recycles the buffer.
Bits 2-5 Reserved.
Bit 6: No Checksum bit. If a 1, then this indicates that there is no checksum in this packet (see
Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on page 572 for more information on the
usage of this bit).
Bit 7: Checksum Good bit. If a 1, then this indicates that the checksum in this packet has already been
verified (see Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on page 572 for more
information on the usage of this bit).

Reserved 1 1 Reserved for future use.

Message Offset 2 2
The byte offset to the start of the received message. The minimum offset is 8 (to bypass the message
correlator field); larger offsets may be used to allow for optimized data copy operations.

Message Length 4 4 The byte length of the received message.

Opaque handle 8 8 Copy of the first 8 bytes contained in the message buffer as passed by the device driver.

16.4  Interpartition Logical LAN (ILLAN) Option 555

LoPAPR, Version 1.1 (March 24, 2016)

degradation due to table corruption. However, for the partition that corrupted its filter list, the hypervisor may deliver
multicast address packets that had previously been requested to be filtered out, or it may fail to deliver multicast ad-
dress packets that had been requested to be delivered.

16.4.1.5 Receive Buffers

The Logical LAN firmware requires that the minimum size receive buffer is 16 bytes aligned on an 4 byte boundary so
that stores of linkage pointer may be atomic. Minimum IP message sizes, and message padding areas force a larger
minimum size buffer.

The first 8 bytes of the receive buffer are reserved for a device driver defined opaque handle that is written into the re-
ceive queue entry when the buffer is filled with a received message. Firmware never modifies the first 8 bytes of the re-
ceive buffer.

From the time of buffer registration via the H_ADD_LOGICAL_LAN_BUFFER hcall() until the buffer is posted onto
the receive queue, the entire buffer other than the first 8 bytes are subject to modification by the firmware. Any modifi-
cation of the buffer contents, during this time, by non-firmware code subjects receive data within the partition to cor-
ruption. However, any data corruption caused by errors in partition code does not escape the offending partition, except
to the extent that the corruption involves the data in Logical LAN send buffers.

Provisions are incorporated in the receive buffer format for a beginning pad field to allow firmware to make use of data
transfer hardware that may be alignment sensitive. While the contents of the Pad fields are undefined, firmware is not
allowed to make visible to the receiver more data than was specifically included by the sender in the transfer message,
so as to avoid a covert channel between the communicating partitions.

16.4.2 Logical LAN Device Tree Node

The Logical LAN device tree node is a child of the vdevice node which itself is a child of /(the root node). There
exists one such node for each logical LAN virtual IOA instance. Additionally, Logical LAN device tree nodes have as-
sociated packages such as obp-tftp and load method as appropriate to the specific virtual IOA configuration as would
the node for a physical IOA of type network.

Logical IOA’s intrinsic MAC address -- This number is guaranteed to be unique within the scope of the Logical LAN.

Table 205. Receive Buffer Format

Field Name Byte Offset Length Definition

Opaque
Handle

0 8 Per design of the device driver.

Pad 1 8
0-L1 cache line

size
This field, containing undefined data, may be included by the firmware to align data
for optimized transfers.

Message
defined by the “Message Offset”
field of the Receive Queue Entry

12-N
The destination and source MAC address are at the first two 6 byte fields of the
message, followed by the message payload.

Pad 2
To end of

buffer
Buffer contents after the Message field are undefined.

556

 LoPAPR, Version 1.1 (March 24, 2016)

Table 206. Properties of the Logical LAN OF Device Tree Node

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“l-lan”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“network”.

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,l-lan”.

“used-by-rtas”
See

definition
column

Present if appropriate.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA, the
value shall be of the form defined in Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on
page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the unit address (unit ID) associated with this
virtual IOA presented as an encoded array as with encode-phys of length “#address-cells”
value shall be 0xwhatever (virtual “reg” property used for unit address no actual locations used,
therefore, the size field has zero cells (does not exist) as determined by the value of the
“#size-cells” property).

“ibm,my-dma-window” Y
Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of three values (LIOBN, phys, size) encoded as with encode-int, encode-phys, and
encode-int.

“local-mac-address” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the locally administered MAC addresses are
denoted by having the low order two bits of the high order byte being 0b10.

“mac-address”
See

definition
column

Initial MAC address (may be changed by H_CHANGE_LOGICAL_LAN_MAC hcall()). Note: There
have been requests for a globally unique mac address per logical LAN IOA. However, the combination
of -- that requiring that the platform ship with an unbounded set of reserved globally unique addresses --
which clearly cannot work -- plus the availability of IP routing for external connectivity have overridden
those requests.

“ibm,mac-address-filters” Y
Property name specifying the number of non-broadcast multicast MAC filters supported by this
implementation (between 0 and 255) presented as an encoded array encoded as with encode-int.

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL
hcall().

“ibm,my-drc-index” For DR

“ibm,vserver” Y Property name specifying that this is a virtual server node.

“ibm,trunk-adapter”
See

definition
column

Property name specifying that this is a Trunk Adapter. This property must be provided when the node is
a Trunk Adapter node.

16.4  Interpartition Logical LAN (ILLAN) Option 557

LoPAPR, Version 1.1 (March 24, 2016)

16.4.3 Logical LAN hcall()s

The receiver can set the virtual interrupt associated with its Receive Queue to one of two modes using the
H_VIO_SIGNAL hcall(). These are:

1. Disabled (An enqueue interrupt is not signaled.)

2. Enabled (An enqueue interrupt is signaled on every enqueue)

Note: An enqueue is considered a pulse not a level. The pulse then sets the memory element within the emulated interrupt
source controller. This allows the resetting of the interrupt condition by simply issuing the H_EOI hcall() as is
done with the PCI MSI architecture rather than having to do an explicit interrupt reset as in the case with PCI LSI
architecture.

The interrupt mechanism, however, is capable of presenting only one interrupt signal at a time from any given interrupt
source. Therefore, no additional interrupts from a given source are ever signaled until the previous interrupt has been
processed through to the issuance of an H_EOI hcall(). Specifically, even if the interrupt mode is enabled, the effect is
to interrupt on an empty to non-empty transition of the queue.

16.4.3.1 H_REGISTER_LOGICAL_LAN

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware */
hcall(const unit64 H_REGISTER_LOGICAL_LAN,/*Register structures for the logical LAN IOA*/

uint64 unit-address, /* As specified in the Logical LAN device tree node */
uint64 buf-list, /* I/O address of a 4 KB page (aligned) used to record registered input buffers */
uint64 rec-queue, /* Buffer descriptor of a receive queue */

“ibm,illan-options”
See

definition
column

This property is required when any of the ILLAN sub-options are implemented (see Section 16.4.6‚
“Logical LAN Options‚” on page 571). The existence of this property indicates that the
H_ILLAN_ATTRIBUTES hcall() is implemented, and that hcall() is then used to determine which
ILLAN options are implemented.

“supported-network-types” Y
Standard property name as per Open Firmware Recommended Practice: Device Support Extensions [5].
Reports possible types of “network” the device can support.

“chosen-network-type” Y
Standard property name as per Open Firmware Recommended Practice: Device Support Extensions [5].
Reports the type of “network” this device is supporting.

“max-frame-size” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], to indicate maximum packet size.

“address-bits” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], to indicate network address length.

“ibm,#dma-size-cells”
See

definition
column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

definition
column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

Table 206. Properties of the Logical LAN OF Device Tree Node

Property Name Required? Definition

558

 LoPAPR, Version 1.1 (March 24, 2016)

uint64 filter-list, /* I/O address of a 4 KB page aligned broadcast MAC address filter list */
uint64 mac-address); /* The receive filter MAC address */

Parameters:

 unit-address: As specified in the Logical LAN device tree node “reg” property

 buf-list: I/O address of a 4 KB page (aligned) used to record registered input buffers

 rec-queue: Buffer descriptor of a receive queue, specifying a receive queue which is a multiple of 16 bytes in length
and is 16 byte aligned

 filter-list: I/O address of a 4 KB page aligned broadcast MAC address filter list

 mac-address: The receive filter MAC address

Semantics:

 Validate the Unit Address else H_Parameter

 Validate the I/O addresses of the buf-list and filter-list is in the TCE and is 4K byte aligned else H_Parameter

 Validate the Buffer Descriptor of the receive queue buffer (I/O addresses for entire buffer length starting at the spec-
ified I/O address are translated by the RTCE table, length is a multiple of 16 bytes, and alignment is on a 16 byte
boundary) else H_Parameter.

 Initialize the one page buffer list

 Enqueue the receive queue buffer (set valid toggle to 0).

 Initialize the hypervisor’s receive queue enqueue pointer and length variables for the virtual IOA associated with the
Unit Address. These variables are kept in terms of DMA addresses so that page migration works and any remapping
of TCEs is effective.

 Disable receive queue interrupts.

 Record the low order 6 bytes of mac-address for filtering future incoming messages.

 Return H_Success.

16.4.3.2 H_FREE_LOGICAL_LAN

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware, H_Busy, */
/* H_LongBusyOrder1mSec, H_LongBusyOrder10mSec */

hcall(const uint64 H_FREE_LOGICAL_LAN,/*Deregister structures for the logical LAN IOA*/
uint64 unit-address) /* As specified in the Logical LAN device tree node */

Parameters:

 unit-address: Unit Address per device tree node “reg” property.

Semantics:

 Validate the Unit Address else H_Parameter

 Interlock/carefully manipulate tables so that H_SEND_LOGICAL_LAN performs safely.

16.4  Interpartition Logical LAN (ILLAN) Option 559

LoPAPR, Version 1.1 (March 24, 2016)

 Clear the associated page buffer list, prevent further consumption of receive buffers and generation of receive inter-
rupts.

 Return H_Success.

H_FREE_LOGICAL_LAN is the only valid mechanism to reclaim the memory pages registered via
H_REGISTER_LOGICAL_LAN.

Implementation Note: If the hypervisor returns an H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec,
software must call H_FREE_LOGICAL_LAN again with the same parameters. Software may choose to treat
H_LongBusyOrder1mSec and H_LongBusyOrder10mSec the same as H_Busy. The hypervisor, prior to returning
H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec, will have placed the virtual adapter in a state
that will cause it to not accept any new work nor surface any new virtual interrupts (no new frames will arrive,
etc.).

16.4.3.3 H_ADD_LOGICAL_LAN_BUFFER

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware */
hcall(const uint64 H_ADD_LOGICAL_LAN_BUFFER,/* Adds a receive buffer to the receive buffer pool */

uint64 unit-address, /*As specified in the Logical LAN device tree node */
uint64 buf) /* Buffer descriptor of the receive buffer to add to the receive buffer pool */

Parameters:

 unit-address: Unit Address per device tree node “reg” property

 buf: Buffer Descriptor of new I/O buffer

Semantics:

 Checks that unit address is OK else H_Parameter.

 Checks that I/O Address is within range of DMA window.

 Scans the buffer list for a pool of buffers of the length specified in the Descriptor

 If one does not exist (and there is still room in the buffer list, create a new pool entry else H_Resource).

 Uses enqueue procedure that is compatible with H_SEND_LOGICAL_LAN hcall()’s dequeue procedure

Implementation Note: Since the buffer queue is based upon I/O addresses that are checked by
H_SEND_LOGICAL_LAN, it is only necessary to insure that the enqueue/dequeue are internally consistent. If
the owning OS corrupts his buffer descriptors or buffer queue pointers, this is caught by
H_SEND_LOGICAL_LAN and/or the corruption is contained within the OS’s partition.

Architecture Note: Consideration was given to define the enqueue algorithm and have the DD do the enqueue itself.
However, no designs presented themselves that eliminated the timing windows caused by adding and removing
pool lists without the introduction of OS/FW interlocks.

16.4.3.4 H_FREE_LOGICAL_LAN_BUFFER

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware, H_Not_Found*/
hcall(const uint64 H_FREE_LOGICAL_LAN_BUFFER,/* Removes a buffer of the specified size, */

/*if available, from the receive buffer pool */

560

 LoPAPR, Version 1.1 (March 24, 2016)

uint64 unit-address,/*As specified in the Logical LAN device tree node */
uint64 bufsize) /* Size of the buffer to remove from the receive buffer pool */

Parameters:

 unit-address: Unit Address per device tree node “reg” property.

 bufsize: The size of the buffer that is being requested to be removed from the receive buffer pool.

Semantics:

 Check that unit address is valid, else return H_Parameter.

 Scan the buffer list for a pool of buffers of the length specified in bufsize, and return H_Not_Found if one does not
exist.

 Place an entry on receive queue for buffer of specified size, with Control field Bit 1 set to 0, and return H_Success

16.4.3.5 H_SEND_LOGICAL_LAN

Syntax:

int64 /* H_Success, H_Parameter, H_Dropped, H_Hardware, H_Busy*/
hcall(const uint64 H_SEND_LOGICAL_LAN,/* Send a message on the logical LAN */
uint64 unit-address, /* As specified in the Logical LAN device tree node */
uint64 buff-1, /* The message content including source and destination MAC addresses */
uint64 buff-2, /* and optional IEEE VLAN header is contained in 1 - 6 buffers */
uint64 buff-3, /* each contiguous (in I/O space) buffer is passed using a buffer */
uint64 buff-4, /* descriptor. A buffer descriptor with a control byte of “invalid” */
uint64 buff-5, /* indicates the end of the message (only the number of buffers needed */
uint64 buff-6, /* are used). */
uint64 continue-token) /* value of 0 on first call, value returned in R4 on H_Busy*/

The H_Dropped return code indicates to the sender that one or more intended receivers did not receive the message.

Parameters:

 unit-address: Unit Address per device tree node “reg” property

 buff-1: Buffer Descriptor #1

 buff-2: Buffer Descriptor #2

 buff-3: Buffer Descriptor #3

 buff-4: Buffer Descriptor #4

 buff-5: Buffer Descriptor #5

 buff-6: Buffer Descriptor #6

 continue-token: Used to continue a transfer if H_Busy is returned. Set to 0 on the first call. If H_Busy is returned,
then call again but use the value returned in R4 from the previous call as the value of continue-token.

Semantics:

 If continue-token is non-zero, then do appropriate checks to see that parameters and buffers are still valid, and
pickup where the previous transfer left off for the specified unit address, based on the value of the continue-token.

16.4  Interpartition Logical LAN (ILLAN) Option 561

LoPAPR, Version 1.1 (March 24, 2016)

 If continue-token is zero and if previous H_SEND_LOGICAL_LAN for the specified unit address was suspended
with H_Busy and never completed, then cleanup the state from the previously suspended call before proceeding.

 Verifies the VLAN number -- else H_Parameter.

 Proceeds down the 6 buffer descriptors until the first one that has a length of 0

 If the “ibm,max-virtual-dma-size” property exist in the /vdevice node of the device tree, then if the
length is greater than the value of this property, return H_Parameter

 For the length of the buffer:

Verifies the I/O buffer addresses translate through the sender’s RTCE table else H_Parameter.

 Verifies the destination MAC address for the VLAN

 If MAC address is not cached and there exists a Trunk Adapter for the VLAN, then flags the message as destined
for the Trunk Adapter and continues processing

 If MAC address is not cached and a Trunk Adapter does not exist for the VLAN, then drop the message
(H_Dropped)

 For each Destination MAC Address (broadcast MAC address turns into multi-cast to all destinations on the speci-
fied VLAN):

 In the case of multicast MAC addresses the following algorithm defines the members of the receiver class for
a given VLAN:
For each logical lan IOA that would be a target for a broadcast from the source IOA:
- If the receiving IOA is not enabled for non-broadcast multicast frames then continue
- If the receiving IOA is not enabled for filtering non-broadcast multicast frames then copy the frame to the
IOA's receive buffer
- Else
-- If (lookup filter (table index)) then copy the frame to the IOA's receive buffer
-- Else if the receiving IOA is not enabled for filtering non-broadcast multicast frames then copy the frame to
the IOA's receive buffer /*allows for races on filter insertion */

int lookup filter (table index)
- Firmware implementation designed algorithm

 Searches the receiver’s receive queue for a suitable buffer and atomically dequeues it:

 If no suitable buffer is found, the receiver’s dropped packet counter (last 8 bytes of buffer list) is incremented
and processing proceeds to the next receiver if any.

 Copy the send data in to the selected receive buffer, build a receive queue entry, and generate an interrupt to the
receiver if the interrupt is enabled.

 If any frames were dropped return H_Dropped else return H_Success.

Firmware Implementation Note: If during the processing of the H_SEND_LOGICAL_LAN call, it becomes necessary
to temporarily suspend the processing of the call (for example, due to the length of time it is taking to process the
call), the firmware may return a continuation token in R4, along with the return code of H_Busy. The value of the
continuation token is up to the firmware, and will be passed back by the software as the continue-token parameter
on the next call of H_SEND_LOGICAL_LAN.

This hcall() interlocks with H_MIGRATE_DMA to allow for migration of TCE mapped DMA pages.

Note: It is possible for either or both the sending and receiving OS to modify its RTCE tables so as to affect the TCE
translations being actively used by H_SEND_LOGICAL_LAN. This is an error condition on the part of the OS.
Implementations need only insure that such conditions do not corrupt memory in innocent partitions and should

562

 LoPAPR, Version 1.1 (March 24, 2016)

not add path length to protect guilty partitions. By all means the path length of H_GET_TCE and H_PUT_TCE
should not be increased. If reasonably possible, without significant path length addition, implementations should:
On send buffer translation corruption, return H_Parameter to the sender and either totally drop the packet prior to
reception, or if the receive buffer has been processed past the point of transparent recycling, mark the receive
buffer as received in error in the receive queue. On receive buffer translation corruption, terminate the data copy
to the receive buffer and mark the buffer as received in error in the receive queue.

16.4.3.6 H_MULTICAST_CTRL

This hcall() controls the reception of non-broadcast multicast packets (those with the high order address byte being odd
but not the all 1’s address). All implementations support the enabling and disabling of the reception of all multicast
packets on their V-LAN. Additionally, the l-lan device driver through this call may ask the firmware to filter multicast
packets for it. That is, receive packets only if they contain multicast addresses specified by the device driver. The num-
ber of simultaneous multicast packet filters supported is implementation dependent, and is specified in the
“ibm,mac-address-filters” property of the l-lan device tree node. Therefore, the device driver must be pre-
pared to have any filter request fail, and fall back to enabling reception of all multicast packets and filtering them in the
device driver. Semantically, the device driver may ask that the reception of multicast packets be enabled or disabled,
further if reception is enabled, they may be filtered by only allowing reception of packets who’s mac address matches
one of the entries in the filter table. The call also manages the contents of the mac address filter table. Individual mac
addresses may be added, or removed, and the filter table may be cleared. If the filter table is modified by a call, there is
the possibility that a packet may be improperly filtered (one that was to be filtered out may get through or one that
should have gotten through may be dropped) this is done to avoid adding extra locking to the packet processing code.
In most cases higher level protocols will handle the condition (since firmware filtering is simply a performance optimi-
zation), if, however, a specific condition requires complete accuracy, the device driver can disable filtering prior to an
update, do its own filtering (as would be required if the number of receivers exceeded the number of filters in the filter
table) update the filter table, and then reenable filtering.

Syntax:

int64 /* H_Success, Expected Return Code
/* H_Parameter, One or more parameters were invalid */
/*H_Constrained, The operation failed because of resource constraints (too many */
/* filter requests*/
/*H_Not_Found, The requested remove object was not found*/
/*H_Hardware The operation failed because of a hardware error*/

hcall(const uint64 H_MULTICAST_CTRL,/* Controls multicast address filtering.*/
uint64 unit-address, /*As specified in the Logical LAN device tree node */
uint64 flags, /* Two sets of encoded flag fields control the function */

/* -- Bits 44-47 control the multicast enables */
/* Bit 44 = 0 do not modify enable reception of multicast frames */

/* value of bit 46 ignored */
/* Bit 44 = 1 modify enable reception of multicast frames */

/* if bit 46 = 1 allow reception of multicast frames*/
/* if bit 46 = 0 prohibit reception of all multicast frames */

/* Bit 45 = 0 do not modify filtering of multicast frames */
/* value of bit 47 ignored */

/* Bit 45 = 1 modify enable of filtering of multicast frames */
/* if bit 47 = 1 if reception of multicast frames are allowed, */
/* further filter frames via mac address filter table */
/* if bit 47 = 0 if reception of multicast frames are allowed, */
/* do not filter out any due to mac address filter table */

/* -- Bits 62 and 63 control modification of the mac address filter table */
/*-- Bits 62 and 63 sub decode: */

/* 00 Leave filter table unmodified */

16.4  Interpartition Logical LAN (ILLAN) Option 563

LoPAPR, Version 1.1 (March 24, 2016)

/* 01 Add specified MAC filter address to the table */
/* 10 Remove specified MAC filter address from the table*/
/* 11 Clear the MAC filter address table */

/* All other flag bits are reserved */
uint64 multicast-address) /* 8 byte MAC multicast address to be enabled (11) or disabled (10) */

Parameters:

 unit-address: Unit Address per device tree node “reg” property

 flags: Only bits 44-47 and 62-63 are defined all other bits should be zero.

 multi-cast-address: Multicast MAC address, if flag bits 62 and 63 are 01 or 10, else this parameter is ignored.

Return value in register R4:

State of Enables and Count of MAC Filters in table.

Format:

Bits: 0--45,46-47,48--------------63

 Reserved R F MAC Filter Count

R = The value of the Receipt Enable bit

F = The value of the Filter Enable bit

MAC Filter Count -- 16 bit count of the number of MAC Filters in the multicast filter table.

Semantics:

 Validate the unit-address parameter else return H_Parameter.

 Validate that no reserved flag bit = 1 else return H_Parameter.

 If any bits are on in the high order two bytes of the MAC parameter Return H_Parameter

 Modify Enables per specification if requested.

 Modify the Filter Table per specification if requested filtering is disable during any filter table modification and fil-
ter enable state restored after filter table modification).

 If don't modify RC=H_Success

 If Clear all: initialize the filter table, RC=H_Success

 If Add:

 If there is room in the table insert new MAC Filter entry, MAC Filter count++, RC=H_Success

 Else RC=H_Constrained

 (duplicates are silently dropped -- filter count stays the same RC=H_Success)

 If Remove:

 Locate the specified entry in the MAC Filter Table

 If Found remove the entry, MAC Filter count--, RC=H_Success

 Else RC=H_Not_Found

564

 LoPAPR, Version 1.1 (March 24, 2016)

 Load the Enable Bits into R4 bits 46 and 47 Load the MAC Filter count into R4 Bits 48-63

 Return RC

16.4.3.7 H_CHANGE_LOGICAL_LAN_MAC

This hcall() allows the changing of the virtual IOA’s MAC address.

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware */
hcall(const uint64 H_CHANGE_LOGICAL_LAN_MAC,/* Change the MAC address */
uint64 unit-address, /* As specified in the Logical LAN device tree node */
uint64 mac-address) /* New MAC address for the virtual IOA). */

Parameters:

 unit-address: Unit Address per device tree node “reg” property

 mac-address: The new receive filter MAC address

Semantics:

 Validates the unit address, else H_Parameter

 Records the low order 6 bytes of mac-address for filtering future incoming messages

 Returns H_Success

16.4.3.8 H_ILLAN_ATTRIBUTES

There are certain ILLAN attributes that are made visible to and can be manipulated by partition software. The
H_ILLAN_ATTRIBUTES hcall is used to read and modify the attributes (see Section 16.4.3.8‚
“H_ILLAN_ATTRIBUTES‚” on page 564). Table 207‚ “ILLAN Attributes‚” on page 564 defines the attributes that
are visible and manipulatable.

Table 207. ILLAN Attributes

Bit(s) Field Name Definition

0-49 Reserved

50
Checksum Offload Padded

Packet Support

This bit is implemented when the ILLAN Checksum Offload Padded Packet Support option is
implemented. See Section 16.4.6.2.3‚ “Checksum Offload Padded Packet Support Option‚” on
page 574.
0: Software must not request checksum offload, by setting Bit 6 of the buffer descriptor (the No
Checksum bit), for packets that have been padded.
1: Software may request checksum offload, by setting Bit 6 of the buffer descriptor (the No Checksum
bit), for packets that have been padded.

16.4  Interpartition Logical LAN (ILLAN) Option 565

LoPAPR, Version 1.1 (March 24, 2016)

51 Buffer Size Control

This bit is implemented when the ILLAN Buffer Size Control option is implemented. This bit allows
the partition software to inhibit the use of too large of a buffer for incoming packets, when a reasonable
size buffer is not available. The state of this bit cannot be changed between the time that the ILLAN
is registered by an H_REGISTER_LOGICAL_LAN and it is deregistered by an
H_FREE_LOGICAL_LAN. See also Section 16.4.6.3‚ “ILLAN Buffer Size Control Option‚” on
page 574.

1: The hypervisor will keep a history of what buffer sizes have been registered. When a packets arrives
the history is searched to find the smallest buffers size that will contain the packet. If that buffer size
is depleted then the packet is dropped by the hypervisor (H_Dropped) instead of searching for the next
larger available buffer.

0: This is the initial value. When a packet arrives, the available buffers are searched for the smallest
available buffer that will hold the packet, and the packet is not dropped unless no buffer is available
in which the packet will fit.

52-55 Trunk Adapter Priority

This field is implemented for a VIOA whenever the ILLAN Backup Trunk Adapter option is
implemented and the VIOA is a Trunk Adapter (the Active Trunk Adapter bit will be implemented,
also, in this case). If this field is a 0, then the either the ILLAN Backup Trunk Adapter option is not
implemented or it is implemented but this VIOA is not a Trunk Adapter. A non-0 value in this field
reflects the priority of the node in the backup Trunk Adapter hierarchy, with a value of 1 being the
highest (most favored) priority, the value of 2 being the next highest priority, and so on. This field may
or may not be changeable by the partition firmware via the H_ILLAN_ATTRIBUTES hcall()
(platform implementation dependent). If not changeable, then attempts to change this field will result
in a return code of H_Constrained. See also Section 16.4.6.1‚ “ILLAN Backup Trunk Adapter
Option‚” on page 571.

56-60 Reserved

61
TCP Checksum Offload

Support for IPv6

This bit is implemented for a VIOA whenever the ILLAN Checksum Offload Support option is
implemented for TCP, the IPv6 protocol, and the following extension headers:

 Hop-by-Hop Options

 Routing

 Destination Options

 Authentication

 Mobility

This bit is initially set to 0 by the firmware and the ILLAN DD may attempt to set it to a 1 by use of
the H_ILLAN_ATTRIBUTES hcall() if the DD supports the option for TCP and IPv6. Firmware will
not allow changing the state of this bit if it does not support Checksum Offload Support for TCP for
IPv6 for the VIOA (H_Constrained would be returned in this case from the H_ILLAN_ATTRIBUTES
hcall() when this bit is a 1 in the set-mask). This state of this bit cannot be changed between the time
that the ILLAN is registered by an H_REGISTER_LOGICAL_LAN and it is deregistered by an
H_FREE_LOGICAL_LAN. See Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on
page 572 for more information.
1: The partition software has indicated that it supports the ILLAN Checksum Offload Support option
for TCP and IPv6 protocol and for the above stated extension headers by using the
H_ILLAN_ATTRIBUTES hcall() with this bit set to a 1 in the set-mask, and the firmware has verified
that it supports this protocol for the option for the VIOA.
0: The partition software has not indicated that it supports the ILLAN Checksum Offload Support
option for TCP and IPv6 protocol and for the above stated extension headers by using the
H_ILLAN_ATTRIBUTES hcall() with this bit set to a 1 in the set-mask, or it has but the firmware
does not support the option, or supports the option but not for this protocol or for this VIOA.

Table 207. ILLAN Attributes (Continued)

Bit(s) Field Name Definition

566

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.4.3.8–1. If the H_ILLAN_ATTRIBUTES hcall is implemented, then it must implement the attributes as they
are defined in Table 207‚ “ILLAN Attributes‚” on page 564 and the syntax and semantics as defined in
Section 16.4.3.8‚ “H_ILLAN_ATTRIBUTES‚” on page 564.

R1–16.4.3.8–2. The H_ILLAN_ATTRIBUTES hcall must ignore bits in the set-mask and reset-mask which are not
implemented for the specified unit-address and must process as an exception those which cannot be changed
for the specified unit-address (H_Constrained returned), and must return the following for the ILLAN Attri-
butes in R4:

a. A value of 0 for unimplemented bit positions.

b. The resultant field values for implemented fields.

Syntax:

uint64 /* H_Success Expected return code */
/* H_Parameter One or more parameters were in error */
/* H_Constrained One or more parameters was not changeable to the value requested*/
/* the result was constrained to a legitimate value for the implementation*/
/* H_Hardware Operation failed because of hardware error*/

hcall (const uint64 H_ILLAN_ATTRIBUTES,/* Returns in R4 the resulting ILLAN Attributes*/

62
TCP Checksum Offload

Support for IPv4

This bit is implemented for a VIOA whenever the ILLAN Checksum Offload Support option is
implemented for TCP and the IPv4 protocol. This bit is initially set to 0 by the firmware and the
ILLAN DD may attempt to set it to a 1 by use of the H_ILLAN_ATTRIBUTES hcall() if the DD
supports the option for TCP and IPv4. Firmware will not allow changing the state of this bit if it does
not support Checksum Offload Support for TCP or IPv4 for the VIOA (H_Constrained would be
returned in this case from the H_ILLAN_ATTRIBUTES hcall() when this bit is a 1 in the set-mask).
This state of this bit cannot be changed between the time that the ILLAN is registered by an
H_REGISTER_LOGICAL_LAN and it is deregistered by an H_FREE_LOGICAL_LAN. See
Section 16.4.6.2‚ “ILLAN Checksum Offload Support Option‚” on page 572 for more information.

1: The partition software has indicated that it supports the ILLAN Checksum Offload Support option
for TCP and IPv4 protocol by using the H_ILLAN_ATTRIBUTES hcall() with this bit set to a 1 in the
set-mask, and the firmware has verified that it supports this protocol for the option for the VIOA.

0: The partition software has not indicated that it supports the ILLAN Checksum Offload Support
option for TCP and IPv4 by using the H_ILLAN_ATTRIBUTES hcall() with this bit set to a 1 in the
set-mask, or it has but the firmware does not support the option, or supports the option but not for this
protocol or for this VIOA.

63 Active Trunk Adapter

This bit is implemented for a VIOA whenever the ILLAN Backup Trunk Adapter option is
implemented and the VIOA is a Trunk Adapter (the Trunk Adapter Priority field will be implemented,
also, in this case).

 This bit is initially set to 0 by the firmware for an inactive Trunk Adapter.

 This bit is initially set to 1 by the firmware for an active Trunk Adapter.

 This bit will be changed from a 0 to a 1 when all the following a true: (1) the partition software
(via the H_ILLAN_ATTRIBUTES hcall() with this bit set to a 1 in the set-mask) attempts to set
this bit to a 1, (2) the firmware supports the Backup Trunk Adapter option, (3) the VIOA is a
Trunk Adapter.

 This bit will be changed from a 1 to a 0 by the firmware when another Trunk Adapter has had its
Active Trunk Adapter bit changed from a 0 to a 1.

See Section 16.4.6.1‚ “ILLAN Backup Trunk Adapter Option‚” on page 571 for more information.

1: The VIOA is the active Trunk Adapter.

0: The VIOA is not an active Trunk Adapter or is not a Trunk Adapter at all.

Table 207. ILLAN Attributes (Continued)

Bit(s) Field Name Definition

16.4  Interpartition Logical LAN (ILLAN) Option 567

LoPAPR, Version 1.1 (March 24, 2016)

uint64 unit-address, /* The ILLAN Unit Address on which to perform this operation*/
uint64 reset-mask, /* Mask of Attribute bits to be reset*/
uint64 set-mask); /* Mask of Attribute bits to be set*/

Parameters:

unit-address: Unit Address per device tree node “reg” property. The ILLAN unit address on which this Attribute
modification is to be performed.

reset-mask: The bit-significant mask of bits to be reset in the ILLAN’s Attributes (the reset-mask bit definition aligns
with the bit definition of the ILLAN’s Attributes, as defined in Table 207‚ “ILLAN Attributes‚” on page 564). The
complement of the reset-mask is ANDed with the ILLAN’s Attributes, prior to applying the set-mask. See semantics
for more details on any field-specific actions needed during the reset operations. If a particular field position in the IL-
LAN Attributes is not implemented, then the corresponding bit(s) in the reset-mask are ignored.

set-mask: The bit-significant mask of bits to be set in the ILLAN’s Attributes (the set-mask bit definition aligns with
the bit definition of the ILLAN’s Attributes, as defined in Table 207‚ “ILLAN Attributes‚” on page 564). The set-mask
is ORed with the ILLAN’s Attributes, after to applying the reset-mask. See semantics for more details on any field-spe-
cific actions needed during the set operations. If a particular field position in the ILLAN Attributes is not implemented,
then the corresponding bit(s) in the set-mask are ignored.

Semantics:

 Validate that Unit Address belongs to the partition, else H_Parameter.

 Reset/set the bits in the ILLAN Attributes, as indicated by the rest-mask and set-mask except as indicated in the fol-
lowing conditions.

 If the Buffer Size Control bit is trying to be changed from a 0 to a 1 and any of the following is true, then do not al-
low the change (H_Constrained will be returned):

 The ILLAN is active. That is, the ILLAN has been registered (H_REGISTER_LOGICAL_LAN) but has not be
deregistered (H_FREE_LOGICAL_LAN).

 The firmware does not support the ILLAN Buffer Size Control option.

 If the Buffer Size Control bit is trying to be changed from a 1 to a 0 and any of the following is true, then do not al-
low the change (H_Constrained will be returned):

 The ILLAN is active. That is, the ILLAN has been registered (H_REGISTER_LOGICAL_LAN) but has not be
deregistered (H_FREE_LOGICAL_LAN).

 If either the TCP Checksum Offload Support for IPv4 bit or TCP Checksum Offload Support for IPv6 bit is trying to
be changed from a 0 to a 1 and any of the following is true, then do not allow the change (H_Constrained will be re-
turned):

 The ILLAN is active. That is, the ILLAN has been registered (H_REGISTER_LOGICAL_LAN) but has not be
deregistered (H_FREE_LOGICAL_LAN).

 The firmware does not support the ILLAN Checksum Offload Support option or supports it, but not for the spec-
ified protocol(s) or does not support it for this VIOA.

 If the TCP Checksum Offload Support for IPv4 bit or TCP Checksum Offload Support for IPv6 bit is trying to be
changed from a 1 to a 0 and any of the following is true, then do not allow the change (H_Constrained will be re-
turned):

 The ILLAN is active. That is, the ILLAN has been registered (H_REGISTER_LOGICAL_LAN) but has not be
deregistered (H_FREE_LOGICAL_LAN).

568

 LoPAPR, Version 1.1 (March 24, 2016)

 If the Active Trunk Adapter bit is trying to be changed from a 0 to a 1 and any of the following is true, then do not
allow the change (H_Constrained will be returned):

 The firmware does not support the ILLAN Backup Trunk Adapter option or this VIOA is not a Trunk Adapter.

 If the Active Trunk Adapter bit is trying to be changed from a 1 to a 0, then return H_Parameter.

 If the Active Trunk Adapter bit is changed from a 0 to a 1 for a VIOA, then also set any previously active Trunk
Adapter’s Active Trunk Adapter bit from a 1 to a 0.

 If the Trunk Adapter Priority field is trying to be changed from 0 to a non-0 value, then return H_Parameter.

 If the Trunk Adapter Priority field is trying to be changed from a non-0 value to another non-0 value and either the
parameter is not changeable or the change is not within the platform allowed limits, then do not allow the change
(H_Constrained will be returned).

 Load R4 with the value of the ILLAN’s Attributes, with any unimplemented bits set to 0, and if all requested
changes were made then return H_Success, otherwise return H_Constrained.

16.4.3.9 Other hcall()s extended or used by the Logical LAN Option

16.4.3.9.1 H_VIO_SIGNAL

The H_VIO_SIGNAL hcall() is used by multiple VIO options.

16.4.3.9.2 H_EOI

The H_EOI hcall(), when specifying an interrupt source number associated with an interpartion logical LAN IOA, in-
corporates the interrupt reset function.

16.4.3.9.3 H_XIRR

This call is extended to report the virtual interrupt source number associated with virtual interrupts associated with an
ILLAN IOA.

16.4.3.9.4 H_PUT_TCE

This standard hcall() is used to manage the ILLAN IOA’s I/O translations.

16.4.3.9.5 H_GET_TCE

This standard hcall() is used to manage the ILLAN IOA’s I/O translations.

16.4.3.9.6 H_MIGRATE_DMA

This hcall() is extended to serialize with the H_SEND_LOGICAL_LAN hcall() to allow for migration of TCE mapped
DMA pages.

16.4.4 RTAS Calls Extended or Used by the Logical LAN Option

Platforms may combine the Logical LAN option with most other LoPAPR options such as dynamic reconfiguration by
including the appropriate OF properties and extending the associated firmware calls. However, the ibm,set-xive,
ibm,get-xive, ibm,int-off, and ibm,int-on RTAS calls are extended as part of the base support.

16.4  Interpartition Logical LAN (ILLAN) Option 569

LoPAPR, Version 1.1 (March 24, 2016)

16.4.5 Interpartition Logical LAN Requirements

The following requirements are mandated for platforms implementing the ILLAN option.

R1–16.4.5–1. For the ILLAN option: The platform must interpret logical LAN buffer descriptors as defined in
Section 16.4.1.1‚ “Buffer Descriptor‚” on page 553.

R1–16.4.5–2. For the ILLAN option: The platform must reject logical LAN buffer descriptors that are not 8 byte
aligned.

R1–16.4.5–3. For the ILLAN option: The platform must interpret the first byte of a logical LAN buffer descriptor
as a control byte, the high order bit being the valid bit.

R1–16.4.5–4. For the ILLAN option: The platform must set the next to high order bit of the control byte of the
logical LAN buffer descriptor for the receive queue to the inverse of the value currently being used to indi-
cate a valid receive queue entry.

R1–16.4.5–5. For the ILLAN option: The platform must interpret the 2nd through 4th bytes of a logical LAN buf-
fer descriptor as the binary length of the buffer in I/O space (relative to the TCE mapping table defined by the
logical IOA’s “ibm,my-dma-window” property).

R1–16.4.5–6. For the ILLAN option: The platform must interpret the 5th through 8th bytes of a logical LAN buf-
fer descriptor as the binary beginning address of the buffer in I/O space (relative to the TCE mapping table
defined by the logical IOA’s “ibm,my-dma-window” property).

R1–16.4.5–7. For the ILLAN option: The platform must interpret logical LAN Buffer Lists as defined in
Section 16.4.1.2‚ “Buffer List‚” on page 553.

R1–16.4.5–8. For the ILLAN option: The platform must reject logical LAN Buffer Lists that are not mapped rela-
tive to the TCE mapping table defined by the logical IOA’s “ibm,my-dma-window” property.

R1–16.4.5–9. For the ILLAN option: The platform must reject logical LAN buffer lists that are not 4 KB aligned.

R1–16.4.5–10. For the ILLAN option: The platform must interpret the first 8 bytes of a logical LAN buffer list as
a buffer descriptor for the logical IOA’s Receive Queue.

R1–16.4.5–11. For the ILLAN option: The platform must interpret the logical LAN receive queue as defined in
Section 16.4.1.3‚ “Receive Queue‚” on page 553.

R1–16.4.5–12. For the ILLAN option: The platform must reject a logical LAN receive queue that is not mapped
relative to the TCE mapping table defined by the logical IOA’s “ibm,my-dma-window” property.

R1–16.4.5–13. For the ILLAN option: The platform must reject a logical LAN receive queue that is not aligned on
a 4 byte boundary.

R1–16.4.5–14. For the ILLAN option: The platform must reject a logical LAN receive queue that is not an exact
multiple of 12 bytes long.

R1–16.4.5–15. For the ILLAN option: The platform must manage the logical LAN receive queue as a circular
buffer.

R1–16.4.5–16. For the ILLAN option: The platform must enqueue 12 byte logical LAN receive queue entries
when a new message is received.

R1–16.4.5–17. For the ILLAN option: The platform must set the last 8 bytes of the logical LAN receive queue en-
try to the value of the user supplied correlator found in the first 8 bytes of the logical LAN receive buffer used
to contain the message before setting the first 4 bytes of the logical LAN receive queue entry.

570

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.4.5–18. For the ILLAN option: The platform must set the first 4 bytes of the logical LAN receive queue
entry such that the first byte contains the control field (high order bit the inverse of the valid toggle in the re-
ceive queue buffer descriptor, next bit to a one if the message payload is valid) and the last 3 bytes contains
the receive message length, after setting the correlator field in the last 8 bytes per Requirement R1–16.4.5–
17.

R1–16.4.5–19. For the ILLAN option: The platform must when crossing from the end of the logical LAN receive
queue back to the beginning invert the value of the valid toggle in the receive queue buffer descriptor.

R1–16.4.5–20. For the ILLAN option: The platform’s OF must disable interrupts from the logical LAN IOA be-
fore initially passing control to the booted client program.

R1–16.4.5–21. For the ILLAN option: The platform must present (as appropriate per RTAS control of the inter-
rupt source number) the partition owning a logical LAN receive queue the appearance of an interrupt, from
the interrupt source number associated, through the OF device tree node, with the virtual device, when a new
entry is enqueued to the logical LAN receive queue and the last interrupt mode set via the H_VIO_SIGNAL
was “Enabled”, unless a previous interrupt from the interrupt source number is still outstanding.

R1–16.4.5–22. For the ILLAN option: The platform must NOT present the partition owning a logical LAN re-
ceive queue the appearance of an interrupt, from the interrupt source number associated, through the OF de-
vice tree node, with the virtual device, if the last interrupt mode set via the H_VIO_SIGNAL was “Disabled”,
unless a previous interrupt from the interrupt source number is still outstanding.

R1–16.4.5–23. For the ILLAN option: The platform must interpret logical LAN receive buffers as defined in
Section 16.4.1.5‚ “Receive Buffers‚” on page 555.

R1–16.4.5–24. For the ILLAN option: The platform must reject a logical LAN receive buffer that is not mapped
relative to the TCE mapping table defined by the logical IOA’s “ibm,my-dma-window” property.

R1–16.4.5–25. For the ILLAN option: The platform must reject a logical LAN receive buffer that is not aligned
on a 4 byte boundary.

R1–16.4.5–26. For the ILLAN option: The platform must reject a logical LAN receive buffer that is not a mini-
mum of 16 bytes long.

R1–16.4.5–27. For the ILLAN option: The platform must not modify the first 8 bytes of a logical LAN receive
buffer, this area is reserved for a user supplied correlator value.

R1–16.4.5–28. For the ILLAN option: The platform must not allow corruption caused by a user modifying the
logical LAN receive buffer from escaping the user partition (except as a side effect of some another user par-
tition I/O operation).

R1–16.4.5–29. For the ILLAN option: The platform’s l-lan OF device tree node must contain properties as de-
fined in Table 206‚ “Properties of the Logical LAN OF Device Tree Node‚” on page 556. (Other standard I/O
adapter properties are permissible as appropriate.)

R1–16.4.5–30. For the ILLAN option: The platform must implement the H_REGISTER_LOGICAL_LAN hcall()
as defined in Section 16.4.3.1‚ “H_REGISTER_LOGICAL_LAN‚” on page 557.

R1–16.4.5–31. For the ILLAN option: The platform must implement the H_FREE_LOGICAL_LAN hcall() as
defined in Section 16.4.3.2‚ “H_FREE_LOGICAL_LAN‚” on page 558.

R1–16.4.5–32. For the ILLAN option: The platform must implement the H_ADD_LOGICAL_LAN_BUFFER
hcall() as defined in Section 16.4.3.3‚ “H_ADD_LOGICAL_LAN_BUFFER‚” on page 559.

R1–16.4.5–33. For the ILLAN option: The platform must implement the H_SEND_LOGICAL_LAN hcall() as
defined in Section 16.4.3.5‚ “H_SEND_LOGICAL_LAN‚” on page 560.

16.4  Interpartition Logical LAN (ILLAN) Option 571

LoPAPR, Version 1.1 (March 24, 2016)

R1–16.4.5–34. For the ILLAN option: The platform must implement the H_SEND_LOGICAL_LAN hcall() such
that an OS requested modification to an active RTCE table entry cannot corrupt memory in other partitions.
(Except indirectly as a result of some other of the partition’s I/O operations.)

R1–16.4.5–35. For the ILLAN option: The platform must implement the H_CHANGE_LOGICAL_LAN_MAC
hcall() as defined in Section 16.4.3.7‚ “H_CHANGE_LOGICAL_LAN_MAC‚” on page 564.

R1–16.4.5–36. For the ILLAN option: The platform must implement the H_VIO_SIGNAL hcall() as defined in
Section 17.2.1.3‚ “VIO Interrupt Control‚” on page 602.

R1–16.4.5–37. For the ILLAN option: The platform must implement the extensions to the H_EOI hcall() as de-
fined in Section 16.4.3.9.2‚ “H_EOI‚” on page 568.

R1–16.4.5–38. For the ILLAN option: The platform must implement the extensions to the H_XIRR hcall() as de-
fined in Section 16.4.3.9.3‚ “H_XIRR‚” on page 568.

R1–16.4.5–39. For the ILLAN option: The platform must implement the H_PUT_TCE hcall().

R1–16.4.5–40. For the ILLAN option: The platform must implement the H_GET_TCE hcall().

R1–16.4.5–41. For the ILLAN option: The platform must implement the extensions to the H_MIGRATE_DMA
hcall() as defined in Section 16.4.3.9.6‚ “H_MIGRATE_DMA‚” on page 568.

R1–16.4.5–42. For the ILLAN option: The platforms must emulate the standard PowerPC External Interrupt Ar-
chitecture for the interrupt source numbers associated with the virtual devices via the standard RTAS and hy-
pervisor interrupt calls.

16.4.6 Logical LAN Options

The ILLAN option has several sub-options. The hypervisor reports to the partition software when it supports one or
more of these options, and potentially other information about those option implementations, via the implementation of
the appropriate bits in the ILLAN Attributes, which can be ascertained by the H_ILLAN_ATTRIBUTES hcall(). The
same hcall() may be used by the partition software to communicate back to the firmware the level of support for those
options where the firmware needs to know the level of partition software support. The “ibm,illan-options”
property will exist in the VIOA’s Device Tree node, indicating that the H_ILLAN_ATTRIBUTES hcall() is imple-
mented, and therefore that one or more of the options are implemented. The following sections give more details.

16.4.6.1 ILLAN Backup Trunk Adapter Option

The ILLAN Backup Trunk Adapter option allows the platform to provide one or more backups to a Trunk Adapter, for
reliability purposes. Implementation of the ILLAN Backup Trunk Adapter option is specified to the partition by the ex-
istence of the “ibm,illan-options” property in the VIOA’s Device Tree node and a non-0 value in the ILLAN
Attributes Backup Trunk adapter Priority field. A Trunk Adapter becomes the active Trunk Adapter by calling
H_ILLAN_ATTRIBUTES hcall() and setting its Active Trunk Adapter bit. Only one Trunk Adapter is active for a
VLAN at a time. The protocols which determine which Trunk Adapter is active at any particular time, is beyond the
scope of this architecture.

R1–16.4.6.1–1. For the ILLAN Backup Trunk Adapter option: The platform must implement the ILLAN op-
tion.

R1–16.4.6.1–2. For the ILLAN Backup Trunk Adapter option: The platform must implement the
H_ILLAN_ATTRIBUTES hcall().

R1–16.4.6.1–3. For the ILLAN Backup Trunk Adapter option: The platform must implement the “ibm,il-
lan-options” and “ibm,trunk-adapter” properties in all the Trunk Adapter nodes of the Device
Tree.

572

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.4.6.1–4. For the ILLAN Backup Trunk Adapter option: The platform must implement the Active Trunk
Adapter bit and the Backup Trunk Adapter Priority field in the ILLAN Attributes, as defined in Table 207‚
“ILLAN Attributes‚” on page 564, for all Trunk Adapter VIOAs.

R1–16.4.6.1–5. For the ILLAN Backup Trunk Adapter option: The platform must allow only one Trunk
Adapter to be active for a VLAN at any given time, and must:

a. Make the determination of which one is active by whichever was the most recent one to set its Active
Trunk Adapter bit in their ILLAN Attributes.

b. Turn off the Active Trunk Adapter bit in the ILLAN Attributes for a Trunk Adapter when it is removed
from the active Trunk Adapter state.

16.4.6.2 ILLAN Checksum Offload Support Option

This option allows for the support of IOAs that do checksum offload processing. This option allows for support at one
end (client or server) but not the other, on a per-protocol basis, with the hypervisor generating the checksum when the
client supports offload but the server does not, and the operation is a send from the client.

16.4.6.2.1 General

The H_ILLAN_ATTRIUBTES hcall is used to establish the common set of checksum offload protocols to be sup-
ported between the firmware and the partition software. The firmware indicates support for H_ILLAN_ATTRIBUTES
via the “ibm,illan-options” property in the VIOA’s Device Tree node. The partition software can determine
which of the Checksum Offload protocols (if any) that the firmware supports by either attempting to set the bits in the
ILLAN Attributes of the protocols that the partition software supports or by calling the hcall() with reset-mask and
set-mask parameters of all-0’s (the latter being just a query and not a request to support anything between the partition
and the firmware).

Two bits in the control field of the first buffer descriptor specify which operations do not contain a checksum and
which have had their checksum already verified. See Section 16.4.1.1‚ “Buffer Descriptor‚” on page 553. These two
bits get transferred to the corresponding control field of the Receive Queue Entry, with the exception that the
H_SEND_LOGICAL_LAN hcall will sometimes set these to 0b00 (see Section 16.4.6.2.2‚
“H_SEND_LOGICAL_LAN Semantic Changes‚” on page 572).

R1–16.4.6.2.1–1. For the ILLAN Checksum Offload Support option: The platform must do all the following:

a. Implement the ILLAN option.

b. Implement the H_ILLAN_ATTRIBUTES hcall().

c. Implement the “ibm,illan-options” property in the VIOA’s Device Tree node.

d. Implement the appropriate Checksum Offload Support bit(s) of the ILLAN Attributes, as defined in
Table 207‚ “ILLAN Attributes‚” on page 564.

Software Implementation Note: Fragmentation and encryption are not supported when the No Checksum bit of the
Buffer Descriptor is set to a 1.

16.4.6.2.2 H_SEND_LOGICAL_LAN Semantic Changes

There are several H_SEND_LOGICAL_LAN semantic changes required for the ILLAN Checksum Offload Support
option. See Section 16.4.3.5‚ “H_SEND_LOGICAL_LAN‚” on page 560 for the base semantics.

R1–16.4.6.2.2–1. For the ILLAN Checksum Offload Support option: The H_SEND_LOGICAL_LAN seman-
tics must be changed as follows:

16.4  Interpartition Logical LAN (ILLAN) Option 573

LoPAPR, Version 1.1 (March 24, 2016)

a. As shown in Table 208‚ “Summary of H_SEND_LOGICAL_LAN Semantics with Checksum Offload‚”
on page 573, and for multi-cast operations, the determination in this table must be applied for each desti-
nation.

b. If the No Checksum bit is set to a 1 in the first buffer descriptor and the adapter is not a Trunk Adapter, and
the source MAC address does not match the adapter's MAC address, then drop the packet.

R1–16.4.6.2.2–2. For the ILLAN Checksum Offload Support option: The Receiver DD Additional Require-
ments shown in Table 208‚ “Summary of H_SEND_LOGICAL_LAN Semantics with Checksum Offload‚”
on page 573 must be implemented.

R1–16.4.6.2.2–3. For the ILLAN Checksum Offload Support option: When the caller of
H_SEND_LOGICAL_LAN has set the No Checksum bit in the Control field to a 1, then they must also have
set the checksum field in the packet to 0.

Table 208. Summary of H_SEND_LOGICAL_LAN Semantics with Checksum Offload

Has Sender Set the
Appropriate

Checksum Offload
Support bit in the
ILLAN Attributes
for the Protocol

Being Used?

Has Receiver Set the
Appropriate

Checksum Offload
Support bit in the
ILLAN Attributes
for the Protocol

Being Used?

No Checksum bit
in the Buffer
Descriptor

Checksum Good
bit in the Buffer

Descriptor

H_SEND_LOGICAL_LAN
Additional Semantics

Receiver DD Additional
Requirements

no - 0 0 None. None.

no - Either bit non-0 Return H_Parameter

yes - 0 0 None. None.

yes no 0 1

Set the No Checksum and
Checksum Good bits in the
Buffer Descriptor to 00 on
transfer.

None.

yes no 1 1

Generate checksum and set
the No Checksum and
Checksum Good bits in the
Buffer Descriptor to 00 on
transfer.

None.

yes yes 0 1 None.
Do not need to do checksum
checking.

yes yes 1 1 None.

Do not need to do checksum
checking. Generate
checksum if packet is to be
passed on to an external LAN
(may be done by the IOA or
by the DD).

- - 1 0 Return H_Parameter

yes -

01 or 11 and packet type not supported by
the hypervisor, as indicated by the value

returned by the
H_ILLAN_ATTRIBUTES hcall()

Return H_Parameter

574

 LoPAPR, Version 1.1 (March 24, 2016)

16.4.6.2.3 Checksum Offload Padded Packet Support Option

Firmware may or may not support checksum offload for IPv4 packets that have been padded. The Checksum Offload
Padded Packet Support bit of the ILLAN Attributes specifies whether or not this option is supported.

R1–16.4.6.2.3–1. For the Checksum Offload Padded Packet Support Option: The platform must do all the fol-
lowing:

a. Implement the ILLAN Checksum Offload Support option.

b. Implement the Checksum Offload Padded Support bit of the ILLAN Attributes, as defined in Table 207‚
“ILLAN Attributes‚” on page 564, and set that bit to a value of 1.

16.4.6.3 ILLAN Buffer Size Control Option

It is the partition software’s responsibility to keep firmware supplied with enough buffers to keep packets from being
dropped. The ILLAN Buffer Size Control option gives the partition software a way to prevent a flood of small packets
from consuming buffers that have been allocated for larger packets.

When this option is implemented and the Buffer Size Control bit in the ILLAN Attributes is set to a 1 for the VLAN,
the hypervisor will keep a history of what buffer sizes have been registered. Then, when a packets arrives the history is
searched to find the smallest buffer size that will contain the packet. If that buffer size is depleted then the packet is
dropped by the hypervisor (H_Dropped) instead of searching for the next larger available buffer.

16.4.6.3.1 General

The following are the general requirements for this option. For H_SEND_LOGICAL_LAN changes, see
Section 16.4.6.2.2‚ “H_SEND_LOGICAL_LAN Semantic Changes‚” on page 572.

R1–16.4.6.3.1–1. For the ILLAN Buffer Size Control option: The platform must do all the following:

a. Implement the ILLAN option.

b. Implement the H_ILLAN_ATTRIBUTES hcall().

c. Implement the “ibm,illan-options” property in the VIOA’s Device Tree node.

d. Implement the Buffer Size Control bit of the ILLAN Attributes, as defined in Table 207‚ “ILLAN Attri-
butes‚” on page 564.

16.4.6.3.2 H_SEND_LOGICAL_LAN Semantic Changes

The following are the required semantic changes to the H_SEND_LOGICL_LAN hcall().

R1–16.4.6.3.2–1. For the ILLAN Buffer Size Control option: When the Buffer Size Control bit of the target of an
H_SEND_LOGIC_LAN hcall() is set to a 1, then the firmware for the H_SEND_LOGICAL_LAN hcall()
must not just search for any available buffer into which the packet will fit, but must instead only place the
packet into the receiver’s buffer if there is an available buffer of the smallest size previously registered by the
receiver which will fit the packet, and must drop the packet for that target otherwise.

16.5  Virtual SCSI (VSCSI) 575

LoPAPR, Version 1.1 (March 24, 2016)

16.5 Virtual SCSI (VSCSI)

Virtual SCSI (VSCI) support is provided by code running in a server partition that uses the mechanisms of the Reliable
Command/Response Transport and Logical Remote DMA of the Synchronous VIO Infrastructure to service I/O re-
quests for code running in a client partition, such that, the client partition appears to enjoy the services of its own SCSI
adapter (see Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637). The terms server
and client partitions refer to platform partitions that are respectively servers and clients of requests, usually I/O opera-
tions, using the physical I/O adapters (IOAs) that are assigned to the server partition. This allows a platform to have
more client partitions than it may have physical I/O adapters because the client partitions share I/O adapters via the
server partition.

The VSCSI architecture is built upon the architecture specified in the following sections:

 Section 17.2.1‚ “VIO Infrastructure - General‚” on page 600

 Section 17.2.2‚ “Partition Managed Class Infrastructure - General‚” on page 620

 Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637

16.5.1 VSCSI General

This section contains an informative outline of the architectural intent of the use of the Synchronous VIO Infrastructure
to provide VSCSI support, along with a few architectural requirements. Other implementations of the server and client
partition code, consistent with this architecture, are possible and may be preferable.

The architectural metaphor for the VSCSI subsystem is that the server partition provides the virtual equivalent of a sin-
gle SCSI DASD/Media string via each VSCSI server virtual IOA. The client partition provides the virtual equivalent of
a single port SCSI adapter via each VSCSI client IOA. The platform, through the partition definition, provides means
for defining the set of virtual IOA’s owned by each partition and their respective location codes. The platform also pro-
vides, through partition definition, instructions to connect each client partition’s VSCSI client IOA to a specific server
partition’s VSCSI server IOA. That is, the equivalent of connecting the adapter cable to the specific DASD/Media
string. The mechanism for specifying this partition definition is beyond the scope of this architecture. The human read-
able handle associated with the partition definition of virtual IOAs and their associated interconnection and resource
configuration is the virtual location code. The OF unit address (Unit ID) remains the invariant handle upon which
the OS builds its “physical to logical” configuration.

The client partition’s device tree contains one or more nodes notifying the partition that it has been assigned one or
more virtual adapters. The node’s “type” and “compatible” properties notify the partition that the virtual adapter
is a VSCSI adapter. The unit address of the node is used by the client partition to map the virtual device(s) to the
OS’s corresponding logical representations. The “ibm,my-dma-window” property communicates the size of the
RTCE table window panes that the hypervisor has allocated. The node also specifies the interrupt source number that
has been assigned to the Reliable Command/Response Transport connection and the RTCE range that the client parti-
tion device driver may use to map its memory for access by the server partition via Logical Remote DMA. The client
partition, uses the four hcall()s associated with the Reliable Command/Response Transport facility to register and
deregister its CRQ, manage notification of responses, and send command requests to the server partition.

The server partition’s device tree contains one or more node(s) notifying the partition that it is requested to supply
VSCSI services for one or more client partitions. The unit address (Unit ID) of the node is used by the server parti-
tion to map to the local logical devices that are represented by this VSCSI device. The node also specifies the interrupt
source number that has been assigned to the Reliable Command/Response Transport connection and the RTCE range
that the server partition device driver may use for its copy Logical Remote DMA. The server partition uses the four
hcall()s associated with the Reliable Command/Response Transport facility to register and deregister its Command re-
quest queue, manage notification of new requests, and send responses back to the client partition. In addition, the

576

 LoPAPR, Version 1.1 (March 24, 2016)

server partition uses the hcall()s of the Logical Remote DMA facility to manage the movement of commands and data
associated with the client requests.

The client partition, upon noting the device tree entry for the virtual adapter, loads the device driver associated with the
value of the “compatible” property. The device driver, when configured and opened, allocates memory for its
CRQ (an array, large enough for all possible responses, of 16 byte elements), pins the queue and maps it into the I/O
space of the RTCE window specified in the “ibm,my-dma-window” property using the standard kernel mapping
services that subsequently use the H_PUT_TCE hcall(). The queue is then registered using the H_REG_CRQ hcall().
Next, I/O request control blocks (within which the I/O requests commands are built) are allocated, pinned, and mapped
into I/O address space. Finally, the device driver registers to receive control when the interrupt source specified in the
virtual IOA’s device tree node signals.

Once the CRQ is setup, the device driver queues an Initialization Command/Response with the second byte of “Initial-
ize” in order to attempt to tell the hosting side that everything is setup on the hosted side. The response to this send may
be that the send has been dropped or has successfully been sent. If successful, the sender should expect back an Initial-
ization Command/Response with a second byte of “Initialization Complete,” at which time the communication path
can be deemed to be open. If dropped, then the sender waits for the receipt of an Initialization Command/Response
with a second byte of “Initialize,” at which time an “Initialization Complete” message is sent, and if that message is
sent successfully, then the communication path can be deemed to be open.

When the VSCSI Adapter device driver receives an I/O request from one of the SCSI device head drivers, it executes
the following sequence. First an I/O request control block is allocated. Then it builds the SCSI request within the con-
trol block, adds a correlator field (to be returned in the subsequent response), I/O maps any target memory buffers and
places their DMA descriptors into the I/O request control block. With the request constructed in the I/O request control
block, the driver constructs a DMA descriptor (Starting Offset, and length) representing the I/O request within the I/O
request control block. Lastly, the driver passes the I/O request’s DMA descriptor to the server partition using the
H_SEND_CRQ hcall(). Provided that the H_SEND_CRQ hcall() succeeds, the VSCSI Adapter device driver returns,
waiting for the response interrupt indicating that a response has been posted by the server partition to the device
driver’s response queue. The response queue entry contains the summary status and request correlator. From the re-
quest correlator, the device driver accesses the I/O request control block, and from the summary status, the device
driver determines how to complete the processing of the I/O request.

Notice that the client partition only uses the Reliable Command/Response Transport primitives; it does not use the
Logical Remote DMA primitives. Since the server partition’s RTCE tables are not authorized for access by the client
partition, any attempt by the client partition to modify server partition memory would be prevented by the hypervisor.
RTCE table access is granted on a connection by connection basis (client/server virtual device pair). If a client partition
happens to be serving some other logical device, then the partition is entitled to use Logical Remote DMA for the vir-
tual devices that is serving.

The server partition, upon noting the device tree entry for the virtual adapter, loads the device driver associated with
the value of the “compatible” property. The device driver, when configured and opened, allocates memory for its
request queue (an array, large enough for all possible outstanding requests, of 16 byte elements). The driver then pins
the queue and maps it into I/O space, via the kernel’s I/O mapping services that invoke the H_PUT_TCE hcall(), using
the first window pane specified in the “ibm,my-dma-window” property. The queue is then registered using the
H_REG_CRQ hcall(). Next, I/O request control blocks (within which the I/O request commands are built) are allo-
cated, pinned, and I/O mapped. Finally the device driver registers to receive control when the interrupt source specified
in the virtual IOA’s device tree node signals.

Once the CRQ is setup, the device driver queues an Initialization Command/Response with the second byte of “Initial-
ize” in order to attempt to tell the hosted side that everything is setup on the hosting side. The response to this send may
be that the send has been dropped or has successfully been sent. If successful, the sender should expect back an Initial-
ization Command/Response with a second byte of “Initialization Complete,” at which time the communication path
can be deemed to be open. If dropped, then the sender waits for the receipt of an Initialization Command/Response
with a second byte of “Initialize,” at which time an “Initialization Complete” message is sent, and if that message is
sent successfully, then the communication path can be deemed to be open.

16.5  Virtual SCSI (VSCSI) 577

LoPAPR, Version 1.1 (March 24, 2016)

When the server partition’s device driver receives an I/O request from its corresponding client partition’s VSCSI
adapter drivers, it is notified via the interrupt registered for above. The server partition’s device driver selects an I/O re-
quest control block for the requested operation. It then uses the DMA descriptor from the request queue element to
transfer the SCSI request from the client partition’s I/O request control block to its own (allocated above), using the
H_COPY_RDMA hcall() through the second window pane specified in the “ibm,my-dma-window” property. The
server partition’s device driver then uses kernel services, that are extended, to register the I/O request’s DMA descrip-
tors into extended capacity cross memory descriptors (ones capable of recording the DMA descriptors). These cross
memory descriptors are later mapped by the server partition’s physical device drivers into the physical I/O DMA ad-
dress space of the physical I/O adapters using the kernel services, that have been similarly extended to call the
H_PUT_RTCE hcall(), based upon the value of the LIOBN field reference by the cross memory descriptor. At this
point, the server partition’s VSCSI device driver delivers what appears to be a SCSI request to be decoded and routed
through the server partition’s file sub-system for processing. When the request completes, the server partition’s VSCSI
device driver is called by the file sub-system and it packages the summary status along with the request correlator into
a response message that it sends to the client partition using the H_SEND_CRQ hcall(), then recycles the resources re-
corded in the I/O request control block, and the block itself.

The LIOBN value in the second window pane of the server partition’s “ibm,my-dma-window” property is in-
tended to be an indirect reference to the RTCE table of the client partition. If, for some reason, the physical location of
the client partition’s RTCE table changes or it becomes invalid, this level of indirection allows the hypervisor to deter-
mine the current target without changing the LIOBN number as seen by the server partition. The H_PUT_TCE and
H_PUT_RTCE hcall()s do not map server partition memory into the second window pane; the second window pane is
only available for use by server partition via the Logical RDMA services to reference memory mapped into it by the
client partition’s IOA.

This architecture does not specify the payload format of the requests or responses. However, the architectural intent is
supplied in the following tables for reference.

Table 209. General Form of Reliable CRQ Element

Byte Offset Field Name Subfield Name Description

0 Header
Contains Element Valid Bit plus Event Type Encodings (see Table 230‚ “CRQ Entry Header
Byte Values‚” on page 621).

1
Payload

Format/Transport
Event Code

For Valid Command Response Entries, see Table 210‚ “Example Reliable CRQ Entry Format
Byte Definitions for VSCSI‚” on page 577. For Transport Event Codes see Table 232‚
“Transport Event Codes‚” on page 622.

2-15 Format Dependent.

Table 210. Example Reliable CRQ Entry Format Byte Definitions for VSCSI

Format Byte Value Definition

0x0 Unused

0x1 VSCSI Requests

0x2 VSCSI Responses

0x03 - 0xFE Reserved

0xFF Reserved for Expansion

578

 LoPAPR, Version 1.1 (March 24, 2016)

See also Appendix E, “A Protocol for VSCSI Communications,” on page 795.

16.5.2 Virtual SCSI Requirements

This normative section provides the general requirements for the support of VSCSI.

R1–16.5.2–1. For the VSCSI option: The platform must implement the Reliable Command/Response Transport
option as defined in Section 17.2.3.1‚ “Reliable Command/Response Transport Option‚” on page 637.

R1–16.5.2–2. For the VSCSI option: The platform must implement the Logical Remote DMA option as defined in
Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on page 642.

In addition to the firmware primitives, and the structures they define, the partition’s OS needs to know specific infor-
mation regarding the configuration of the virtual IOA’s that it has been assigned so that it can load and configure the
correct device driver code. This information is provided by the OF device tree node associated with the virtual IOA
(see Section 16.5.2.1‚ “Client Partition Virtual SCSI Device Tree Node‚” on page 578 and Section 16.5.2.2‚ “Server
Partition Virtual SCSI Device Tree Node‚” on page 580).

16.5.2.1 Client Partition Virtual SCSI Device Tree Node

Client partition VSCSI device tree nodes have associated packages such as disk-label, deblocker, iso-13346-files and
iso-9660-files as well as children nodes such as block and byte as appropriate to the specific virtual IOA configuration
as would the node for a physical IOA of type scsi-3.

Table 211. Example VSCSI Command Queue Element

Byte Offset Field Value Description

0 0x80 Valid Header

1 0x01 VSCSI Request Format

2-3 NA Reserved

4-7 Length of the request block to be transferred

8-15 I/O address of beginning of request

Table 212. Example VSCSI Response Queue Element

Byte Offset Field Value Description

0 0x80 Valid Header

1 0x02 VSCSI Response Format

2-3 NA Reserved

4-7 Summary Status

8-15 8 byte command correlator

16.5  Virtual SCSI (VSCSI) 579

LoPAPR, Version 1.1 (March 24, 2016)

R1–16.5.2.1–1. For the VSCSI option: The platform’s OF device tree for client partitions must include as a child
of the /vdevice node, a node of name “v-scsi” as the parent of a sub-tree representing the virtual IOAs as-
signed to the partition.

R1–16.5.2.1–2. For the VSCSI option: The platform’s v-scsi OF node must contain properties as defined in
Table 214‚ “Properties of the VSCSI Node in the Server Partition‚” on page 580 (other standard I/O adapter
properties are permissible as appropriate).

Table 213. Properties of the VSCSI Node in the Client Partition

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“v-scsi”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“vscsi”.

“model” NA Property not present.

“compatible” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,v-scsi”. “IBM,v-scsi-2” precedes
“IBM,vsci” if it is included in the value of this property.

“used-by-rtas”
See

Definition
Column

Present if appropriate.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA
presented as an encoded array as with encode-string. The value shall be of the form specified in
Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the register addresses, used as the unit
address (unit ID), associated with this virtual IOA presented as an encoded array as with encode-phys
of length “#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit
address no actual locations used, therefore, the size field has zero cells (does not exist) as determined by
the value of the “#size-cells” property).

“ibm,my-dma-window” Y
Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of three values (LIOBN, phys, size) encoded as with encode-int, encode-phys, and
encode-int.

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL
hcall().

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

“ibm,#dma-size-cells”
See

Definition
Column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

Definition
Column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

580

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.5.2.1–3. For the VSCSI option: The platform’s v-scsi node must have as children the appropriate block
(disk) and byte (tape) nodes.

16.5.2.2 Server Partition Virtual SCSI Device Tree Node

Server partition VSCSI IOA nodes have no children nodes.

R1–16.5.2.2–1. For the VSCSI option: The platform’s OF device tree for server partitions must include as a child
of the /vdevice node, a node of name “v-scsi-host” as the parent of a sub-tree representing the vir-
tual IOAs assigned to the partition.

R1–16.5.2.2–2. For the VSCSI option: The platform’s v-scsi-host node must contain properties as defined in
Table 214‚ “Properties of the VSCSI Node in the Server Partition‚” on page 580 (other standard I/O adapter
properties are permissible as appropriate).

Table 214. Properties of the VSCSI Node in the Server Partition

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“v-scsi-host”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“v-scsi-host”.

“model” NA Property not present.

“compatible” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,v-scsi-host”. “IBM,v-scsi-host-2”
precedes “IBM,vsci-host” if it is included in the value of this property.

“used-by-rtas”
See

Definition
Column

Present if appropriate.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA
presented as an encoded array as with encode-string. The value shall be of the form
Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the register addresses, used as the unit
address (unit ID), associated with this virtual IOA presented as an encoded array as with encode-phys
of length “#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit
address no actual locations used, therefore, the size field has zero cells (does not exist) as determined by
the value of the “#size-cells” property).

“ibm,my-dma-window” Y

Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of two sets (two window panes) of three values (LIOBN, phys, size) encoded as with
encode-int, encode-phys, and encode-int. Of these two triples, the first describes the
window pane used to map server partition memory, the second is the window pane through which the
client partition maps its memory that it makes available to the server partition. (Note the mapping between
the LIOBN in the second window pane of a server virtual IOA’s “ibm,my-dma-window” property
and the corresponding client IOA’s RTCE table is made when the CRQ successfully completes
registration. See Section 17.2.1.2‚ “RTCE Table and Properties of the Children of the /vdevice Node‚” on
page 601 for more information on window panes.)

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL hcall()

16.5  Virtual SCSI (VSCSI) 581

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

“ibm,vserver” Y Property name specifying that this is a virtual server node.

“ibm,#dma-size-cells”
See

Definition
Column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

Definition
Column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

Table 214. Properties of the VSCSI Node in the Server Partition

Property Name Required? Definition

582

 LoPAPR, Version 1.1 (March 24, 2016)

16.6 Virtual Terminal (Vterm)

This section defines the Virtual Terminal (Vterm) options (Client Vterm option and Server Vterm option). Vterm IOAs
are of the hypervisor simulated class of VIO. See also Appendix D, “A Protocol for a Virtual TTY Interface,” on
page 787.

16.6.1 Vterm General

This section contains an informative outline of the architectural intent of the use of Vterm support.

The architectural metaphor for the Vterm IOA is that of an Async IOA. The connection at the other end of the Async
“cable” may be another Vterm IOA in a server partition, the hypervisor, or the HMC.

A partition’s device tree contains one or more nodes notifying the partition that it has been assigned one or more Vterm
client adapters (each LoPAPR partition has at least one). The node’s “type” and “compatible” properties notify
the partition that the virtual adapter is a Vterm client adapter. The unit address of the node is used by the parti-
tion to map the virtual device(s) to the OS’s corresponding logical representations. The node’s “interrupts” prop-
erty, if it exists, specifies the interrupt source number that has been assigned to the client Vterm IOA for receive data.
The partition, uses the H_GET_TERM_CHAR and H_PUT_TERM_CHAR hcall()s to receive data from and send data
to the client Vterm IOA. If the node contains the “interrupts” property, the partition may optionally use the
ibm,int-on, ibm,int-off, ibm,set-xive, ibm,get-xive RTAS calls, and the H_VIO_SIGNAL hcall() to manage the client
Vterm IOA interrupt.

A partition’s device tree may also contain one or more node(s) notifying the partition that it is requested to supply
server Vterm IOA services for one or more client Vterm IOAs. The node’s “type” and “compatible” properties
notify the partition that the virtual adapter is a server Vterm IOA. The unit address (Unit ID) of the node is used by
the partition to map the virtual device(s) to the OS’s corresponding logical representations. The node’s “inter-
rupts” property specifies the interrupt source number that has been assigned to the server Vterm IOA for receive
data. The partition uses the H_VTERM_PARTNER_INFO hcall() to find out which unit address(es) in which parti-
tion(s) to which it is allowed to attach (that is, to which client Vterm IOAs it is allowed to attach). The partition then
uses the H_REGISTER_VTERM to setup the connection between a server and a client Vterm IOAs, and uses the
H_GET_TERM_CHAR and H_PUT_TERM_CHAR hcall()s to receive data from and send data to the server Vterm
IOA. In addition, the partition may optionally use the ibm,int-on, ibm,int-off, ibm,set-xive, ibm,get-xive RTAS calls,
and the H_VIO_SIGNAL hcall() to manage the server Vterm IOA interrupt.

Table 215‚ “Client Vterm versus Server Vterm Comparison‚” on page 582 shows a comparison between the client and
server versions of Vterm.

Table 215. Client Vterm versus Server Vterm Comparison

Client Server

The following hcall()s apply:
H_PUT_TERM_CHAR
H_GET_TERM_CHAR

H_VIO_SIGNAL (optional use with Client)

N/A

The following hcall()s are valid:
H_VTERM_PARTNER_INFO

H_REGISTER_VTERM
H_FREE_VTERM

vty node vty-server node

16.6  Virtual Terminal (Vterm) 583

LoPAPR, Version 1.1 (March 24, 2016)

16.6.2 Vterm Requirements

This normative section provides the general requirements for the support of Vterm.

R1–16.6.2–1. For the LPAR option: the Client Vterm option must be implemented.

16.6.2.1 Character Put and Get hcall()s

The following hcall()s are used to send data to and get data from both the client and sever Vterm IOAs.

16.6.2.1.1 H_GET_TERM_CHAR

Syntax:

uint64 hcall(const uint64 H_GET_TERM_CHAR, int64 termno)

Parameters:

 termno: The unit address of the Vterm IOA, from the “reg” property of the Vterm IOA.

Semantics:

 Hypervisor checks the termno parameter for validity against the Vterm IOA unit addresses assigned to the parti-
tion, else return H_Parameter.

 Hypervisor returns H_Hardware if it detects that the virtual console terminal physical connection is not working.

 Hypervisor returns H_Closed if it detects that the virtual console associated with the termno parameter is not open
(in the case of connection to a server Vterm IOA, this means that the server code has not made the connection to
this specific client Vterm IOA).

 Hypervisor returns H_Success in all other cases, returning maximum number of characters available in the parti-
tion’s virtual console terminal input buffer (up to 16) -- a len value of 0 indicates that the input buffer is empty.

 Upon return with H_Success register R4 contains the number of bytes (if any) returned in registers R5 and R6.

 Upon return with H_Success the return character string starts in the high order byte of register R5 and proceeds
toward the low order byte in register R6 for the number of characters specified in R4. The contents of all other
byte locations of registers R5 and R6 are undefined.

The “reg” property or the vty node(s)
enumerates the valid client Vterm IOA unit address(es)

The “reg” property or the vty-server node(s)
enumerates the valid server Vterm IOA unit address(es)

H_VTERM_PARTNER_INFO is used to get
valid client Vterm IOA partition ID(s) and corresponding unit

address(es) to which the server Vterm IOA is allowed to connect

“interrupts” property optional:
Platform may or may not provide

If provided, Vterm driver may or may not use

“interrupts” property required:
Platform must provide

If provided, Vterm driver may or may not use

Table 215. Client Vterm versus Server Vterm Comparison (Continued)

Client Server

584

 LoPAPR, Version 1.1 (March 24, 2016)

16.6.2.1.2 H_PUT_TERM_CHAR

Syntax:

int64 hcall(const uint64 H_PUT_TERM_CHAR, int64 termno, int64 len, unit64 char0_7, init64 char8_15)

Parameters:

 termno: The unit address of the Vterm IOA, from the “reg” property of the Vterm IOA.

 len: The length of the string to transmit through the virtual terminal port. Valid values are in the range of 0-16.

 char0_7 and char8_15: The string starts in the high order byte of register R6 and proceeds toward the low order
byte in register R7

Semantics:

 Hypervisor checks the termno parameter for validity against the Vterm IOA unit addresses assigned to the parti-
tion, else return H_Parameter.

 Hypervisor returns H_Hardware if it detects that the virtual console terminal physical connection is not working.

 Hypervisor returns H_Closed if it detects that the virtual console session is not open (in the case of connection to
a server Vterm IOA, this means that the server code has not made the connection to this specific client Vterm
IOA).

 If the length parameter is outside of the values 0-16 the hypervisor immediately returns H_Parameter with no
other action.

 If the partition’s virtual console terminal buffer has room for the entire string, the hypervisor queues the output
string and returns H_Success. Note: There is always room for a zero length string (a zero length write can be used
to test the virtual console terminal connection).

 If the buffer cannot hold the entire string, no data is enqueued and the return code is H_Busy.

16.6.2.2 Interrupts

The interrupt source number is presented in the “interrupts” property of the Vterm node, when receive queue in-
terrupts are implemented for the Vterm. The ibm,int-on, ibm,int-off, ibm,set-xive, ibm,get-xive RTAS calls, and
H_VIO_SIGNAL hcall() are used to manage the interrupt.

Interrupts and the “interrupts” property are always implemented for the server Vterm IOA, and may be imple-
mented for the client Vterm IOA.

The interrupt mechanism is edge-triggered and is capable of presenting only one interrupt signal at a time from any
given interrupt source. Therefore, no additional interrupts from a given source are ever signaled until the previous in-
terrupt has been processed through to the issuance of an H_EOI hcall(). Specifically, even if the interrupt mode is en-
abled, the effect is to interrupt on an empty to non-empty transition of the receiver queue or upon the closing of the
connection between the server and client. However, as with any asynchronous posting operation race conditions are to
be expected. That is, an enqueue can happen in a window around the H_EOI hcall() so that the receiver should poll the
receive queue after an H_EOI using H_GET_TERM_CHAR after an H_EOI, to prevent losing initiative.

R1–16.6.2.2–1. For the Server Vterm option: The platform must implement the “interrupts” property in all
server Vterm device tree nodes (vty-server), and must set the interrupt in that property for the receive
data interrupt for the IOA.

R1–16.6.2.2–2. For the Client Vterm and Server Vterm options: When implemented, the characteristics of the
Vterm interrupts must be as follows:

16.6  Virtual Terminal (Vterm) 585

LoPAPR, Version 1.1 (March 24, 2016)

a. All must be edge-triggered.

b. The receive interrupt must be activated when the Vterm receive queue goes from empty to non-empty.

c. The receive interrupt must be activated when the Vterm connection from the client to the server goes from
open to closed.

16.6.2.3 Client Vterm Device Tree Node (vty)

All platforms that implement LPAR, also implement at least one client Vterm IOA per partition.

R1–16.6.2.3–1. For the Client Vterm option: The H_GET_TERM_CHAR and H_TERM_CHAR hcall()s must be
implemented.

R1–16.6.2.3–2. For the Client Vterm option: The platform’s OF device tree must include as a child of the /vde-
vice node, one or more nodes of type “vty”; one for each client Vterm IOA.

R1–16.6.2.3–3. For the Client Vterm option: The platform’s vty OF node must contain properties as defined in
Table 216‚ “Properties of the vty Node (Client Vterm IOA)‚” on page 585 (other standard I/O adapter proper-
ties are permissible as appropriate).

Table 216. Properties of the vty Node (Client Vterm IOA)

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name. The value shall be
“vty”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type. The value shall be
“serial”.

“model” NA Property not present.

“compatible” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA. The value shall include “hvterm1” when the virtual IOA will connect to a server
with no special protocol, and shall include “hvterm-protocol” when the virtual IOA will connect
to a server that requires a protocol to control modems or hardware control signals.

“used-by-rtas” NA Property not present.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA
presented as an encoded array as with encode-string. The value shall be of the form specified in
Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the register addresses, used as the unit
address (unit ID), associated with this virtual IOA presented as an encoded array as with encode-phys
of length “#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit
address no actual locations used, therefore, the size field has zero cells (does not exist) as determined by
the value of the “#size-cells” property).

“interrupts”
See

Definition
Column

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL
hcall(). If provided, this property will present one interrupt; the receive data interrupt.

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

586

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.6.2.3–4. For the Client Vterm option: If the compatible property in the vty node is “hvterm-proto-
col”, then the protocol that the client must use is defined in the document entitled Protocol for Support of
Physical Serial Port Using a Virtual TTY Interface.

16.6.2.4 Server Vterm

Server Vterm IOAs allow a partition to serve a partner partition’s client Vterm IOA.

16.6.2.4.1 Server Vterm Device Tree Node (vty-server) and Other Requirements

R1–16.6.2.4.1–1. For the Server Vterm option: The H_GET_TERM_CHAR, H_PUT_TERM_CHAR,
H_VTERM_PARTNER_INFO, H_REGISTER_VTERM, and H_FREE_VTERM hcall()s must be imple-
mented.

R1–16.6.2.4.1–2. For the Server Vterm option: The platform’s OF device tree for partitions implementing server
Vterm IOAs must include as a child of the /vdevice node, one or more nodes of type “vty-server”;
one for each server Vterm IOA.

R1–16.6.2.4.1–3. For the Server Vterm option: The platform’s vty-server node must contain properties as
defined in Table 217‚ “Properties of the vty-server Node (Server Vterm IOA)‚” on page 586 (other standard
I/O adapter properties are permissible as appropriate).

Table 217. Properties of the vty-server Node (Server Vterm IOA)

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices [2], specifying the virtual device name. The value shall be
“vty-server”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices [2], specifying the virtual device type. The value shall be
“serial-server”.

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices [2], specifying the programming models that are compatible with this
virtual IOA. The value shall include “hvterm2”.

“used-by-rtas” NA Property not present.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA presented
as an encoded array as with encode-string. The value shall be of the form Section 12.3.2.16‚ “Virtual
Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices [2], specifying the register addresses, used as the unit address (unit ID),
associated with this virtual IOA presented as an encoded array as with encode-phys of length specified by
“#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit address no actual
locations used, therefore, the size field has zero cells (does not exist) as determined by the value of the
“#size-cells” property).

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell containing
the interrupt source number, and the second cell containing the sense code 0 indicating positive edge triggered.
The interrupt source number being the value returned by the H_XIRR or H_IPOLL hcall(). This property will
present one interrupt; the receive data interrupt.

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

16.6  Virtual Terminal (Vterm) 587

LoPAPR, Version 1.1 (March 24, 2016)

16.6.2.4.2 Server Vterm hcall()s

The following hcall()s are unique to the server Vterm IOA.

16.6.2.4.2.1 H_VTERM_PARTNER_INFO

This hcall is used to retrieve the list of Vterms to which the specified server Vterm IOA is permitted to connect. The
list is retrieved by making repeated calls, and returns sets of triples: partner partition ID, partner unit address, and part-
ner location code. Passing in the previously returned value will return the next value in the list of allowed connections.
Passing in a value of 0xFF...FF will return the first value in the list.

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid
H_Hardware The function failed due to unrecoverable hardware failure. */

const uint64 H_VTERM_PARTNER_INFO, /* Gets possible partner connections */
uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 partner-partition-id, /* the last partner partition ID returned, or 0xFF...FF to start */
uint64 partner-unit-addr /* the last partner unit address returned, or 0xFF...FF to start */
uint64 buffr-addr); /* the logical address of the buffer where the data is to be returned */

Parameters:

 unit-address: Virtual IOA’s unit address, as specified in the IOA’s device tree node.

 partner-partition-id: The partner partition ID of the last partner partition ID and partner unit address pair returned. If
a value of 0xFF...FF is specified, the call returns the first item in the list.

 partner-unit-addr: The partner unit address of the last partner partition ID and partner unit address pair returned. If a
value of 0xFF...FF is specified, the call returns the first item in the list.

 buffr-addr: The logical address of a single page in memory, belonging to the calling partition, which is used to return
the next triple of information (partner partition ID, partner unit address, and Converged Location Code). The calling
partition cannot migrate the page during the duration of the call, otherwise the call will fail.

Buffer format on return with H_Success:

 First eight bytes: Eight byte partner partition ID of the partner partition ID and partner unit address pair from the list,
or 0xFF...FF if partner partition ID and partner unit address passed in the input parameters was the last item in the
list of valid connections.

 Second eight bytes: Eight byte partner unit address associated with the partner partition ID (as returned in first 8
bytes of the buffer), or 0xFF...FF if the partner partition ID and partner unit address passed in the input parameters
was the last item in the list of valid connections.

 Beginning at the 17 byte in the buffer: NULL-terminated Converged Location Code associated with the partner unit
address and partner partition ID (a returned in the first 16 bytes of the buffer), or just a NULL string if the partner
partition ID and partner unit address passed in the input parameters was the last item in the list of valid connections.

“ibm,vserver” Y Property name specifying that this is a virtual server node.

Table 217. Properties of the vty-server Node (Server Vterm IOA) (Continued)

Property Name Required? Definition

588

 LoPAPR, Version 1.1 (March 24, 2016)

Semantics:

 Validate that unit-address belongs to the partition and to a server Vterm IOA, else H_Parameter.

 If partner-partition-id and partner-unit-addr together do not match a valid partner partition ID and partner unit ad-
dress pair in the list of valid connections for this unit-address, then return H_Parameter.

 If the 4 KB page associated with buffr-addr does not belong to the calling partition, then return H_Parameter.

 If the buffer associated with buffr-addr does not begin on a 4 K boundary, then return H_Parameter.

 If the calling partition attempts to migrate the buffer page associated with buffr-addr during the duration of the
H_VTERM_PARTNER_INFO call, then return H_Parameter.

 If partner-partition-id is equal to 0xFF...FF, then select the first item from the list of valid connections, format the
buffer as specified, above, for this item, and return H_Success.

 If partner-partition-id and partner-unit-addr together matches a valid partner partition ID and partner unit address
pair in the list of valid connections, and if this is the last valid connection in the list, then format the buffer as speci-
fied, above, with the partner partition ID and partner unit address both set to 0xFF...FF, and the Converged Location
Code set to the NULL string, and return H_Success.

 If partner-partition-id and partner-unit-addr together matches a valid partner partition ID and partner unit address
pair in the list of valid connections, then select the next item from the list of valid connections, and format the buffer
as specified, above, and return H_Success.

16.6.2.4.2.2 H_REGISTER_VTERM

This hcall has the effect of “opening” the connection to the client Vterm IOA in the specified partition ID and which
has the specified unit address. The architectural metaphor for this is the connecting of the cable between two Async
IOAs. The hcall fails if the partition does not have the authority to connect to the requested partition/unit address pair.
The hcall() also fails if the specified partition/unit address is already in use (for example, by another partition or the
HMC)

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid
H_Hardware The function failed due to unrecoverable hardware failure. */

const uint64 H_REGISTER_VTERM, /* Makes connection between server and partner Vterm IOAs */
uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 partner-partition-id, /* the partner ID to which to be connected */
uint64 partner-unit-addr); /* the partner unit address to which to be connected */

Parameters:

 unit-address: The server Virtual IOA’s unit address, as specified in the IOA’s device tree node.

 partner-partition-id: The partition ID of the partition ID and unit address pair to which to be connected.

 partner-unit-addr: The unit address of the partition ID and unit address pair to which to be connected.

Semantics:

 Validate that unit-address belongs to the partition and to a server Vterm IOA and that there does not exist a valid
connection between this server Vterm IOA and a partner, else H_Parameter.

16.6  Virtual Terminal (Vterm) 589

LoPAPR, Version 1.1 (March 24, 2016)

 If partner-partition-id and partner-unit-addr together do not match a valid partition ID and unit address pair in the list
of valid connections for this unit-address, then return H_Parameter,

 Else make connection between the server Vterm IOA specified by unit-address and the client Vterm IOA speci-
fied by the partner-partition-id and partner-unit-addr pair, allowing future H_PUT_TERM_CHAR and
H_GET_TERM_CHAR operations to flow between the two Vterm IOAs, and return H_Success.

Software Implementation Note: An H_Parameter will be returned to the H_REGISTER_VTERM if a DLPAR operation
has been performed which changes the list of possible server to client Vterm connections. After a DLPAR
operation which affects a partition’s server Vterm IOA connection list, a call to H_VTERM_PARTNER_INFO is
needed to get the current list of possible connections.

16.6.2.4.2.3 H_FREE_VTERM

This hcall has the effect of “closing” the connection to the partition/unit address pair. The architectural metaphor for
this is the removal of the cable between two Async IOAs. After closing, the partner partition’s server Vterm IOA
would now be available for serving by another partner (for example, another partition or the HMC).

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid
H_Hardware, The function failed due to unrecoverable hardware failure.
H_Busy Try, again
H_LongBusyOrder1mSec, Try again (hint: may be up to 1mSec completion)
H_LongBusyOrder10mSec, Try again (hint: may be up to 10mSec completion) */

const uint64 H_FREE_VTERM, /* Break connection between server and partner Vterm IOAs */
uint64 unit-address); /* As specified in the Virtual IOA’s device tree node */

Parameters:

 unit-address: Virtual IOA’s unit address, as specified in the IOA’s device tree node.

Semantics:

 Validate that the unit address belongs to the partition and to a server Vterm IOA and that there exists a valid connec-
tion between this server Vterm IOA and a partner, else H_Parameter.

 Break the connection between the server Vterm IOA specified by the unit address and the client Vterm IOA, pre-
venting further H_PUT_TERM_CHAR and H_GET_TERM_CHAR operations between the two Vterm IOAs (until
a future successful H_REGISTER_VTERM operation), and return H_Success.

Implementation Note: If the hypervisor returns an H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec,
software must call H_FREE_VTERM again with the same parameters. Software may choose to treat
H_LongBusyOrder1mSec and H_LongBusyOrder10mSec the same as H_Busy. The hypervisor, prior to returning
H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec, will have placed the virtual adapter in a state
that will cause it to not accept any new work nor surface any new virtual interrupts.

590

 LoPAPR, Version 1.1 (March 24, 2016)

16.7 Virtual Fibre Channel (VFC) using NPIV

N_Port ID Virtualization (NPIV) is part of the Fibre Channel (FC) standards. NPIV allows multiple World Wide Port
Names (WWPNs) to be mapped to a single physical port of a FC adapter. This section defines a Virtual Fibre Channel
(VFC) interface to a server partition interfacing to a physical NPIV adapter that allows multiple partitions to share a
physical port using different WWPNs. The implementation support is provided by code running in a server partition
that uses the mechanisms of the Reliable Command/Response Transport and Logical Remote DMA of the Synchro-
nous VIO Infrastructure to service I/O requests for code running in a client partition. The client partition appears to en-
joy the services of its own FC adapter (see Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on
page 637) with a WWPN visible to the FC fabric. The terms server and client partitions refer to platform partitions that
are respectively servers and clients of requests, usually I/O operations, using the physical I/O adapters (IOAs) that are
assigned to the server partition. This allows a platform to have more client partitions than it may have physical I/O
adapters because the client partitions share I/O adapters via the server partition.

The VFC model makes use of Remote DMA which is built upon the architecture specified in the following sections:

 Section 17.2.1‚ “VIO Infrastructure - General‚” on page 600

 Section 17.2.2‚ “Partition Managed Class Infrastructure - General‚” on page 620

 Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637

16.7.1 VFC and NPIV General

This section contains an informative outline of the architectural intent of the use of VFC and NIPV, and it assumes the
user is familiar with Section 16.5.1‚ “VSCSI General‚” on page 575 concerning VSCSI architecture and the with the
FC standards. Other implementations of the server and client partition code, consistent with this architecture, are possi-
ble and may be preferable.

The client partition provides the virtual equivalent of a single port FC adapter via each VFC client IOA. The platform,
through the partition definition, provides means for defining the set of virtual IOA’s owned by each partition and their
respective location codes. The platform also provides, through partition definition, instructions to connect each client
partition’s VFC client IOA to a specific server partition’s VFC server IOA. The mechanism for specifying this partition
definition is beyond the scope of this architecture. The human readable handle associated with the partition definition
of virtual IOAs and their associated interconnection and resource configuration is the virtual location code. The OF
unit address (Unit ID) remains the invariant handle upon which the OS builds its “physical to logical” configura-
tion. The platform also provides a method to assign unique WWPNs for each VFC client adapter. The port names are
used by a SAN administrator to grant access to storage to a client partition. The mechanism for allocating port names is
beyond the scope of this architecture.

The client partition’s device tree contains one or more nodes notifying the partition that it has been assigned one or
more virtual adapters. The node’s “type” and “compatible” properties notify the partition that the virtual adapter
is a VFC adapter. The unit address of the node is used by the client partition to map the virtual device(s) to the
OS’s corresponding logical representations. The “ibm,my-dma-window” property communicates the size of the
RTCE table window panes that the hypervisor has allocated. The node also specifies the interrupt source number that
has been assigned to the Reliable Command/Response Transport connection and the RTCE range that the client parti-
tion device driver may use to map its memory for access by the server partition via Logical Remote DMA. The client
partition also reads it's WWPNs from the device tree. Two WWPNs are presented to the client in the properties
“ibm,port-wwn-1”, and “ibm,port-wwn-2”, and the server tells the client, through a CRQ protocol ex-
change, which one of the two to use. The client partition, uses the four hcall()s associated with the Reliable Com-
mand/Response Transport facility to register and deregister its CRQ, manage notification of responses, and send
command requests to the server partition.

16.7  Virtual Fibre Channel (VFC) using NPIV 591

LoPAPR, Version 1.1 (March 24, 2016)

The server partition’s device tree contains one or more node(s) notifying the partition that it is requested to supply VFC
services for one or more client partitions. The unit address (Unit ID) of the node is used by the server partition to
map to the local logical devices that are represented by this VFC device. The node also specifies the interrupt source
number that has been assigned to the Reliable Command/Response Transport connection and the RTCE range that the
server partition device driver may use for its copy Logical Remote DMA. The server partition uses the four hcall()s as-
sociated with the Reliable Command/Response Transport facility to register and deregister its Command request
queue, manage notification of new requests, and send responses back to the client partition. In addition, the server par-
tition uses the hcall()s of the Logical Remote DMA facility to manage the movement of commands and data associated
with the client requests.

The client partition, upon noting the device tree entry for the virtual adapter, loads the device driver associated with the
value of the “compatible” property. The device driver, when configured and opened, allocates memory for its
CRQ (an array, large enough for all possible responses, of 16 byte elements), pins the queue and maps it into the I/O
space of the RTCE window specified in the “ibm,my-dma-window” property using the standard kernel mapping
services that subsequently use the H_PUT_TCE hcall(). The queue is then registered using the H_REG_CRQ hcall().
Next, I/O request control blocks (within which the I/O requests commands are built) are allocated, pinned, and mapped
into I/O address space. Finally, the device driver registers to receive control when the interrupt source specified in the
virtual IOA’s device tree node signals.

Once the CRQ is setup, the device driver queues an Initialization Command/Response with the second byte of “Initial-
ize” in order to attempt to tell the hosting side that everything is setup on the hosted side. The response to this send may
be that the send has been dropped or has successfully been sent. If successful, the sender should expect back an Initial-
ization Command/Response with a second byte of “Initialization Complete,” at which time the communication path
can be deemed to be open. If dropped, then the sender waits for the receipt of an Initialization Command/Response
with a second byte of “Initialize,” at which time an “Initialization Complete” message is sent, and if that message is
sent successfully, then the communication path can be deemed to be open.

When the VFC Adapter device driver receives an I/O request from one of the FC device head drivers, it executes the
following sequence. First an I/O request control block is allocated. Then it builds the FC Information Unit (FC IU) re-
quest within the control block, adds a correlator field (to be returned in the subsequent response), I/O maps any target
memory buffers and places their DMA descriptors into the I/O request control block. With the request constructed in
the I/O request control block, the driver constructs a DMA descriptor (Starting Offset, and length) representing the FC
IU within the I/O request control block. It also constructs a DMA descriptor for the FC Response Unit. Lastly, the
driver passes the I/O request’s DMA descriptor to the server partition using the H_SEND_CRQ hcall(). Provided that
the H_SEND_CRQ hcall() succeeds, the VFC Adapter device driver returns, waiting for the response interrupt indicat-
ing that a response has been posted by the server partition to the device driver’s response queue. The response queue
entry contains the summary status and request correlator. From the request correlator, the device driver accesses the I/O
request control block, the summary status, and the FC Response Unit and determines how to complete the processing
of the I/O request.

Notice that the client partition only uses the Reliable Command/Response Transport primitives; it does not use the
Logical Remote DMA primitives. Since the server partition’s RTCE tables are not authorized for access by the client
partition, any attempt by the client partition to modify server partition memory would be prevented by the hypervisor.
RTCE table access is granted on a connection by connection basis (client/server virtual device pair). If a client partition
happens to be serving some other logical device, then the partition is entitled to use Logical Remote DMA for the vir-
tual devices that is serving.

The server partition, upon noting the device tree entry for the virtual adapter, loads the device driver associated with
the value of the “compatible” property. The device driver, when configured and opened, allocates memory for its
request queue (an array, large enough for all possible outstanding requests, of 16 byte elements). The driver then pins
the queue and maps it into I/O space, via the kernel’s I/O mapping services that invoke the H_PUT_TCE hcall(), using
the first window pane specified in the “ibm,my-dma-window” property. The queue is then registered using the
H_REG_CRQ hcall(). Next, I/O request control blocks (within which the I/O request commands are built) are allo-
cated, pinned, and I/O mapped. Finally the device driver registers to receive control when the interrupt source specified
in the virtual IOA’s device tree node signals.

592

 LoPAPR, Version 1.1 (March 24, 2016)

Once the CRQ is setup, the device driver queues an Initialization Command/Response with the second byte of “Initial-
ize” in order to attempt to tell the hosted side that everything is setup on the hosting side. The response to this send may
be that the send has been dropped or has successfully been sent. If successful, the sender should expect back an Initial-
ization Command/Response with a second byte of “Initialization Complete,” at which time the communication path
can be deemed to be open. If dropped, then the sender waits for the receipt of an Initialization Command/Response
with a second byte of “Initialize,” at which time an “Initialization Complete” message is sent, and if that message is
sent successfully, then the communication path can be deemed to be open.

When the server partition’s device driver receives an I/O request from its corresponding client partition’s VFC adapter
drivers, it is notified via the interrupt registered for above. The server partition’s device driver selects an I/O request
control block for the requested operation. It then uses the DMA descriptor from the request queue element to transfer
the FC IU request from the client partition’s I/O request control block to its own (allocated above), using the
H_COPY_RDMA hcall() through the second window pane specified in the “ibm,my-dma-window” property. The
server partition’s device driver then uses kernel services, that are extended, to register the I/O request’s DMA descrip-
tors into extended capacity cross memory descriptors (ones capable of recording the DMA descriptors). These cross
memory descriptors are later mapped by the server partition’s physical device drivers into the physical I/O DMA ad-
dress space of the physical I/O adapters using the kernel services, that have been similarly extended to call the
H_PUT_RTCE hcall(), based upon the value of the LIOBN field reference by the cross memory descriptor. At this
point, the server partition’s VFC device driver delivers what appears to be a FC IU request to be routed through the
server partition’s adapter driver. When the request completes, the server partition’s VFC device driver is called through
a registered entry point and it packages the summary status along with the request correlator into a response message
that it sends to the client partition using the H_SEND_CRQ hcall(), then recycles the resources recorded in the I/O re-
quest control block, and the block itself.

The LIOBN value in the second window pane of the server partition’s “ibm,my-dma-window” property is in-
tended to be an indirect reference to the RTCE table of the client partition. If, for some reason, the physical location of
the client partition’s RTCE table changes or it becomes invalid, this level of indirection allows the hypervisor to deter-
mine the current target without changing the LIOBN number as seen by the server partition. The H_PUT_TCE and
H_PUT_RTCE hcall()s do not map server partition memory into the second window pane; the second window pane is
only available for use by server partition via the Logical RDMA services to reference memory mapped into it by the
client partition’s IOA.

This architecture does not specify the payload format of the requests or responses. However, the architectural intent is
supplied in the following tables for reference.

Table 218. General Form of Reliable CRQ Element

Byte Offset Field Name Subfield Name Description

0 Header
Contains Element Valid Bit plus Event Type Encodings (see Table 230‚ “CRQ Entry Header
Byte Values‚” on page 621).

1
Payload

Format/Transport
Event Code

For Valid Command Response Entries, see Table 219‚ “Example Reliable CRQ Entry Format
Byte Definitions for VFC‚” on page 592. For Transport Event Codes see Table 232‚ “Transport
Event Codes‚” on page 622.

2-15 Format Dependent.

Table 219. Example Reliable CRQ Entry Format Byte Definitions for VFC

Format Byte Value Definition

0x0 Unused

16.7  Virtual Fibre Channel (VFC) using NPIV 593

LoPAPR, Version 1.1 (March 24, 2016)

16.7.2 VFC and NPIV Requirements

This normative section provides the general requirements for the support of VFC.

R1–16.7.2–1. For the VFC option: The platform must implement the Reliable Command/Response Transport op-
tion as defined in Section 17.2.3.1‚ “Reliable Command/Response Transport Option‚” on page 637.

R1–16.7.2–2. For the VFC option: The platform must implement the Logical Remote DMA option as defined in
Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on page 642.

0x01 VFC Requests

0x02 - 0x03 Reserved

0x04 Management Datagram

0x05 - 0xFE Reserved

0xFF Reserved for Expansion

Table 220. Example VFC Command Queue Element

Byte Offset Field Value Description

0 0x80 Valid Header

1 0x01 VFC Requests

1 0x04 Management Datagram

2-3 NA Reserved

4-7 Length of the request block to be transferred

8-15 I/O address of beginning of request

Table 221. Example VFC Response Queue Element

Byte Offset Field Value Description

0 0x80 Valid Header

1 0x01 VFC Response Format

1 0x02 Asynchronous Event

1 0x04 Management Datagram

2-3 NA Reserved

4-7 Summary Status

8-15 8 byte command correlator

Table 219. Example Reliable CRQ Entry Format Byte Definitions for VFC

Format Byte Value Definition

594

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.7.2–3. For the VFC option: The platform must allocate a WWPN pair for each VFC client and must present
the WWPNs to the VFC clients in their OF device tree Section 222‚ “Properties of the VFC Node in the Cli-
ent Partition‚” on page 594.

In addition to the firmware primitives, and the structures they define, the partition’s OS needs to know specific infor-
mation regarding the configuration of the virtual IOA’s that it has been assigned so that it can load and configure the
correct device driver code. This information is provided by the OF device tree node associated with the virtual IOA
(see Section 16.7.2.1‚ “Client Partition VFC Device Tree Node‚” on page 594 and Section 16.7.2.2‚ “Server Partition
VFC Device Tree Node‚” on page 595).

16.7.2.1 Client Partition VFC Device Tree Node

Client partition VFC device tree nodes have associated packages such as disk-label, deblocker, iso-13346-files and
iso-9660-files as well as children nodes such as block and byte as appropriate to the specific virtual IOA configuration
as would the node for a physical FC IOA.

R1–16.7.2.1–1. For the VFC option: The platform’s OF device tree for client partitions must include as a child of
the /vdevice node, a node of name “vfc-client” as the parent of a sub-tree representing the virtual
IOAs assigned to the partition.

R1–16.7.2.1–2. For the VFC option: The platform’s vfc-client OF node must contain properties as defined in
Table 222‚ “Properties of the VFC Node in the Client Partition‚” on page 594 (other standard I/O adapter
properties are permissible as appropriate).

Table 222. Properties of the VFC Node in the Client Partition

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“vfc-client”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“fcp”.

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,vfc-client”.

“used-by-rtas”
See

Definition
Column

Present if appropriate.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA
presented as an encoded array as with encode-string. The value shall be of the form specified in
Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the register addresses, used as the unit
address (unit ID), associated with this virtual IOA presented as an encoded array as with encode-phys
of length “#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit
address no actual locations used, therefore, the size field has zero cells (does not exist) as determined by
the value of the “#size-cells” property).

“ibm,my-dma-window” Y
Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of three values (LIOBN, phys, size) encoded as with encode-int, encode-phys, and
encode-int.

16.7  Virtual Fibre Channel (VFC) using NPIV 595

LoPAPR, Version 1.1 (March 24, 2016)

R1–16.7.2.1–3. For the VFC option: The platform’s vfc-client node must have as children the appropriate
block (disk) and byte (tape) nodes.

16.7.2.2 Server Partition VFC Device Tree Node

Server partition VFC IOA nodes have no children nodes.

R1–16.7.2.2–1. For the VFC option: The platform’s OF device tree for server partitions must include as a child of
the /vdevice node, a node of name “vfc-server” as the parent of a sub-tree representing the virtual
IOAs assigned to the partition.

R1–16.7.2.2–2. For the VFC option: The platform’s vfc-server node must contain properties as defined in
Table 223‚ “Properties of the VFC Node in the Server Partition‚” on page 595 (other standard I/O adapter
properties are permissible as appropriate).

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL
hcall().

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

“ibm,#dma-size-cells”
See

Definition
Column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

Definition
Column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,port-wwn-1”
See

Definition
Column

Property that represents one of two WWPNs assigned to this VFC client node. This property is a
prop-encoded-array each encoded with encode-int. The array consists of the high order 32 bits
and low order 32 bits of the WWPN such that (32 bits high | 32 bits low) is the 64 bit WWPN. The WWPN
that the client is to use (“ibm,port-wwn-1” or “ibm,port-wwn-2”) is communicated to the client
by the server as part of the client-server communications protocol.

“ibm,port-wwn-2”
See

Definition
Column

Property that represents one of two WWPNs assigned to this VFC client node This property is a
prop-encoded-array each encoded with encode-int. The array consists of the high order 32 bits
and low order 32 bits of the WWPN such that (32 bits high | 32 bits low) is the 64 bit WWPN. The WWPN
that the client is to use (“ibm,port-wwn-1” or “ibm,port-wwn-2”) is communicated to the client
by the server as part of the client-server communications protocol.

Table 223. Properties of the VFC Node in the Server Partition

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“vfc-server”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“fcp”.

Table 222. Properties of the VFC Node in the Client Partition

Property Name Required? Definition

596

 LoPAPR, Version 1.1 (March 24, 2016)

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,vfc-server”.

“used-by-rtas”
See

Definition
Column

Present if appropriate.

“ibm,loc-code” Y
Property name specifying the unique and persistent location code associated with this virtual IOA
presented as an encoded array as with encode-string. The value shall be of the form
Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the register addresses, used as the unit
address (unit ID), associated with this virtual IOA presented as an encoded array as with encode-phys
of length “#address-cells” value shall be 0xwhatever (virtual “reg” property used for unit
address no actual locations used, therefore, the size field has zero cells (does not exist) as determined by
the value of the “#size-cells” property).

“ibm,my-dma-window” Y

Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of two sets (two window panes) of three values (LIOBN, phys, size) encoded as with
encode-int, encode-phys, and encode-int. Of these two triples, the first describes the
window pane used to map server partition memory, the second is the window pane through which the
client partition maps its memory that it makes available to the server partition. (Note the mapping between
the LIOBN in the second window pane of a server virtual IOA’s “ibm,my-dma-window” property
and the corresponding client IOA’s RTCE table is made when the CRQ successfully completes
registration. See Section 17.2.1.2‚ “RTCE Table and Properties of the Children of the /vdevice Node‚” on
page 601 for more information on window panes.)

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL hcall()

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

“ibm,vserver” Y Property name specifying that this is a virtual server node.

“ibm,#dma-size-cells”
See

Definition
Column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

Definition
Column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

Table 223. Properties of the VFC Node in the Server Partition

Property Name Required? Definition

LoPAPR, Version 1.1 (March 24, 2016)

17 Virtualized Input/Output

Virtualized I/O is an optional feature of platforms that have hypervisor support. Virtual I/O (VIO) provides to a given
partition the appearance of I/O adapters that do not have a one to one correspondence with a physical IOA. The hyper-
visor uses one of three techniques to realize a virtual IOA:

1. In the hypervisor simulated class, the hypervisor may totally simulate the adapter. For example, this is used in the
virtual ethernet (IEEE VLAN) support (see Section 16.4‚ “Interpartition Logical LAN (ILLAN) Option‚” on
page 551). This technique is applicable to communications between partitions that are created by a single hypervi-
sor instance.

2. In the partition managed class, a server partition provides the services of one of its IOA’s to a partner partition(s)
(one or more client partitions1 or one or more server partitions). In limited cases, a client may communicate di-
rectly to a client. A server partition provides support to interpret I/O requests from the partner partition, perform
those requests on one or more of its devices, targeting the partner partition’s DMA buffer areas (for example, by
using the Remote DMA (RDMA) facilities), and passing I/O responses back to the partner partition. For example,
see Section 16.5‚ “Virtual SCSI (VSCSI)‚” on page 575.

3. In the hypervisor managed class, the hypervisor may provide low level hardware management (error and
sub-channel allocation) so that partition level code may directly manage its assigned sub-channels.

This chapter is organized from general to specific. The overall structure of this architecture is as shown in Figure 33‚
“VIO Architecture Structure‚” on page 597

{Figure marked to be hidden when Shark1+ conditional text is hidden}

{Figure marked to be visible when Shark1- conditional text is shown}

Figure 33. VIO Architecture Structure

17.1 Terminology used with VIO

Besides the general terminology defined on the first page of this chapter, Table 224‚ “Terminology used with VIO‚” on
page 597 will assist the reader in understanding the content of this chapter.

1.The term “hosted” is sometimes used for “client” and the term “hosting” is sometimes used for “server.” Note that a server IOA or partition can
sometimes also be a client, and vice versa, so the terminology “client” and “server” tend to be less confusing than hosted and hosting.

Table 224. Terminology used with VIO

Term Definition

VIO Virtual I/O. General term for all virtual I/O classes and virtual IOAs.

ILLAN
Interpartition Logical LAN. This option uses the hypervisor simulated class of virtual I/O to provide
partition-to-partition LAN facilities without a real LAN IOA. See Section 16.4‚ “Interpartition Logical LAN
(ILLAN) Option‚” on page 551.

598 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

VSCSI
Virtual SCSI. This option provides the facilities for sharing physical SCSI type IOAs between partitions.
Section 16.5‚ “Virtual SCSI (VSCSI)‚” on page 575.

Client
Client VIO model

This terminology is mainly used with the partition managed class of VIO. The client, or client partition, is an entity
which generally requests of a server partition, access to I/O to which it does not have direct access (that is, access
to I/O which is under control of the server partition). Unlike the server, the client does not provide services to other
partitions to share the I/O which resides in their partition. However, it possible to have the same partition be both a
server and client partition, but under different virtual IOAs. The Client VIO model is one where the client partition
maps part of its local memory into an RTCE table (as defined by the first window pane of the
“ibm,my-dma-window” property), so that the server partition can get access to that client’s local memory. An
example of this is the VSCSI client (see Section 16.5‚ “Virtual SCSI (VSCSI)‚” on page 575 for more information).

Server
Server VIO model

This terminology is mainly used with the partition managed class of VIO. The server, or server partition is an entity
which provides a method of sharing the resources under its direct control with another partition, virtualizing those
resources in the process. The following defines the Server VIO model:

 The server is a server to a client. An example of this is the VSCSI client (see Section 16.5‚ “Virtual SCSI
(VSCSI)‚” on page 575). In this case, the Server VIO model is one where the server gets access to the client
partition’s local memory via what the client mapped into an RTCE table. This access is done through the sec-
ond window pane of the server’s “ibm,my-dma-window” property, which is linked to the first window
pane of the client’s “ibm,my-dma-window” property.

Partner partition
This is “the other” partition in a pair of partitions which are connected via a virtual IOA pair. For client partitions,
the partner is generally the server (although, in limited cases, client to client connections may be possible). For
server partitions, the partner can be a client partition or another server partition.

RTCE table

Remote DMA TCE table. TCE (Translation Control Entry) and RTCE tables are used to translate I/O DMA
operations and provide protection against improper operations (access to what should not be accessed or for
protection against improper access modes, like writing to a read only page). More information on TCEs and TCE
tables, which are used for physical IOAs, can be found in Section 3.2.2.2‚ “DMA Address Translation and Control
via the TCE Mechanism‚” on page 65. The RTCE table for Remote DMA (RDMA) is analogous to the TCE table
for physical IOAs. The RTCE table does, however, have a little more information in it (as placed there by the
hypervisor) in order to, among other things, allow the hypervisor to create links to physical IOA TCEs that were
created from the RTCE table TCEs. A TCE in an RTCE table is never accessed directly by the partitions software;
only though hypervisor hcall()s. For more information on RTCE table and operations, see Section 17.2.1.2‚ “RTCE
Table and Properties of the Children of the /vdevice Node‚” on page 601, and Section 17.2.3‚ “Partition Managed
Class - Synchronous Infrastructure‚” on page 637.

Window pane
(“ibm,my-dma-window” property)

The RTCE tables for VIO DMA are pointed to by the “ibm,my-dma-window” property in the device tree for
each virtual device. This property can have one, two, or three triples, each consisting of a Logical I/O Bus Number
(LIOBN), phys which is 0, and size. The LIOBN essentially points to a unique RTCE table (or a unique entry point
into a single table. The phys is a value of 0, indicating offsets start at 0. The size is the size of the available address
space for mapping memory into the RTCE table. This architecture talks about these unique RTCE tables as being
window panes within the “ibm,my-dma-window” property. Thus, there can be up to three window panes for
each virtual IOA, depending on the type of IOA. For more on usage of the window panes, see Table 226‚ “VIO
Window Pane Usage and Applicable Hcall()s‚” on page 602.

RDMA
Remote Direct Memory Access is DMA transfer from the server to its client or from the server to its partner partition.
DMA refers to both physical I/O to/from memory operations and to memory to memory move operations.

Copy RDMA
This term refers to when the hypervisor is used (possibly with hardware assist) to move data between server partition
and client partition memories or between server partition and partner partition memories. See Section 17.2.3.2.1‚
“Copy RDMA‚” on page 642.

Redirected RDMA

This term refers to when the TCE(s) for a physical IOA are set up through the use of the RTCE table manipulation
hcall()s (for example, H_PUT_RTCE) such that the client or partner’s partition’s RTCE table (though the second
window pane of the server partition) is used by the hypervisor during the processing of the hcall() to setup the
TCE(s) for the physical IOA, and then the physical IOA DMAs directly to or from the client or partner partition’s
memory. See Section 17.2.2.2‚ “Redirected RDMA (Using H_PUT_RTCE, and H_PUT_RTCE_INDIRECT)‚” on
page 625 for more information.

LRDMA
Stands for Logical Remote DMA and refers to the set of facilities for synchronous RDMA operations. See also
Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on page 642 for more information. LRDMA is a
separate option.

Table 224. Terminology used with VIO (Continued)

Term Definition

17.2  VIO Architectural Infrastructure 599

LoPAPR, Version 1.1 (March 24, 2016)

17.2 VIO Architectural Infrastructure

VIO is used in conjunction with the Logical Partitioning option as described in Chapter 14, “Logical Partitioning Op-
tion,” on page 385. For each of a platform’s partitions, the number and type of VIO adapters with the associated inter-
partition communications paths (if any are defined). These definitions take the architectural form of VIO adapters and
are communicated to the partitions as device nodes in their OF device tree. Depending upon the specific virtual device,
their device tree node may be found as a child of / (the root node) or in the VIO sub-tree (see below).

The VIO infrastructure provides several primitives that may be used to build connections between partitions for vari-
ous purposes (that is, for various virtual IOA types). These primitives include:

 A Command/Response Queue (CRQ) facility which provides a pipe between partitions. A partition can enqueue an
entry on its partner’s CRQ for processing by that partner. The partition can set up the CRQ to receive an interrupt
when the queue goes from empty to non-empty, and hence this facility provides a method for an inter-partition inter-
rupt.

 A Subordinate CRQ (Sub-CRQ) facility that may be used in conjunction with the CRQ facility, when the CRQ facil-
ity by itself is not sufficient. That is, when more than one queue with more than one interrupt is required by the vir-
tual IOA.

 An extended TCE table called the RTCE table which allows a partition to provide “windows” into the memory of its
partition to its partner partition, while maintaining addressing and access control to its memory.

 Remote DMA services that allow a server partition to transfer data to a partner partition’s memory via the RTCE ta-
ble window panes. This allows a device driver in a server partition to efficiently transfer data to and from a partner,
which is key in sharing of an IOA in the server partition with its partner partition.

In addition to the virtual IOAs themselves, this architecture defines a virtual host bridge, and a virtual interrupt source
controller. The virtual host bridge roots the VIO sub-tree. The virtual interrupt source controller provides the consistent
syntax for communicating the interrupt numbers the partition’s OS sees when the virtual IOAs signal an interrupt.

The general VIO infrastructure is defined in Section 17.2.1‚ “VIO Infrastructure - General‚” on page 600. There are
additional infrastructures requirements for the partition managed class based on the Synchronous VIO model. See
Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637.

Command/Response Queue (CRQ)
The CRQ is a facility which is used to communicate between partner partitions. Transport events which are signaled
from the hypervisor to the partition are also reported in this queue.

Subordinate CRQ (Sub-CRQ)
Similar to the CRQ, except with notable differences (See Table 234‚ “CRQ and Sub-CRQ Comparison‚” on
page 634).

Reliable Command/Response Transport

This is the CRQ facility used for synchronous VIO operations to communicate between partner partitions. Several
hcall()s are defined which allow a partition to place an entry on the partner partition’s queue. The firmware can also
place transport change of status messages into the queue to notify a partition when the connection has been lost (for
example, due to the other partition crashing or deregistering its queue). See Section 17.2.3.1‚ “Reliable
Command/Response Transport Option‚” on page 637 for more information.

Subordinate CRQ Transport

This is the Sub-CRQ facility used for synchronous VIO operations to communicate between partner partitions when
the CRQ facility by itself is not sufficient. The Subordinate CRQ Transport never exists without a corresponding
Reliable Command/Response Transport. See Section 17.2.3.3‚ “Subordinate CRQ Transport Option‚” on page 645
for more information.

Table 224. Terminology used with VIO (Continued)

Term Definition

600 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

17.2.1 VIO Infrastructure - General

This section describes the general OF device tree structure for virtual IOAs and describes in more detail window panes,
as well as describing the interrupt control aspects of virtual IOAs.

17.2.1.1 Properties of the /vdevice OF Tree Node

Most VIO adapters are represented in the OF device tree as children of the /vdevice node (child of the root node).
While the vdevice sub-tree is the preferred architectural home for VIO adapters, selected devices for historical reasons,
are housed outside of the vdevice sub-tree.

R1–17.2.1.1–1. The platform’s /vdevice node must contain the properties as defined in Table 225‚ “Properties of
the /vdevice Node‚” on page 600.

Table 225. Properties of the /vdevice Node

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“vdevice”

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“vdevice”

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device programming models, the
value shall include “IBM,vdevice”

“used-by-rtas” NA Property not present.

“ibm,loc-code” NA
The location code is meaningless unless one is doing dynamic reconfiguration as in the children of this
node.

“reg” NA Property not present.

“#size-cells” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], the value shall be 0. No child of this node takes space
in the address map as seen by the owning partition.

“#address-cells” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], the value shall be 1.

“#interrupt-cells” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], the value shall be 2. The first cell contains the interrupt#
as will appear in the XIRR and is used as input to interrupt RTAS calls. The second cell contains the value
0 indicating a positive edge sense

“interrupt-map-mask” NA Property not present.

“interrupt-ranges” Y Standard property name that defines the interrupt number(s) and range(s) handled by this unit.

“ranges” These will probably be needed for IB virtual adapters.

“interrupt-map” NA Property not present.

“interrupt-controller” Y The /vdevice node appears to contain an interrupt controller.

“ibm,drc-indexes” For DR
Refers to the DR slots -- the number provided is the maximum number of slots that can be configured
which is limited by, among other things, the RTCE tables allocated by the hypervisor.

17.2  VIO Architectural Infrastructure 601

LoPAPR, Version 1.1 (March 24, 2016)

17.2.1.2 RTCE Table and Properties of the Children of the /vdevice Node

This architecture defines an extended type of TCE table called a Remote DMA TCE (RTCE) table. An RTCE table is
one that is not directly used by the hardware to translate an I/O adapter’s DMA addresses, but is used by the hypervisor
to translate a partition’s I/O addresses. RTCE tables have extra data, compared with a standard TCE table, to help firm-
ware manage the use of its mappings. A partition manages the entries for its memory that is to be the target for I/O op-
erations in the RTCE table using the TCE manipulation hcall()s, depending on the type of window pane. More on this
later in this section. On platforms implementing the CRQ LRDMA options, these hcall()s are extended to understand
the format of the RTCE table via the LIOBN parameter that is used to address the specific window pane within an
RTCE table1.

Children of the /vdevice node that support operations which use RTCE tables (for example, RDMA) contain the
“ibm,my-dma-window” property. This property contains one or more (logical-I/O-bus-number, phys, size) tri-
ple(s). Each triple represents one window pane in an RTCE table which is available to this virtual IOA. The phys value
is 0, and hence the logical I/O bus number (LIOBN) points to a unique range of TCEs in the RTCE table which are as-
signed to this window pane (LIOBN), and hence the I/O address for that LIOBN begin at 0.

The LIOBN is an opaque handle which references a window pane within an RTCE table. Since this handle is opaque,
its internal structure is not architected, but left to the implementation’s discretion. However, it is the architectural intent
that the LIOBN be an indirect reference to the RTCE table through a hypervisor table that contains management vari-
ables, allowing for movement of the RTCE table and table format specific access methods. The partition uses an I/O
address as an offset relative to the beginning of the LIOBN, as part of any I/O request to that memory mapped by that
RTCE table’s TCEs. A server partition appends its version of the LIOBN for the partner partition’s RTCE table that
represents the partner partition’s RTCE table which it received through the second entry in the “ibm,my-dma-win-
dow” property associated with server partition’s virtual IOA’s device tree node (for example, see Table 225‚ “Proper-
ties of the /vdevice Node‚” on page 600). The mapping between the LIOBN in the second pane of a server virtual
IOA’s “ibm,my-dma-window” property and the corresponding partner partition IOA’s RTCE table is made when
the CRQ successfully completes registration.

The window panes and the hcall()s that are applicable to those panes, are defined and used as indicated in Table 226‚
“VIO Window Pane Usage and Applicable Hcall()s‚” on page 602.

“ibm,drc-power-domains” For DR Value of -1 to indicate that no power manipulation is possible or needed.

“ibm,drc-types” For DR Value of “SLOT”. Any virtual IOA can fit into any virtual slot.

“ibm,drc-names” For DR The virtual location code (see Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335)

“ibm,max-virtual-dma-size”
See

definition
column

The maximum transfer size for H_SEND_LOGICAL_LAN and H_COPY_RDMA hcall()s. Applies to
all VIO which are children of the /vdevice node. Minimum value is 128 KB.

1.One could also think of each LIOBN pointing to a separate RTCE table, rather than window panes within an RTCE table.

Table 225. Properties of the /vdevice Node

Property Name Required? Definition

602 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

The “ibm,my-dma-window” property is the per device equivalent of the “ibm,dma-window” property found
in nodes representing bus bridges.

Children of the /vdevice node contain virtual location codes in their “ibm,loc-code” properties. The invariant
assignment number is uniquely generated when the virtual IOA is assigned to the partition and remains invariably as-
sociated with that virtual IOA for the duration of the partition definition. For more information, see Section 12.3.2.16‚
“Virtual Card Connector Location Codes‚” on page 335.

17.2.1.3 VIO Interrupt Control

There are two hcall()s that work in conjunction with the RTAS calls ibm,int-on, ibm,int-off, ibm,set-xive and
ibm,get-xive, which manage the state of the interrupt presentation controller logic. These hcall()s provide the equiva-
lent of IOA control registers used to control IOA interrupts. The usage of these two hcall()s is summarized in
Table 227‚ “VIO Interrupt Control hcall() Usage‚” on page 602. The detail of the H_VIO_SIGNAL is shown after this
table and the detail of the applicable H_VIOCTL subfunctions can be found in Section 17.2.1.6.10‚
“DISABLE_ALL_VIO_INTERRUPTS Subfunction Semantics‚” on page 618, Section 17.2.1.6.11‚
“DISABLE_VIO_INTERRUPT Subfunction Semantics‚” on page 618, and Section 17.2.1.6.12‚
“ENABLE_VIO_INTERRUPT Subfunction Semantics‚” on page 618.

Table 226. VIO Window Pane Usage and Applicable Hcall()s

Window Pane
(Which Triple)

Hypervisor Simulated Class Client VIO Model Server VIO Model

First

 I/O address range which
is available to map local
partition memory for use
by the hypervisor

 I/O address range which is available to map
local partition memory to make it available to
the hypervisor use (access to the CRQ and any
Sub-CRQs).

 For clients which support RDMA operations
from their partner partition to their local mem-
ory (for example, VSCSI), this I/O address
range is available to map local partition memory
to make it available to the server partition, and
this pane gets mapped to the second window
pane of the partner partition (client/server rela-
tionship).

 I/O address range which is available to map
local partition memory for use by the hypervisor
(for access by H_COPY_RDMA requests, and
for access to the CRQ, any Sub-CRQs).

 This window is not available to any other parti-
tion.

Applicable hcall()s: H_PUT_TCE, H_GET_TCE, H_PUT_TCE_INDIRECT, H_STUFF_TCE

Second
Does not exist Does not exist

 I/O address range which corresponds to a win-
dow pane of the partner partition: linked to the
first window pane for Client/Server model con-
nections.

 Used to get access to the partner partition’s
memory from the hypervisor that services the
local partition for use as source or destination in
Copy RDMA requests or for redirected DMA
operations (for example, H_PUT_RTCE).

Applicable hcall()s: H_PUT_RTCE, H_REMOVE_RTCE and H_PUT_RTCE_INDIRECT

Table 227. VIO Interrupt Control hcall() Usage

Interrupt From
Virtual IOA Definition does

not Include Sub-CRQs
Virtual IOA Definition

Includes Sub-CRQs
Interrupt Number Obtained From

CRQ H_VIO_SIGNAL
H_VIO_SIGNAL

or
H_VIOCTL

OF device tree “interrupts” property

Sub-CRQ Not Applicable H_VIOCTL H_REG_SUB_CRQ hcall()

17.2  VIO Architectural Infrastructure 603

LoPAPR, Version 1.1 (March 24, 2016)

17.2.1.3.1 H_VIO_SIGNAL

This H_VIO_SIGNAL hcall() manages the interrupt mode of a virtual adapter’s CRQ interrupt signalling logic. There
are two modes: Disabled, and Enabled.

The first interrupt of the “interrupts” property is for the CRQ.

Syntax:

int64 /* H_Success: Expected return code */
/* H_Parameter: One or more of the input parameters are invalid *
/* H_Hardware: A hardware problem prevented completion of the operation*/

hcall (const int64 H_VIO_SIGNAL, /* Function Code */
uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 mode); /* 0=Disabled, 1=Enabled with each bit representing a possible interrupt*/

Parameters:

 unit-address: unit address per device tree node “reg” property.

 mode:

 Bit 63 controls the first interrupt specifier given in the virtual IOA’s “interrupts” property, and bit 62 the
second. High order bits not associated with an interrupt source as defined in the previous sentence should be set to
zero by the caller and ignored by the hypervisor.

 A bit value of 1 enables the specified interrupt, a bit value of 0 disables the specified interrupt.

Semantics:

 Validate that the unit address belongs to the partition and to a vdevice IOA, else H_Parameter.

 Validate that the mode is one of those defined, else H_Parameter.

 Establish the specified mode.

 Return H_Success.

17.2.1.4 General VIO Requirements

R1–17.2.1.4–1. For all VIO options: The platform must be running in LPAR mode.

R1–17.2.1.4–2. For all VIO options: The platform’s OF device tree must include, as a child of the root node, a
node of type vdevice as the parent of a sub-tree representing the virtual IOAs assigned to the partition (see
Appendix B, “LoPAPR Binding,” on page 661 for details).

R1–17.2.1.4–3. For all VIO options: The platform’s /vdevice node must contain properties as defined in
Table 225‚ “Properties of the /vdevice Node‚” on page 600.

R1–17.2.1.4–4. For all VIO options: If the platform is going to limit the size of virtual I/O data copy operations
(e.g., H_SEND_LOGICAL_LAN and H_COPY_RDMA), then the platform’s /vdevice node must con-
tain the “ibm,max-virtual-dma-size” property, and the value of this property must be at least 128
KB.

R1–17.2.1.4–5. For all VIO options: The interrupt server numbers for all interrupt source numbers, virtual and
physical, must come from the same name space and are defined by the “ibm,interrupt-buid-size”
property in the PowerPC External Interrupt Presentation Controller Node.

604 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

R1–17.2.1.4–6. For all VIO options: The virtual interrupts for all children of the /vdevice node must, upon
transfer of control to the booted partition program, be masked as would be the result of an ibm,int-off RTAS
call specifying the virtual interrupt source number.

R1–17.2.1.4–7. For all VIO options with the Reliable Command/Response option: The platform must specify
the CRQ interrupt as the first interrupt in the “interrupts” property for a virtual IOA.

R1–17.2.1.4–8.

R1–17.2.1.4–9. For all VIO options: The platform must implement the H_VIO_SIGNAL hcall() as defined in
Section 17.2.1.3‚ “VIO Interrupt Control‚” on page 602.

R1–17.2.1.4–10. For all VIO options: The platform must assign an invariant virtual location code to each virtual
IOA as described in Section 12.3.2.16‚ “Virtual Card Connector Location Codes‚” on page 335.

R1–17.2.1.4–11. (Requirement Number Reserved For Compatibility)

R1–17.2.1.4–12. For all VIO options: The phys of each “ibm,my-dma-window” property triple (window
pane) must have a value of zero and the LIOBN must be unique.

Implementation Note: While the architectural definition of LIOBN would allow the definition of one logical I/O bus
number (LIOBN) for all RTCE tables (IOBA ranges separating IOAs), such an implementation is not permitted
for the VIO option, which requires a unique LIOBN (at least per partition preferably platform wide) for each
virtual IOA window pane. Such designs allow the LIOBN handle to be used to validate access rights, and allows
each subsequent I/O bus address range to start at zero, providing maximum accommodation for 32 bit OS’s.

R1–17.2.1.4–13. For the VSCSI option: For the server partition, there must exist two triples (two window panes)
in the “ibm,my-dma-window” property and the size field of the second triple (second window pane) of
an “ibm,my-dma-window” property must be equal to the size field of the corresponding first triple (first
window pane) of the associated partner partition’s “ibm,my-dma-window” property.

R1–17.2.1.4–14.

Implementation Note: In order to meet Requirement R1–17.2.1.4–13, it may be necessary for implementations to assign
an implementation dependent default size to all RTCE tables.

R1–17.2.1.4–15. For all VIO options: RTCE tables for virtual IOAs, as pointed to by the partitions’ first window
pane of the “ibm,my-dma-window” property, and the TCEs that they contain (as built by the TCE
hcall()s) must be persistent across partner partition reboots and across partner partition deregister
(free)/re-register operations, even when the partition which connects after one deregisters is a different parti-
tion, and must be available to have TCEs built in them by said partition, as long as that partition still owns the
corresponding virtual IOA (an LRDR operation which removes the IOA will also remove the RTCE table).

R1–17.2.1.4–16. For all VIO options: The connection between the second window pane of the
“ibm,my-dma-window” property for a partition and its corresponding window pane in the partner parti-
tion (first window pane) must be broken by the platform when either partition deregisters its CRQ or when ei-
ther partition terminates, and the platform must invalidate any redirected TCEs copied from the said second
window pane (for information on invalidation of TCEs, see Section 17.2.2.2.4‚ “Redirected RDMA TCE Re-
covery and In-Flight DMA‚” on page 631).

R1–17.2.1.4–17. For all VIO options: The following window panes of the “ibm,my-dma-window” property,
when they exist, must support the following specified hcall()s, when they are implemented:

a. For the first window pane: H_PUT_TCE, H_GET_TCE, H_PUT_TCE_INDIRECT, H_STUFF_TCE

b. For the second window pane: H_PUT_RTCE, H_REMOVE_RTCE, H_PUT_RTCE_INDIRECT

17.2  VIO Architectural Infrastructure 605

LoPAPR, Version 1.1 (March 24, 2016)

R1–17.2.1.4–18. For all VIO options: The platform must not prohibit the server and partner partition, or client and
partner partition, from being the same partition, unless the user interface used to setup the virtual IOAs spe-
cifically disallows such configurations.

R1–17.2.1.4–19. For all VIO options: Any child node of the /vdevice node that is not defined by this architec-
ture must contain the “used-by-rtas” property.

Implementation Notes:

1. Relative to Requirement R1–17.2.1.4–18, partner partitions being the same partition makes sense from a
product development standpoint.

2. The ibm,partner-control RTAS call does not make sense if the partner partitions are the same partition.

R1–17.2.1.4–20. For all VIO options: The platform must implement the H_VIOCTL hcall() following the syntax
of Section 17.2.1.6‚ “H_VIOCTL‚” on page 613 and semantics specified by Table 229‚ “Semantics for
H_VIOCTL subfunction parameter values‚” on page 614.

17.2.1.5 Shared Logical Resources

The sharing of resources, within the boundaries of a single coherence domain, owned by a partition owning a server
virtual IOA by its clients (those owning the associated client virtual IOAs) is controlled by the hcall()s described in this
section. The owning partition retains control of and access to the resources and can ask for their return or indeed force
it. Refer to Figure 34‚ “Shared Logical Resource State Transitions‚” on page 606 for a graphic representation of the
state transitions involved in sharing logical resources.

606 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 34. Shared Logical Resource State Transitions

Owners of resources can grant, to one or more client partitions, access to any of its resources. A client partition being
defined as a partition with which the resource owner is authorized to register a CRQ, as denoted via an OF device tree
virtual IOA node. Granting access is accomplished by requesting that the hypervisor generate a specific cookie for that
resource for a specific sharing partition. The cookie value thus generated is unique only within the context of the parti-
tion being granted the resource and is unusable for gaining access to the resource by any other partition. This unique
cookie is then communicated via some inter partition communications channel, most likely the authorized Command
Response Queue. The partner partition then accepts the logical resource (mapping it into the accepting partition’s logi-
cal address space). The owning partition may grant shared access of the same logical resource to several clients (by
generating separate cookies for each client). During the time the resource is shared, both the owner and the sharer(s)
have access to the logical resource, the software running in these partitions use private protocols to synchronize control
access. Once the resource has been accepted into the client’s logical address space, the resource can be used by the cli-
ent in any way it wishes, including granting it to one of its own clients. When the client no longer needs access to the
shared logical resource, it destroys any virtual mappings it may have created for the logical resource and returns the
logical resource thus unmapping it from its logical address space. The client program could, subsequently accept the
logical resource again (given that the cookie is still valid). To complete the termination of sharing, the owner partition
rescinds the cookie describing the shared resource. Normally a rescind operation succeeds only if the client has re-

Client PartitionServer Partition

Not Sharable
By Client X

Sharable
By Client X

Unknown
To Client X*

Granted
To Client X*

Shared
By Client X

Rescinded From
Client X **

Operations

1- H_GRANT_LOGICAL

2- H_ACCEPT_LOGICAL

3- H_RETURN_LOGICAL

4- H_RESCIND_LOGICAL
(normal)

5- H_RESCIND_LOGICAL
(forced)

6- Server-Partition-Failure

7- Client-Partition-Failure

* No corresponding logical
address to use in hcall()s

** Use of corresponding
logical address in hcall()s
(except for

1 1

2 3

4,5,7

4,5,6

5,6

3,7

7

All unspecified operation transitions are invalid
and treated as a no-operation. If the operation
request is made by the server partition the hcall()
fails.

All unspecified operation transitions are invalid
and treated as a no-operation. If the operation
request is made by the client partition the hcall()
fails.

H_RETURN_LOGICAL)
fails with the return code
H_RESCINDED.

17.2  VIO Architectural Infrastructure 607

LoPAPR, Version 1.1 (March 24, 2016)

turned the resource, however, the owner can force the rescind in cases where it suspects that the client is incapable of
gracefully returning the resource.

In the case of a forced rescind, the hypervisor marks the client partition’s logical address map location corresponding to
the shared logical resource such that any future hcall() that specifies the logical address fails with an H_RESCINDED
return code. The hypervisor then ensures that the client partition’s translation tables contain no references to a physical
address of the shared logical resource.

Should the server partition fail, the hypervisor automatically notifies client partitions of the fact via the standard CRQ
event message. In addition, the hypervisor recovers any outstanding shared logical resources prior to restarting the
server partition. This recovery is proceeded by a minimum of two seconds of delay to allow the client partitions time to
gracefully return the shared logical resources, then the hypervisor performs the equivalent of a forced rescind operation
on all the server partition’s outstanding shared logical resources.

This architecture does not specify a method of implementation, however, for the sake of clarifying the specified func-
tion, the following example implementation is given, refer to Figure 35‚ “Example Implementation of Control Struc-
tures for Shared Logical Resources‚” on page 608. Assume that the hypervisor maintains for each partition a logical to
physical translation table (2) (used to verify the partition’s virtual to logical mapping requests). Each logical resource
(4) mapped within the logical to real translation table has associated with it a logical resource control structure (3)
(some of the contents of this control structure are defined in the following text). The original logical resource control
structures (3) describe the standard logical resources allocated to the partition due to the partition’s definition, such as
one per Logical Memory Blocks (LMB), etc.

The platform firmware, when creating the OF device tree for a given partition knows the specific configuration of vir-
tual IOAs with the associated quantity of the various types of logical resources types for each virtual IOA. From that
knowledge, it understands the number and type of resources that must be shared between the server and client parti-
tions and therefore the number of control structures that will be needed. When an owning partition grants access to a
subset of one of its logical resources to another partition, the hypervisor chooses a logical resource control structure to
describe this newly granted resource (6), (as stated above, the required number of these control structures were allo-
cated when the client virtual IOA was defined) and attaches it to the grantee’s base partition control structure (5). This
logical resource control structure is linked (9) to the base logical resource control structure (3) of the resource owner.
Subsequently the grantee’s OS may accept the shared logical resource (4) mapping it (7) into the grantee’s partition
logical to physical map table (8). This same set of operations may subsequently be performed for other partition(s)
(10). The shared resource is always a subset (potentially the complete subset) of the original. Once a partition (10) has
accepted a resource, it may subsequently grant a subset of that resource to yet another partition (14), here the hypervi-
sor creates a logical resource control structure (13) links it (12) to the logical resource control structure (11) of the
granting partition (10) that is in turn linked (9) to the owner’s logical resource control structure (3).

608 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 35. Example Implementation of Control Structures for Shared Logical Resources

For the OS to return the logical resource represented by control structure (11), the grant represented by control struc-
ture (13) needs to be rescinded. This is normally accomplished only after the OS that is running partition (14) performs
a return operation, either because it has finished using the logical resource, or in response to a request (delivered by in-
ter partition communications channel) from the owner. The exceptions are in the case that either partition terminates
(the return operation is performed by the hypervisor) and a non-responsive client (when the granter performs a forced
rescind). A return operation is much like a logical resource dynamic reconfiguration isolate operation, the hypervisor
removes the logical resource from the partition’s logical to physical map table, to prevent new virtual to physical map-
pings of the logical resource, then ensures that no virtual to physical mappings of the logical resource are outstanding
(this can either be accomplished synchronously by checking map counts etc. or asynchronously prior to the completion
of the rescind operation.

Shared Logical Resource

Base
Partition
Control
Structure

Logical
To Physical
Map Table

Logical
Resource
Control
Structure
(Owner)

Logical
Resource
Control
Structure
(Owner)

Base
Partition
Control
Structure

Logical
To Physical
Map Table

Logical
Resource
Control
Structure
(Owner)

Logical
Resource
Control
Structure
(Sharer)

Base
Partition
Control
Structure

Logical
To Physical
Map Table

Logical
Resource
Control
Structure
(Owner)

Logical
Resource
Control
Structure
(Sharer)

Base
Partition
Control
Structure

Logical
To Physical
Map Table

Logical
Resource
Control
Structure
(Owner)

Logical
Resource
Control
Structure
(Sharer)

1

2

3

4

5

67

8

9

10

11

12

13

14

17.2  VIO Architectural Infrastructure 609

LoPAPR, Version 1.1 (March 24, 2016)

R1–17.2.1.5–1. For the Shared Logical Resource option: The platform must implement the hcall-logical-resource
function set following the syntax and semantics of the included hcall(s) as specified in:
Section 17.2.1.5.1‚ “H_GRANT_LOGICAL‚” on page 609,
Section 17.2.1.5.2‚ “H_RESCIND_LOGICAL‚” on page 611,
Section 17.2.1.5.3‚ “H_ACCEPT_LOGICAL‚” on page 612, and
Section 17.2.1.5.4‚ “H_RETURN_LOGICAL‚” on page 612.

R1–17.2.1.5–2. For the Shared Logical Resource option: In the event that the partition owning a granted shared
logical resource fails, the platform must wait for a minimum of 2 seconds after notifying the client partitions
before recovering the shared resources via an automatic H_RESCIND_LOGICAL (forced) operation.

17.2.1.5.1 H_GRANT_LOGICAL

This hcall() creates a cookie that represents the specific instance of the shared object. That is, the specific subset of the
original logical resource to be shared with the specific receiver partition. The owning partition makes this hcall() in
preparation for the sharing of the logical resource subset with the receiver partition. The resulting cookie is only valid
for the specified receiver partition.

The caller needs to understand the bounds of the logical resource being granted, such as for example, the logical ad-
dress range of a given LMB. The generated cookie does not span multiple elemental logical resources (that is resources
represented by their own Dynamic Reconfiguration Connector). If the owner wishes to share a range of resources that
does span multiple elemental logical resources, then the owner uses a series of H_GRANT_LOGICAL calls to gener-
ate a set of cookies, one for each subset of each elemental logical resource to be shared.

The “logical” parameter identifies the starting “address” of the subset of the logical resource to be shared. The form of
this “address” is resource dependent, and is given in Table 228‚ “Format of H_GRANT_LOGICAL parameters‚” on
page 610.

Syntax:

uint64 /* H_Success Expected return code */
/* H_Hardware Operation failed because of hardware error*/
/* H_Parameter One or more parameters were in error */
/* H_Permission A grant restriction precludes the operation*/
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource*/
/* H_NOMEM Operation failed due to lack of hypervisor resources */

hcall (const uint64 H_GRANT_LOGICAL, /* Returns in R4 a cookie representing a shared logical resource */
uint64 flags, /* Resource type: */

/*Main store */
/*MMIO space */
/* Interrupt Sources */
/* DMA window panes*/
/* Inter Processor Interrupt ports */

/* Access restriction control bits (No R/W re-grant) */
uint64 logical-hi, /* identifier (storage logical address, LIOBN) */
uint64 logical-lo, /* identifier (storage logical address, interrupt source #, IOBA) */
uint64 length, /* The number of fundamental logical elements -- units per resource type */
uint64 unit-address); /* As specified in the Virtual IOA’s device tree node */

610 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Parameters:

unit-address: The unit address of the virtual IOA associated with the shared logical resource, and thus the partner parti-
tion that is to share the logical resource.

Semantics:

 Verify that the flags parameter specifies a supported logical resource type, else return H_Parameter.

 Verify that the logical address validly identifies a logical resource of the type specified by the flags parameter and
owned/shared by the calling partition, else return H_Parameter; unless:

 The logical address’s page number represents a page that has been rescinded by the owner, then return
H_RESCINDED.

 There exists a grant restriction on the logical resource, then return H_Permission.

 Verify that the length parameter is of valid form for the resource type specified by the flags parameter and that it rep-
resents a subset (up to the full size) of the logical resource specified by the logical address parameter, else return
H_Parameter.

 Verify that the unit-address is for a virtual IOA owned by the calling partition, else return H_Parameter.

 If the partner partition’s client virtual IOA has sufficient resources, generate hypervisor structures to represent, for
hypervisor management purposes, including any grant restrictions, the specified shared logical resource, else return
H_NOMEM.

 Generate a cookie associated with the hypervisor structures created in the previous step that the partner partition as-
sociated with the unit-address can use to reference said structures via the H_ACCEPT_LOGICAL and

Table 228. Format of H_GRANT_LOGICAL parameters

Flags subfunction code (bits 16-23) value:

Access
Restriction

Bits 16-19
The defined bits in this field have independent meanings, and may appear in combination with all other bits unless
specifically disallowed. (an x in the binary field indicates that the bit can take on a value of 0 or 1)

0b1xxx Read access inhibited (The grantee may not read from or grant access to read from this logical resource.)

0bx1xx Write access inhibited (The grantee may not write to or grant access to write to this logical resource.)

0bxx1x Re-Grant rights inhibited (the grantee may not grant access to this logical resource to a subsequent client.)

0bxxx1 Reserved calling software should set this bit to zero. Firmware returns H_Parameter if set.

Logical
Resource

Supported
Combinations

Bits 20-23 “address” description “length” description

System Memory 0bxxx0 0x1
Logical Address (as would be used in H_ENTER) in
logical-lo; logical-hi not used (should be = 0)

Bytes in units of 4 K on 4 K boundaries (low
order 12 bits = 0)

MMIO Space 0bxxx0 0x2
Logical Address (as would be used in H_ENTER) in
logical-lo; logical-hi not used (should be = 0)

Bytes in units of 4 K on 4 K boundaries (low
order 12 bits = 0)

Interrupt Source 0b00x0 0x4
24 bit Interrupt # (as would be used in ibm,get-xive)
in low order 3 bytes in logical-lo; logical-hi not used
(should be = 0)

value=1 (the logical resource is one indivisible
unit)

DMA Window
Pane1 0b00x0 0x5

32 bit LIOBN in logical-hi; with a 64 bit IOBA log-
ical-lo

Bytes of IOBA in units of 4 K on 4 K boundar-
ies (low order 12 bits = 0)

Interprocessor
Interrupt Port

0b00x0 0x6
Processor Number. (As from the processor’s Unit
ID) in logical-lo; logical-hi not used (should be = 0).

value=1 (the logical resource is one indivisible
unit)

1
Note: The DMA window only refers to physical DMA windows not virtual DMA windows. Virtual DMA windows can be directly created with a client

virtual IOA definition and need not be shared with those of the server.

17.2  VIO Architectural Infrastructure 611

LoPAPR, Version 1.1 (March 24, 2016)

H_RETURN_LOGICAL hcall()s and the calling partition can use to reference said structures via the
H_RESCIND_LOGICAL hcall().

 Place the cookie generated in the previous step in R4 and return H_Success.

17.2.1.5.2 H_RESCIND_LOGICAL

This hcall() invalidates a logical sharing as created by H_GRANT_LOGICAL above. This operation may be subject to
significant delays in certain circumstances. Callers may experience an extended series of H_PARTIAL returns prior to
successful completion of this operation.

If the sharer of the logical resource has not successfully completed the H_RETURN_LOGICAL operation on the
shared logical resource represented by the specified cookie, the H_RESCIND_LOGICAL hcall() fails with the
H_Resource return code unless the “force” flag is specified. The use of the “force” flag increases the likelihood that a
series of H_PARTIAL returns will be experienced prior to successful completion. The “force” flag also causes the
hcall() to recursively rescind any and all cookies that represent subsequent sharing of the logical resource. That is, if
the original client subsequently granted access to any or all of the logical resource to a client, those cookies and any
other subsequent grants are also rescinded.

Syntax:

uint64 /* H_Success Expected return code */
/* H_Hardware Operation failed because of hardware error*/
/* H_Parameter One or more parameters were in error */
/* H_Resource The operation failed because resource is in use by the sharer */
/* H_PARTIAL Rescind in progress call later */

hcall (const uint64 H_RESCIND_LOGICAL,/* Invalidates a cookie representing a shared logical resource */
uint64 flags, /* force (ignore resource in use - remove sharer’s access) */
uint64 cookie); /* cookie representing the shared resource */

Parameters:

flags: The flags subfunction code field (bits 16-23) two values are defined 0x00 “normal”, and 0x01 “forced”.

cookie: The handle returned by H_GRANT_LOGICAL representing the logical resource to be rescinded.

Semantics:

 Verify that the cookie parameter references an outstanding instance of a shared logical resource owned/accepted by
the calling partition, else return H_Parameter.

 Verify that the flags parameter is one of the supported values, else return H_Paramter.

 If the “force” flag is specified 1, then: perform the functions of H_RETURN_LOGICAL (cookie) as if called by the
client partition. Note this involves forced rescinding any cookies generated by the client partition that refer to the
logical resource referenced by the original cookie being rescinded.

 If the client partition has the resource referenced by cookie is in the available for mapping via its logical to physical
mapping table (the resource was accepted and not returned), return H_Resource.

 Verify that resource reference by cookie is not mapped by the client partition, else return H_PARTIAL.

 Hypervisor reclaims control structures referenced by cookie and returns H_Success.

1.Implementations should provide mechanisms to ensure that reserved flag field bits are zero, to improve performance, implementations may chose to
activate this checking only in “debug” mode. The mechanism for activating an implementation dependent debug mode is outside of the scope of this
architecture.

612 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

17.2.1.5.3 H_ACCEPT_LOGICAL

The H_ACCEPT_LOGICAL hcall() maps the granted logical resource into the client partition’s logical address space.
To provide the most compact client logical address space, the hypervisor maps the resource into the lowest applicable
logical address for the referenced logical resource type, consistent with the resource’s size and the resource type’s con-
straints upon alignment etc. The chosen logical address for the starting point of the logical mapping is returned in reg-
ister R4.

Syntax:

uint64 /* H_Success Expected return code */
/* H_Parameter One or more parameters were in error */
/* H_RESCINDED: A specified parameter refers to a rescinded shared logical resource/
/* H_Hardware Operation failed because of hardware error*/

hcall (const uint64 H_ACCEPT_LOGICAL,/* Returns in R4 handle of a shared logical resource */
uint64 cookie); /* Cookie representing the shared resource */

Parameters:

cookie: The handle returned by H_GRANT_LOGICAL representing the logical resource to be accepted.

Semantics:

 Verify that the cookie parameter is valid for the calling partition, else return H_Parameter.

 If the cookie represents a logical resources that has been rescinded by the owner, return H_RESCINDED.

 Map the resources represented by the cookie parameter, with any attendant access restrictions, into the lowest avail-
able logical address of the calling partition consistent with constraints of size and alignment and place the selected
logical address into R4.

 Return H_Success.

17.2.1.5.4 H_RETURN_LOGICAL

The H_RETURN_LOGICAL hcall() unmaps the logical resource from the client partition’s logical address space.
Prior to calling H_RETURN_LOGICAL the client partition should have destroyed all virtual mappings to the section
of the logical address space to which the logical resource is mapped. That is unmapping virtual addresses for MMIO
and System Memory space, invalidating TCEs mapping a shared DMA window pane, disabling/masking shared inter-
rupt sources and/or inter processor interrupts. Failing to do so, may result in parameter errors for other hcall()s and
H_Resource from the H_RETURN_LOGICAL hcall(). Part of the semantic of this call is to determine that no such ac-
tive mapping exists. Implementations may be able to determine this quickly if they for example maintain map counts
for various logical resources, if an implementation searches a significant amount of platform tables, then the hcall()
may return H_Busy and maintain internal state to continue the scan on subsequent calls using the same cookie parame-
ter. The cookie parameter remains valid for the calling client partition until the server partition successfully executes
the H_RESCIND_LOGICAL hcall().

Syntax:

uint64 /* H_Success Expected return code */
/* H_Busy The operation is not yet complete call again */
/* H_Hardware Operation failed because of hardware error*/
/* H_Parameter One or more parameters were in error */
/* H_Resource The operation failed because resource is in use by the sharer */

hcall (const uint64 H_RETURN_LOGICAL,/* Removes the logical resource from the partition’s logical */

17.2  VIO Architectural Infrastructure 613

LoPAPR, Version 1.1 (March 24, 2016)

/* address map*/
uint64 cookie); /* Cookie representing the shared resource */

Parameters:

cookie: The handle returned by H_GRANT_LOGICAL representing the logical resource to be returned.

Semantics:

 Verify that the cookie parameter references an outstanding instance of a shared logical resource accepted by the call-
ing partition, else return H_Parameter.

 Remove the referenced logical resource from the calling partition’s logical address map.

 Verify that no virtual to logical mappings exist for the referenced resource, else return H_Resource.

 This operation may require extensive processing -- in some cases the hcall may return H_Busy to allow for im-
proved system responsiveness -- in these cases the state of the mapping scan is retained in the hypervisor’s state
structures such that after some number of repeated calls the function is expected to finish.

 Return H_Success.

17.2.1.6 H_VIOCTL

The H_VIOCTL hypervisor call allows the partition to manipulate or query certain virtual IOA behaviors.

Syntax:

int64 /* H_Success, Expected Return Code */
/* H_Parameter, One or more parameters were invalid */
/* H_Constrained, The operation failed because of a resource constraint */
/* H_Hardware, The operation failed because of a hardware error */
/* H_Not_Found, Subfunction parameter value not supported *
/* H_Closed, The virtual I/O connection is closed */

hcall(const unit64 H_VIOCTL, /* Query/Set behaviors for the virtual IOA */
uint64 unit-address, /* As specified in the virtual IOA device tree node */
uint64 subfunction, /* The subfunction is encoded below */
uint64 parm-1, /* The last three parameters are defined in the semantics */
uint64 parm-2, /* for the specific subfunction. All unused parameters must */
uint64 parm-3); /* be set to zero */

Parameters:

 unit-address: As specified.

 subfunction: Specific subfunction to perform; see Table 229‚ “Semantics for H_VIOCTL subfunction parameter
values‚” on page 614.

 parm-1: Specified in subfunction semantics.

 parm-2: Specified in subfunction semantics.

 parm-3: Specified in subfunction semantics.

Semantics:

 Validate that the subfunction is implemented, else return H_Not_Found.

 Validate the unit-address, else return H_Parameter.

614 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 Validate the subfunction is valid for the given virtual IOA, else return H_Parameter.

 Refer to Table 229‚ “Semantics for H_VIOCTL subfunction parameter values‚” on page 614 to determine the se-
mantics for the given subfunction.

Table 229. Semantics for H_VIOCTL subfunction parameter values

Subfunction
Number

Subfunction Name Required? Semantics Defined in

0x0 (Reserved) (Reserved) (Reserved)

0x1 GET_VIOA_DUMP_SIZE

For all VIO options

Section 17.2.1.6.1‚ “GET_VIOA_DUMP_SIZE Subfunction
Semantics‚” on page 615.

0x2 GET_VIOA_DUMP
Section 17.2.1.6.2‚ “GET_VIOA_DUMP Subfunction
Semantics‚” on page 615.

0x3 GET_ILLAN_NUMBER_VLAN_IDS

For the ILLAN option

Section 17.2.1.6.3‚ “GET_ILLAN_NUMBER_VLAN_IDS
Subfunction Semantics‚” on page 615.

0x4 GET_ILLAN_VLAN_ID_LIST
Section 17.2.1.6.4‚ “GET_ILLAN_VLAN_ID_LIST
Subfunction Semantics‚” on page 616.

0x5 GET_ILLAN_SWITCH_ID For the ILLAN option
Section 17.2.1.6.5‚ “GET_ILLAN_SWITCH_ID Subfunction
Semantics‚” on page 616

0x6 DISABLE_MIGRATION

For all vscsi-server and vfc-server

Section 17.2.1.6.6‚ “DISABLE_MIGRATION Subfunction
Semantics‚” on page 616.

0x7 ENABLE_MIGRATION
Section 17.2.1.6.7‚ “ENABLE_MIGRATION Subfunction
Semantics‚” on page 616.

0x8 GET_PARTNER_INFO
Section 17.2.1.6.8‚ “GET_PARTNER_INFO Subfunction
Semantics‚” on page 617.

0x9 GET_PARTNER_WWPN_LIST For all vfc-server
Section 17.2.1.6.9‚ “GET_PARTNER_WWPN_LIST
Subfunction Semantics‚” on page 617.

0xA DISABLE_ALL_VIO_INTERRUPTS

For the Subordinate CRQ
Transport option

Section 17.2.1.6.10‚ “DISABLE_ALL_VIO_INTERRUPTS
Subfunction Semantics‚” on page 618

0xB DISABLE_VIO_INTERRUPT
Section 17.2.1.6.11‚ “DISABLE_VIO_INTERRUPT
Subfunction Semantics‚” on page 618

0xC ENABLE_VIO_INTERRUPT
Section 17.2.1.6.12‚ “ENABLE_VIO_INTERRUPT
Subfunction Semantics‚” on page 618

0xD GET_ILLAN_MAX_VLAN_PRIORITY No
Section 17.2.1.6.13‚
“GET_ILLAN_MAX_VLAN_PRIORITY Subfunction
Semantics‚” on page 619

0xE GET_ILLAN_NUMBER_MAC_ACLS No
Section 17.2.1.6.14‚ “GET_ILLAN_NUMBER_MAC_ACLS
Subfunction Semantics‚” on page 619

0xF GET_MAC_ACLS No
Section 17.2.1.6.15‚ “GET_MAC_ACLS Subfunction
Semantics‚” on page 619

0x10 GET_PARTNER_UUID For UUID Option
Section 17.2.1.6.16‚ “GET_PARTNER_UUID Subfunction
Semantics‚” on page 619

0x11 FW_RESET For the VNIC option.
Section 17.2.1.6.17‚ “FW_Reset Subfunction Semantics‚” on
page 619

17.2  VIO Architectural Infrastructure 615

LoPAPR, Version 1.1 (March 24, 2016)

17.2.1.6.1 GET_VIOA_DUMP_SIZE Subfunction Semantics

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 The hypervisor calculates the size necessary for passing opaque firmware data describing current virtual IOA state
to the partition for purposes of error logging and RAS, and returns H_Success, with the required size in R4.

17.2.1.6.2 GET_VIOA_DUMP Subfunction Semantics

 If the given virtual IOA has an “ibm,my-dma-window” property in its device tree, then parm-1 is an eight byte
output descriptor. The high order byte of an output descriptor is control, the next three bytes are a length field of the
buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a buffer in I/O address
space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped via the first window
pane of the “ibm,my-dma-window” property.

 If the given virtual IOA has no “ibm,my-dma-window” property in its device tree, then parm-1 shall be a logi-
cal real, page-aligned address of a 4 K page used to return the virtual IOA dump.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 If parm-1 is an output descriptor, then

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 Transfer as much opaque hypervisor data as fits into the output buffer as specified by the output descriptor.

 If all opaque data will not fit due to size, return H_Constrained, else return H_Success.

 If parm-1 is a logical real address, then

 Validate the logical real address is valid for the partition, else return H_Parameter.

 Transfer as much opaque hypervisor data as will fit into the passed logical real page, with a maximum of 4 K.

 If all opaque data will not fit in the page due to size, return H_Constrained, else return H_Success.

17.2.1.6.3 GET_ILLAN_NUMBER_VLAN_IDS Subfunction Semantics

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 The hypervisor returns H_Success, with the number of VLAN IDs (PVID + VIDs) in R4. This subfunction allows
the partition to allocate the correct amount of space for the call: H_VIOCTL(GET_VLAN_ID_LIST).

0x12 Get_ILLAN_SWITCHING_MODE
For any ILLAN adapter with the
“ibm,trunk-adapter”
property

0x13
DISABLE_INACTIVE_TRUNK_RECE
PTION

For any ILLAN adapter with the
"ibm,trunk-adapter"
property

Section 17.2.1.6.19‚
“DISABLE_INACTIVE_TRUNK_RECEPTION Subfunction
Semantics:‚” on page 620

Table 229. Semantics for H_VIOCTL subfunction parameter values

Subfunction
Number

Subfunction Name Required? Semantics Defined in

616 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

17.2.1.6.4 GET_ILLAN_VLAN_ID_LIST Subfunction Semantics

 parm-1 is an eight byte output descriptor. The high order byte of an output descriptor is control, the next three bytes
are a length field of the buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a
buffer in I/O address space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped
via the first window pane of the “ibm,my-dma-window” property.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 Transfer the VLAN_ID_LIST into the output buffer as specified by the output descriptor. The data will be an array
of two byte values, where the first element of the array is the PVID followed by all the VIDs. The format of the ele-
ments of the array is specified by IEEE VLAN documentation. Any unused space in the output buffer will be zeroed.

 If all VLAN IDs do not fit due to size, return H_Constrained.

 Return H_Success

17.2.1.6.5 GET_ILLAN_SWITCH_ID Subfunction Semantics

 parm-1 is an eight byte output descriptor. The high order byte of an output descriptor is control, the next three bytes
are a length field of the buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a
buffer in I/O address space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped
via the first window pane of the “ibm,my-dma-window” property.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 Transfer the GET_ILLAN_SWITCH_ID into the output buffer as specified by the output descriptor. The data will
be a string of ASCII characters uniquely identifying the virtual switch to which the ILLAN adapter is connected.
Any unused space in the output buffer will be zeroed.

 If the switch identifier does not fit due to size, return H_Constrained.

 Return H_Success

17.2.1.6.6 DISABLE_MIGRATION Subfunction Semantics

When this subfunction is implemented, the “ibm,migration-control” property exists in the /vdevice OF
device tree node.

 Validate that parm-1, parm-2, and parm-3 are all set to zero, else return H_Parameter.

 If no partner is connected, then return H_Closed.

 Prevent the migration of the partner partition to the destination server until either the ENABLE_MIGRATION sub-
function is called or H_FREE_CRQ is called.

 Return H_Success.

17.2.1.6.7 ENABLE_MIGRATION Subfunction Semantics

When this subfunction is implemented, the “ibm,migration-control” property exists in the /vdevice OF
device tree node.

17.2  VIO Architectural Infrastructure 617

LoPAPR, Version 1.1 (March 24, 2016)

 Validate that parm-1, parm-2, and parm-3 are all set to zero, else return H_Parameter.

 Validate that the migration of the partner partition to the destination server was previously prevented with
DISABLE_MIGRATION subfunction, else return H_Parameter.

 Enable the migration of the partner partition.

 Return H_Success.

17.2.1.6.8 GET_PARTNER_INFO Subfunction Semantics

 Parm-1 is an eight byte output descriptor. The high order byte of an output descriptor is control, the next three bytes
are a length field of the buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a
buffer in I/O address space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped
via the first window pane of the “ibm,my-dma-window” property.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 If the output buffer is not large enough to fit all the data, then return H_Constrained.

 If no partner is connected and more than one possible partner exists, then return H_Closed.

 Transfer the eight byte partner partition ID into the first eight bytes of the output buffer.

 Transfer the eight byte unit address into the second eight bytes of the output buffer.

 Transfer the NULL-terminated Converged Location Code associated with the partner unit address and partner parti-
tion ID immediately following the unit address.

 Zero any remaining output buffer.

 Return H_Success.

17.2.1.6.9 GET_PARTNER_WWPN_LIST Subfunction Semantics

This subfunction is used to get the WWPNs for the partner from the hypervisor. In this way, there is assurance that the
WWPNs are accurate.

 Parm-1 is an eight byte output descriptor. The high order byte of an output descriptor is control, the next three bytes
are a length field of the buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a
buffer in I/O address space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped
via the first window pane of the “ibm,my-dma-window” property.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 If the output buffer is not large enough to fit all the data, return H_Constrained.

 If no partner is connected, return H_Closed.

 Transfer the first eight byte WWPN, which is represented in the vfc-client node of the partner partition in the
“ibm,port-wwn-1” parameter, into the first eight bytes of the output buffer.

 Transfer the second eight byte WWPN, which is represented in the vfc-client node of the partner partition in
the “ibm,port-wwn-2” parameter, into the second eight bytes of the output buffer.

618 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 Zero any remaining output buffer.

 Return H_Success.

17.2.1.6.10 DISABLE_ALL_VIO_INTERRUPTS Subfunction Semantics

This subfunction is used to disable any and all the CRQ and Sub-CRQ interrupts associated with the virtual IOA desig-
nated by the unit-address, for VIOs that define the use of Sub-CRQs. Software that controls a virtual IOA that does not
define the use of Sub-CRQ facilities should use the H_VIO_SIGNAL hcall() to disable CRQ interrupts.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this subfunction might change, and the caller should be prepared to receive an H_Not_Found return code
indicating the platform does not implement this subfunction.

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 Disable all CRQ and any Sub-CRQ interrupts associated with unit-address.

 Return H_Success.

17.2.1.6.11 DISABLE_VIO_INTERRUPT Subfunction Semantics

This subfunction is used to disable a CRQ or Sub-CRQ interrupt, for VIOs that define the use of Sub-CRQs. The CRQ
or Sub-CRQ is defined by the unit-address and parm-1. Software that controls a virtual IOA that does not define the
use of Sub-CRQ facilities should use the H_VIO_SIGNAL hcall() to disable CRQ interrupts.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this subfunction might change, and the caller should be prepared to receive an H_Not_Found return code
indicating the platform does not implement this subfunction.

 Parm-1 is the interrupt number of the interrupt to be disabled. For an interrupt associated with a CRQ this number is
obtained from the “interrupts” property in the device tree For an interrupt associated with a Sub-CRQ this
number is obtained during the registration of the Sub-CRQ (H_REG_SUB_CRQ).

 Validate parm-1 is a valid interrupt number for a CRQ or Sub-CRQ for the virtual IOA defined by parm-1 and that
parm-2 and parm-3 are set to zero, else return H_Parameter.

 Disable interrupt specified by parm-1.

 Return H_Success.

17.2.1.6.12 ENABLE_VIO_INTERRUPT Subfunction Semantics

This subfunction is used to enable a CRQ or Sub-CRQ interrupt, for VIOs that define the use of Sub-CRQs. The CRQ
or Sub-CRQ is defined by the unit-address and parm-1. Software that controls a virtual IOA that does not define the
use of Sub-CRQ facilities should use the H_VIO_SIGNAL hcall() to disable CRQ interrupts.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this subfunction might change, and the caller should be prepared to receive an H_Not_Found return code
indicating the platform does not implement this subfunction.

 Parm-1 is the interrupt number of the interrupt to be enabled. For an interrupt associated with a CRQ this number is
obtained from the “interrupts” property in the device tree For an interrupt associated with a Sub-CRQ this
number is obtained during the registration of the Sub-CRQ (H_REG_SUB_CRQ).

 Validate parm-1 is a valid interrupt number for a CRQ or Sub-CRQ for the virtual IOA defined by unit-address and
that parm-2 and parm-3 are set to zero, else return H_Parameter.

 Enable interrupt specified by parm-1.

17.2  VIO Architectural Infrastructure 619

LoPAPR, Version 1.1 (March 24, 2016)

 Return H_Success.

17.2.1.6.13 GET_ILLAN_MAX_VLAN_PRIORITY Subfunction Semantics

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 The hypervisor returns H_Success, with the maximum IEEE 802.1Q VLAN priority returned in R4. If no priority
limits are in place, the maximum VLAN priority is returned in R4.

17.2.1.6.14 GET_ILLAN_NUMBER_MAC_ACLS Subfunction Semantics

This subfunction allows the partition to allocate the correct amount of space for the GET_MAC_ACLS Subfunction
call.

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 The hypervisor returns H_Success, with the number of allowed MAC addresses returned in R4. If no MAC access
control limits are in place, 0 is returned in R4.

17.2.1.6.15 GET_MAC_ACLS Subfunction Semantics

 parm-1 is an eight byte output descriptor. The high order byte of an output descriptor is control, the next three bytes
are a length field of the buffer in bytes, and the low order four bytes are a TCE mapped I/O address of the start of a
buffer in I/O address space. The high order control byte must be set to zero. The TCE mapped I/O address is mapped
via the first window pane of the “ibm,my-dma-window” property.

 Validate parm-2 and parm-3 are set to zero, else return H_Parameter.

 Validate the I/O address range is in the required DMA window and is mapped by valid TCEs, else return
H_Parameter.

 Transfer the allowed MAC addresses into the output buffer as specified by the output descriptor. The data will be an
array of 8 byte values containing the allowed MAC address, with the low order 6 bytes containing the 6 byte MAC
address. Any unused space in the output buffer are zeroed.

 If all allowed MAC addresses do not fit due to size, return H_Constrained.

 Return H_Success

17.2.1.6.16 GET_PARTNER_UUID Subfunction Semantics

 Validate parm-1, parm-2 and parm-3 are set to zero, else return H_Parameter.

 If no partner is connected and more than one possible partner exists, then return H_Closed.

 Transfer into registers R4 (High order 8 bytes) and R5 (low order 8 bytes) of the UUID of the client partition that owns the
virtual device (See Section 7.3.16.21‚ “Universally Unique IDentifier‚” on page 233 for the format of the UUID string.

 Return H_Success

17.2.1.6.17 FW_Reset Subfunction Semantics

This H_VIOCTL subfunction will reset the VNIC firmware associated with a VNIC client adapter, if currently active.
This subfunction is useful when the associated firmware becomes unresponsive to other CRQ-based commands. For
the case of vTPMs the firmware will be left inoperable until the client partition next boots up.

Semantics:

 Validate that parm-1, parm-2, and parm-3 are all set to zero, else return H_Parameter.

620 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 If the firmware associated with the virtual adapter can not be reset, return H_Constrained.

 Reset the firmware associated with the virtual adapter.

 Return H_Success.

17.2.1.6.18 GET_ILLAN_SWITCHING_MODE Subfunction Semantics

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 Validate that the given virtual IOA is a ILLAN adapter with the "ibm,trunk-adapter", else return H_Parameter.

 The hypervisor returns H_Success, with the current switching mode in R4. If the switching mode is VEB mode, R4
will have a 0. If the switching mode is VEPA mode, R4 will have a 1.

17.2.1.6.19 DISABLE_INACTIVE_TRUNK_RECEPTION Subfunction Semantics:

This subfunction is used to disable the reception of all packets for a ILLAN trunk adapter that is not the Active Trunk
Adapter as set by the H_ILLAN_ATTRIBUTES hcall.

Note: The default value for this attribute is ENABLED. The value is reset on a successful H_FREE_LOGICAL_LAN
hcall or reboot/power change of the partition owning the ILLAN adapter.

 Validate parm-1, parm-2, and parm-3 are set to zero, else return H_Parameter.

 Validate that the given virtual IOA is a ILLAN adapter with the "ibm,trunk-adapter", else return H_Parameter.

 The hypervisor disables reception of packets for this adapter when it is not the Active Trunk Adapter.

 Return H_Success.

17.2.2 Partition Managed Class Infrastructure - General

In addition to the general requirements for all VIO described in Section 17.2.1.4‚ “General VIO Requirements‚” on
page 603, the architecture for the partition managed class of VIO defines several other infrastructures:

 A Command/Response Queue (CRQ) that allows communications back and forth between the server partition and
its partner partition (see Section 17.2.2.1‚ “Command/Response Queue (CRQ)‚” on page 621).

 A Subordinate CRQ (Sub-CRQ) facility that may be used in conjunction with the CRQ facility, when the CRQ facil-
ity by itself is not sufficient. That is, when more than one queue with more than one interrupt is required by the vir-
tual IOA. See Section 17.2.2.3‚ “Subordinate Command/Response Queue (Sub-CRQ)‚” on page 634.

 A mechanism for doing RDMA, which includes:

 A mechanism called Copy RDMA that can be used by the device driver to move blocks of data between memory
of the server and partner partitions

 A mechanism for Redirected RDMA that allows the device driver to direct DMA of data from the server parti-
tion’s physical IOA to or from the partner partition’s memory (see Section 17.2.2.2‚ “Redirected RDMA (Using
H_PUT_RTCE, and H_PUT_RTCE_INDIRECT)‚” on page 625).

The mechanisms for the synchronous type VIO are described as follows:

 Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637

17.2  VIO Architectural Infrastructure 621

LoPAPR, Version 1.1 (March 24, 2016)

17.2.2.1 Command/Response Queue (CRQ)

The CRQ facility provides ordered delivery of messages between authorized partitions. The facility is reliable in the
sense that the messages are delivered in sequence, that the sender of a message is notified if the transport facility is un-
able to deliver the message to the receiver’s queue, and that a notification message is delivered (providing that there is
free space on the receive queue), or if the partner partition either fails or deregisters its half of the transport connection.
The CRQ facility does not police the contents of the payload portions (after the 1 byte header) of messages that are ex-
changed between the communicating pairs, however, this architecture does provide means (via the Format Byte) for
self describing messages such that the definitions of the content and protocol between using pairs may evolve over
time without change to the CRQ architecture, or its implementation.

The CRQ is used to hold received messages from the partner partition. The CRQ owner may optionally choose to be
notified via an interrupt when a message is added to their queue.

17.2.2.1.1 CRQ Format and Registration

The CRQ is built of one or more 4 KB pages aligned on a 4 KB boundary within partition memory. The queue is orga-
nized as a circular buffer of 16 byte long elements. The queue is mapped into contiguous I/O addresses via the TCE
mechanism and RTCE table (first window pane). The I/O address and length of the queue are registered by
Section 17.2.3.1.1‚ “Reliable CRQ Format and Registration‚” on page 637. This registration process tells the hypervi-
sor where to find the virtual IOA’s CRQ.

17.2.2.1.2 CRQ Entry Format

Each CRQ entry consists of a 16 byte element. The first byte of a CRQ entry is the Header byte and is defined in
Table 230‚ “CRQ Entry Header Byte Values‚” on page 621.

The platform (transport mechanism) ignores the contents of all non-header bytes in all CRQ entries.

Valid Command/Response entries (Header byte 0x80) are used to carry data between communicating partners, trans-
parently to the platform. The second byte of the entry is reserved for a Format byte to enable the definitions of the con-
tent and protocol between using pairs to evolve over time. The definition of the second byte of the Valid
Command/Response entry is beyond the scope of this architecture. Table 210‚ “Example Reliable CRQ Entry Format
Byte Definitions for VSCSI‚” on page 577 presents example VSCSI format byte values.

Table 230. CRQ Entry Header Byte Values

Header Value Description

0 Element is unused -- all other bytes in the element are undefined

0x01 - 0x7F Reserved

0x80
Valid Command/Response entry -- the second byte defines the entry format (for example, see
Table 210‚ “Example Reliable CRQ Entry Format Byte Definitions for VSCSI‚” on page 577).

0x81 - 0xBF Reserved

0xC0
Valid Initialization Command/Response entry -- the second byte defines the entry format. See
Table 231‚ “Initialization Command/Response Entry Format Byte Definitions‚” on page 622.

0xC1 - 0xFE Reserved

0xFF
Valid Transport Event -- the second byte defines the specific transport event. See Table 232‚ “Transport
Event Codes‚” on page 622

622 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

The Valid Initialization Command/Response entry (Header byte 0xC0) is used during virtual IOA initialization se-
quences. The second byte of this type entry is architected and is as defined in Table 231‚ “Initialization Command/Re-
sponse Entry Format Byte Definitions‚” on page 622. This format is used for initialization operations between
communicating partitions. The remaining bytes (byte three and beyond) of the Valid Initialization Command/Response
entry are available for definition by the communicating entities.

Valid Transport Events (Header byte 0xFF) are used by the platform to notify communicating partners of conditions as-
sociated with the transport channel, such as the failure of the partner’s partition or the deregistration of the partner’s
queue. The partner’s queue may be deregistered as a means of resetting the transport channel or simply to terminate the
connection. When the Header byte of the queue entry specifies a Valid Transport Event, then the second byte of the
CRQ entry defines the type of transport event. The Format byte (second byte) of a Valid Transport Event queue entry is
architected and is as defined in Table 232‚ “Transport Event Codes‚” on page 622).

The “partner partition suspended” transport event disables the associated CRQ such that any H_SEND_CRQ hcall()
(See Section 17.2.3.1.5.3‚ “H_SEND_CRQ‚” on page 640) to the associated CRQ returns H_Closed until the CRQ has
been explicitly enabled using the H_ENABLE_CRQ hcall (See Section 17.2.3.1.5.4‚ “H_ENABLE_CRQ‚” on
page 641).

17.2.2.1.3 CRQ Entry Processing

Prior to the partition software registering the CRQ, the partition software sets all the header bytes to zero (entry in-
valid). After registration, the first valid entry is placed in the first element and the process proceeds to the end of the

Table 231. Initialization Command/Response Entry Format Byte Definitions

Format Byte Value Definition

0x0 Unused

0x1 Initialize

0x2 Initialization Complete

0x03 - 0xFE Reserved

0xFF Reserved for Expansion

Table 232. Transport Event Codes

Code Value Explanation

0 Unused

1 Partner partition failed

2 Partner partition deregistered CRQ

3

4

5

6
Partner partition suspended (for the Partition
Suspension option)

0x07 - 0xFF Reserved

17.2  VIO Architectural Infrastructure 623

LoPAPR, Version 1.1 (March 24, 2016)

queue and then wraps around to the first entry again (given that the entry has been subsequently marked as invalid).
This allows both the partition software and transport firmware to maintain independent pointers to the next element
they will be respectively using.

A sender uses an infrastructure dependent method to enter a 16 byte message on its partner’s queue (see
Section 17.2.3.1.3‚ “Reliable CRQ Entry Processing‚” on page 638). Prior to enqueueing an entry on the CRQ, the
platform first checks if the session to the partner’s queue is open, and there is a free entry, if not, it returns an error. If
the checks succeed, the contents of the message is copied into the next free queue element, potentially notifying the re-
ceiver, and returns a successful status to the caller.

At the receiver’s option, it may be notified via an interrupt when an element is enqueued to its CRQ. See “CRQ Facil-
ity Interrupt Notification” on page 623.

When the receiver has finished processing a queue entry, it writes the header to the value 0x00 to invalidate the entry
and free it for future entries.

Should the receiver wish to terminate or reset the communication channel it deregisters the queue, and if it needs to
re-establish communications, proceeds to register either the same or different section of memory as the new queue,
with the queue pointers reset to the first entry.

17.2.2.1.4 CRQ Facility Interrupt Notification

The receiver can set the virtual interrupt associated with its CRQ to one of two modes. These are:

1. Disabled (An enqueue interrupt is not signaled.)

2. Enabled (An enqueue interrupt is signaled on every enqueue)

Note: An enqueue is considered a pulse not a level. The pulse then sets the memory element within the emulated interrupt
source controller. This allows the resetting of the interrupt condition by simply issuing the H_EOI hcall() as is
done with the PCI MSI architecture rather than having to do an explicit interrupt reset as in the case with PCI Level
Sensitive Interrupt (LSI) architecture.

The interrupt mechanism is capable of presenting only one interrupt signal at a time from any given interrupt source.
Therefore, no additional interrupts from a given source are ever signaled until the previous interrupt has been pro-
cessed through to the issuance of an H_EOI hcall(). Specifically, even if the interrupt mode is enabled, the effect is to
interrupt on an empty to non-empty transition of the queue. However, as with any asynchronous posting operation race
conditions are to be expected. That is, an enqueue can happen in a window around the H_EOI hcall(). Therefore, the
receiver should poll the CRQ after an H_EOI to prevent losing initiative.

See Section 17.2.1.3‚ “VIO Interrupt Control‚” on page 602) for information about interrupt control.

17.2.2.1.5 Extensions to Other hcall()s for CRQ

17.2.2.1.5.1 H_MIGRATE_DMA

Since the CRQ is RTCE table mapped, the H_MIGRATE_DMA hcall() may be requested to move a page that is part of
the CRQ. The OS owner of the queue is responsible for preventing its processors from modifying the page during the
migrate operation (as is standard practice with this hcall()), however, the H_MIGRATE_DMA hcall() serializes with
the CRQ hcall()s to direct new elements to the migrated target page.

17.2.2.1.5.2 H_XIRR, H_EOI

The CRQ facility utilizes a virtual interrupt source number to notify the queue owner of new element enqueues. The
standard H_XIRR and H_EOI hcall()s are extended to support this virtual interrupt mechanism, emulating the standard
PowerPC Interrupt hardware with respect to the virtual interrupt source number.

624 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

17.2.2.1.6 CRQ Facility Requirements

R1–17.2.2.1.6–1. For the CRQ facility: The platform must implement the CRQ as specified in Section 17.2.2.1‚
“Command/Response Queue (CRQ)‚” on page 621.

R1–17.2.2.1.6–2. For the CRQ facility: The platform must reject CRQ definitions that are not 4 KB aligned.

R1–17.2.2.1.6–3. For the CRQ facility: The platform must reject CRQ definitions that are not a multiple of 4 KB
long.

R1–17.2.2.1.6–4. For the CRQ facility: The platform must reject CRQ definitions that are not mapped relative to
the TCE mapping defined by the first window pane of the virtual IOA’s “ibm,my-dma-window” prop-
erty.

R1–17.2.2.1.6–5. For the CRQ facility: The platform must start enqueueing Commands/Responses to the newly
registered CRQ starting at offset zero and proceeding as in a circular buffer, each entry being 16 byte aligned.

R1–17.2.2.1.6–6. For the CRQ facility: The platform must enqueue Commands/Responses only if the 16 byte en-
try is free (header byte contains 0x00), else the enqueue operation fails.

R1–17.2.2.1.6–7. For the CRQ facility: The platform must enqueue the 16 bytes specified in the validated enqueue
request as specified in Requirement R1–17.2.2.1.6–5 except as required by Requirement R1–17.2.2.1.6–6.

R1–17.2.2.1.6–8. For the CRQ facility: The platform must not enqueue commands/response entries if the CRQ
has not been registered successfully or if after a successful completion, has subsequently deregistered the
CRQ.

R1–17.2.2.1.6–9. For the CRQ facility: The platform (transport mechanism) must ignore and must not modify the
contents of all non-header bytes in all CRQ entries.

R1–17.2.2.1.6–10. For the CRQ facility: The first byte of a CRQ entry must be the Header byte and must be as de-
fined in Table 230‚ “CRQ Entry Header Byte Values‚” on page 621.

R1–17.2.2.1.6–11. For the CRQ facility: The Format byte (second byte) of a Valid Initialization CRQ entry must
be as defined in Table 231‚ “Initialization Command/Response Entry Format Byte Definitions‚” on page 622.

R1–17.2.2.1.6–12. For the CRQ facility: The Format byte (second byte) of a Valid Transport Event queue entry
must be as defined in Table 232‚ “Transport Event Codes‚” on page 622.

R1–17.2.2.1.6–13. For the CRQ facility: If the partner partition fails, then the platform must enqueue a 16 byte en-
try starting with 0xFF01 (last 14 bytes unspecified) as specified in Requirement R1–17.2.2.1.6–5 except as
required by Requirements R1–17.2.2.1.6–6 and R1–17.2.2.1.6–8.

R1–17.2.2.1.6–14. For the CRQ facility: If the partner partition deregisters its corresponding CRQ, then the plat-
form must enqueue a 16 byte entry starting with 0xFF02 (last 14 bytes unspecified) as specified in Require-
ment R1–17.2.2.1.6–5 except as required by Requirements R1–17.2.2.1.6–6 and R1–17.2.2.1.6–8.

R1–17.2.2.1.6–15.

R1–17.2.2.1.6–16. For the CRQ facility with the Partner Control option: If the partner partition is terminated by
request of this partition via the ibm,partner-control RTAS call, then the platform must enqueue a 16 byte en-
try starting with 0xFF04 (last 14 bytes unspecified) as specified in Requirement R1–17.2.2.1.6–5 except as
required by Requirements R1–17.2.2.1.6–6 and R1–17.2.2.1.6–8 when the partner partition has been success-
fully terminated.

R1–17.2.2.1.6–17.

R1–17.2.2.1.6–18. For the CRQ facility option: Platforms that implement the H_MIGRATE_DMA hcall() must
implement that function for pages mapped for use by the CRQ.

17.2  VIO Architectural Infrastructure 625

LoPAPR, Version 1.1 (March 24, 2016)

R1–17.2.2.1.6–19. For the CRQ facility: The platforms must emulate the standard PowerPC External Interrupt Ar-
chitecture for the interrupt source numbers associated with the virtual devices via the standard RTAS and hy-
pervisor interrupt calls and must extend H_XIRR and H_EOI hcall()s as appropriate for CRQ interrupts.

R1–17.2.2.1.6–20. For the CRQ facility: The platform’s OF must disable interrupts from the using virtual IOA be-
fore initially passing control to the booted partition program.

R1–17.2.2.1.6–21. For the CRQ facility: The platform’s OF must disable interrupts from the using virtual IOA
upon registering the IOA’s CRQ.

R1–17.2.2.1.6–22. For the CRQ facility: The platform’s OF must disable interrupts from the using virtual IOA
upon deregistering the IOA’s CRQ.

R1–17.2.2.1.6–23. For the CRQ facility: The platform must present (as appropriate per RTAS control of the inter-
rupt source number) the partition owning a CRQ the appearance of an interrupt, from the interrupt source
number associated, through the OF device tree node, with the virtual device, when a new entry is enqueued to
the virtual device’s CRQ and when the last interrupt mode set was “Enabled”, unless a previous interrupt
from the interrupt source number is still outstanding.

R1–17.2.2.1.6–24. For the CRQ facility: The platform must not present the partition owning a CRQ the appear-
ance of an interrupt, from the interrupt source number associated, through the OF device tree node, with the
virtual device, if the last interrupt mode set was “Disabled”, unless a previous interrupt from the interrupt
source number is still outstanding.

17.2.2.2 Redirected RDMA (Using H_PUT_RTCE, and H_PUT_RTCE_INDIRECT)

A server partition uses the hypervisor function, H_PUT_RTCE, which takes as a parameter the opaque handle (LI-
OBN) of the partner partition’s RTCE table (second window pane of “ibm,my-dma-window”), an offset in the
RTCE table, the handle for one of the server partition's I/O adapter TCE tables plus an offset within the I/O adapter's
TCE table. H_PUT_RTCE then copies the appropriate contents of the partner partition's RTCE table into the server
partition's I/O adapter TCE table. In effect, this hcall() allows the server partition's I/O adapter to have access to a spe-
cific section of the partner partition's memory as if it were the server partition's memory. However, the partner parti-
tion, through the hypervisor, maintains control over exactly which areas of the partner partition's memory are made
available to the server partition without the overhead of the hypervisor having to directly handle each byte of the
shared data.

The H_PUT_RTCE_INDIRECT, if implemented, takes as an input parameter a pointer to a list of offsets into the
RTCE table, and builds the TCEs similar to the H_PUT_RTCE, described above.

A server partition uses the hypervisor function, H_REMOVE_RTCE, to back-out TCEs generated by the
H_PUT_RTCE and H_PUT_RTCE_INDIRECT hcall()s.

The following rules guide the definition of the RTCE table entries and implementation of the H_PUT_RTCE,
H_PUT_RTCE_INDIRECT, H_REMOVE_RTCE, H_MASS_MAP_TCE, H_PUT_TCE, H_PUT_TCE_INDIRECT,
and H_STUFF_TCE hcall()s. Other implementations that provide the same external appearance as these rules are ac-
ceptable. The architectural intent is to provide RDMA performance essentially equivalent to direct TCE operations.

1. The partner partition's RTCE table is itself never directly accessed by an I/O Adapter (IOA), it is only accessed by
the hypervisor, and therefore it can be a bigger structure than the regular TCE table as accessed by hardware (more
fields).

2. When a server partition asks (via an H_PUT_RTCE or H_PUT_RTCE_INDIRECT hcall()) to have an RTCE table
TCE copied to one of the server partition's physical IOA's TCEs, or asks (via an H_REMOVE_RTCE) to have an
RTCE table entry removed from one of the server partition’s physical IOA’s TCEs, the hypervisor atomically, with
respect to all RTCE table readers, sets (H_PUT_RTCE or H_PUT_RTCE_INDIRECT) or removes
(H_REMOVE_RTCE) a field in the copied RTCE table entry1. This field is a pointer to the copy of the RTCE ta-

626 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

ble TCE in the server partition’s IOA’s TCE table. (A per RTCE table TCE lock is one method for the atomic set-
ting of the copied RTCE table TCE link pointer.)

3. If a server partition tries to get another copy of the same RTCE table TCE it gets an error return (multiple map-
pings of the same physical page are allowed, they just need to use different RTCE table TCEs just like with phys-
ical IOA TCEs).

4. When the partner partition issues an H_PUT_TCE, H_PUT_TCE_INDIRECT, H_STUFF_TCE, or
H_MASS_MAP hcall() to change his RTCE table, the hypervisor finds the TCE tables in one of several states. A
number of these states represent unusual conditions, that can arise from timing windows or error conditions. The
hypervisor rules for handling these cases are chosen to minimize its overhead while preventing one partition’s er-
rors from corrupting another partition’s state.

a. The RTCE table TCE is not currently in use: Clear/invalidate the TCE copy pointer and enter the RTCE table
TCE mapping per the input parameters to the hcall().

b. The RTCE table TCE contains a valid mapping and the TCE copy pointer is invalid (NULL or other imple-
mentation dependent value) (The previous mapping was never used for Redirected RDMA): Enter the RTCE
table TCE mapping per the input parameters to the hcall().

c. The RTCE table TCE contains a valid mapping and the TCE copy pointer references a TCE that does not con-
tain a valid copy of the previous mapping in the RTCE table TCE. (The previous mapping was used for Redi-
rected RDMA, however, the server partition has moved on and is no longer targeting the page represented by
the old RTCE table TCE mapping): Clear/invalidate the TCE copy pointer and enter the RTCE table TCE
mapping per the input parameters to the hcall().

d. The RTCE table TCE contains a valid mapping and the TCE copy pointer references a TCE that does contain
a valid copy of the previous mapping in the RTCE table TCE (the previous mapping is still potentially in use
for Redirected RDMA, however, the partner partition has moved on and is no longer interested in the previ-
ous I/O operation). The server partition’s IOA may still target a DMA operation against the TCE containing
the copy of the RTCE table TCE mapping. The assumption is that any such targeting is the result of a timing
window in the recovery of resources in the face of errors. Therefore, the server partition’s TCE is considered
invalid, but the server partition may or may not be able to immediately invalidate the TCEs. For more infor-
mation on invalidation of TCEs, see Section 17.2.2.2.4‚ “Redirected RDMA TCE Recovery and In-Flight
DMA‚” on page 631. The H_Resource return from an H_PUT_TCE, H_PUT_TCE_INDIRECT, and
H_STUFF_TCE may be used to hold off invalidation in this case.

5. If a server partition terminates, the partner partition’s device drivers time out the operations and resource recovery
code recovers the RTCE table TCEs. If the partner partition terminates, the hypervisor scans the RTCE table and
eventually invalidates all active copies of RTCE table TCEs. For more information on invalidation of TCEs, see
Section 17.2.2.2.4‚ “Redirected RDMA TCE Recovery and In-Flight DMA‚” on page 631.

6. The server partition may use any of the supported hcall()s (see Section 17.2.1.2‚ “RTCE Table and Properties of
the Children of the /vdevice Node‚” on page 601) to manage the TCE tables used by its IOAs. No extra restric-
tions are made to changes of the server partition's TCE table beside those stated in 2 above. The server partition
can only target its own memory or the explicitly granted partner partition’s memory.

7. The H_MIGRATE_DMA hcall() made by a partner partition migrates the page referenced by the RTCE table TCE
but follows the RTCE table TCE copy pointer, if valid, to the server partition’s IOA’s TCE table to determine
which IOA’s DMA to disable, thus allowing migration of partner partition pages underneath server partition DMA
activity. In this case, however, the H_MIGRATE_DMA algorithm is modified such that server partition’s IOA’s

1.This is an example of where the earlier statement “Other implementations that provide the same external appearance as these rules are acceptable”
comes into affect. For example, for an RTCE table that is mapped with H_MASS_MAP_TCE, the pointer may not be in a field of the actual TCE in the
RTCE table, but could, for example, be in a linked list, or other such structure, due to the fact that there is not a one-to-one correspondence from the
RTCE to the physical IOA TCE in that case (H_MASS_MAP_TCE can map up to an LMB into one TCE, and physical IOA TCEs only map 4 KB).

17.2  VIO Architectural Infrastructure 627

LoPAPR, Version 1.1 (March 24, 2016)

TCE table is atomically updated, after the page migration but prior to enabling the IOA’s DMA, only when its con-
tents still are a valid copy of the partner partition’s RTCE table TCE contents. The H_MIGRATE_DMA hcall()
also serializes with H_PUT_RTCE so that new copies of the RTCE table TCE are not made during the migration
of the underlying page.

8. The server partition should never call H_MIGRATE_DMA for any Redirected RDMA mapped pages, however, to
check, the H_MIGRATE_DMA hcall() is enhanced to check the Logical Memory Block (LMB) owner in the TCE
and reject the call if the LMB did not belong to the requester.

17.2.2.2.1 H_PUT_RTCE

This hcall() maps “count” number of contiguous TCEs in an RTCE to the same number of contiguous IOA TCEs. The
H_REMOVE_RTCE hcall() is used to back-out TCEs built with H_PUT_RTCE hcall(). See Section 17.2.2.2.3‚
“H_REMOVE_RTCE‚” on page 630 for that hcall().

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid -- no mappings changed
H_RESCINDED, A specified parameter refers to a rescinded shared logical resource.

(no mappings changed)
H_R_Parm, One or more r-ioba mappings are invalid -- mappings may have changed
H_Resource, An attempt was made to make multiple redirected mappings of an RTCE

table entry-- some mappings may have changed.
H_Hardware The function failed due to unrecoverable hardware failure. */

const uint64 H_PUT_RTCE, /* Maps RDMA into IOA’s TCE table */
uint64 r-liobn, /* handle of RDMA RTCE table */
uint64 r-ioba, /* IO address per RDMA RTCE table */
uint64 liobn, /* Logical I/O Bus Number of server TCE table */
uint64 ioba, /* I/O address as seen by server IOA */
uint64 count); /* Number of consecutive 4 KB pages to map */

Parameters:

 r-liobn: Handle of RDMA RTCE table

 r-ioba: IO address per RDMA RTCE table

 liobn: Logical I/O Bus Number of server TCE table

 ioba: I/O address as seen by server IOA

 count: Number of consecutive 4 KB pages to map

Semantics:

 Validates r-liobn is from the second triple (second window pane) of the server partition’s “ibm,my-dma-win-
dow” property, else return H_Parameter.

 Validates r-ioba plus (count * 4 KB) is within range of RTCE table as specified by the window pane as specified by
the r-liobn, else return H_Parameter.

 Validates that the TCE table associated with liobn is owned by calling partition, else return H_Parameter.

 If the Shared Logical Resource option is implemented and the LIOBN, represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 Validates that ioba plus (count * 4 KB) is within the range of TCE table specified by liobn, else return H_Parameter.

628 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 If the Shared Logical Resource option is implemented and the IOBA represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 For count entries

 The following is done in a critical section with respect to updates to the r-ioba entry of the RTCE table TCE

 Check that the r-ioba entry of the RTCE table contains a valid mapping (this requires having a completed part-
ner connection), else return H_R_Parm with the value of the loop count in R4.

 Prevent multiple redirected mappings of the same r-ioba: If the r-ioba entry of the RTCE table TCE contains a
valid pointer, and if that pointer references a TCE that is a clone of the r-ioba entry of the RTCE table TCE,
then return H_Resource with the value of the loop count in R4.

 Copy the DMA address mapping from the r-ioba entry of the r-liobn RTCE table to the ioba entry of the liobn
TCE table and save a pointer to the ioba entry of the liobn TCE table in the r-ioba entry of the r-liobn RTCE ta-
ble, or in a separate structure associated with the r-liobn RTCE table.

 End Loop (The critical section lasts for one iteration of the loop)

 Return H_Success

Implementation Note: The PA requires the OS to issue a sync instruction to proceed the signalling of an IOA to start an
IO operation involving DMA to guarantee the global visibility of both DMA and TCE data. This hcall() does not
include a sync instruction to guarantee global visibility of TCE data and in no way diminishes the requirement for
the OS to issue it.

Implementation Note: The execution time for this hcall() is expected to be a linear function of the count parameter.
Excessive size of the count parameter may cause an extended delay.

17.2.2.2.2 H_PUT_RTCE_INDIRECT

This hcall() maps “count” number of potentially non-contiguous TCEs in an RTCE to the same number of contiguous
IOA TCEs. The H_REMOVE_RTCE hcall() is used to back-out TCEs built with the H_PUT_RTCE_INDIRECT
hcall(). See Section 17.2.2.2.3‚ “H_REMOVE_RTCE‚” on page 630 for that hcall().

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid -- no mappings changed.
H_RESCINDED, A specified parameter refers to a rescinded shared logical resource/

(No mappings changed)
H_R_Parm, One or more r-ioba mappings are invalid -- mappings may have changed
H_Resource, An attempt was made to make multiple redirected mappings of an RTCE

table entry-- some mappings may have changed.
H_Hardware The function failed due to unrecoverable hardware failure. */

const uint64 H_PUT_RTCE_INDIRECT, /* Maps RDMA into IOA’s TCE table */
uint64 buff-addr, /* The Logical Address of a page (4 KB, 4 KB boundary) */

/* containing a list of r-ioba to be mapped using the r-liobn RTCE table */
uint64 r-liobn, /* handle of RTCE table to be used with r-ioba entries in indirect buffer*/

/* (second window pane from server “ibm,my-dma-window”)*/
uint64 liobn, /* Logical I/O Bus Number of server TCE table */
uint64 ioba, /* I/O address as seen by server IOA */
uint64 count); /* Number of consecutive IOA bus 4 KB pages to map (number of entries in bufr) */

17.2  VIO Architectural Infrastructure 629

LoPAPR, Version 1.1 (March 24, 2016)

Parameters:

 buff-addr: The Logical Address of a page (4 KB, 4 KB boundary) containing a list of r-ioba to be mapped via using
the r-liobn RTCE table

 r-liobn: Handle of RTCE table to be used with r-ioba entries in indirect buffer (second window pane from server
“ibm,my-dma-window”

 liobn: Logical I/O Bus Number of server TCE table

 ioba: I/O address as seen by server IOA

 count: Number of consecutive IOA bus 4 KB pages to map (number of entries in buffer)

Semantics:

 Validates r-liobn is from the second triple (second window pane) of the server partition’s “ibm,my-dma-win-
dow” property, else return H_Parameter.

 Validates buff-addr points to the beginning of a 4 KB page owned by the calling partition, else return H_Parameter.

 If the Shared Logical Resource option is implemented and the logical address’s page number represents a page
that has been rescinded by the owner, return H_RESCINDED.

 Validates that the TCE table associated with liobn is owned by calling partition, else return H_Parameter.

 If the Shared Logical Resource option is implemented and the LIOBN represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 Validates that ioba plus (count * 4 KB) is within the range of TCE table specified by liobn, else return H_Parameter.

 If the Shared Logical Resource option is implemented and the IOBA represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 If the count field is greater than 512 return H_Parameter.

 Copy (count * 8) bytes from the page specified by buff-addr to a temporary hypervisor page for contents verification
and processing (this avoids the problem of the caller changing call by reference values after they are checked).

 For count entries:

 Validate the r-ioba entry in the temporary page is within range of RTCE table as specified by r-liobn, else place
the count number in R4 and return H_R_Parm.

 End loop

 For count validated entries in the hypervisor's temporary page:

 The following is done in a critical section with respect to updates to the r-ioba entry of the RTCE

 Check that the r-ioba entry of the r-liobn RTCE table contains a valid mapping (this requires having a com-
pleted partner connection), else return H_R_Parm with the count number in R4.

 Prevent multiple redirected mappings of the same r-ioba: If the r-ioba entry of the r-liobn RTCE table contains
a valid pointer, and if that pointer references a TCE entry that is a clone of the r-ioba entry of the RTCE table,
then return H_Resource with the count number in R4.

 Copy the DMA address mapping from the r-ioba entry of the r-liobn RTCE table to the ioba entry of the liobn
TCE table and save a pointer to the ioba entry of the liobn TCE table in the r-ioba entry of the r-liobn RTCE ta-
ble, or into a separate structure associated with the r-liobn RTCE table.

630 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 End Loop (The critical section lasts for one iteration of the loop)

 Return H_Success

Implementation Note: The PA requires the OS to issue a sync instruction to proceed the signalling of an IOA to start an
IO operation involving DMA to guarantee the global visibility of both DMA and TCE data. This hcall() does not
include a sync instruction to guarantee global visibility of TCE data and in no way diminishes the requirement for
the OS to issue it.

Implementation Note: The execution time for this hcall is expected to be a linear function of the count parameter.
Excessive size of the count parameter may cause an extended delay.

17.2.2.2.3 H_REMOVE_RTCE

The H_REMOVE_RTCE hcall() is used to back-out TCEs built with H_PUT_RTCE and H_PUT_RTCE_INDIRECT
hcall()s. That is, to remove the TCEs from the IOA TCE table and links put into the RTCE table as a result of the
H_PUT_RTCE or H_PUT_RTCE_INDIRECT hcall()s.

Syntax:

int64 hcall(/* H_Success, Expected Return Code
H_Parameter, One or more of the parameters are invalid -- no mappings changed
H_RESCINDED: A specified parameter refers to a rescinded shared logical resource.

(no mappings changed)
H_Hardware The function failed due to unrecoverable hardware failure. */

const uint64 H_REMOVE_RTCE, /* Unmaps RDMA from IOA’s TCE table */
uint64 r-liobn, /* handle of RDMA RTCE table */
uint64 r-ioba, /* IO address per RDMA RTCE table */
uint64 liobn, /* Logical I/O Bus Number of server TCE table */
uint64 ioba, /* I/O address as seen by server IOA */
uint64 count /* Number of consecutive 4 KB pages to map */
uint64 tce-value); /* TCE value to be put into the IOA TCE (Page Mapping and Control bits will be */

/* set to “Page fault (no access) by the hcall before replacing the IOA TCE) */

Parameters:

 r-liobn: Handle of RDMA RTCE table

 r-ioba: IO address per RDMA RTCE table

 liobn: Logical I/O Bus Number of server TCE table

 ioba: I/O address as seen by server IOA

 count: Number of consecutive 4 KB pages to unmap

 tce-value: TCE value to be put into the IOA TCE(s) after setting the “Page Mapping and Control” bits to “Page fault
(no access)”.

Semantics:

 Validates r-liobn is from the second triple (second window pane) of the server partition’s “ibm,my-dma-win-
dow” property, else return H_Parameter.

 Validates r-ioba plus (count * 4 KB) is within range of RTCE table as specified by the window pane as specified by
the r-liobn, else return H_Parameter.

 Validates that the TCE table associated with liobn is owned by calling partition, else return H_Parameter.

17.2  VIO Architectural Infrastructure 631

LoPAPR, Version 1.1 (March 24, 2016)

 If the Shared Logical Resource option is implemented and the LIOBN, represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 Validates that ioba plus (count * 4 KB) is within the range of TCE table specified by liobn, else return H_Parameter.

 If the Shared Logical Resource option is implemented and the IOBA represents a logical resource that has been
rescinded by the owner, return H_RESCINDED.

 For count entries

 The following is done in a critical section with respect to updates the r-ioba entry of the RTCE table TCE

 If it exists, invalidate the pointer in the r-ioba entry of the r-liobn RTCE table (or in a separate structure associ-
ated with the r-liobn RTCE table).

 Replace the ioba entry of the liobn TCE table with tce-value after setting the “Page Mapping and Control” bits
to “Page fault (no access)”.

 End Loop (The critical section lasts for one iteration of the loop)

 Return H_Success

Implementation Note: The execution time for this hcall() is expected to be a linear function of the count parameter.
Excessive size of the count parameter may cause an extended delay.

17.2.2.2.4 Redirected RDMA TCE Recovery and In-Flight DMA

There are certain error or error recovery scenarios that may attempt to unmap a TCE in an IOA’s TCE table prior to the
completion of the operation which setup the TCE. For example:

 A client attempts to H_PUT_TCE to its DMA window pane, which is mapped to the second window pane of the
server’s DMA window, and the TCE in the RTCE table which is the target of the H_PUT_TCE already points to a
valid TCE in an IOA’s TCE table.

 A client attempts to H_FREE_CRQ and the server’s second window pane for that virtual IOA contains a TCE which
points to a valid TCE in an IOA’s TCE table.

 A client partition attempts to reboot (which essentially is an H_FREE_CRQ).

 A server attempts to H_FREE_CRQ and the server’s second window pane for that virtual IOA contains a TCE
which points to a valid TCE in an IOA’s TCE table.

In such error and error recovery situations, the hypervisor attempts to prevent the changing of an IOAs TCE to a value
that would cause a non-recoverable IOA error. One method that the hypervisor may use to accomplish this is that on a
TCE invalidation operation, set the value of the read and write enable bits in the TCE to allow DMA writes but not
reads, and to change the real page number in the TCE to target a dummy page. In this case the IOA receives an error
(Target Abort) on attempts to read, while DMA writes (which were for a defunct operation) are silently dropped. This
works well when all the following are true:

 The platform supports separate TCE read and write enable bits in the TCE

 EEH is enabled and the DD can recover from the MMIO Stopped and DMA Stopped states

 The IOA and the IOA’s DD can recover gracefully from Target Aborts (which are received on a read to a page where
the read enable bit is off)

If these conditions are not true then the hypervisor will need to try to prevent or delay invalidation of the TCEs. The
H_Resource return from the H_FREE_CRQ, H_PUT_TCE, H_PUT_TCE_INDIRECT, and H_STUFF_TCE can be
used to hold-off the invalidation until which time the IOA can complete the operation and the server can invalidate the

632 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

IOA’s TCE. In addition, the Bit Bucket Allowed LIOBN attribute and the H_LIOBN_ATTRIBUTES hcall can be used
to help enhance the recoverability in these error scenarios (see Section 17.2.2.2.5‚ “LIOBN Attributes‚” on page 632
and Section 17.2.2.2.6‚ “H_LIOBN_ATTRIBUTES‚” on page 632 for more information).

17.2.2.2.5 LIOBN Attributes

There are certain LIOBN attributes that are made visible to and can be manipulated by partition software. The
H_LIOBN_ATTRIBUTES hcall is used to read and modify the attributes (see Section 17.2.2.2.6‚
“H_LIOBN_ATTRIBUTES‚” on page 632). Table 233‚ “LIOBN Attributes‚” on page 632 defines the attributes that
are visible and manipulatable.

17.2.2.2.6 H_LIOBN_ATTRIBUTES

R1–17.2.2.2.6–1. If the H_LIOBN_ATTRIBUTES hcall is implemented, then it must implement the attributes as
they are defined in Table 233‚ “LIOBN Attributes‚” on page 632 and the syntax and semantics as defined in
Section 17.2.2.2.6‚ “H_LIOBN_ATTRIBUTES‚” on page 632.

R1–17.2.2.2.6–2. The H_LIOBN_ATTRIBUTES hcall must ignore bits in the set-mask and reset-mask which are
not implemented and must process as an exception those which cannot be changed (H_Constrained returned),
and must return the following for the LIOBN Attributes in R4:

a. A value of 0 for unimplemented bit positions.

b. The resultant field values for implemented fields.

Syntax:

uint64 /* H_Success Expected return code */
/* H_Parameter One or more parameters were in error */
/* H_Constrained One or more parameters were not changeable to the value requested*/
/* The result was constrained to a legitimate value for the implementation*/
/* H_Hardware Operation failed because of hardware error*/

hcall (const uint64 H_LIOBN_ATTRIBUTES,/* Returns in R4 the resulting LIOBN Attributes*/
uint64 liobn, /* The LIOBN on which to perform this operation*/

Table 233. LIOBN Attributes

Bit(s) Field Name Definition

0-62 Reserved

63 Bit Bucket Allowed

1: For an indirect IOA TCE invalidation operation (that is, via an operation other than an H_PUT_TCE
directly to the TCE by the partition owning the IOA), the platform may set the value of the read and
write enable bits in the TCE to allow DMA writes but not reads and change the real page number in
the TCE to target a dummy page (the IOA receives an error (Target Abort) on attempts to read, while
DMA writes (which were for a defunct operation) are silently dropped).

0: The platform must reasonably attempt to prevent an indirect (that is, via an operation other than an
H_PUT_TCE directly to the TCE by the partition owning the IOA) modification an IOA’s valid TCE
so that a possible in-flight DMA does not cause a non-recoverable error.

Software Implementation Notes:

1. The results of changing this field when there are valid TCEs for the LIOBN may produce unex-
pected results. The hypervisor is not required to prevent such an operation. Therefore, the
H_LIOBN_ATTRIBUTES call to change the value of this field should be made when there are
no valid TCEs in the table for the IOA.

2. This field may be implemented but not changeable (the actual value will be returned in R4 as a
result of the H_LIOBN_ATTRIBUTES hcall() regardless, with a status of H_Constrained if not
changeable).

17.2  VIO Architectural Infrastructure 633

LoPAPR, Version 1.1 (March 24, 2016)

uint64 reset-mask, /* Mask of Attribute bits to be reset*/
uint64 set-mask); /* Mask of Attribute bits to be set*/

Parameters:

liobn: The LIOBN on which this Attribute modification is to be performed.

reset-mask: The bit-significant mask of bits to be reset in the LIOBN’s Attributes (the reset-mask bit definition aligns
with the bit definition of the LIOBN’s Attributes, as defined in Table 233‚ “LIOBN Attributes‚” on page 632). The
complement of the reset-mask is ANDed with the LIOBN’s Attributes, prior to applying the set-mask. See semantics
for more details on any field-specific actions needed during the reset operations. If a particular field position in the LI-
OBN Attributes is not implemented, then the corresponding bit(s) in the reset-mask are ignored.

set-mask: The bit-significant mask of bits to be set in the LIOBN’s Attributes (the set-mask bit definition aligns with
the bit definition of the LIOBN’s Attributes, as defined in Table 233‚ “LIOBN Attributes‚” on page 632). The set-mask
is ORed with the LIOBN’s Attributes, after to applying the reset-mask. See semantics for more details on any
field-specific actions needed during the set operations. If a particular field position in the LIOBN Attributes is not im-
plemented, then the corresponding bit(s) in the set-mask are ignored.

Semantics:

 Validate that liobn belongs to the partition, else H_Parameter.

 If the Bit Bucket Allowed field of the specified LIOBN’s Attributes is implemented and changeable, then set it to the
result of:
Bit Bucket Allowed field contents ANDed with the complement of the corresponding bits of the reset-mask and then
ORed with the corresponding bits of the set-mask.

 Load R4 with the value of the LIOBN’s Attributes, with any unimplemented bits set to 0, and if all requested
changes were made, then return H_Success, otherwise return H_Constrained.

17.2.2.2.7 Extensions to Other hcall()s for Redirected RDMA

17.2.2.2.7.1 H_PUT_TCE, H_PUT_TCE_INDIRECT, and H_STUFF_TCE

These hcall()s are only valid for the first window pane of the “ibm,my-dma-window” property. See
Section 17.2.1.2‚ “RTCE Table and Properties of the Children of the /vdevice Node‚” on page 601 for information
about window pane types.

The following are extensions that apply to the H_PUT_TCE, H_PUT_TCE_INDIRECT, and H_STUFF_TCE hcall()s
in their use against an RTCE table.

Recognize the validated (owned by the calling partition, else H-Parameter) LIOBN as referring to a RTCE table (first
window pane) and access accordingly:

 If the TCE is not from the first triple (first window pane) of the calling partition’s “ibm,my-dma-window” prop-
erty, return H_Parameter.

 If the TCE is not currently in use: Clear/invalidate the TCE copy pointer and enter the TCE mapping per the input
parameters to the hcall().

 If the TCE contains a valid mapping and the TCE copy pointer is invalid: Enter the TCE mapping per the input pa-
rameters to the hcall().

 If the TCE contains a valid mapping and the TCE copy pointer references a TCE that does not contain a valid copy
of the previous mapping in the TCE: Clear/invalidate the TCE copy pointer and enter the TCE mapping per the input
parameters to the hcall().

634 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 If the TCE contains a valid mapping and the TCE copy pointer references a TCE that does contain a valid copy of
the previous mapping in the TCE, then:

 If the Bit Bucket Allowed Attribute of the LIOBN containing the TCE is a 1, invalidate the copied TCE and enter
the TCE mapping per the input parameters to the hcall().

 If the Bit Bucket Allowed Attribute of the LIOBN containing the TCE is a 0, then return H_Resource or perform
some other platform-specific error recovery.

17.2.2.2.7.2 H_MIGRATE_DMA

Check that the pages referenced by the TCEs specified in the mappings to be migrated belong to the calling partition,
else H_Parameter.

If the mapping being migrated is via an RTCE table (that is, LIOBN points to an RTCE table), then follow the valid re-
directed TCE pointer and migrate the redirected page (if the redirected TCE mapping is still a clone of the original
RTCE table entry).

If the mapping being migrated is via an RTCE table and if the RTCE table TCEs were built with the
H_MASS_MAP_TCE hcall(), then expand each mass mapped area into smaller 4 KB granularities, as necessary to
avoid performance and locking issues, during the migration process.

Insert checking, and potentially delays, to allow IOAs to make forward progress between successive DMA disables
caused by multiple partner partitions making simultaneous uncoordinated calls to H_MIGRATE_DMA targeting the
same IOA.

17.2.2.3 Subordinate Command/Response Queue (Sub-CRQ)

The Sub-CRQ facility is used in conjunction with the CRQ facility, for some virtual IOA types, when more than one
queue is needed for the virtual IOA. For information on the CRQ facility, see Section 17.2.2.1‚ “Command/Response
Queue (CRQ)‚” on page 621. For information on which virtual IOAs may use the Sub-CRQ facilities, see the applica-
ble sections for the virtual IOAs. See Table 234‚ “CRQ and Sub-CRQ Comparison‚” on page 634 for a comparison of
the differences in the queue structures between CRQs and Sub-CRQs. In addition to the hcall()s specified in Table 234,
all of the following hcall()s and RTAS calls are applicable to both CRQs and Sub-CRQs:

 H_XIRR

 H_EOI

 ibm,int-on

 ibm,int-off

 ibm,set-xive

 ibm,get-xive

Table 234. CRQ and Sub-CRQ Comparison

Characteristic CRQ Sub-CRQ

Queue entry size 16 32

Transport and initialization events Applicable
Not applicable (coordinated through the CRQ

that is associated with the Sub-CRQ)

Registration H_REG_CRQ H_REG_SUB_CRQ

17.2  VIO Architectural Infrastructure 635

LoPAPR, Version 1.1 (March 24, 2016)

17.2.2.3.1 Sub-CRQ Format and Registration

Each Sub-CRQ is built of one or more 4 KB pages aligned on a 4 KB boundary within partition memory, and is orga-
nized as a circular buffer of 32 byte long elements. Each queue is mapped into contiguous I/O addresses via the TCE
mechanism and RTCE table (first window pane). The I/O address and length of each queue is registered by the process
defined in Section 17.2.3.3.1‚ “Sub-CRQ Format and Registration‚” on page 646. This registration process tells the hy-
pervisor where to find the virtual IOA’s Sub-CRQ(s).

17.2.2.3.2 Sub-CRQ Entry Format

Each Sub-CRQ entry consists of a 32 byte element. The first byte of a Sub-CRQ entry is the Header byte and is defined
in Table 235‚ “Sub-CRQ Entry Header Byte Values‚” on page 635.

The platform (transport mechanism) ignores the contents of all non-header bytes in all Sub-CRQ entries.

The operational state of any Sub-CRQs follows the operational state of the CRQ to which the Sub-CRQ is associated.
That is, the CRQ transport is required to be operational in order for any associated Sub-CRQs to be operational (for ex-
ample, if an H_SEND_CRQ hcall() would not succeed due to any reason other than lack of space is available in the
CRQ, then an H_SEND_SUB_CRQ or H_SEND_SUB_CRQ_INDIRECT hcall() to the associated Sub-CRQ would
also fail). Hence, the Sub-CRQ transport does not implement the transport and initialization events that are imple-
mented by the CRQ facility.

Deregistration H_FREE_CRQ
H_FREE_SUB_CRQ

Note: H_FREE_CRQ for the associated CRQ
implicitly deregisters the associated Sub-CRQs

Enable H_ENABLE_CRQ Not applicable

Interrupt number Obtained from “interrupts” property Obtained from H_REG_SUB_CRQ

Interrupt enable/disable H_VIO_SIGNAL H_VIOCTL subfunctiona

hcall() used to place entry on queue H_SEND_CRQ
H_SEND_SUB_CRQ

H_SEND_SUB_CRQ_INDIRECT

Number of queues per virtual IOA One
Zero or more, depending on virtual IOA

architecture, implementation, and client/server
negotiation

a. For virtual IOAs that define the use of Sub-CRQs, the interrupt associated with the CRQ, as defined by the “interrupts” property in the OF
device tree, may be enabled or disabled with either the H_VIOCTL or the H_VIO_SIGNAL hcall(). The CRQ interrupt associated with a CRQ of
a virtual IOA that does not define the use of Sub-CRQs should be enabled and disabled by use of the H_VIO_SIGNAL hcall().

Table 235. Sub-CRQ Entry Header Byte Values

Header Value Description

0 Element is unused -- all other bytes in the element are undefined.

0x01 - 0x7F Reserved.

0x80 Valid Command/Response entry.

0x81 - 0xFF Reserved.

Table 234. CRQ and Sub-CRQ Comparison (Continued)

Characteristic CRQ Sub-CRQ

636 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

17.2.2.3.3 Sub-CRQ Entry Processing

During the Sub-CRQ registration (H_REG_SUB_CRQ), the platform firmware sets all the header bytes of the
Sub-CRQ being registered to zero (entry invalid). After registration, the first valid entry is placed in the first element
and the process proceeds to the end of the queue and then wraps around to the first entry again (given that the entry has
been subsequently marked as invalid). This allows both the partition software and transport firmware to maintain inde-
pendent pointers to the next element they will be respectively using.

A sender uses an H_SEND_SUB_CRQ hcall() to enter one 32 byte message on its partner’s Sub-CRQ. Prior to en-
queueing an entry on the Sub-CRQ, the platform first checks if the session to the partner’s associate CRQ is open, and
there is a enough free space on the Sub-CRQ, if not, it returns an error. If the checks succeed, the contents of the mes-
sage is copied into the next free queue element, potentially notifying the receiver, and returns a successful status to the
caller. The caller may also insert more than one entry on the queue with one hcall() using
H_SEND_SUB_CRQ_INDIRECT. Use of this hcall() requires that there be enough space on the queue for all the en-
tries, otherwise none of the entries are placed onto the Sub-CRQ.

At the receiver’s option, it may be notified via an interrupt when an element is enqueued to its Sub-CRQ. See
“Sub-CRQ Facility Interrupt Notification” on page 636.

When the receiver has finished processing a Sub-CRQ entry, it writes the header to the value 0x00 to invalidate the en-
try and free it for future entries.

Should the receiver wish to terminate or reset the communication channel it deregisters the Sub-CRQ
(H_FREE_SUB_CRQ), and if it needs to re-establish communications, proceeds to register (H_REG_SUB_CRQ) ei-
ther the same or different section of memory as the new queue, with the queue pointers reset to the first entry. Deregis-
tering a CRQ (H_FREE_CRQ) is an implicit deregistration of any Sub-CRQs associated with the CRQ.

17.2.2.3.4 Sub-CRQ Facility Interrupt Notification

The receiver can set the virtual interrupt associated with its Sub-CRQ to one of two modes. These are:

1. Disabled (an enqueued interrupt is not signaled).

2. Enabled (an enqueued interrupt is signaled on every enqueue).

Note: An enqueue is considered a pulse not a level. The pulse then sets the memory element within the emulated interrupt
source controller. This allows the resetting of the interrupt condition by simply issuing the H_EOI hcall() as is
done with the PCI MSI architecture rather than having to do an explicit interrupt reset as in the case with PCI Level
Sensitive Interrupt (LSI) architecture.

The interrupt mechanism is capable of presenting only one interrupt signal at a time from any given interrupt source.
Therefore, no additional interrupts from a given source are ever signaled until the previous interrupt has been pro-
cessed through to the issuance of an H_EOI hcall(). Specifically, even if the interrupt mode is enabled, the effect is to
interrupt on an empty to non-empty transition of the queue. However, as with any asynchronous posting operation race
conditions are to be expected. That is, an enqueue can happen in a window around the H_EOI hcall(). Therefore, the
receiver should poll the Sub-CRQ (that is, look at the header byte of the next queue entry to see if the entry is valid) af-
ter an H_EOI to prevent losing initiative.

The hcall() used to enable and disable this Sub-CRQ interrupt notification is H_VIO_SIGNAL (see Section 17.2.1.3‚
“VIO Interrupt Control‚” on page 602).

17.2.2.3.5 Extensions to Other hcall()s for Sub-CRQ

17.2.2.3.5.1 H_MIGRATE_DMA

Since Sub-CRQs are RTCE table mapped, the H_MIGRATE_DMA hcall() may be requested to move a page that is
part of a Sub-CRQ. The OS owner of the queue is responsible for preventing its processors from modifying the page

17.2  VIO Architectural Infrastructure 637

LoPAPR, Version 1.1 (March 24, 2016)

during the migrate operation (as is standard practice with this hcall()), however, the H_MIGRATE_DMA hcall() serial-
izes with the Sub-CRQ hcall()s to direct new elements to the migrated target page.

17.2.2.3.5.2 H_XIRR, H_EOI

The Sub-CRQ facility utilizes a virtual interrupt source number to notify the queue owner of new element enqueues.
The standard H_XIRR and H_EOI hcall()s are extended to support this virtual interrupt mechanism, emulating the
standard PowerPC Interrupt hardware with respect to the virtual interrupt source number.

17.2.2.3.6 Sub-CRQ Facility Requirements

R1–17.2.2.3.6–1. For the Sub-CRQ facility: The platform must implement the Sub-CRQ as specified in
Section 17.2.2.1‚ “Command/Response Queue (CRQ)‚” on page 621.

R1–17.2.2.3.6–2. For the Sub-CRQ facility: The platform must start enqueueing Commands/Responses to the
newly registered Sub-CRQ starting at offset zero and proceeding as in a circular buffer, each entry being 32
byte aligned.

R1–17.2.2.3.6–3. For the Sub-CRQ facility: The platform must enqueue Commands/Responses only if the 32 byte
entry is free (header byte contains 0x00), else the enqueue operation fails.

R1–17.2.2.3.6–4. For the Sub-CRQ facility: The first byte of a Sub-CRQ entry must be the Header byte and must
be as defined in Table 235‚ “Sub-CRQ Entry Header Byte Values‚” on page 635.

R1–17.2.2.3.6–5. For the Sub-CRQ facility option: Platforms that implement the H_MIGRATE_DMA hcall()
must implement that function for pages mapped for use by the Sub-CRQ.

R1–17.2.2.3.6–6. For the Sub-CRQ facility: The platforms must emulate the standard PowerPC External Interrupt
Architecture for the interrupt source numbers associated with the virtual devices via the standard RTAS and
hypervisor interrupt calls and must extend H_XIRR and H_EOI hcall()s as appropriate for Sub-CRQ inter-
rupts.

17.2.3 Partition Managed Class - Synchronous Infrastructure

The architectural intent of the Synchronous VIO infrastructure is for platforms where the communicating partitions are
under the control of the same hypervisor. Operations between the partitions are via synchronous hcall() operations. The
Synchronous VIO infrastructure defines three options:

 Reliable Command/Response Transport option (see Section 17.2.3.1‚ “Reliable Command/Response Transport Op-
tion‚” on page 637

 Subordinate CRQ Transport option (see Section 17.2.3.3‚ “Subordinate CRQ Transport Option‚” on page 645

 Logical Remote DMA (LRDMA) option (see Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on
page 642)

17.2.3.1 Reliable Command/Response Transport Option

For the synchronous infrastructure, the CRQ facility defined in Section 17.2.2.1‚ “Command/Response Queue
(CRQ)‚” on page 621 is implemented via the Reliable Command/Response Transport option. The synchronous nature
of this infrastructure allows for the capability to immediately (synchronously) notify the sender of the message whether
the message was delivered successfully or not.

17.2.3.1.1 Reliable CRQ Format and Registration

The format of the CRQ is as defined in Section 17.2.2.1‚ “Command/Response Queue (CRQ)‚” on page 621.

638 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

The I/O address and length of the queue are registered using the H_REG_CRQ hcall(). See Section 17.2.3.1.5.1‚
“H_REG_CRQ‚” on page 638.

17.2.3.1.2 Reliable CRQ Entry Format

See Section 17.2.2.1.2‚ “CRQ Entry Format‚” on page 621.

17.2.3.1.3 Reliable CRQ Entry Processing

A sender uses the H_SEND_CRQ hcall() to enter a 16 byte message on its partner’s queue. The hcall() takes the entire
message as input parameters in two registers. See Section 17.2.3.1.5.3‚ “H_SEND_CRQ‚” on page 640.

17.2.3.1.4 Reliable Command/Response Transport Interrupt Notification

The receiver can enable and disable the virtual interrupt associated with its CRQ. See Section 17.2.1.3‚ “VIO Interrupt
Control‚” on page 602.

17.2.3.1.5 Reliable Command/Response Transport hcall()s

The H_REG_CRQ and H_FREE_CRQ hcall()s are used by both client and server virtual IOA device drivers. It is the
architectural intent that the hypervisor maintains a connection control structure for each defined partner/server connec-
tion. The H_REG_CRQ and its corresponding H_FREE_CRQ register and deregister partition resources with that con-
nection control structure. However, there are several conditions that can arise architecturally with this connection
process (the design of an implementation may preclude some of these conditions).

 The association connection to the partner virtual IOA not being defined (H_Not_Found). The CRQ registration
function fails if the CRQ is not registered with the hypervisor.

 The partner virtual IOA may not have registered its CRQ (H_Closed). The CRQ is registered with the hypervisor
and the connection. However, the connection is incomplete because their partner has not registered.

 The partner virtual IOA may be already connected to another partner virtual IOA (H_Resource). The CRQ registra-
tion function fails if the CRQ is not registered with the hypervisor or the connection.

The reaction of the virtual IOA device driver to these conditions is somewhat different depending upon the calling de-
vice driver being for a client or server IOA. Server IOAs in many cases register prior to their partner IOAs since they
are servers and subsequently wait for service requests from their clients. Therefore, the H_Closed return code is to be
expected when the DD’s CRQ has been registered with the connection and is just waiting for the partner to register.
Should a partner DD register its CRQ in the future, higher level protocol messages (via the Initialization Command/Re-
sponse CRQ entry) can notify the server DD when the connection is established. If a client IOA registers and receives
a return code of H_Closed, it may choose to deregister the CRQ and fail since the client IOA would not be in a position
to successfully send service requests using the CRQ facility, or it may wait and rely upon higher level CRQ messages
(via the Initialization Command/Response CRQ entry) to tell it when its partner has registered. The reaction of a virtual
IOA DDs to H_Not_Found and H_Resource are dependent upon the functionality of higher level platform and system
management policies. While the current registration has failed, higher level system and or platform management ac-
tions may allow a future registration request to succeed.

When registration succeeds, an association is made between the partner partition’s LIOBN (RTCE table) and the sec-
ond window pane of the server partition. This association is dropped when either partner deregisters or terminates.
However, on deregistration or termination, the RTCE tables associated with the local partition (first window pane) re-
main intact for that partition (see Requirement R1–17.2.1.4–15).

17.2.3.1.5.1 H_REG_CRQ

This hcall() registers the RTCE table mapped memory that contains the CRQ.

17.2  VIO Architectural Infrastructure 639

LoPAPR, Version 1.1 (March 24, 2016)

Syntax:

int64 /*H_Success: Registration and Connection completed*/
/*H_Parameter: Failed due to Invalid Parameter */
/*H_Not_Found: Failed due to undefined partner connection.*/
/*H_Closed: Registration completed partner not connected.
/*H_Resource: Failed due to busy connection to partner.
/*H_Hardware: Function failed due to hardware error */

hcall (const int64 H_REG_CRQ, /* Function Code */
uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 queue, /* I/O address of a receive queue (4 KB aligned)*/
uint64 len) /* Length of the receive queue (multiple of 4 KB) */

Parameters:

 unit-address: Unit Address per device tree node “reg” property

 queue: I/O address (offset into the RTCE table) of the CRQ buffer (starting on a 4 KB boundary).

 len: Length of the CRQ in bytes (a multiple of 4 KB)

Semantics:

 Validate unit-address, else H_Parameter

 Validate queue, which is the I/O address of the CRQ (I/O addresses for entire buffer length starting at the specified
I/O address are translated by the RTCE table, is 4 KB aligned, and length, len, is a multiple of 4 KB), else
H_Parameter

 Validate that there is an authorized connection to another partition associated with the Unit Address, else
H_Not_Found.

 Validate that the authorized connection to another partition associated with the Unit Address is free, else
H_Resource.

 Initialize the CRQ enqueue pointer and length variables. These variables are kept in terms of I/O addresses so that
page migration works and any remapping of TCEs is effective.

 Disable CRQ interrupts.

 Allow for Logical Remote DMA, when applicable, with associated partner partition when partner registers.

 If partner is already registered, then return H_Success, else return H_Closed.

17.2.3.1.5.2 H_FREE_CRQ

This hcall() deregisters the RTCE table mapped memory that contains the CRQ. In addition, if there are any Sub-CRQs
associated with the CRQ, the H_FREE_CRQ has the effect of releasing the Sub-CRQs.

Syntax:

int64 /* H_Success, H_Parameter, H_Resource, H_Hardware, H_Busy, */
/* H_LongBusyOrder1mSec, H_LongBusyOrder10mSec,*/

hcall (const int64 H_FREE_CRQ, /* Function Code */
uint64 unit-address) /* As specified in the Virtual IOA’s device tree node */

Parameters:

 unit-address: Unit Address per device tree node “reg” property

640 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Semantics:

 Validate unit-address, else H_Parameter

 Mark the connection to the associated partner partition as closed (so that send hcall()s from the partner partition
fail).

 Mark the CRQ enqueue pointer and length variables as invalid.

 For any and all Sub-CRQs associated with the CRQ, do the following:

 Mark the connection to the associated partner partition as closed for the Sub-CRQ (so that send hcall()s from the
partner partition fail).

 Mark the Sub-CRQ enqueue pointer and length variables for the Sub-CRQ as invalid.

 Disable Sub-CRQ interrupts for the Sub-CRQ.

 Disable CRQ interrupts.

 If there exists any Redirected TCEs in the local TCE tables associated with this Virtual IOA, and all of those tables
have a Bit Bucket Allowed attribute of 1, then Disable Logical Remote DMA with associated partner partition, if en-
abled, invalidating any Redirected TCEs in the local TCE tables (for information on invalidation of TCEs, see
Section 17.2.2.2.4‚ “Redirected RDMA TCE Recovery and In-Flight DMA‚” on page 631).

 If there exists any Redirected TCEs in the local TCE tables associated with this Virtual IOA, and any of those tables
have a Bit Bucket Allowed attribute of 0, then return H_Resource or perform some other platform-specific error re-
covery.

 Send partner terminated message to partner queue (if it is still registered), overlaying the last valid entry in the queue
if the CRQ is full.

 Return H_Success.

Implementation Note: If the hypervisor returns an H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec,
software must call H_FREE_CRQ again with the same parameters. Software may choose to treat
H_LongBusyOrder1mSec and H_LongBusyOrder10mSec the same as H_Busy. The hypervisor, prior to returning
H_Busy, H_LongBusyOrder1mSec, or H_LongBusyOrder10mSec, will have placed the virtual adapter in a state
that will cause it to not accept any new work nor surface any new virtual interrupts (no new entries will be placed
on the CRQ).

17.2.3.1.5.3 H_SEND_CRQ

This hcall() sends one 16 byte entry to the partner partition’s registered CRQ.

Syntax:

int64 /* H_Success, H_Parameter, H_Dropped, H_Hardware, H_Closed*/

hcall (const int64 H_SEND_CRQ, /* Function Code */

uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */

uint64 msg-high, /* High order 8 bytes of message starting with the header and format bytes*/

uint64 msg-low) /* Low order 8 bytes of message */

Parameters:

 unit-addr: Unit Address per device tree node “reg” property

17.2  VIO Architectural Infrastructure 641

LoPAPR, Version 1.1 (March 24, 2016)

 msg-high:

 header: high order bit is on -- header of value 0xFF is reserved for transport error and is invalid for input.

 format: not checked by the firmware.

 msg-low: not checked by the firmware -- should be consistent with the definition of the format byte.

Semantics:

 Validate the Unit Address, else return H_Parameter

 Validate that the msg header byte has its high order bit on and that it is not = 0xFF, else return H_Parameter.

 Validate that there is an authorized connection to another partition associated with the Unit Address and that the as-
sociated CRQ is enabled, else return H_Closed.

 Enter Critical Section on target CRQ

 Validate that there is room on the receive queue for the message and allocate that message, else exit critical Sec-
tion and return H_Dropped.

 Store msg-low into the second 8 bytes of the allocated queue element.

 Store order barrier

 Store msg-high into the first 8 bytes of the allocated queue element (setting the header valid bit.)

 Exit Critical Section

 If receiver queue interrupt mode == enabled, then signal interrupt

 Return H_Success.

17.2.3.1.5.4 H_ENABLE_CRQ

This hcall() explicitly enables a CRQ that has been disabled due to a Partner partition suspended transport event. As a
side effect of this hcall(), all pages that are mapped via the logical TCE table associated with the first pane of
“ibm,my-dma-window” property of the associated virtual IOA are restored prior to successful completion of the
hcall(). It is the architectural intent that this hcall() is made while the logical TCE contains mappings for all the pages
that will be involved in the recovery of the outstanding I/O operations at the time of the partition migration. Further, it
is the architectural intent that this hcall() is made from a processing context that can handle the expected busy wait re-
turn code without blocking the processor.

Syntax:

int64 /* H_Success: CRQ enabled and TCE mapped pages restored */
/* H_Parameter: Invalid unit-address */
/* H_Hardware: A hardware error prevented the function */
/* H_LongBusyOrder10mSec: wait for asynchronous processing */
/* H_IN_PROGRESS: more processing required to complete -- call again */

hcall (const int64 H_ENABLE_CRQ, /* Function Code */
uint64 unit-address) /* As specified in the Virtual IOA’s device tree node */

Parameters:

 unit-addr: Unit Address per device tree node “reg” property

642 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Semantics:

 Validate the Unit Address, else return H_Parameter

 Test that all pages mapped through the logical TCE table associated with the first pane of the
“ibm,my-dma-window” property associated with the unit-address parameter are present; else return
H_LongBusyOrder10mSec.

 Set the status of the CRQ associated with the unit-address parameter to enabled.

 Return H_Success.

17.2.3.1.6 Reliable Command/Response Transport Option Requirements

R1–17.2.3.1.6–1. For the Reliable Command/Response Transport option: The platform must implement the
CRQ facility, as defined in Section 17.2.2.1‚ “Command/Response Queue (CRQ)‚” on page 621.

R1–17.2.3.1.6–2. For the Reliable Command/Response Transport option: The platform must implement the
H_REG_CRQ hcall(). See Section 17.2.3.1.5.1‚ “H_REG_CRQ‚” on page 638.

R1–17.2.3.1.6–3. For the Reliable Command/Response Transport option: The platform must implement the
H_FREE_CRQ hcall(). See Section 17.2.3.1.5.2‚ “H_FREE_CRQ‚” on page 639.

R1–17.2.3.1.6–4. For the Reliable Command/Response Transport option: The platform must implement the
H_SEND_CRQ hcall(). See Section 17.2.3.1.5.3‚ “H_SEND_CRQ‚” on page 640.

R1–17.2.3.1.6–5. For the Reliable Command/Response Transport option: The platform must implement the
H_ENABLE_CRQ hcall(). See Section 17.2.3.1.5.4‚ “H_ENABLE_CRQ‚” on page 641.

17.2.3.2 Logical Remote DMA (LRDMA) Option

The Logical Remote Direct Memory Access (LRDMA) option allows a server partition to securely target memory
pages within a partner partition for VIO operations.

This architecture defines two modes of RDMA

 Copy RDMA is used to have the hypervisor copy data between a buffer in the server partition’s memory and a buffer
in the partner partition’s memory. See Section 17.2.3.2.1‚ “Copy RDMA‚” on page 642 for more information on
Copy RDMA with respect to LRDMA.

 Redirected RDMA allows for a server partition to securely target its I/O adapter's DMA operations directly at the
memory pages of the partner partition. The platform overhead of Copy RDMA is generally greater than Redirected
RDMA, but this overhead may be offset if the server partition’s DMA buffer is being used as a data cache for multi-
ple VIO operations. See Section 17.2.2.2‚ “Redirected RDMA (Using H_PUT_RTCE, and
H_PUT_RTCE_INDIRECT)‚” on page 625 for more information on Redirected RDMA with respect to LRDMA.

The mapping between the LIOBN in the second pane of a server virtual IOA’s “ibm,my-dma-window” property
and the corresponding partner IOA’s RTCE table is made when the CRQ successfully completes registration. The part-
ner partition is not aware if the server partition is using Copy RDMA or Redirected RDMA. The server partition uses
the Logical RDMA mode that best suits its needs for a given VIO operation. See Section 17.2.1.2‚ “RTCE Table and
Properties of the Children of the /vdevice Node‚” on page 601 for more information on RTCE tables.

17.2.3.2.1 Copy RDMA

The Copy RDMA hcall()s are used to request that the hypervisor move data between partitions. The specific imple-
mentation is optimized to the platform’s hardware features. There are calls for when both source and destination buf-

17.2  VIO Architectural Infrastructure 643

LoPAPR, Version 1.1 (March 24, 2016)

fers are RTCE table mapped (H_COPY_DMA) and when only the remote buffers are mapped (H_WRITE_RDMA and
H_READ_RDMA).

17.2.3.2.1.1 H_COPY_RDMA

This hcall() copies data from an RTCE table mapped buffer in one partition to an RTCE table mapped buffer in another
partition, with the length of the transfer being specified by the transfer length parameter in the hcall(). The
“ibm,max-virtual-dma-size” property, if it exists (in the /vdevice node), specifies the maximum length of
the transfer (minimum value of this property is 128 KB).

Syntax:

int64 hcall(/* H_Success, H_Parameter, H_S_Parm, H_D_Parm, H_Permission, H_Hardware */
const uint64 H_COPY_RDMA, /* Performs Copy RDMA */
int64 len, /* Length of transfer */
uint64 s-liobn, /* LIOBN (RTCE table handle) of V-DMA source buffer */
uint64 s-ioba, /* IO address of V-DMA source buffer */
uint64 d-liobn, /* LIOBN (RTCE table handle) of V-DMA destination buffer */
uint64 d-ioba); /* I/O address of V-DMA destination buffer */

Parameters:

 len: Length of transfer (length not to exceed the value in the “ibm,max-virtual-dma-size” property, if it
exists)

 s-liobn: LIOBN (RTCE table handle) of V-DMA source buffer

 s-ioba: IO address of V-DMA source buffer

 d-liobn: LIOBN (RTCE table handle) of V-DMA destination buffer

 d-ioba: I/O address of V-DMA destination buffer

Semantics:

 Serialize access to RTCE tables with H_MIGRATE_DMA.

 If the “ibm,max-virtual-dma-size” property exist in the /vdevice node of the device tree, then if the
value of len is greater than the value of this property, return H_Parameter.

 Source and destination LIOBNs are checked for authorization per the “ibm,my-dma-window” property, else re-
turn H_S_Parm or H_D_Parm, respectively.

 Source and destination ioba’s and length are checked for valid ranges per the “ibm,my-dma-window” property,
else return H_S_Parm or H_D_Parm, respectively.

 The access bits of the associated TCEs are checked for authorization, else return H_Permission.

 Copy len number of bytes from the buffer starting at the specified source address to the buffer starting at the speci-
fied destination address, then return H_Success.

17.2.3.2.1.2 H_WRITE_RDMA

This hcall() copies up to 48 bytes of data from a set of input parameters to an RTCE table mapped buffer in another
partition.

644 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

Syntax:

int64 hcall(/* H_Success, H_Parameter, H_D_Parm, H_Permission, H_Hardware */
const uint64 H_WRITE_RDMA, /* Performs Copy RDMA */
int64 len, /* Length of transfer */
uint64 d-liobn, /* LIOBN (RTCE table handle) of V-DMA destination buffer */
uint64 d-ioba, /* I/O address of V-DMA destination buffer */
uint64 data1, /* The source data is provided via input parameters */
uint64 data2,
uint64 data3,
uint64 data4,
uint64 data5,
uint64 data6);

Parameters:

 len: Length of transfer

 d-liobn: LIOBN (RTCE table handle) of V-DMA destination buffer

 d-ioba: I/O address of V-DMA destination buffer

 data1: Source data

 data2: Source data

 data3: Source data

 data4: Source data

 data5: Source data

 data6: Source data

Semantics:

 Check that the len parameter => 0 and <= 48, else return H_Parameter

 The destination LIOBN is checked for authorization per the remote triple of the one of the calling partition’s
“ibm,my-dma-window” property, else return H_D_Parm.

 The destination ioba and length are check for valid ranges per the remote triple of the one of the calling partition’s
“ibm,my-dma-window” property, else return H_D_Parm.

 Serialize access to the destination RTCE table with H_MIGRATE_DMA.

 The access bits of the associated RTCE table TCEs are checked for authorization, else return H_Permission.

 Copy len number of bytes from the data parameters starting at the high order byte of data1 toward the low order byte
of data 6 into the buffer starting at the specified destination address, then return H_Success.

17.2.3.2.1.3 H_READ_RDMA

This hcall() copies up to 72 bytes of data from an RTCE table mapped buffer into a set of return registers.

Syntax:

int64 hcall(/* H_Success, H_Parameter, H_S_Parm, H_Permission, H_Hardware */
const uint64 H_READ_RDMA, /* Performs Copy RDMA */
int64 len, /* Length of transfer */

17.2  VIO Architectural Infrastructure 645

LoPAPR, Version 1.1 (March 24, 2016)

uint64 s-liobn, /* LIOBN (RTCE table handle) of V-DMA source buffer */
uint64 s-ioba); /* IO address of V-DMA source buffer */

Parameters:

 len: Length of transfer

 s-liobn: LIOBN (RTCE table handle) of V-DMA source buffer

 s-ioba: IO address of V-DMA source buffer

Semantics:

 Check that the len parameter => 0 and <= 72, else return H_Parameter

 The source LIOBN is checked for authorization per the remote triple of the one of the calling partition’s
“ibm,my-dma-window” property, else return H_S_Parm.

 The source ioba and length are check for valid ranges per the remote triple of the one of the calling partition’s
“ibm,my-dma-window” property, else return H_S_Parm.

 Serialize access to the source RTCE table with H_MIGRATE_DMA.

 The access bits of the associated RTCE table TCEs are checked for authorization, else return H_Permission.

 Copy len number of bytes from the source data buffer specified by s-liobn starting at s-ioba, into the registers R4
through R12 starting with the high order byte of R4 toward the low order byte of R12, then return H_Success.

17.2.3.2.2 Logical Remote DMA Option Requirements

R1–17.2.3.2.2–1. For the Logical Remote DMA option: The platform must implement the H_PUT_RTCE hcall()
as specified in Section 17.2.2.2.1‚ “H_PUT_RTCE‚” on page 627.

R1–17.2.3.2.2–2. For the Logical Remote DMA option: The platform must implement the extensions to the
H_PUT_TCE hcall() as specified in Section 17.2.2.2.7.1‚ “H_PUT_TCE, H_PUT_TCE_INDIRECT, and
H_STUFF_TCE‚” on page 633.

R1–17.2.3.2.2–3. For the Logical Remote DMA option: The platform must implement the extensions to the
H_MIGRATE_DMA hcall() as specified in Section 17.2.2.2.7.2‚ “H_MIGRATE_DMA‚” on page 634.

R1–17.2.3.2.2–4. For the Logical Remote DMA option: The platform must implement the H_COPY_RDMA
hcall() as specified in Section 17.2.3.2.1.1‚ “H_COPY_RDMA‚” on page 643.

R1–17.2.3.2.2–5. For the Logical Remote DMA option: The platform must disable Logical Remote DMA opera-
tions that target an inactive partition (one that has terminated), including the H_COPY_RDMA hcall() and
the H_PUT_RTCE hcall().

Implementation Note: It is expected that as part of meeting Requirement R1–17.2.3.2.2–5, all of the terminating
partition’s TCE table entries (regular and RTCE) are invalidated along with any clones (for information on
invalidation of TCEs, see Section 17.2.2.2.4‚ “Redirected RDMA TCE Recovery and In-Flight DMA‚” on
page 631). While other mechanisms are available for meeting this requirement in the case of H_COPY_RDMA,
this is the only method for Redirected RDMA, and since it works in both cases, it is expected that implementations
will use this single mechanism.

17.2.3.3 Subordinate CRQ Transport Option

For the synchronous infrastructure, in addition to the CRQ facility defined in Section 17.2.2.1‚ “Command/Response
Queue (CRQ)‚” on page 621, the Subordinate CRQ Transport option may also be implemented in conjunction with the

646 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

CRQ facility. That is, the Subordinate CRQ Transport option requires that the Reliable Command/Response Transport
option also be implemented. For this option, the Sub-CRQ facility defined in Section 17.2.2.3‚ “Subordinate Com-
mand/Response Queue (Sub-CRQ)‚” on page 634 is implemented.

17.2.3.3.1 Sub-CRQ Format and Registration

The format of the Sub-CRQ is as defined in Section 17.2.2.3‚ “Subordinate Command/Response Queue (Sub-CRQ)‚”
on page 634.

The I/O address and length of the queue are registered using the H_REG_SUB_CRQ hcall(). See Section 17.2.3.3.5.1‚
“H_REG_SUB_CRQ‚” on page 646.

17.2.3.3.2 Sub-CRQ Entry Format

See Section 17.2.2.3.2‚ “Sub-CRQ Entry Format‚” on page 635.

17.2.3.3.3 Sub-CRQ Entry Processing

A sender uses the H_SEND_SUB_CRQ or H_SEND_SUB_CRQ_INDIRECT hcall() to enter one or more 32 byte
messages on its partner’s queue. See Section 17.2.3.3.5.3‚ “H_SEND_SUB_CRQ‚” on page 648 and
Section 17.2.3.3.5.4‚ “H_SEND_SUB_CRQ_INDIRECT‚” on page 649.

17.2.3.3.4 Sub-CRQ Transport Interrupt Notification

The receiver can enable and disable the virtual interrupt associated with its Sub-CRQ using the H_VIOCTL hcall(),
with the appropriate subfunction. See Section 17.2.1.6‚ “H_VIOCTL‚” on page 613. The interrupt number that is used
in the H_VIOCTL call is obtained from the H_REG_SUB_CRQ call that is made to register the Sub-CRQ.

17.2.3.3.5 Sub-CRQ Transport hcall()s

The H_REG_SUB_CRQ and H_FREE_SUB_CRQ hcall()s are used by both client and server virtual IOA device driv-
ers. It is the architectural intent that the hypervisor maintains a connection control structure for each defined part-
ner/server connection. The H_REG_SUB_CRQ and its corresponding H_FREE_SUB_CRQ register and deregister
partition resources with that connection control structure. However, there are several conditions that can arise architec-
turally with this connection process (the design of an implementation may preclude some of these conditions).

 The association connection to the partner virtual IOA not being defined (H_Not_Found).

 The partner virtual IOA CRQ connection may not have been completed (H_Closed).

 The partner may deregister its CRQ which also deregisters any associated Sub-CRQs.

17.2.3.3.5.1 H_REG_SUB_CRQ

This hcall() registers the RTCE table mapped memory that contains the Sub-CRQ. Multiple Sub-CRQ registrations
may be attempted for each virtual IOA. If resources are not available to establish a Sub-CRQ, the H_REG_SUB_CRQ
call will fail with H_Resource.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this hcall() might change, and the caller should be prepared to receive an H_Function return code indicating the
platform does not implement this hcall(). If a virtual IOA exists in the device tree after migration that requires by

17.2  VIO Architectural Infrastructure 647

LoPAPR, Version 1.1 (March 24, 2016)

this architecture the presence of this hcall(), then if that virtual IOA exists after the migration, it can be expected
that the hcall() will, also.

Syntax:

int64 /*H_Success: Registration completed*/
/*H_Parameter: Failed due to Invalid Parameter */
/*H_Not_Found: Failed due to undefined partner connection.*/
/*H_Closed: Registration completed partner (CRQ) not connected.
/*H_Resource: Failed due to lack of resources.
/*H_Hardware: Function failed due to hardware error */

hcall (const int64 H_REG_SUB_CRQ, /* Returns in R4 a cookie representing the Sub-CRQ number */
/* Returns in R5 the interrupt number */

uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 Sub-CRQ-ioba, /* I/O address of a Sub-CRQ (4 KB aligned)*/
uint64 Sub-CRQ-length) /* Length of the Sub-CRQ (multiple of 4 KB) */

Parameters:

 unit-address: Unit Address per device tree node “reg” property.

 Sub-CRQ-ioba: I/O address (offset into the RTCE table, as specified by the first window pane of the virtual IOA’s
“ibm,my-dma-window” property) of the Sub-CRQ buffer (starting on a 4 KB boundary).

 Sub-CRQ-length: Length of the Sub-CRQ in bytes (a multiple of 4 KB).

Semantics:

 Validate unit-address, else H_Parameter.

 Validate Sub-CRQ-ioba, which is the I/O address of the Sub-CRQ (I/O addresses for entire buffer length starting at
the specified I/O address are translated by the RTCE table, is 4 KB aligned, and length, Sub-CRQ-length, is a multi-
ple of 4 KB), else H_Parameter.

 Validate that there are sufficient resources associated with the Unit Address to allocate the Sub-CRQ, else
H_Resource.

 Initialize the Sub-CRQ enqueue pointer and length variables. These variables are kept in terms of I/O addresses so
that page migration works and any remapping of TCEs is effective.

 Initialize all Sub-CRQ entry header bytes to 0 (invalid).

 Disable Sub-CRQ interrupts.

 Place cookie representing Sub-CRQ number (will be used in H_SEND_SUB_CRQ,
H_SEND_SUB_CRQ_INDIRECT, and H_FREE_SUB_CRQ) in R4.

 Place interrupt number (the same as will be returned by H_XIRR or H_IPOLL for the interrupt from this Sub-CRQ)
in R5.

 If the CRQ connection is already complete, then return H_Success, else return H_Closed.

17.2.3.3.5.2 H_FREE_SUB_CRQ

This hcall() deregisters the RTCE table mapped memory that contains the Sub-CRQ. Note that the H_FREE_CRQ
hcall() also deregisters any Sub-CRQs associated with the CRQ being deregistered by that hcall().

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this hcall() might change, and the caller should be prepared to receive an H_Function return code indicating the

648 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

platform does not implement this hcall(). If a virtual IOA exists in the device tree after migration that requires by
this architecture the presence of this hcall(), then if that virtual IOA exists after the migration, it can be expected
that the hcall() will, also.

Syntax:

int64 /* H_Success, H_Parameter, H_Hardware, H_Busy, */
/* H_LongBusyOrder1mSec, H_LongBusyOrder10mSec */

hcall (const int64 H_FREE_SUB_CRQ, /* Function Code */
uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 Sub-CRQ-num) /* The Sub-CRQ # cookie returned from H_REG_SUB_CRQ */

Parameters:

 unit-address: Unit Address per device tree node “reg” property.

 Sub-CRQ-num: The queue # cookie returned from H_REG_SUB_CRQ hcall() at queue registration time.

Semantics:

 Validate unit-address and Sub-CRQ-num, else H_Parameter

 Mark the connection to the associated partner partition as closed for the specified Sub-CRQ (so that send hcall()s
from the partner partition fail).

 Mark the Sub-CRQ enqueue pointer and length variables for the specified Sub-CRQ as invalid.

 Disable Sub-CRQ interrupts for the specified Sub-CRQ.

 Return H_Success.

17.2.3.3.5.3 H_SEND_SUB_CRQ

This hcall() sends one 32 byte entry to the partner partition’s registered Sub-CRQ.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this hcall() might change, and the caller should be prepared to receive an H_Function return code indicating the
platform does not implement this hcall(). If a virtual IOA exists in the device tree after migration that requires by
this architecture the presence of this hcall(), then if that virtual IOA exists after the migration, it can be expected
that the hcall() will, also.

Syntax:

int64 /* H_Success, H_Parameter, H_Dropped, H_Hardware, H_Closed */
hcall (const int64 H_SEND_SUB_CRQ, /* Function Code */

uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 Sub-CRQ-num /* The Sub-CRQ# cookie from H_REG_SUB_CRQ (from partner)*/
uint64 msg-dword0, /* High order 8 bytes of message starting with the header byte */
uint64 msg-dword1, /* Next 8 bytes of message */
uint64 msg-dword2, /* Next 8 bytes of message */
uint64 msg-dword3) /* Low order 8 bytes of message */

Parameters:

 unit-addr: Unit Address per device tree node “reg” property.

 Sub-CRQ-num: The queue # cookie returned from H_REG_SUB_CRQ hcall() at queue registration time.

 msg-dword0: firmware checks only high order byte.

17.2  VIO Architectural Infrastructure 649

LoPAPR, Version 1.1 (March 24, 2016)

 msg-dword1, msg-dword2, msg-dword3: the rest of the message; firmware does not validate.

Semantics:

 Validate the Unit Address, else return H_Parameter.

 Validate that the Sub-CRQ, as specified by Sub-CRQ-num, is properly registered by the partner, else return
H_Parameter.

 Validate that the message header byte (high order byte of msg-dword0) is 0x80, else return H_Parameter.

 Validate that there is an authorized CRQ connection to another partition associated with the Unit Address and that
the associated CRQ is enabled, else return H_Closed.

 Enter Critical Section on target Sub-CRQ.

 Validate that there is room on the specified Sub-CRQ for the message and allocate that message, else exit critical
Section and return H_Dropped.

 Store msgdword1 into bytes 4-7 of the allocated queue element.

 Store msgdword2 into bytes 8-11 of the allocated queue element.

 Store msgdword3 into bytes 12-15 of the allocated queue element.

 Store order barrier.

 Store msgdword0 into bytes 0-3 of the allocated queue element (this sets the valid bit in the header byte).

 Exit Critical Section.

 If receiver queue interrupt mode is enabled, then signal interrupt.

 Return H_Success.

17.2.3.3.5.4 H_SEND_SUB_CRQ_INDIRECT

This hcall() sends one or more 32 byte entries to the partner partition’s registered Sub-CRQ. On H_Success, all of the
entries have been put onto the Sub-CRQ. On any return code other than H_Success, none of the entries have been put
onto the Sub-CRQ.

Programming Note: On platforms that implement the partition migration option, after partition migration the support for
this hcall() might change, and the caller should be prepared to receive an H_Function return code indicating the
platform does not implement this hcall(). If a virtual IOA exists in the device tree after migration that requires by
this architecture the presence of this hcall(), then if that virtual IOA exists after the migration, it can be expected
that the hcall() will, also.

Syntax:

int64 /* H_Success, H_Parameter, H_Dropped, H_Hardware, H_Closed */
hcall (const int64 H_SEND_SUB_CRQ, /* Function Code */

uint64 unit-address, /* As specified in the Virtual IOA’s device tree node */
uint64 Sub-CRQ-num /* The Sub-CRQ # cookie from H_REG_SUB_CRQ (from partner)*/
uint64 ioba, /* Address of buffer containing queue entries to be sent*/
uint64 num-entries) /* Number of queue entries in the buffer to be sent*/

Parameters:

 unit-addr: Unit Address per device tree node “reg” property.

650 Virtualized Input/Output

 LoPAPR, Version 1.1 (March 24, 2016)

 Sub-CRQ-num: The Sub-CRQ # cookie returned from H_REG_SUB_CRQ hcall() at queue registration time.

 ioba: The address of the TCE-mapped page which contains the entries to be placed onto the specified Sub-CRQ.

 num-entries: Number of entries to be placed onto the specified Sub-CRQ from the TCE mapped page starting at ioba
(maximum number of entries is 16 in order to minimize the hcall() time).

Semantics:

 Validate the Unit Address, else return H_Parameter.

 Validate that the Sub-CRQ, as specified by Sub-CRQ-num, is properly registered by the partner, else return
H_Parameter.

 If ioba is outside of the range of the calling partition assigned values, then return H_Parameter.

 If num-entries is not in the range of 1 to 16, then return H_Parameter.

 Validate that there is an authorized CRQ connection to another partition associated with the Unit Address and that
the associated CRQ is enabled, else return H_Closed.

 Copy (num-entries * 32) bytes from the page specified starting at ioba to a temporary hypervisor page for contents
verification and processing (this avoids the problem of the caller changing call by reference values after they are
checked).

 Validate that the message header bytes for num-entries starting at ioba are 0x80, else return H_Parameter.

 Enter Critical Section on target Sub-CRQ.

 Validate that there is room on the specified Sub-CRQ for num-entries messages and allocate those messages, else
exit critical Section and return H_Dropped.

 For each of the num-entries starting at ioba

 Store entry bytes 1-31 into bytes 1-31 of the allocated queue element.

 Store order barrier.

 Store entry byte 0 into bytes 0 of the allocated queue element (this sets the valid bit in the header byte).

 Loop

 Exit Critical Section.

 If receiver queue interrupt mode is enabled, then signal interrupt.

 Return H_Success.

17.2.3.3.6 Subordinate CRQ Transport Option Requirements

R1–17.2.3.3.6–1. For the Subordinate CRQ Transport option: The platform must implement the Reliable Com-
mand/Response Transport option, as defined in Section 17.2.3.1‚ “Reliable Command/Response Transport
Option‚” on page 637.

R1–17.2.3.3.6–2. For the Subordinate CRQ Transport option: The platform must implement the Sub-CRQ facil-
ity, as defined in Section 17.2.2.3‚ “Subordinate Command/Response Queue (Sub-CRQ)‚” on page 634.

R1–17.2.3.3.6–3. For the Subordinate CRQ Transport option: The platform must implement the
H_REG_SUB_CRQ hcall(). See Section 17.2.3.3.5.1‚ “H_REG_SUB_CRQ‚” on page 646.

17.2  VIO Architectural Infrastructure 651

LoPAPR, Version 1.1 (March 24, 2016)

R1–17.2.3.3.6–4. For the Subordinate CRQ Transport option: The platform must implement the
H_FREE_SUB_CRQ hcall(). See Section 17.2.3.3.5.2‚ “H_FREE_SUB_CRQ‚” on page 647.

R1–17.2.3.3.6–5. For the Subordinate CRQ Transport option: The platform must implement the
H_SEND_SUB_CRQ hcall(). See Section 17.2.3.3.5.3‚ “H_SEND_SUB_CRQ‚” on page 648.

R1–17.2.3.3.6–6. For the Subordinate CRQ Transport option: The platform must implement the
H_SEND_SUB_CRQ_INDIRECT hcall(). See Section 17.2.3.3.5.4‚ “H_SEND_SUB_CRQ_INDIRECT‚”
on page 649.

R1–17.2.3.3.6–7. For the Subordinate CRQ Transport option: The platform must implement all of the following
subfunctions of the H_VIOCTL hcall() (See Section 17.2.1.6‚ “H_VIOCTL‚” on page 613):

 DISABLE_ALL_VIO_INTERRUPTS

 DISABLE_VIO_INTERRUPT

 ENABLE_VIO_INTERRUPT

652

 LoPAPR, Version 1.1 (March 24, 2016)

17.3 Virtual Network Interface Controller (VNIC)

This section defines a Virtual Network Interface Controller (VNIC) interface to a server partition interfacing to a phys-
ical Network Interface Controller (NIC) adapter that allows multiple partitions to share a physical port. The implemen-
tation support is provided by code running in a server partition that uses the mechanisms of the Synchronous VIO
Infrastructure (or equivalent thereof as seen by the client) to service I/O requests for code running in a client partition1.
The client partition appears to enjoy the services of its own NIC adapter. The terms server and client partitions refer to
platform partitions that are respectively servers and clients of requests, usually I/O operations, using the physical NIC
that is assigned to the server partition. This allows a platform to have more client partitions than it may have physical
NICs because the client partitions share I/O adapters via the server partition.

The VNIC model makes use of Remote DMA which is built upon the architecture specified in the following sections:

 Section 17.2.1‚ “VIO Infrastructure - General‚” on page 600

 Section 17.2.2‚ “Partition Managed Class Infrastructure - General‚” on page 620

 Section 17.2.3‚ “Partition Managed Class - Synchronous Infrastructure‚” on page 637

The use of Remote DMA has implications that the physical NIC be able to do some of its own vitualization. For exam-
ple, for an Ethernet adapter, being able to route receive requests, via DMA to the appropriate client partition, based on
the addressing in the incoming packet.

17.3.1 VNIC General

This section contains an informative outline of the architectural intent of the use of VNIC. Other implementations of
the server and client partition code, consistent with this architecture, are possible and may be preferable.

The client partition provides the virtual equivalent of a single port NIC adapter via each VNIC client IOA. The plat-
form, through the partition definition, provides means for defining the set of virtual IOA’s owned by each partition and
their respective location codes. The platform also provides, through partition definition, instructions to connect each
client partition’s VNIC client IOA to a specific server partition’s VNIC server IOA. The mechanism for specifying this
partition definition is beyond the scope of this architecture. The human readable handle associated with the partition
definition of virtual IOAs and their associated interconnection and resource configuration is the virtual location code.
The OF unit address (unit ID) remains the invariant handle upon which the OS builds its “physical to logical” configu-
ration. The platform also provides a method to assign unique MAC addresses for each VNIC client adapter. The mech-
anism for allocating port names is beyond the scope of this architecture.

The client partition’s device tree contains one or more nodes notifying the partition that it has been assigned one or
more virtual adapters. The node’s “type” and “compatible” properties notify the partition that the virtual adapter
is a VNIC. The unit address of the node is used by the client partition to map the virtual device(s) to the OS’s corre-
sponding logical representations. The “ibm,my-dma-window” property communicates the size of the RTCE table
window panes that the hypervisor has allocated. The node also specifies the interrupt source number that has been as-
signed to the Reliable Command/Response Transport connection and the RTCE range that the client partition device
driver may use to map its memory for access by the server partition via Logical Remote DMA. The client partition,
uses the hcall()s associated with the Reliable Command/Response Transport facility to register and deregister its CRQ,
manage notification of responses, and send command requests to the server partition. The client partition uses the
hcall()s associated with the Subordinate CRQ Transport facility to register and deregister any sub-CRQs necessary for
the operations of the VNIC.

1.The server partition for VNIC is expected to be part of the platform firmware and therefore an OS interface is not provided in this architecture for the
server side. However, the platform firmware is still expected to be implemented by a partition, and hence the term “server partition.”

17.3  Virtual Network Interface Controller (VNIC) 653

LoPAPR, Version 1.1 (March 24, 2016)

The client partition, upon noting the device tree entry for the virtual adapter, loads the device driver associated with the
value of the “compatible” property. The device driver, when configured and opened, allocates memory for its
CRQ (an array, large enough for all possible responses, of 16 byte elements), pins the queue and maps it into the I/O
space of the RTCE window specified in the “ibm,my-dma-window” property using the standard kernel mapping
services that subsequently use the H_PUT_TCE hcall(). The queue is then registered using the H_REG_CRQ hcall().
Next, I/O request control blocks (within which the I/O requests commands are built) are allocated, pinned, and mapped
into I/O address space. Finally, the device driver registers to receive control when the interrupt source specified in the
virtual IOA’s device tree node signals.

Once the CRQ is setup, the device driver in the client queues an Initialization Command/Response with the second
byte of “Initialize” in order to attempt to tell the hosting side that everything is setup on the hosted side. The response
to this send may be that the send has been dropped or has successfully been sent. If successful, the sender should ex-
pect back an Initialization Command/Response with a second byte of “Initialization Complete,” at which time the com-
munication path can be deemed to be open. If dropped, then the sender waits for the receipt of an Initialization
Command/Response with a second byte of “Initialize,” at which time an “Initialization Complete” message is sent, and
if that message is sent successfully, then the communication path can be deemed to be open.

Once the CRQ connection is complete between the client and the server, the client receives from the server the number
of sub-CRQs that can be supported on the client side. The client allocates memory for the first sub-CRQ (an array,
large enough for all possible responses, of 32 byte elements), pins the queue and maps it into the I/O space of the
RTCE window specified in the “ibm,my-dma-window” property using the standard kernel mapping services that
subsequently use the H_PUT_TCE hcall(). The queue is then registered using the H_REG_SUB_CRQ hcall(). This
process continues until all desired sub-CRQs are registered or until the H_REG_SUB_CRQ hcall() indicates that the
resources allocated to the client for sub-CRQs for the virtual IOA have already been allocated (H_Resource returned).
Interrupt numbers for the Sub-CRQs that have been registered, are returned by the H_REG_SUB_CRQ hcall() (See
Section 17.2.3.3.5.1‚ “H_REG_SUB_CRQ‚” on page 646).

Once all the CRQs and Sub-CRQs are setup, the communications between the client and server device drivers may
commence for purposes of further setup operations, and then normal I/O requests, error communications, etc. The pro-
tocol for this communications is beyond the scope of this architecture.

17.3.2 VNIC Requirements

This normative section provides the general requirements for the support of VNIC.

R1–17.3.2–1. For the VNIC option: The platform must implement the Reliable Command/Response Transport op-
tion as defined in Section 17.2.3.1‚ “Reliable Command/Response Transport Option‚” on page 637.

R1–17.3.2–2. For the VNIC option: The platform must implement the Subordinate CRQ Transport option as de-
fined in Section 17.2.3.3‚ “Subordinate CRQ Transport Option‚” on page 645.

R1–17.3.2–3. For the VNIC option: The platform must implement the Logical Remote DMA option as defined in
Section 17.2.3.2‚ “Logical Remote DMA (LRDMA) Option‚” on page 642.

R1–17.3.2–4. For the VNIC option: The platform’s OF device tree for client partitions must include as a child of
the /vdevice node, at least one node of name “vnic”.

R1–17.3.2–5. For the VNIC option: The platform’s vnic OF node must contain properties as defined in
Table 236‚ “Properties of the vnic Node in the OF Device Tree‚” on page 654 (other standard I/O adapter
properties are permissible as appropriate).

654

 LoPAPR, Version 1.1 (March 24, 2016)

Table 236. Properties of the vnic Node in the OF Device Tree

Property Name Required? Definition

“name” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device name, the value shall be
“vnic”.

“device_type” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the virtual device type, the value shall be
“network”.

“model” NA Property not present.

“compatible” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the programming models that are compatible
with this virtual IOA, the value shall include “IBM,vnic”.

“used-by-rtas”
See

definition
column

Present if appropriate.

“ibm,loc-code” Y Property name specifying the unique and persistent location code associated with this virtual IOA.

“reg” Y

Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the unit address (unit ID) associated with this
virtual IOA presented as an encoded array as with encode-phys of length “#address-cells”
value shall be 0xwhatever (virtual “reg” property used for unit address no actual locations used,
therefore, the size field has zero cells (does not exist) as determined by the value of the
“#size-cells” property).

“ibm,my-dma-window” Y
Property name specifying the DMA window associated with this virtual IOA presented as an encoded
array of three values (LIOBN, phys, size) encoded as with encode-int, encode-phys, and
encode-int.

“interrupts” Y

Standard property name specifying the interrupt source number and sense code associated with this virtual
IOA presented as an encoded array of two cells encoded as with encode-int with the first cell
containing the interrupt source number, and the second cell containing the sense code 0 indicating positive
edge triggered. The interrupt source number being the value returned by the H_XIRR or H_IPOLL
hcall().

“ibm,my-drc-index” For DR Present if the platform implements DR for this node.

“ibm,#dma-size-cells”
See

definition
column

Property name, to define the package’s dma address size format. The property value specifies the number
of cells that are used to encode the size field of dma-window properties. This property is present when the
dma address size format cannot be derived using the method described in the definition for the
“ibm,#dma-size-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“ibm,#dma-address-cells”
See

definition
column

Property name, to define the package’s dma address format. The property value specifies the number of
cells that are used to encode the physical address field of dma-window properties. This property is present
when the dma address format cannot be derived using the method described in the definition for the
“ibm,#dma-address-cells” property in Appendix B, “LoPAPR Binding,” on page 661.

“local-mac-address” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the locally administered MAC addresses are
denoted by having the low order two bits of the high order byte being 0b10.

“mac-address” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], specifying the initial MAC address (may be changed by
a VNIC CRQ command).

“supported-network-types” Y
Standard property name as per Open Firmware Recommended Practice: Device Support Extensions [5].
Reports possible types of “network” the device can support.

“chosen-network-type” Y
Standard property name as per Open Firmware Recommended Practice: Device Support Extensions [5].
Reports the type of “network” this device is supporting.

17.3  Virtual Network Interface Controller (VNIC) 655

LoPAPR, Version 1.1 (March 24, 2016)

“max-frame-size” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], to indicate maximum packet size.

“address-bits” Y
Standard property name per IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2], to indicate network address length.

“interrupt-ranges” Y
Standard property name that defines the interrupt number(s) and range(s) handled by this device.
Subordinate CRQs associated with this VNIC use interrupt numbers from these ranges.

Table 236. Properties of the vnic Node in the OF Device Tree (Continued)

Property Name Required? Definition

656

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

A SPLPAR Characteristics Definitions

This appendix defines the string that is returned by the ibm,get-system-parameter RTAS call when the parameter token
value of 20 (SPLPAR Characteristics) is specified on the ibm,get-system-parameter RTAS call as per Section 7.3.16‚
“System Parameters Option‚” on page 207.

A.1 SPLPAR Terms

The LoPAPR Shared Processor Logical Partition option (SPLPAR) defines many terms as presented in Table 237‚
“SPLPAR Terms‚” on page 657.

Table 237. SPLPAR Terms

Term Definition

Bound Threads
For virtual processor dispatches, if the hypervisor always dispatches a set of virtual threads together on a physical
processor, the threads are said to be bound. This allows an operating system to make scheduling decisions based on
cache affinity and work load. A change in this characteristic takes effect on the next reboot of the partition.

Capacity Increment
This defines the delta by which the entitled capacity of a partition can be incremented or decremented by
DLPAR/WLM. The capacity increment is expressed as a percentage of a physical processor. A change in the
capacity increment takes effect on the next reboot of the partition.

Desired Entitled Capacity

The desired entitled capacity set by the system administrator in the partition definition. The desired entitled capacity
is expressed as a percentage of a physical processor. The desired entitled capacity can change without a reboot of
the partition. The entitled capacity that the partition is currently using may differ from the desired entitled capacity
because of WLM actions or failed system processors.

Desired Memory

The desired memory set by the system administrator in the partition definition. The desired memory is expressed in
MB of storage. The desired memory can change without a reboot of the partition. The desired memory that the
partition is currently using may differ from the desired memory because of WLM actions or because of failed system
memory.

Desired Number of Processors

The desired number of virtual processors set by the system administrator in the partition definition. The desired
number of processors can change without a reboot of the partition. The number of processors that the partition is
currently using may differ from the desired number of processors because of WLM actions or because of failed
system processors.

Desired Variable Capacity
Weight

The desired variable capacity weight set by the system administrator in the partition definition. The desired variable
capacity weight is a number between 0 and 255. The desired variable capacity weight can change without a reboot
of the partition. The variable capacity weight that the partition is currently using may differ from the desired variable
capacity because of WLM actions.

Dispatch Wheel Rotation Period

The duration of the hypervisor’s scheduling window. The time over which the entitled capacity of a virtual processor
has to be utilized by the partition. At the start of a dispatch wheel rotation period, each virtual processor is eligible
for CPU time corresponding to its entitled capacity. If the entire entitled capacity of a virtual processor is not utilized
during a dispatch wheel rotation period, the unused entitled capacity is lost. The dispatch wheel rotation period is
expressed as N number of time base ticks. The dispatch wheel duration of a partition with a capacity increment of
100 is 0. A change in the dispatch wheel rotation period takes effect on the next reboot of the partition.

658 SPLPAR Characteristics Definitions

 LoPAPR, Version 1.1 (March 24, 2016)

A.2 Key Words And Values

Table Table 238‚ “SPLPAR Characteristics‚” on page 658 defines the key words and the associated legal values that
will be returned in the ASCII NULL terminated string when the parameter token value of 20 (SPLPAR characteristics)
is specified on the ibm,get-system-parameter RTAS call. The key word and value is separated by an ascii equal (“=”).
Each key word, value pair is delimited by an ascii comma in the string. The numerical value of the characteristic corre-
sponding to the key word is the decimal number that corresponds to the numeric characters in the value part of the key
word, value pair.

Minimum Entitled Capacity

The minimum entitled capacity that is needed to power on the partition. The capacity is expressed as a percentage
of a physical processor. The minimum entitled capacity is set by the system administrator in the partition definition.
DLPAR cannot take the entitled capacity below the minimum entitled capacity. A change in the minimum entitled
capacity takes effect on the next reboot of the partition. A partition can give up its entitled capacity to be below the
minimum entitled capacity.

Minimum Entitled Capacity per
Virtual Processor

The minimum entitled capacity that the platform requires for a virtual processor of any partition on the platform.
The minimum virtual per virtual processor is enforced by the HMC in the partition definition and by the hypervisor
for H_SET_PPP (Section 14.11.3.7‚ “H_SET_PPP‚” on page 464). A change in the minimum entitled capacity per
virtual processor takes effect on the next reboot of the partition.

Minimum Memory

The minimum amount of main store that is needed to power on the partition. Minimum memory is expressed in MB
of storage. The minimum memory is set by the system administrator in the partition definition. DLPAR cannot take
the partition memory below the minimum memory. A change in the minimum memory takes effect on the next
reboot of the partition. A partition can always give up its memory to go below the minimum memory.

Minimum Number of
Processors

The minimum number of virtual processors that are needed to start the partition. The minimum number of virtual
processors is set by the system administrator in the partition definition. DLPAR cannot take the number of virtual
processors below the minimum number of processors. A change in the minimum number of processors takes effect
on the next reboot of the partition. A partition can always give up its virtual processors to go below the minimum
number of processors.

Maximum Entitled Capacity

The maximum entitled capacity currently that can be assigned to the partition through DLPAR/WLM. The capacity
is expressed as a percentage of a physical processor. The Maximum entitled capacity is set up by the system
administrator in the partition definition. A change in the maximum entitled capacity maximum takes effect on the
next reboot of the partition.

Maximum Platform Processors
The maximum number of processors that can be active on the platform. A change in the maximum platform
processors takes effect on the next reboot of the partition.

Dedicated Donate Mode

For a partition with a capacity increment of 100, the platform uses a dedicated CPU to actualize a virtual processor
of the partition. For such a partition, the platform can increase the capacity of the shared processor pool by utilizing
the unused processor capacity of the partition. If the platform supports the dedicated donate function, it can be
enabled by the system administrator in the partition definition. The value of this characteristic can change without
a reboot of the partition.

Thread
A multi threaded processor may have multiple contexts executing concurrently. Each of them is called a thread.
From a software viewpoint, a thread is an independent executing unit. Threads on a processor share some of the
architected and unarchitected resources of a physical processor.

Table 238. SPLPAR Characteristics

Characteristics Key Word Values Notes

Bound Threads BoundThrds 0,1 1

Capacity Increment CapInc 1 through 100

Dispatch Wheel Rotation Period DisWheRotPer 1 through N

Table 237. SPLPAR Terms

Term Definition

A.2  Key Words And Values 659

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. 0=Threads are not bound, 1=Threads are bound.

2. The maximum numeric value of Minimum Entitled Capacity is the number of processors on the platform
multiplied by 100.

3. The maximum numeric value of Maximum Entitled Capacity is the number of processors on the platform
multiplied by 100.

4. The numeric value of Desired Entitled Capacity is greater or equal than the numeric value of the Minimum
Entitled Capacity and less than or equal to the numeric value of the Maximum Entitled Capacity.

5. The numeric value of Desired Memory is greater or equal than the numeric value of the Minimum Memory
and less than or equal to the maximum memory set by the system administrator in the partition profile.

6. The numeric value of Desired Number of Processors is greater or equal than the numeric value of the Mini-
mum Number of Processors and less than or equal to the maximum number of virtual processors set by the
system administrator in the partition profile.

7. 0=Dedicated Donate Mode is disabled, 1=Dedicated Donate Mode is enabled.

Minimum Entitled Capacity MinEntCap 0 through N 2

Minimum Entitled Capacity per
Virtual Processor

MinEntCapPerVP 1 through 100

Minimum Memory MinMem 0 through N

Minimum Number of Processors MinProcs 0 through N

Maximum Entitled Capacity MaxEntCap 1 through N 3

Maximum Platform Processors MaxPlatProcs 1 through N

Desired Entitled Capacity DesEntCap 0 through N 4

Desired Memory DesMem 0 through N 5

Desired Number of Processors DesProcs 0 through N 6

Desired Variable Capacity Weight DesVarCapWt 0 through 255

Dedicated Donate Mode DedDonMode 0,1 7

Table 238. SPLPAR Characteristics

Characteristics Key Word Values Notes

660 SPLPAR Characteristics Definitions

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

B LoPAPR Binding

B.1 Purpose of this System Binding

This appendix specifies the application of OF to an LoPAPR System, including requirements and practices to support
unique hardware and firmware specific to the platform implementation. The core requirements and practices specified
by OF must be augmented by system-specific requirements to form a complete specification for the firmware imple-
mentation of an LoPAPR System. This appendix establishes such additional requirements pertaining to the platform
and the support required by OF.

B.2 Overview

This appendix specifies the application of IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firm-
ware, Core Practices and Requirements, Core Errata, IEEE P1275.7 and appropriate OF Standards for LoPAPR com-
puter systems, including practices for client program interface and data formats.

B.2.1 General Requirements for OF

An OF implementation for an LoPAPR platform shall implement the core requirements as defined in IEEE 1275, IEEE
Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2], core errata Core Er-
rata, IEEE P1275.7/D4 [3], the PA Processor-specific extensions described in Appendix C, “PA Processor Binding,”
on page 753, other appropriate bindings and/or recommended practices contained in the references (see “Bibliography”
on page 889), and the LoPAPR Binding specific extensions described in this appendix.

In addition, an OF implementation for an LoPAPR platform shall implement the Device Interface, Client Interface and
User Interface as defined in IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Re-
quirements and Practices [2].

Some LoPAPR Binding property names exceed the OF Base specification limit of 31 characters. LoPAPR OF imple-
mentations shall support property names of at least 47 characters.

B.3 Terms

This standard uses technical terms as they are defined in the documents cited in “References”, plus the following
terms:

ARP Address Resolution Protocol

BOOTP Bootstrap Protocol

CHRP Common Hardware Reference Platform

core, core specification, core document

Refers to IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware,
Core Practices and Requirements

662 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

core errata Refers to Core Errata, IEEE P1275.7

CPU Central Processing Unit

ELF Executable and Linking Format. A binary object file format defined by System V Application
Binary Interface, PowerPC Processor Supplement [15] that is used to represent client programs
in OF for PA.

FDISK Refers to the boot-record and partition table format used by MS-DOS, as defined in MS-DOS
Programmer's Reference [12].

gateway Network connecting device

host A computer. In particular a source or destination of messages from the point of view of the com-
munication network.

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IO Input/Output

LAN Local Area Network

NVRAM Non-volatile memory that is the repository for various platform, OF and OS information that
remains persistent across reboots, power management activities and/or cycles.

Open Firmware (OF) The firmware architecture defined by IEEE 1275, IEEE Standard for Boot (Initialization Con-
figuration) Firmware: Core Requirements and Practices [2] and Core Errata, IEEE
P1275.7/D4 [3], or, when used as an adjective, a software component compliant with the core
specification and errata.

PCU Power Configuration Utility; Refers to a platform program to assist a user to manage device
power.

PE Portable Executable. A binary object file format defined by Peering Inside the PE: A Tour of
the Win32 Portable Executable File Format [13].

PROM programmable read only memory

real-mode The mode in which OF and its client are running with translation disabled; all addresses passed
between the client and OF are real (i.e., hardware) addresses.

RFC Internet Request For Comments; part of the technical process of establishing a standard.

ROM Read Only Memory

suspend A form of Power Management characterized by a fast recovery to full operation. Typically, sys-
tem memory will not be powered off while in the suspend state.

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

virtual-mode The mode in which OF and its client share a single virtual address space, and address translation
is enabled; all addresses passed between the client and OF are virtual (translated) addresses.

B.4 LoPAPR Boot Flow

This section gives a system boot process overview and defines the enhancements to the standard OF boot process that
are present in the boot process for an LoPAPR platform.

B.4  LoPAPR Boot Flow 663

LoPAPR, Version 1.1 (March 24, 2016)

B.4.1 Boot Overview

The platform performs a normal OF boot (see IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firm-
ware: Core Requirements and Practices [2], as stated in the Core Practice Document, Section 4.2.3, Start-up script
evaluation. LoPAPR platforms provide an additional capability to assist the user in choosing which of several OSs to
boot. A key sequence can be used to interrupt the normal boot flow and present the user with a multiboot menu, which
can be either graphical or text-based at the discretion of the platform’s firmware, from which the user can choose one
of the installed or installable OSs. Presenting the user with this choice can also be made the default mode of operation
at platform boot time, by means of the auto-boot? and menu? configuration variables.

An overview of a platform boot sequence and the additions of the multiboot menu are given below:

The boot flow described above occurs after all of the devices have been probed (i.e., by the execution of
probe-all); see Section B.4.1.1‚ “Additional Requirements for probe-all Method‚” on page 663 additional require-
ments for probe-all method.

The boot sequence defaults to a normal boot if the boolean variable auto-boot? is true and diagnostic-mode?
is false. In this situation, the system shall then boot from information contained in the configuration variables
boot-device and boot-file.

From the boot sequence above, entry to the multiboot menu may occur anywhere after step ‘f’, banner, if the plat-
form key sequence (multiboot menu) has been depressed or in step ‘i’ if the boolean variable menu? is true.

B.4.1.1 Additional Requirements for probe-all Method

Before probing for plug-in devices, OF shall execute the probe method, as with execute-device-method, of
any built-in device nodes. The order of evaluation shall ensure that the probe method of a parent device node is exe-
cuted before the probe method of any of its children.

a) Power On Self Test (POST)

b) System Initialization

c) Evaluate the script (if use-nvramrc? is true)

d) probe-all (evaluate FCode)

e) install-console

f) banner

g) Secondary Diagnostics and other system-dependent initialization

h) Default boot (if auto-boot? is true)

i) Entry to multiboot menu (if menu? is true)

j) Invoke the command interpreter (if preceding step returns)

(key chord for multiboot menu will be recognized and acted upon after this point)

CHRP Start-up Script Sequence Evaluation:

664 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Note: During this built-in probing, /rom nodes will locate ROM based OSs. The FCode for these devices can publish their
“bootinfo” properties that are used during the multiboot scenario as described below.

B.4.1.2 LoPAPR Multiboot

The boot choices identified to the user are defined by bootinfo objects which are located on various system media.
Each bootinfo object contains information about one OS, such as its name and description, an icon depicting it, and an
OF command sequence to load and execute it. The locations where bootinfo objects can be found are specified by OF
device-specifiers that are the values of configuration variables, the names of which are of the form
“bootinfo-nnnnn”, where “nnnnn” is OS-specific. These configuration variables are stored in the System Par-
tition in NVRAM and are published in the device tree as properties under the /options node. The multiboot menu
will use these configuration variables to locate and parse bootinfo to obtain the OS icon, description, etc.

In addition to the bootinfo-nnnnn configuration variables, the multiboot menu will search the device tree for
nodes containing “bootinfo” properties, which specify that the node can supply a bootinfo object. This is particu-
larly useful for OSs contained in ROMs.

Note: The order prescribed by probe-all guarantees that these properties be created before the multiboot menu has been
invoked.

Different versions of the same OS may each have their own bootinfo and associated configuration variables. Although
it is possible to put bootinfo in any media location that OF can read, this specification defines standard locations for
various types of media, to allow the firmware to establish the bootinfo configuration variables automatically in many
cases.

B.4.1.3 Bootinfo Configuration Variables

A bootinfo configuration variable is any configuration variable that meets the following requirements:

 Its name is of the form “bootinfo-nnnnn”, where nnnnn is a string of at most 22 characters from the set of
valid characters for OF configuration variable names. The exact value of “nnnnn” for a particular OS may be cho-
sen by that OS. The naming convention for the OS should be chosen to avoid possible naming conflicts between OS
vendors.

 Its value is an OF device-specifier that identifies an object (e.g. disk file, tape file, disk partition or /rom child node)
whose contents are a “bootinfo object” as defined below.

B.4.1.4 Bootinfo Properties

Any node in the device tree can have a “bootinfo” property whose value specifies the arguments to use in opening
that device in order to access its bootinfo object.

“bootinfo” S

property name locates the node’s bootinfo object

prop-encoded-array: A string, encoded as with encode-string
The presence of this property signifies that the device has an associated bootinfo object. The value is a text
string such that when this device’s node open method is called, the value of text string that is passed to the
device’s node open method is “my-args”. When so opened, subsequent calls to the node’s “read” method
will yield the contents of the node’s bootinfo object.

B.4  LoPAPR Boot Flow 665

LoPAPR, Version 1.1 (March 24, 2016)

B.4.1.5 Standard Locations for Bootinfo Objects

The standard locations for bootinfo objects on various LoPAPR media and partition types is shown in the table below.
An OS must put its bootinfo object in the standard location in order to guarantee interoperability with the LoPAPR mul-
tiboot menu mechanism.

Note 1: If bootinfo.txt file is not present, file 0 should contain a program image file for a bootable tape.

Example of installed (“bootinfo-nnnnn”) block device (disk):

ALIAS EXAMPLE:

bootinfo-aix-4.3=disk:2 (The contents of partition 2, which is probably a “0x41” partition, on the default disk, is the
bootinfo.txt file for a version of the AIX OS.)

bootinfo-nt-4.0=disk:\os\winnt\bootinfo.txt

NON-ALIAS EXAMPLE:

bootinfo-aix-4.4=/pci@ff500000/pci3,1000@10/sd0,0:3 (The contents of partition 3, which is probably a “0x41” parti-
tion, on the SCSI disk at target 0 unit 0, is the bootinfo.txt file for a version of the AIX OS.)

B.4.1.6 Bootinfo Objects

The information used by OF to display information in the multiboot menu and to locate and process an OS load image
is contained within a sequence of text that is called a bootinfo object. The text comprising the bootinfo object uses
SGML syntax, as defined in ISO Standard 8879:1986, Information Processing -- Text and Office Systems -- Standard
Generalized Markup Language (SGML) [16], with tags identifying the subordinate elements.

The following outline is a summary of the organization of the bootinfo object. Elements at the same level do not have
any required order. The tags are illustrated in upper case, but shall be processed in a case-insensitive manner.

<CHRP-BOOT>

<DESCRIPTION>

....

</DESCRIPTION>

<OS-NAME>

....

Table 239. Standard Pathnames for bootinfo.txt File

Name Device/Partition Notes

Installation Media:

Any block device: device:partition,\ppc\bootinfo.txt Any file system format

Tape: device:0 (Note 1) Presence of bootinfo.txt is optional

ROM: device:bootinfo
bootinfo is the value of the “bootinfo”
property in a /rom child node

Network:
Could specify bootinfo.txt or some other file from the
Bootp server

Specifying bootinfo.txt from the Bootp server
is optional

666 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

</OS-NAME>

<BOOT-SCRIPT>

....

</BOOT-SCRIPT>

<ICON

SIZE=ww,hh

COLOR-SPACE=r,g,b

>

<BITMAP>

hh hh hh hh . . .

</BITMAP>

</ICON>

</CHRP-BOOT>

Notes:

1. If ‘SIZE’ is not present, assume default of 64,64. If ‘COLOR-SPACE’ is not present, assume default of
3,3,2.

2. Another <chrp-boot> tag sequence could define a different boot selection

3. LoPAPR platforms will recognize only the tags between the beginning <chrp-boot> tag until the end
</chrp-boot> tag. If a tag is unrecognized, the material will be ignored until the end tag. Other
non-<chrp-boot> tags may be supported in the future. These additional selections would also be presented
to the user as boot options.

B.4.1.6.1 Bootinfo Entities

SGML provides “entities” that provide symbolic names for text. When the entity names are contained within & and ‘;’,
the entity is replaced with text as defined by the entity; i.e., entities provide a “macro” substitution capability. The
bootinfo object may use entities to supply pathname components that depend upon the location of the file. Also, enti-
ties have been defined for the standard SMGL Tags for the presence of the ‘<‘, ‘&’ and ‘>’ characters in the text as
<, & and >. Within the <BOOT-SCRIPT> element, the following entities are defined with respect to the
fully qualified pathname of the bootinfo object:

device the device component.

partition the partition component.

directory the directory component.

filename the filename component.

full-path the entire fully qualified pathname.

The fully qualified pathname could be represented by the following text:

 &device;:[&partition;][,]&directory;&filename;

B.4  LoPAPR Boot Flow 667

LoPAPR, Version 1.1 (March 24, 2016)

Note: Underlined portions illustrate where entities are positioned within the full pathname.

B.4.1.6.2 Bootinfo Character Sets

The character set used by the bootinfo.txt file is ISO-8859-1 (Latin-1). Element tags and entity names are not case sen-
sitive; all other text is case sensitive.

B.4.1.6.3 Element Tag Descriptions

The following sections describe each of the element tags and how they are used.

B.4.1.6.4 CHRP-BOOT Element

This element provides the grouping for each OS that is represented within a single bootinfo.txt file. Multiple
CHRP-BOOT sections are allowed within a single bootinfo.txt file.

B.4.1.6.5 OS-NAME element

This element contains the complete name of the OS.

B.4.1.6.6 BOOT-SCRIPT element

This element contains an OF script that is executed when the OS defined by this CHRP-BOOT section is selected to be
loaded. Each line of this element is processed as if it were entered from the input device of the user interface. Typically,
the last line of this script would contain a boot command; the pathname of the OS’s load image can be constructed
with the entities described above.

B.4.1.6.7 ICON element

This element describes the OS icon that can be displayed by the multi-boot process. The icon should be designed to be
pleasant against a light background.

The SIZE parameter consists of a two decimal numbers, separated by a comma, that represent the width and height (in
pixels) of the icon, respectively. The default value is “64,64”

The COLOR-SPACE parameter consists of three decimal numbers, separated by commas, that represent the number of
bits for the red, green, and blue components of each pixel. The default value is “3,3,2”1.

Note 1: This version of LoPAPR supports only a 3,3,2 icon color-space and 64,64 icon size. Other icon size’s and
color-space’s are reserved for future implementations.

If an icon is not stated, the platform will display a generic system icon that is platform dependent.

B.4.1.6.7.1 BITMAP element

This element specifies the bitmap. It consists of a sequence of hex digit pairs, each of which defines a pixel; white
spaces is allowed between pixel values. The number of hex digit pairs is defined by the product of the width and height
values of the SIZE parameter.

icon string example: <icon size=64,64 color-space=3,3,2><bitmap>hh hh...

hh2</bitmap></icon>

Note 2: Hex string would be 8192 characters for a size=64,64 in the above example.

For the two examples below, the tags have been indented and separated by line feeds for each start/end tag pair to make
a more readable script style.

668 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

AIX Bootinfo Object Example:

<chrp-boot>

<description>AIX 4.2.D.0</description>

<os-name>AIX 4.2.D.0</os-name>

<boot-script>boot &device;:2</boot-script>

<icon size=64,64 color-space=3,3,2><bitmap>hh ... hh1</bitmap></icon>

</chrp-boot>

AIX Diagnostics Bootinfo Object Example:

<chrp-boot>

<description>AIX 4.2.D.0 Diagnostics</description>

<os-name>AIX 4.2.D.0 Diagnostics</os-name>

<boot-script>boot &device;:2 diag</boot-script>

<icon size=64,64 color-space=3,3,2><bitmap>hh ... hh1</bitmap></icon>

</chrp-boot>

Note 1: 64x64 icon size would have 8192 hex string characters.

B.4.1.7 Multiboot Menu

If the boot sequence is interrupted by the multiboot key sequence, then the firmware shall present a multiboot menu
that provides at least the functions listed below. The form of the menu (e.g. graphical or text- oriented) and the selec-
tion mechanism (e.g. numbered choices, arrow keys, or mouse) are platform-dependent.

Multiboot Required Functions:

 Locate all bootinfo objects specified by bootinfo configuration variables and device node “bootinfo” properties.
For each bootinfo object, present a choice corresponding to each valid <chrp-boot> section contained therein. For
each such choice, allow the user to either:

 Execute the contents of that bootinfo object’s <boot-script> element.

 Set the boot-command configuration variable to the contents of that bootinfo object’s <boot-script> element.

 Present a choice corresponding to each install device, which, when invoked, will attempt to locate a bootinfo object
at the device’s standard location (see Table 1).

 Allow the user to manage configuration variables

 Allow the user to invoke the OF user interface

Additional options that could be implemented would be to provide a means to get to diagnostics or specific platform
options.

There shall be at least one key sequence to enter the multi-boot platform function for an LoPAPR platform.

B.5  LoPAPR Processor 669

LoPAPR, Version 1.1 (March 24, 2016)

Note: OS have the responsibility to update the NVRAM System Partition Variable to reflect a change where the
bootinfo.txt file is located; e.g., moving to a different disk device. Also, the OS is responsible for maintaining the
contents of the bootinfo.txt file.

B.4.2 Reboot-Command Variable Description

The OS can cause OF to execute a specified sequence of commands at the next boot by setting the value of the re-
boot-command configuration variable. LoPAPR firmware implementations shall implement the following configu-
ration variable.

reboot-command(-- addr len)N

One time or temporary reboot command.

The value of this configuration variable is a string consisting of zero or more lines of text, with lines separated by
either <return>, <linefeed>, or <return><linefeed>.

During firmware start-up, just prior to checking the auto-boot? configuration variable for automatic booting,
the firmware shall check the value of reboot-command. If the value is not the empty string, the firmware shall
save the value to a temporary location, set reboot-command to the empty string, and evaluate the saved value
as though it were a series of user interface command lines.

If the evaluation of reboot-command returns without executing, the firmware shall proceed with its normal
start-up sequence. In typical usage, however, the value of reboot-command will include a boot command that
starts a client program and does not return.

B.5 LoPAPR Processor

OF defines a minimum cell size of 32 bits; therefore, only one cell is necessary to represent addresses up to 4GB (32
bits). Two cells are necessary to represent addresses above 4GB and within 64 bits. Also, two cells are necessary to
represent sizes greater than 4GB.

B.5.1 Processor Endian-ness Support

LoPAPR requires the use of PA processors that support Big-Endian storage format. LoPAPR allows for the use of PA
processors that support Little-Endian storage format in addition to Big-Endian storage format.

B.5.2 Multi-Threading Support

The processors used in some platforms support multiple threads of execution. This processor model differs from Sym-
metric Multi-Processors in that the multiple threads of execution share the processor hardware to such an extent that
operations on one thread can significantly affect the performance of another tread of the same processor. Therefore, the
processor is represented with a single processor node having multiple interrupt server numbers. The OS is then free to
start and stop multi-threading as the processing environment dictates. The client interface call start-cpu, operates
on the full CPU as presented in the device tree, upon successful completion, the started CPU is running in single
threaded mode, the active thread being the one associated with the first interrupt server number in the
“ibm,ppc-interrupt-server#s” property. The client interface calls: stop-self, idle-self, re-
sume-cpu are all defined to operate on the full CPU when called in single threaded mode, the behavior of these calls
if called with multiple threads active is implementation dependent, it is suggested that the implementation deactivate
all but one thread before performing the call’s standard function.

670 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

B.6 OF Platform Extensions

This section defines OF properties, methods, device tree structure and Client Interface Service requirements for Lo-
PAPR platforms.

The naming conventions for IBM unique OF properties and devices are as follows:

 Properties created for use only by IBM compatible implementations must have the string “ibm,” as a prefix to the
property name.

 Property names prefixed with the string “ibm,fw-” are reserved for and must be controlled by the Firmware
Area.

 An IBM property name which does not have the firmware or AIX prefix must be defined in this document unless
documented elsewhere.

 The value of a device “name” whether reported through the compatible property or name property for a device
implemented by IBM must contain the string “IBM,” as a prefix unless it conforms to a binding which specifies
otherwise.

B.6.1 Properties for Dynamic Reconfiguration

The following standard properties are define for all dynamically reconfigurable platform nodes.

“ibm,drc-indexes”

property name denotes an integer index to be used to communicate to the firmware what connector is to be oper-
ated upon for the various RTAS calls used for DR.

prop-encoded-array: An integer encoded as with encode-int, followed by a list of integers also encoded as
with encode-int.

For each DR connector, a unique integer index is provided which uniquely identifies the DR connector for pur-
poses of the ibm,configure-connector, set-indicator, and get-sensor RTAS calls. The first element of the array is
the number of connectors associated with the node. The second element of the array is the index which represents
the first connector associated with the node, the third element the second connector, and so on until all of the
node’s DR connectors are specified.

“ibm,my-drc-index”

property name denotes an integer index (value of the entry in the “ibm,drc-indexes” property) for the con-
nector between the node and the node’s parent.

prop-encoded-array: An array of integers encoded as with encode-int.

“ibm,drc-names”

property name describes the external labeling of the DR connectors.

prop-encoded-array: An integer encoded as with encode-int, followed by a list of strings each encoded as
with encode-string.

For each DR connector, a unique human-readable name for a connector. The first element of the array is the num-
ber of connectors associated with the node. The second element of the array is the human-readable name which
represents the first connector associated with the node, the third element the second connector, and so on until all
of the node’s DR connectors are specified.

“ibm,drc-power-domains”

B.6  OF Platform Extensions 671

LoPAPR, Version 1.1 (March 24, 2016)

property name gives the power domain number for each connector associated with the node, which is the domain
number to be used in the set-power-level RTAS call, if necessary.

prop-encoded-array: An integer encoded as with encode-int, followed by a list of integers also encoded as
with encode-int.

For each DR connector, the power domain which will be controlled for DR operations (the power domain in which
the DRC resides), and which will be used, if not -1, in the set-power-level RTAS call for the connector. The power
domain number of -1 denotes a live-insertion power domain (in which case, the set-power-level RTAS call is not
used). The first element of the array is the number of connectors associated with this node. The second element
represents the domain number for the first connector. The element following this is the domain number for the sec-
ond connector, and so on until all of the node’s DR connectors are specified.

“ibm,drc-types”

property name, describes the type of each connector associated with the node, in a human-readable form.

prop-encoded-array: An integer encoded as with encode-int, followed by a list of strings each encoded as
with encode-string.

The first element of the array is the number of connectors associated with this node. The second element of the ar-
ray is the connector type of the first connector associated with the node, the third element the second connector,
and so on until all the node’s DR connectors are specified, and these elements will be one of the currently defined
connector types specified in Table 240‚ “Currently Defined DR Connector Types‚” on page 671.

Table 240. Currently Defined DR Connector Types

Connector Type
(character string)

Description

1 A 32-bit, 5 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz Only.

2 A 32-bit, 5 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz.

3 A 32-bit, 3.3 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz Only.

4 A 64-bit, 5 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz Only.

5 A 64-bit, 5 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz.

6 A 64-bit, 3.3 Volt conventional PCI slot which accommodates cards that operate up to 33 MHz Only.

7
A 32-bit, 3.3 Volt conventional PCI slot which accommodates cards that operate up to 66 MHz. IOAs that
operate up to 66 MHz will only operate at frequencies above 33 MHz if there are no 33 MHz IOAs on the
same bus.

8
A 64-bit, 3.3 Volt conventional PCI slot which accommodates cards that operate up to 66 MHz. IOAs that
operate up to 66 MHz will only operate at frequencies above 33 MHz if there are no 33 MHz IOAs on the
same bus.

9 Reserved

10 Reserved

11 A 32-bit PCI-X capable slot which accommodates cards that operate up to 66 MHz

12 A 32-bit PCI-X capable slot which accommodates cards that operate up to 100 MHz

13 A 32-bit PCI-X capable slot which accommodates cards that operate up to 133 MHz

14 A 64-bit PCI-X capable slot which accommodates cards that operate up to 66 MHz

672 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,phandle”

property name, defines the phandle for the node.

prop-encode-array: An integer encoded with encode-int.

15 A 64-bit PCI-X capable slot which accommodates cards that operate up to 100 MHz

16 A 64-bit PCI-X capable slot which accommodates cards that operate up to 133 MHz

17 A 64-bit PCI-X capable slot which accommodates cards that operate up to 266 MHz

18 A 64-bit PCI-X capable slot which accommodates cards that operate up to 533 MHz

19 A PCI Express Rev 1 slot with 1x lanes.

20 A PCI Express Rev 1 slot with 2x lanes.

21 A PCI Express Rev 1 slot with 4x lanes.

22 A PCI Express Rev 1 slot with 8x lanes.

23 A PCI Express Rev 1 slot with 16x lanes.

24 A PCI Express Rev 1 slot with 32x lanes.

25 A PCI Express Rev 2 slot with 1x lanes.

26 A PCI Express Rev 2 slot with 2x lanes.

27 A PCI Express Rev 2 slot with 4x lanes.

28 A PCI Express Rev 2 slot with 8x lanes.

29 A PCI Express Rev 2 slot with 16x lanes.

30 A PCI Express Rev 2 slot with 32x lanes.

CPU Logical CPU

MEM Logical Memory Region

MEM-n
(where n is a

non-zero integer)
Extended Logical Memory Region(s). Used with the Reserved Memory option.

PHB Logical PCI Host Bridge

SLOT Logical I/O slot

PORT Logical Port

Table 240. Currently Defined DR Connector Types (Continued)

Connector Type
(character string)

Description

B.6  OF Platform Extensions 673

LoPAPR, Version 1.1 (March 24, 2016)

B.6.2 OF Root Node

This section defines additional properties and methods associated with LoPAPR platforms that OSs expect to find in
the root node. Unit addresses in an LoPAPR system are limited to 60 bits in length corresponding to the maximum real ad-
dress supported by the POWER processor architecture. The unit address of all non-system nodes that are children of the
root node shall have the same value each time the platform is booted; i.e., shall be invariant for each boot process.

Notes:

1. This requirement ensures that the PHB would have a stable unit address. Violations of this rule may require
reinstallation of an OS.

2. The recommended practice is to generate a virtual unit address for PHB nodes. This is done by giving a zero
length to its first reg property with an address that is selected such that it remains constant. In single bridge
platforms, the value is chosen based upon historical precedent of the predecessor product. In multi-enclo-
sure platforms, the virtual unit address is based upon the manufacturing serial number to insure uniqueness.

B.6.2.1 Root Node Properties

This section defines the additional properties or values which shall be present in the root node unless otherwise speci-
fied.

“#address-cells” S

Standard property name, encoded as with encode-int, that specifies the number of cells required to represent
physical addresses on the processor bus. The value of “#address-cells” for the processor bus shall be 1 or 2
depending on whether there is any memory addressable at or above 4GB’s.

“#size-cells” S

Standard property name, encoded as with encode-int, that specifies the size of cells required to represent phys-
ical addresses on the processor bus. The value of “#size-cells” for the processor bus shall be 1 or 2 depend-
ing on whether there is any memory addressable at or above 4GB’s.

“clock-frequency” S

Standard property name, encoded as with encode-int, that represents the primary system bus speed (in hertz).

“ibm,extended-clock-frequency”

property name: Property that represents the primary system bus speed in hertz of this node. This property allows
the encoding of multi-giga-hertz quantities.

prop-encoded-array: Consisting of two cells (freq-hi, freq-lo) each encoded as with encode-int, such that their
combined value is (freq-hi || freq-lo).

“system-id” S

Standard property name, encoded as with encode-string, that contains the identification of the computer sys-
tem (Reference the “name” property in IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firm-
ware: Core Requirements and Practices [2]). This string should be unique across all systems and all
manufacturers. An example of an address of this form is “0nnnnnnmmmmmm” where nnnnnn is a sequence of 6
uppercase hexadecimal digits representing a 24-bit value that identifies manufacturer and mmmmmm is a se-
quence of 6 uppercase hexadecimal digits representing a 24-bit binary number assigned by the manufacturer to as-
sure uniqueness.

674 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Note: For platforms with built-in ethernet or other IEEE 802-style interfaces, the 6-byte MAC address assigned to that
interface meets the requirements and could be used as the system-id.

“model” S

Standard property name that is a printable string identifying the manufacturer and model number of the platform.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which identifies this platform via its manufacturer and
model number.

“device_type” S

Standard property name that is a printable string identifying the platform as LoPAPR Compliant.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a string, “chrp” which identifies the platform is LoPAPR Compliant.

“ibm,lpar-capable”

property name indicates that the platform is capable of supporting logical partitioning and is only present on such
systems. This property is, however, present even if the platform is not currently configured for logical partition op-
eration.

prop-encoded-array: <NULL>

“ibm,converged-loc-codes”

property name indicates that the platform supports the “Converged Location Code” option. This property shall be
present only on platforms that support the “Converged Location Code” option.

prop-encoded-array: <NULL>

“ibm,max-boot-devices”

property name indicates the maximum number of boot-device entries that the OF automatic boot code will process
(entries after this number are ignored). Platforms that do not present this property default to process a maximum of
5 entries.

prop-encoded-array: an integer encoded as with encode-int.

“ibm,aix-diagnostics”

property name indicates that the platform is capable running AIX diagnostics.

prop-encoded-array: <NULL>

“ibm,diagnostic-lic”

property name, presented to partitions authorized to perform diagnostic operations, that indicates that the platform
is designed to use the specified license internal code package for diagnostic services.

prop-encoded-array: one or more encapsulated package handles encoded as with encode-int.

“ibm,io-server-lic”

property name indicates that the platform is designed to use the specified license internal code package for I/O ser-
vices.

prop-encoded-array: one or more encapsulated package handles encoded as with encode-int.

B.6  OF Platform Extensions 675

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,plat-res-int-priorities”

property name that designates to the client program that the platform has reserved one or more interrupt priorities
for its own use.

prop-encoded-value: one or more (interrupt priority, range) pairs, where interrupt priority is a single cell hexidec-
imal number between 0x00 and 0xFF, and range is an integer encoded as with encode-int that represents the
number of contiguous interrupt priorities that have been reserved by the platform for its internal use.

“ibm,eeh-default”

property name indicates the platform’s default setting for the EEH option.

prop-encoded-array: An integer encoded as with encode-int that represents the platform’s default setting for
the EEH option. The defined states are:

0= The platform boots up with the EEH option disabled.

1= The platform boots up with the EEH option enabled.

“ibm,model-class”

property name to indicate the platform class.

prop-encoded-array: string encoded as defined in Table 241‚ “Example Encoding Strings‚” on page 675.

“ibm,partition-no” S

property name to define the partition number of this particular logical partition as established by the Hardware
Management Console.

prop-encoded-array: The logical partition number is a one cell integer encoded as with encode-int.

“ibm,partition-name” S

property name to define the partition name of this particular logical partition as established by the Hardware Man-
agement Console.

prop-encoded-array: A NULL terminated string.

“ibm,platform-hardware-notification”

Table 241. Example Encoding Strings

Encoded String Platform Class

C5 Blade/Entry

D5 Entry

E5 Entry

F5 Mid-range

G5 High-end

H5 High-end

P5 obsolete

676 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

property name indicating to the OS the presence of hardware for which the OS may need to take action. This prop-
erty exists to notify the OS of hardware elements on the platform which may require special handling by the OS,
such as in response to a hardware errata.

prop-encoded-array: An integer encoded as with encode-int followed by a list of strings encoded as with en-
code-string.

The first element represents the number of strings to follow in the property. Each string in the array names a hard-
ware element that may require the OS to take specific action. The intention is that the string is to name the hard-
ware element being reported. It is not the intention to define (or even hint at) the action that the OS must take. It is
expected that some source outside this document will contain a cross reference between these strings and docu-
mentation such as hardware errata notes which define the action the OS must take.

If the “ibm,platform-hardware-notification” property is provided and a string begins with the
<name> field of the “name” (see Appendix C, “PA Processor Binding,” on page 753) property in the CPU nodes
followed by an underscore, the characters following the underscore are a hexadecimal representation of the con-
tents of a Processor Version Register that the platform may contain.

“ibm,fault-behavior”

property name to define the behavior of the Error Log indicator relative to FRU faults.

prop-encoded-array: An integer encoded as with encode-int that represents how the Error Log indicator should be
handled when a FRU fault is detected.

Property non-existent -- The OS may set FRU Fault and Error Log indicators for all errors (those it detected and
those that the platform reports to the OS).

Property exists with a value of 1 -- The OS only sets FRU Fault and Error Log indicators for errors it detects.

“ibm,fru-9006-deactivate”

property name to define whether or not the OS should deactivate 9006 indicators that it has activated.

prop-encoded-array: An integer encoded as with encode-int that represents how the OS should behave relative to
FRU Fault indicator deactivation.

Property non-existent -- The OS is responsible for deactivating FRU level 9006 indicators that it has activated.

Property exists with a value of 1 -- The OS should not deactivate FRU level 9006 indicators that it has activated,
but is allowed to do so (firmware does not block). The deactivation of the FRU level 9006 indicators is platform
and service procedure dependent.

“compatible” S

Standard property name that conveys the platform architecture identifiers.

prop-encoded-array: The concatenation, with encode+, of an arbitrary number of text strings, each encoded with
encode-string.

Specifies a list of platform architectures with which this platform is compatible. This is used by a client program
when it is trying to determine the appropriate support for this platform. This property shall include the substring
“LoPAPR-<LoPAPR version>-<Manufacturer>-<Manufacturer Version>” where <LoPAPR version> is the text
(without blanks) after the word “Version” on the cover page of the LoPAPR specification that the platform adheres
to, <Manufacturer> is a unique string identifying the manufacturer of the platform (see the OF standard descrip-
tion of the “name” property for suggestions), and <Manufacturer_Version> is defined by the manufacturer of the
platform.

B.6  OF Platform Extensions 677

LoPAPR, Version 1.1 (March 24, 2016)

Note: In order to comply with the OF Standard description of the “compatible” property, implementations should
place the “LoPAPR-<LoPAPR version>-<Manufacturer>-<Manufacturer Version>” substring after values
that were present in the “compatible” property prior to the inclusion of the “LoPAPR-<LoPAPR
version>-<Manufacturer>-<Manufacturer Version>” substring.

“ibm,max-vios-function-level”

property name to define the maximum vios function level that a client shall permit.

prop-encoded-array: An integer encoded as with encode-int that represents the maximum VIOS level that the
client shall negotiate. See Appendix E, “A Protocol for VSCSI Communications,” on page 795 for the definition
of the values of this property.

“ibm,partition-performance-parameters-level”

property name to define the level of partition performance parameter reporting supported by the platform.

prop-encoded-array: An integer encoded as with encode-int that represents the level of partition performance pa-
rameter reporting supported by the platform (See Table 242‚ “Level of Partition Performance Parameter Reporting
Supported‚” on page 677).

“ibm,preconfigure-usb-kvm”

property name the presence of which indicates that the platform requires the operating system to force configura-
tion of the USB keyboard/mouse nodes during its configuration phase.

prop-encoded-array: <NULL>

This property, when present in the root node, indicates that the platform requires the operating system to force
pre-configuration of USB keyboard/mouse nodes internally during its configuration phase. This property is pre-
sented only by platforms with a KVM switch that desire to force configuration by one or more target operating
systems that do not fully support dynamic addition of USB keyboard and mouse unless the USB keyboard and
mouse are actually seen during the operating system configuration phase, but may be present even if the KVM
switch is not present when the device tree is inspected. Forced pre-configuration is needed since the operating sys-
tem may not actually see the USB keyboard and mouse during its configuration phase due to the KVM switch that
the platform uses only shows USB keyboard and mouse when those devices are actually switched to the appropri-
ate KVM switch port.

“ibm,enable-ci64-capable”

property name to define the platform supports the “ibm,enable-ci64” method in the Client Interface.

prop-encoded-array: None, this is a name only property.

“ibm,migratable-partition”

property name indicating that the platform supports the potential migration of this partition.

Table 242. Level of Partition Performance Parameter Reporting Supported

Partition Performance
Parameter Level

Description

0 Base Level

1
Addition of Processor Virtualization Resource Allocations to H_GET_PPP
and Virtualization Processor idle count to H_PIC

678 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: NULL

“ibm,extended-address” S

property name indicates this platform supports Peripheral Memory Spaces, Peripheral I/O Spaces, and SCA spaces
above 4 GB.

prop-encoded-array: <none>

This property must be present.

“ibm,ignore-hp-po-fails-for-dlpar”

property name to define that the OS may ignore failures of Hot Plug power off and isolate operations during a DL-
PAR remove operation. See also Note 2 in Figure 12‚ “Dynamic Reconfiguration State Transition Diagrams‚” on
page 359.

prop-encoded-array: None, this is a name only property.

“ibm,managed-address-types”

property name that conveys the platform's supported types of external addresses that are reprogrammable.

prop-encoded-array: The concatenation, with encode+, of an arbitrary number of text strings as described in
Table 243‚ “Address types supported in “ibm,managed-address-types” property‚” on page 678, each encoded with
encode-string.

“ibm,service-indicator-mode”

property name indicates in which service indicator mode the platform is operating.

prop-encoded-array: an integer encoded as with encode-int that represents the mode. Defined values are:

 0 = Platform is operating in the Guiding Light mode.

 1 = Platform is operating in the Lightpath mode.

Implementation Notes:

1. In the absence of this property, the determination of how the OS is to behave is made by the platform
presenting or not presenting FRU Fault indicators to the OS see chapter16, “Service Indicators,” on
page 511. In the case where there are no FRUs owned by the partition, the OS will not observe any FRU
Fault indicators assigned, even when the platform is operating in the Lightpath mode.

2. Presenting this property does not imply any relaxation of the requirements spe3cified in chapter16, “Ser-
vice Indicators,” on page 511.

Table 243. Address types supported in “ibm,managed-address-types” property

Text String Description

ethernet_mac Ethernet MAC address

ethernet_vlan Ethernet VLAN ID (for default traffic)

san_wwn
Fibre Channel World Wide Name (covers both

Port & Node names)

sas_wwid SAS IOA's WWID value

B.6  OF Platform Extensions 679

LoPAPR, Version 1.1 (March 24, 2016)

B.6.2.2 Properties of the Children of Root

“ibm,9009-domain”

property name that defines the index for a 9009 reset component indicator, and if it exists, the corresponding 9009
sensor, for the node in which the property exists. Multiple nodes may have the same index, indicating that they be-
long to the same reset domain; including nodes which are not descendents of the node which contains this prop-
erty. Descendents of a node containing this property will be in the same reset domain.

prop-encoded-array: An integer encoded as with encode-phys that represents the index for the indicator, and if
it exists, for the corresponding sensor.

“ibm,associativity”

property name to define the associativity domains for this resource.

prop-encoded-array: One or more associativity lists. Each associativity list consisting of a number of entries inte-
ger (N) encoded as with encode-int followed by N integers encoded as with encode-int each representing
an associativity domain number.

B.6.2.3 Root Node Methods

This section defines methods associated with the platform via “/” (the root node).

Boot Loader Note: The suggested behavior for boot loader client programs:
1) Check the “ibm,rpa-client-config” property to see if the platform recognized the “ignore-my-settings” bit in the
boot loader image i.e. YABOOT for LINUX.
2) If recognized, check for existence of “ibm,client-architecture-support” and invoke that method with the ibm,

compatible with the Real Base and Real Size constraints of the kernel being loaded.
3) If that method did not exist, invoke “PROCESS-ELF-HEADER” from /packages/elf-loader with a simulated
ELF-header that the Linux kernel is compatible with.

ibm,client-architecture-support (ibm,architecture.vec -- err?)

This method is called via the call-method Client Interface Service, prior to starting other partition processors or
threads, to communicate to the platform, via the ibm,architecture.vec structure, the architecture options
that are supported by the client program. Based upon this knowledge the platform configures itself and the device
tree to represent the most functional programming environment supported by the combination of the platform, cli-
ent program and user specified constraints. If multiple partition processors or threads are active at the time of the
ibm,client-architecture-support method call, or an error is detected in the format of the ibm,ar-
chitecture.vec structure, the err? boolean shall be TRUE; else FALSE. The ibm,architecture.vec
input parameter is the starting address of a self defining structure in contiguous memory. Some bits within the
ibm,architecture.vec structure option vectors represent policies. When set, and an associated condition
is detected, the ibm,client-architecture-support method does not return and processing continues as
with a boot failure of the client program. The LoPAPR architecture options that are selected by this method are
communicated in the value of the “ibm,architecture-vec-5” property of the /chosen node.

To ensure the greatest level of interoperability, the client program should constrain itself to using the set of instruc-
tions and environment specified for first level interrupt handlers, see Book III of the Power ISA [1], while not at-
tempting access to potentially optional SPRs or the MSR prior to invoking the
ibm,client-architecture-support root node method.

680 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Architecture and Implementation Notes:

 Most of the IBM,RPA-Client-Config ELF header functionality is subsumed by the ibm,cli-
ent-architecture-support root method. However, the ibm,client-architecture-sup-
port root method does not support the functionality specified through the ns.min-load field of the
IBM,RPA-Client-Config ELF header. Supporting firmware implementations are prepared to move
themselves out of the way when loading client programs.

 When booting a client program, firmware processes an IBM,RPA-Client-Config ELF header if present;
a subsequent call of the ibm,client-architecture-support root method with conflicting values in
the ibm,architecture.vec structure, overrides the configuration variables set by the ELF header.

Formal definition of ibm,architecture.vec:

ibm,architecture.vec = a PVR-list : Number-of-option-vectors : option-vectors[Num-
ber-of-option-vectors + 1]

PVR-list = Terminator-list-entry | Non-terminator-list: Terminator-list-entry

Non-terminator-list = Non-terminal-list-entry | Non-terminal-list-entry :
Non-terminator-list

List-entry = 4-byte-mask : 4-byte-PVR-value

Terminator-list-entry = List-entry such that ! 4-byte-mask & 4-byte-PVR-value !=
0x00000000

Non-terminator-list-entry = List-entry such that ! 4-byte-mask & 4-byte-PVR-value ==
0x00000000

Number-of-option-vectors = The number of option vectors is n+1 where n is the numeric value of the byte
(byte value of 0x00 represents one option vector)

option-vector (option-vectors number 1-255): 1 byte length of the option vector where the number of bytes in the
option vector (including the first byte of length) is n+2 where n is the numeric value of the byte
(byte value of 0x00 represents a two byte option vector -- one length byte and one bit-vector
byte) followed by 1-256 bytes of bit-vector.

option-vector (option-vector number 256): is special in that it is reserved for expansion. The first byte is again the
number of option vectors in the vector expansion (see definition of Number-of-op-
tion-vectors above). This is followed by 1-255 option-vectors (see definition
above) and potentially a 256th option-vector which is again an expansion option vector,
and so on.

bit-vector: The structure of a bit vector is vector specific, in general support for most options are indicated by set-
ting a specific bit to a 1, see Table 244‚ “ibm,architecture.vec option vectors‚” on page 681.

The PVR-list of the ibm,architecture.vec structure is processed for the PVR value of each processor that
the client program may be exposed to until either a List-entry allows the process to continue, or the Termina-
tor-list-entry has been processed. If no List-entry allows the process to continue, then the ibm,cli-
ent-architecture-support method terminates partition operation as with a boot failure. A List-entry
allows the process to continue if either of the two following conditions hold.

1. (Processor-PVR-value & List-entry[4-byte-mask]) == (List-entry[4-byte-PVR-value] &
List-entry[4-byte-mask]) /*The client program explicitly supports the processor implementation */

2. If (the processor requires no client support for errata) && (Logical-Processor-PVR-value &
List-entry[4-byte-mask]) == (List-entry[4-byte-PVR-value] & List-en-
try[4-byte-mask]) /* Client program specifies support for this level of architecturally compliant processors
*/

B.6  OF Platform Extensions 681

LoPAPR, Version 1.1 (March 24, 2016)

List-entry values of special interest (these are Terminator-list-entry values):

 0x00000000 0xFFFFFFFF Single entry list that matches any PVR value

 0xFF000000 0x0FFFFFFF Single entry list that matches all architecturally compliant processors.

Table 244. ibm,architecture.vec option vectors

Option Array Option Vector Byte Number Bit Number Description

Base

1
PowerPC

Server
Processor

Architecture
Level 6

1

0 Ignore 1

1 Cessation Policy 2

2

Reserved for Expansion (0b0)

3

4

5

6

7

2

0 2.00

1 2.01

2 2.02

3 2.03

4 2.04

5 2.05

6 2.06

7 2.07

3
0 2.08

1-7 Reserved for Expansion (0b0)

4-256 Reserved for Expansion

682 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Base
2

Open Firmware

1

0 Ignore 1

1 Reserved

2 real-mode

3

Reserved for Expansion (0b0)

4

5

6

7

2-3 0-15 Reserved for Expansion (0x0000)

4-7
real-base

0-31 OF real starting address or -1 for platform default

8-11
real-size

0-31 Maximum OF size or -1 for platform default

12-15
virt-base

0-31 OF starting virtual address or -1 for platform default (valid for real-mode = 0)

16-19
virt-size

0-31 Maximum OF virtual size or -1 for platform default (valid for real-mode = 0)

20-23
load-base

0-31 Starting address of the client program load or -1 for platform default

24-27
min-rma-size

0-31
Minimum size of RMA in MB3

(total bytes = N*(2**20))

28-31
min-load

0-31 Minimum client code to load at load-base or -1 for full client program at load base

32
min-rma%

0-8 RMA size => M% * Partition_memory_size where M is the value of this 8 bit field3

33
max-pft-size

0-8 The maximum size of the hash page table as 2**n 17<n<46

34-256
Reserved for
Expansion

Table 244. ibm,architecture.vec option vectors (Continued)

Option Array Option Vector Byte Number Bit Number Description

B.6  OF Platform Extensions 683

LoPAPR, Version 1.1 (March 24, 2016)

Base

3
IBM PowerPC

Server
Processor
Options6

1

0 Ignore 1

1 Cessation Policy 2

2

Reserved for Expansion (0b0)

3

4

5

6

7

2

0 Floating Point

1 VMX

2 Decimal Floating Point

3
Decimal Floating Point Facility (The value of the ibm,dfp property indicates the

architecture level of the facility.)

4

Reserved for Expansion (0b0)
5

6

7

3-256 Reserved for Expansion

Base
4

LoPAPR
Implementation

1

0

1 Cessation Policy 2

2

Reserved for Expansion (0b0)

3

4

5

6

7

2 0-7 Minimum VP entitled capacity percentage * 100 (if absent assume 10%)

2-256 Reserved for Expansion

Table 244. ibm,architecture.vec option vectors (Continued)

Option Array Option Vector Byte Number Bit Number Description

684 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Base
5

LoPAPR or OF
Options 5

1

0 Ignore 1

1 Cessation Policy 2

2

Reserved for Expansion (0b0)

3

4

5

6

7

2

0
Logical Partitioning: If set the client program supports logical partitioning and

associated hcall()s; else the client program shall be run with the hypervisor bit on.7

1
Shared Processor Logical Partitioning: If set the client program supports the Shared
Processor LPAR Option and may be run with that option enabled; else the Shared

Processor LPAR Option shall be disabled for this partition.

2

ibm,dynamic-reconfiguration-memory: If set the client program supports the
“ibm,dynamic-reconfiguration-memory” property and it may be

presented in the device tree; else, the partition memory shall be represented with
individual memory nodes.

3
Large Pages: If this bit is set, the client supports pages larger than 4 KB; else, the

platform shall represent all of memory as mapped via 4 K pages.

4 Alpha Partition 4

5 Tolerate long delays in H_MIGRATE_DMA

6 Client supports donating dedicated processor cycles

7
PCI Express/MSI Support: If set, the client supports PCI Express implementations

utilizing Message Signaled Interrupts (MSIs).

3

0

On input to ibm,client-architecture-support a non-zero value indicates that the client
supports the I/O Super Page Option (Support of >4K I/O pages) (Includes extensions to

H_MIGRATE_DMA for >4K I/O pages and >256 xlates). See Section 14.5.4.8‚
“Memory Migration Support hcall()s‚” on page 431.

In the ibm,architecture-vec-5 property of the /chosen node, a non-zero
value indicates that the platform supports the I/O Super Page Option (Support of >4K

I/O pages).

1-4

On input to ibm,client-architecture-support this field shall be zero.

In the ibm,architecture-vec-5 property of the /chosen node, this field
represents the implementation dependent number of xlates entries supported per

migration operation as: 256 * 2**N. See Section 14.5.4.8‚ “Memory Migration Support
hcall()s‚” on page 431.

5-7

On input to ibm,client-architecture-support this field shall be zero.

In the ibm,architecture-vec-5 property of the /chosen node, this field
represents the implementation dependent number of simultaneous migration options
supported as: 2**N. See Section 14.5.4.8‚ “Memory Migration Support hcall()s‚” on

page 431.

Table 244. ibm,architecture.vec option vectors (Continued)

Option Array Option Vector Byte Number Bit Number Description

B.6  OF Platform Extensions 685

LoPAPR, Version 1.1 (March 24, 2016)

Base
5

LoPAPR or OF
Options 5

4

Cooperative Memory Over-commitment Option Control

0 The value of 1 enables the Cooperative Memory Over-commitment Option

1
 The value of 1 enables the Extended Cooperative Memory Over-commit

Option

2-7 Reserved for Expansion

5

Associativity Information Option Control

0
= the “Form value” of the “ibm,associativity” and

“ibm,associativity-reference-points” properties. See Chapter 15,
“Non Uniform Memory Access (NUMA) Option,” on page 505 for further details.

1 Platform Resource Reassignment Notification (Affinity Change)

2-7 Reserved for Expansion

6

Binary Option Controls

0
Enable MTT Option

See Section 14.5.4.2.4‚ “H_PUT_TCE_INDIRECT‚” on page 421.

1 Reserved

2 Enable Active Memory Compression

3 Enable Universlly Unique IDentifier Option (UUID)

4 Reserved for Expansion

5-7 Reserved for Expansion

7 Reserved for Expansion

8 Reserved for Expansion

9-12

Max Processors Supported
(For legacy support, if this byte is not present the partition is limited to a maximum of 64 processors)

0-31
32 bit unsigned integer maximum number of OF device tree nodes of type “cpu” that

may be presented to this partition.

13-14 0-7 & 0-7
Highest Base LoPAPR Level Supported as the binary contents of 13.14

(i.e. level 4.15 would be encoded as 0x040F)

15-16 Reserved for Expansion

Base
5

LoPAPR or OF
Options 5

17-20

Platform Facilities Enable – Value of 0b1 indicates facility is enabled

0 Random Number Generator

1 Compression Engine

2 Encryption Engine

3-31 Reserved for Expansion -- Value = 0b0

Table 244. ibm,architecture.vec option vectors (Continued)

Option Array Option Vector Byte Number Bit Number Description

686 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

21 0-7

Sub-Processor Representation Level --
Defined Values:

0: Sub-Processors not supported
1: 1,2,or 4 Sub-Processors supported

2-255 Reserved

22-256 Reserved for Expansion

Base

6
Hints

1

0

Reserved for Expansion (0b0)

1

2

3

4

5

6

7

2

0
Secondary Page Table Entry Group: If set, the client does not use secondary page table

entry groups; else the client may use secondary page table entry groups.

1

Reserved

2

3

4

5

6

7

3 0-7

OS Name: Represents the name of the client OS. Defined values include:
0x0: Reserved

0x1: AIX
0x2: Linux

0x3-0xFF: Reserved for Expansion

4-256 Reserved for Expansion

7
OS

Identification
1-256

An ASCII character formatted null terminated string that describes the client operating system. The
string shall be human readable and may be displayed on the console.

8-255 Reserved for Expansion

256 Reserved for Expansion to the first Extension Option Array

Extensions 1-N Reserved for Expansion

Table 244. ibm,architecture.vec option vectors (Continued)

Option Array Option Vector Byte Number Bit Number Description

B.6  OF Platform Extensions 687

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. The Ignore Policy bit indicates that the client program assumes all responsibility for the options represented
by the option vector. The firmware is to configure the platform at the highest level consistent with its con-
figuration variables and ignore the rest of the specific option vector. An option vector with the Ignore Policy
bit set need be no longer than two bytes (size=0, data = 0b1ddd dddd where d = don’t care).

2. The Cessation Policy Bit determines if the partition continues to run if the platform must operate with an op-
tion enabled that is not explicitly supported by the client program as represented by the option vector set-
ting. If the Cessation Policy Bit is 1, then processing halts as with a boot failure. If the Cessation Policy Bit
is 0 then client program processing continues if the unsupported option is initialized to a benign state and
stays in that state unless an aware program activates the option, and the option does not appear in the device
tree. If an unsupported option cannot be initialized to a benign state, then processing halts with a boot fail-
ure. Following are the detailed definitions of benign state for selected bit vectors.

 For option vector numbers 1 “PowerPC Server Processor Architecture Level” and 3 “IBM PowerPC
Server Processor Extensions” the benign state is defined as unable to generate exceptions, mask errors, or
present covert channel exposures.

 For option vector number 5 “LoPAPR Options” Byte 2 bit 5 “Alpha Partition” The Cessation Policy bit is
not applicable.

 For option vector number 2 “Open Firmware” the Cessation Policy Bit is not defined, the platform either
accommodates the values defined in the option vector or proceeds as with boot failure.

3. The Initial size of the RMA is set to the greater of the values indicated by bytes 24-27 or 32 of option vector
number 2 “Open Firmware” or minimum RMA size supported by the platform and capped by the maximum
memory defined for the partition and the maximum size of the RMA supported by the platform. The respec-
tive selected values are reported in the length of the first memory property.

4. The Alpha flag only applies to the first partition of a non HMC managed system and activates overrides to
the partition's I/O resource allocation as defined in the partition definition.

 If the system is HMC managed, the flag is ignored and the client program gets the resources assigned by
its partition definition (no overrides are activated).

 If the partition is not the first partition, the flag is ignored and the client program gets the resources as-
signed by the partition definition (no overrides are activated).

 If the Alpha flag applies, and is set, then the partition gets a VMC virtual I/O device in its device tree re-
gardless of its partition definition (Override to include VMC is activated).

 If the Alpha flag applies, and is not set, then the partition does not get a VMC virtual I/O device in its de-
vice tree regardless of its partition definition (Override to remove VMC is activated) and it gets all the
physical I/O resources in its device tree regardless of its partition definition (Override to include all phys-
ical I/O is activated). Note this condition requires that any other platform partitions be terminated.

5. Given that the Ignore policy bit is off and the partition continues to run, the options and values presented in
by this option vector and supported/chosen by the platform firmware are reported in the “ibm,archi-
tecture-vec-5” property of the /chosen node.

6. Option vector number 1 “PowerPC Server Processor Architecture Level” and the property that reports the
chosen value (i.e., “cpu-version”) represent the operational base architectural level of the processors --
that is without regard to enabled processor architectural options. Option vector number 3 “IBM PowerPC
Server Processor Extensions” and option specific properties that report the chosen values represent the ac-
tive processor architectural options. Some processor implementations may not support all combinations of
these two option vectors. The firmware shall activate the highest level of processor support, consistent with
partition attributes, that does not exceed the most restrictive of the two option vectors. Note the Cessation
Policy bit may allow operation where the lowest level of processor support still exceeds the most restrictive
case.

688 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

7. If a client program does not support logical partitioning no other client programs may be running simultane-
ously on the platform. The platform may impose further restrictions beyond the scope of LoPAPR. If the
platform honors the client program restriction of not supporting logical partitioning, upon return the logical
real address equals the platform real address. If the platform can not honor the restriction, the processing ter-
minates as with a boot failure. The cessation policy option vector bit has no effect upon logical partitioning
option vector bit.

B.6.2.4 ROM Node(s)

The ROM Node(s), when present to represent optional platform read only memory containing directly executable plat-
form firmware, shall be a child or children of the root node.

B.6.2.4.1 ROM Node Properties

Each ROM Node shall have the following properties:

“name” S

Standard property name that denotes a ROM Node.

prop-encoded-array: A string, encoded as with encode-string.

The value of this property shall be “rom”.

“reg” S

Standard property name to define a unit-address for the node.

prop-encoded-array: One (phys-addr, size) pair.

The phys-addr of this property shall be the starting physical address of this ROM and the size value shall be 0. The
size=0 prevents a conflict with the “reg” of this node’s children.

“#address-cells” S

Standard property name to define the address space representation of child nodes.

prop-encoded-array: an integer, encoded as with encode-int. Its value shall be identical to that of this node’s
parent’s “#address-cells” value.

“ranges” S

Standard property name to define the address range that is decoded by this /rom node.

prop-encoded-array: One (child-phys, parent-phys, size) triple, where child-phys equals parent-phys and the num-
ber of cells of each corresponds to the parent’s “#address-cells” value.

“available” S

Standard property name to define available ROM resources.

prop-encoded-array: Arbitrary number of phys-addr, size pairs. Phys-addr is a phys.hi...phys.lo list of integers,
each integer encoded as with encode-int. Size is one or more integers, each encoded as with encode-int.

The value of this property defines resources, managed by this package, that are currently available for use by a cli-
ent program.

“write-characteristic” S

Standard property name defines the ROM Technology.

B.6  OF Platform Extensions 689

LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: a string, encoded as with encode-string, where the value could equal “flash”, “ee-
prom”, “rom” or “nvram”.

“cacheable” S

OF standard property indicating that the ROM is cacheable.

prop-encoded-array: <none>.

The presence of this property indicates that the ROM is cacheable.

B.6.2.4.2 ROM Node Methods

If one or more ROM nodes are present, they shall each implement the following standard methods per IEEE 1275,
IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2], Section 3.6.1.
The “reg” property is used to determine which ROM the standard methods apply to for multiple ROM’s.

The following methods must be defined by /rom node.

open (-- true) M
Standard method to prepare the ROM Node for subsequent use.

close (--) M

 Standard method to close the previously opened ROM Node.

decode-unit (addr len -- phys.lo...phys.hi M

Standard method to convert text unit-string to physical address.

encode-unit (phys.lo...phys.hi -- unit-str unit-len) M

 Standard method to convert physical address to text unit-string.

probe (--) M

OF method used at boot time to probe all ROM’s.

The probe method for ROM Nodes shall probe for FCode images within the address space defined by its “reg”
property as defined herein. For each page within its address space, look for a valid FCode image. A valid FCode
image is defined to start with an FCode-header (see section 5.2.2.5 in IEEE 1275, IEEE Standard for Boot (Initial-
ization Configuration) Firmware: Core Requirements and Practices [2]) where the first byte is start1, the for-
mat byte is 0x08, the length field indicates that the FCode program is contained within the address space of the
/rom node, and where the checksum is correct. (This probing must take into account the possibility that the ROM
image is in the opposite endian-ness from which OF is currently running.)

If such an FCode image is found, a new child node shall be created by executing new-device and set-args,
the FCode image copied to memory (taking into account the endian-ness) and the copy evaluated with
byte-load. (The FCode program can use my-unit to create its “reg” property.). The arguments used by
set-args are defined to be 0,0,unit-str, unit-len where unit-str is a text string representation of the physical ad-
dress location for the FCode Image and unit-len is the length of the FCode Image.

B.6.2.5 ROM Child Node(s)

This section describes the properties and methods for a ROM Child Node.

B.6.2.5.1 ROM Child Node Properties

The following properties must be created by /rom child nodes.

690 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“name” S

Standard property name that denotes a ROM child node.

prop-encoded-array: A string, encoded as with encode-string.

Some physical ROM implementations may not fully decode their entire address range. This could lead to multiple
images of the ROM to appear at different addresses, due to the “aliasing” of the ROM image. To prevent multiple
device nodes from appearing in the device tree, the FCode for such ROMs should look for an already existing peer
node that represents their image. This could be done, for example, by checking that any of the peer of the child of
its parent node has a “name” property value that is the same as this node’s FCode would create.

If such a node is found, the FCode should “abort” the evaluation of its FCode (e.g., by executing an end0) before
creating its “name” property. OF shall remove a node when the FCode evaluation for the node does not result in
a “name” property being defined.

“reg” S

Standard property name that defines the child node address range for a ROM image(s).

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int. The phys-addr is a
base address of the ROM image and size is the length of the ROM image.

B.6.2.5.2 ROM Child Node Methods

 The following methods must be defined by /rom child nodes.

open (-- true) M
Standard method to prepare this device for subsequent use.

The open method must be prepared to parse my-args for the case(s) when the node is being opened in order to
access “files”; e.g., when the bootinfo.txt file is being accessed during the multiboot menu.

close (--) M

 Standard method to close the previously opened device.

load (addr -- len) M

Standard method to load an image. The image must be one that is recognized by the OF init-program method.
It is strongly recommended that the ELF format be used, since it has the mechanism to specify configuration vari-
able requirements of an OS.

B.6.3 Run Time Abstraction Services (RTAS) Node

This system node is a child of “/” (root). This section defines properties and methods for the RTAS node. The RTAS
Node shall not have “reg” or “ranges” properties.

B.6.3.1 RTAS Node Properties

This section describes the rtas node properties.

“name” S

Standard property name that denotes the RTAS node.

B.6  OF Platform Extensions 691

LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: A string, encoded as with encode-string.

The value of this property shall be “rtas”.

“rtas-event-scan-rate” S

property name that is the rate at which an OS should read indicator/sensor/error data

prop-encoded-array: An integer, encoded as with encode-int

The value of this property shall be a number indicating the desired rate for reading sensors and/or error informa-
tion in calls per minute. This number is platform dependent.

“rtas-indicators” S

property name that indicates indicators are implemented.

prop-encoded-array: An array of paired integers (token maxindex), each encoded as with encode-int.

The values for this property is a list of integers that are the token values (token) for the defined indicators and the
number of indicators (maxindex) for that token which are implemented (see Chapter 7, “Run-Time Abstraction
Services,” on page 107) on the platform.

Note: The indicator indices for a given token are numbered 0... maxindex-1.

“rtas-sensors” S

property name that indicates sensors are implemented.

prop-encoded-array: An array of paired integers (token maxindex), each encoded as with encode-int.

The values for this property is a list of integers that are the token values (token) for the defined sensors and the
number of sensors (maxindex) for that token which are implemented (see Chapter 7, “Run-Time Abstraction Ser-
vices,” on page 107) on the platform.

Note: The sensor indices for a given token are numbered 0 ... maxindex-1.

“rtas-version” S

property name describes version information for the RTAS implementation.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall denote the version the RTAS implementation. For this version, the integer shall be
as defined in this architecture.

“rtas-size” S

property name is the size of the RTAS memory image.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall be the amount of contiguous real system memory required by RTAS, in bytes.

“rtas-display-device” S

property name identifies RTAS Display Device

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall be the phandle of the device node used by the RTAS display-character function.

692 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“rtas-error-log-max” S

property name identifies maximum size of an extended error log entry.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property shall be the maximum size of an extended error log entry, in bytes.

“power-on-max-latency” S

property name specifies a future power on time capability.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this property specifies the capability of the hardware to control the delay of system power on in days.
If the property is present, the value shall indicate the maximum delay or latency in days. If the property is not pres-
ent, the maximum delay or latency is 28 days.

“ibm,preserved-storage”

property name specifies that the client program was loaded with one or more LMBs preserved from a previous cli-
ent program.

prop-encoded-array: None, this is a name only property.

The client program may wish to save the contents of the preserved LMBs and deregister the LMBs for preserva-
tion.

“ibm,scan-log-directory”

property name specifies that the platform supports the scan-log directory option.

prop-encoded-array: None, this is a name only property.

“ibm,indicator-<token>”

property name to provide a FRU location code for identifying each indicator.

prop-encoded-array: an array of maxindex + 1 strings, encoded as with encode-string.

“ibm,sensor-<token>”

property name to provide a FRU location code for identifying each physical sensor.

prop-encoded-array: an array of maxindex + 1 strings, encoded as with encode-string.

“ibm,display-line-length”

property name to provide the length of a display line in number of characters.

prop-encoded-array: an integer, encoded as with encode-int.

“ibm,display-number-of-lines”

property name to provide the number of lines in the display.

prop-encoded-array: an integer, encoded as with encode-int.

“ibm,display-truncation-length”

property name, when provided, specifies the length to which each line to be display is truncated, based on which
line of the physical display on which the line is displayed. When the truncation length is greater than the length

B.6  OF Platform Extensions 693

LoPAPR, Version 1.1 (March 24, 2016)

specified in the “ibm,display-line-length” property, then the platform provides a platform-dependent
method of displaying the line to the user.

prop-encoded-array: An array of integers, each encoded as with encode-int. The number of integers corresponds
to the number of lines, as defined by the “ibm,display-number-lines” property. The first integer refers
to the truncation length for the first physical line of the display, the second to the second physical line, and so on.

“ibm,form-feed”

property name to provide an indication of the form-feed capability.

prop-encoded-array: a character, NULL (0x00) if form-feed is not supported and np (0x0C) if form-feed is sup-
ported, encoded as with encode-int.

“ibm,environmental-sensors”

property name describes the environmental sensors which are available to an application.

prop-encoded-array: An array of paired integers (token maxindex), each encoded as with encode-int.

“ibm,flash-block-version”

property name in the /rtas node indicates the block list format to be used.

prop-encoded-array: integer encoded as with encode-int. Value is 0x01 for the discontiguous block list. (If a
new version of the block list is ever required, other values could be defined.)

“ibm,errinjct-tokens” S

property name, defines the error inject functions implemented on this platform.

prop-encoded-array: List of (errinjct-token-name, errinjct-token-value) specifications.

errinjct-token-name: A string, encoded as with encode-string.

errinjct-token-value: is encoded as with encode-int.

“ibm,lrdr-capacity”

property name in the /rtas node identifies the dynamic reconfiguration capabilities of the partition

prop-encoded-array: A triple consisting of phys, size, and one integer encoded as with encode-int

The phys (of size #address-cells) communicates the maximum address in bytes and therefore, the most memory
that can be allocated to this partition.

The size (of size #size-cells) communicates the increment (quantum of logical memory dynamic reconfiguration).

The first integer communicates the maximum number of processors (implied quantum of 1).

Note: Some implementations depend upon the presence and value of a second integer. Future extensions to this property
should not define a second integer for new purposes.

“ibm,hypertas-functions”

property name, of the /rtas node, defines the platform’s implemented hypervisor RTAS function sets.

prop-encoded-array: List of Hypervisor-RTAS-function-set specifications.

Each Hypervisor-RTAS-function-set specification is a byte string encoded as with encode-string.

“ibm,dma-delay-time”

694 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

property name to define the time delay need to ensure outstanding DMA operations targeting migrated pages have
completed.

prop-encoded-array: A one cell integer encoded as with encode-int that represents the number of micro-sec-
onds that the OS should wait prior to reusing migrated DMA read target pages.

“ibm,associativity-reference-points” S

property name to define the associativity reference points for the “ibm,associativity” properties of this
platform.

prop-encoded-array: A list of one or more integers cell(s) encoded as with encode-int.

“ibm,max-associativity-domains”

property name to define the maximum number associativity domains for this platform.

prop-encoded-array: An associativity list such that all values are the maximum that the platform supports in that
location. The associativity list consisting of a number of entries integer (N) encoded as with encode-int fol-
lowed by N integers encoded as with encode-int each representing maximum number associativity domains
the platform supports at that level.

“ibm,request-partition-shutdown”

property name to specify that the partition was rebooted in the forced fire hose dump mode.

prop-encoded-array: An integer encoded as with encode-int that represents the platform’s partition shutdown
configuration variable. The defined states are:

0 = The platform boots with no request to save appropriate data nor shutdown the partition.

1 = The platform boots with a conditional request to save appropriate data and shutdown the partition. The client
program should check for an EPOW sensor state of 3 and if present, it should save appropriate data and shutdown
the partition. If the EPOW sensor state of 3 is not present, then the partition should initiate a reboot since the de-
vice tree will be incomplete.

2 = The platform boots with a mandatory request to the client program to save appropriate data and shutdown the
partition.

“ibm,integrated-stop-self”

property name indicating that prior to placing a processor in the stopped state, the platform flushes and disables
any caches/memory exclusively used by the issuing processor.

prop-encoded-array: NULL

“ibm,rks-hcalls”

property name: indicating the hcalls that are implemented with a reduced kill set. Absence of this property indi-
cates that only hcalls that are specified as always having a reduced kill set provide that semantic.

prop-encoded-array: A one to N byte bit vector, bit positions representing hcall()s (see Table 245‚
““ibm,rks-hcalls” bit vector to hcall map.‚” on page 695) that present a reduced kill set per their architectural spec-
ification.

B.6  OF Platform Extensions 695

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,reset-capabilities”

property name indicates what capabilities the platform supports relative to the ibm,set-slot-reset RTAS call, when
that RTAS call is implemented.

prop-encoded-array: An integer encoded as with encode-int that represents the functions supported in the
ibm,set-slot-reset RTAS call

0 = Platform supports Functions 0 and 1 supported.

1 = Platform supports Functions 0, 1, and 3.

Note: The absence of this property implies the platform supports Functions 0 and 1 for the ibm,set-slot-reset RTAS
call, when that RTAS call is implemented.

“ibm,configure-kernel-dump-sizes”

property name specifies that the Platform Assisted Kernel Dump option is supported for sections described by this
property.

prop-encoded-array: For each dump section type supported, a 32 bit cell which defines the ID of a supported sec-
tion followed by two 32-bit cells which gives the size of the section in bytes (not including any disk headers.)

“ibm,configure-kernel-dump-version”

property name specifies that the Platform Assisted Kernel Dump option is supported for versions described by this
property.

prop-encoded-array: Contains a 16-bit cell describing the minimum kernel dump version supported by the firm-
ware followed by a 16-bit cell describing the maximum kernel dump version supported by the firmware.

“ibm,kernel-dump”

property name specifies the presence of a registered kernel dump in the Platform Assisted Kernel Dump option.

Table 245. “ibm,rks-hcalls” bit vector to hcall map.

Byte Number Bit Number hcall

0

0
0b11 for H_CONFER &

H_PROD
1

2

Set to 1 if H_PURR is
implemented with a reduced

volatile kill set of r3 & r4; else
set to 0.

3

Reserved for future expansion
(0b0)

4

5

6

7

1-N Reserved for future expansion

696 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: Contains the description of the registered kernel dump in the format described in Table 124‚
“Kernel Assisted Dump Memory Structure‚” on page 256.

“ibm,read-slot-reset-state-functions”

property name specifies the implementation of certain input or output fields in the ibm,read-slot-reset-state2
RTAS call. If this property does not exist, then the ibm,read-slot-reset-state2 RTAS call implements only the first 3
inputs and the first 4 outputs (Number Inputs is required to be 3 and the Number Outputs is required to be 4), as de-
fined in Table 77‚ “ibm,read-slot-reset-state2 Argument Call Buffer‚” on page 185.

prop-encoded-array: Contains a 32 bit cell, with the bits defined as follows:

Bits 0-29: Reserved (value of 0).

Bit 30: When a value of 1, the ibm,read-slot-reset-state2 RTAS call checks the Number Outputs and the imple-
ments the 5th output (Number Outputs of 5), as defined by Table 77‚ “ibm,read-slot-reset-state2 Argument Call
Buffer‚” on page 185.

Bit 31: When a value of 1, the ibm,read-slot-reset-state2 RTAS call implements the first 3 inputs and the first 4
outputs (Number Inputs of 3 and the Number Outputs of 4), as defined in Table 77‚ “ibm,read-slot-reset-state2 Ar-
gument Call Buffer‚” on page 185. This bit is always required to be a value of 1 when this property is imple-
mented.

“ibm,change-msix-capable”

property name indicating the platform supports the ibm,change-msi RTAS call with Number of Outputs equal to 4
and Functions 3 and 4.

prop-encoded-array: <none>

B.6.3.2 /RTAS node DR Sensors and Indicators

The following sensors and indicators are defined for the /RTAS node for the DR option.

“9003”

sensor token, the existence of this token number denotes that the platform supports the 9003 “DR entity sense”
sensor.

“9001”

indicator token, the existence of this token number denotes that the platform supports the 9001 “isolation state” in-
dicator.

“9002”

indicator token, the existence of this token number denotes that the platform supports the 9002 “dr-indicator” indi-
cator used to guide operators in the physical add or removal of hardware.

“9003”

indicator token, the existence of this token number denotes that the platform supports the 9003 “allocation-state”
indicator.

“ibm,extended-os-term”

property-name indicating that the platform supports extended ibm,os-term behavior as described in Section 7.3.9.1‚
“ibm,os-term‚” on page 165.

B.6  OF Platform Extensions 697

LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: encode-null

B.6.3.3 RTAS Function Property Names

This section defines the property names associated with the various RTAS functions defined by Table 17‚ “RTAS To-
kens for Functions‚” on page 112. Table 17 should be used as the reference for RTAS Functions currently imple-
mented. Each RTAS function that a platform implements shall be represented by its own function property, who’s value
is the token used to invoke the function on an RTAS call.

The formal property definition for each such property is of the form:

property name specifies the name of the RTAS function -- such as:

“nvram-fetch” S

prop-encoded-array: The value, token, is an integer encoded as with encode-int.

If an RTAS function is implemented, there is a property name which corresponds to its function name. The value
of this property is a token. This token, when passed to RTAS via its rtas-call interface (see below), invokes the
named RTAS function. If a RTAS function is not implemented, there will not be a property corresponding to that
function name. See the Chapter 7, “Run-Time Abstraction Services,” on page 107 for more information about
RTAS functions.

“ibm,termno”

property name of the /rtas node defines the virtual terminal numbers available for use by this partition.

prop-encoded-array: A pair of integers encoded as with encode-int, the first being the value of the lowest ter-
mno in a contiguous range of supported values, the second being the number of termno values supported.

Note: The number of supported termno values is implementation dependent -- the minimum number is one.

“ibm,hypertas_functions”

property name of the /RTAS node, defines the platform’s implemented hypervisor RTAS function sets.

prop-encoded-array: List of Hypervisor-RTAS-function-set specifications.

Each Hypervisor-RTAS-function-set specification is a byte string encoded as with encode-string.

B.6.3.4 RTAS Node Methods

The instantiate-rtas or instantiate-rtas-64 method is invoked by the OS to instantiate the RTAS
functionality. This is accomplished via the call-method Client Interface Service. If the platform supports the
ibm,client-architecture-support root node method, and that method has not been called prior to the call
of the instantiate-rtas or instantiate-rtas-64 methods, then the platform shall operate at the least
functional level supported by the platform.

Note: Platforms should provide a manual override capability to allow most functional level allowed by the partition
configuration in the event that a client program does not call the ibm,client-architecture-support
root node method prior to the instantiation of RTAS.

instantiate-rtas (rtas-base-address -- rtas-call) M

Invoking the instantiate-rtas method binds the RTAS environment to a given location in System Memory
and initializes the RTAS environment. The in parameter, rtas-base-address, is the physical address to which the
RTAS environment is to be bound. This call indicates that RTAS is instantiated in a 32-bit mode. The amount of

698 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

contiguous real memory that should be allocated for the RTAS environment is given by the value of the
“rtas-size” property.

Upon completion of the instantiate-rtas method, an entry point address, rtas-call, is returned. The value
of rtas-call specifies the physical address of the entry point into RTAS for future RTAS function calls.

instantiate-rtas-64 (rtas-base-address -- rtas-call) M

Invoking the optional instantiate-rtas-64 method binds the RTAS environment to a given location in
System Memory and initializes the RTAS environment. The in parameter, rtas-base-address, is the physical ad-
dress to which the RTAS environment is to be bound. This call indicates that RTAS is instantiated in a 64-bit
mode. The amount of contiguous real memory that should be allocated for the RTAS environment is given by the
value of the “rtas-size” property.

Upon completion of the instantiate-rtas-64 method, an entry point address, rtas-call, is returned. The
value of rtas-call specifies the physical address of the entry point into RTAS for future RTAS function calls.

B.6.4 Properties of the Node of type cpu

When the platform implements the LPAR option the following properties are required of the /cpus node

ibm,pft-size

property name of the children of type “cpu” of the /cpus node, defines the size of the processor’s page frame ta-
ble.

prop-encoded-array: A pair of integers encoded as with encode-int, the first being the NUMA CEC Cookie
(up to a maximum of (216)-1) the second being the base 2 log of the size of the page frame table in bytes.

Notes:

1. On single CEC platforms, the NUMA CEC Cookie value is zero.

2. Due to constraints caused by initial memory allocations, and other running partitions, the firmware may not
be able to allocate a node’s PFT for the full size requested in the PFT_size configuration variable. The
“ibm,pft-size” property of course reflects the actual size allocated.

3. The partitions running on multiple NUMA nodes would have multiple PFTs which did not look alike due to
the difference in mapping local and remote page frames.)

To support dynamic addition and removal of processors, the /cpus node contains the properties: ibm,drc-types (cpu),
ibm,drc-indexes ibm,drc-names and ibm,drc-power-domains (-1's). These properties have entries for the maximum
number of dynamically reconfigurable processors that the platform supports for the specific OS image.

“ibm,ppc-interrupt-server#s” S

property name: Defines the single processor server numbers associated with this processor. Placing the numerical
equivalent of one of these quantities into the server# field of an XIVR directs associated interrupts to this processor.
The first server number is associated with the “primary processor thread” any subsequent numbers are associated with
the secondary. etc. hardware threads that the processor may implement.

prop-encoded-array: A list of one or more integers in the range of 0 to 2“ibm,interrupt-server#-size” encoded as
with encode-int.

B.6  OF Platform Extensions 699

LoPAPR, Version 1.1 (March 24, 2016)

Note: In order to achieve optimal performance, processor server numbers should be activated in the order that they are
presented in the “ibm,ppc-interrupt-server#s” property and deactivated in the reverse order.

“ibm,ppc-interrupt-gserver#s” S

property name: Defines the multiple processor global server numbers to which this processor belongs. Placing the
numerical equivalent of one of these quantities into the server# field of an XIVR directs associated interrupts to
one of the processors in that group.

prop-encoded-array: A list of (server#, gserver#s) specification pairs. the first integer specifies a single processor
server# as presented in the node’s “ibm,ppc-interrupt-server#s” property, followed by an integer with
a value less than or equal to 2“ibm,interrupt-server#-size” encoded as with encode-int that specifies the
global server queue that also may present interrupts to the interrupt management area associated with the server#.

“ibm,sub-processors”

property name: the sub-processor configuration that is running on this processor. In the absence of this property,
this processor may not be divided into sub-processors.

prop-encoded-array: a series of three or more integers each encoded as with encode-int. The value of the first inte-
ger indicates how many integers follow (the value 2 indicates that two integers follow). The second integer indi-
cates the number of sub-processors that are running on this processor. If the processor is not divided into
sub-processors the value of the second integer shall be 1, two sub-processors shall be represented by the value 2,
four sub-processors shall be represented by the value 4 and so on. The third integer indicates the maximum num-
ber of sub-processors that could be configured to run on this processor.

Client programs shall ignore subsequent integers beyond those defined at the time they were written.

B.6.5 Extensions for LoPAPR I/O Sub-Systems

LoPAPR I/O sub-system events may be signaled in a variety of ways depending upon platform capabilities. In order of
increasing functionality:

1. Events are universally fatal, and are signaled via checkstop.

2. After being enabled, the effected section enters freeze state signalling this state with a return of all 1’s
to any MMIO load instruction (If not enabled functionality of the specific section reverts to #1. Pres-
ence of ibm,set-eeh-option RTAS call denotes platforms that support this level of functionality.)

3. An extension to #2 above wherein, after being enabled for a specific section of the I/O sub-system,
additional event conditions may be reported and events are signaled using an external interrupt. The
platform’s capability to support this level of functionality is reported by the inclusion of the
“ibm,i/o-events-capable” property (see definition below) in nodes where enabling control
may be exercised.

“ibm,i/o-events-capable”

property name indicating that I/O sub-system events detected by the hardware represented by this node in the de-
vice tree may be singled with an I/O event interrupt if enabled.

prop-encoded-array: 0 to N interrupt specifiers (per the definition of interrupt specifiers for the node’s interrupt
parent).

When no interrupt specifiers are present, then the interrupt, if enabled, is signaled via the interrupt specifier given
in the I/O-events child node of the /events node.

To perform certain management functions, it is necessary to quiesce segments of the platform’s I/O infrastructure, such
quiescence domains are not representable by a strict tree structure. The “ibm,io-quiesce-domains” property
relates the membership of the various elements of a platform’s I/O sub-system to such quiescence domains.

700 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,io-quiesce-domains”

property name indicating the I/O quiesce domains of which this device, and all devices under this device (if any),
is a member.

prop-encoded-array: List of one or more domain-id’s to which this device belongs, and to which all devices under
this device (if any) belongs. Domain-id's are encoded as with encode-int.

Virtual I/O that does not take up physical address locations is represented in a device sub tree for which the
“#size-cells” and “#address-cells” properties are zero and one, respectively. However, the ibm dma-win-
dow properties, such as “ibm,dma-window” and “ibm,my-dma-window”, need to contain real size and ad-
dress fields. The number of cells for these real size and address fields need to be non-zero.

“ibm,#dma-size-cells”

property name to define the package’s dma address size format.

prop-encoded-array: number encoded as with encode-int.

The property value specifies the number of cells that are used to encode the size field of ibm dma-window proper-
ties. If the “ibm,#dma-size-cells” property is missing, the default value is the “#size-cells” prop-
erty for the package. If both the “ibm,#dma-size-cells” and “#size-cells” properties are missing,
refer to the “#size-cells” property definition in the IEEE 1275, IEEE Standard for Boot (Initialization Con-
figuration) Firmware: Core Requirements and Practices [2] for the default value.

“ibm,#dma-address-cells”

property name to define the package’s dma address format.

prop-encoded-array: number encoded as with encode-int.

The property value specifies the number of cells that are used to encode the physical address field of ibm
dma-window properties. If the “ibm,#dma-address-cells” property is missing, the default value is the
“#address-cells” property for the package. If both the “ibm,#dma-address-cells” and “#ad-
dress-cells” properties are missing, refer to the “#address-cells” property definition in the IEEE
1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2] for
the default value.

B.6.5.1 PCI Host Bridge Nodes

This section describes the PCI Host Bridge (PHB) properties which are added or modified for an LoPAPR implementa-
tion. Refer to PCI Bus binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware [6]
for the base PCI properties and methods. For each platform PCI Host Bridge, a “reg” property shall be present in the
respective PCI Node.

Note: Since the standard RTAS PCI configuration access services do not have separate arguments identifying the PCI host
bridge to which a service applies, platforms with multiple PCI host bridges must assign them unique bus numbers.
An OS must not reassign bus numbers if it expects to make subsequent use of the any RTAS PCI configuration
access services.

To support dynamic addition and removal of PHBs, the / node contains the properties: ibm,drc-types (phb), ibm,drc-in-
dexes ibm,drc-names and ibm,drc-power-domains (-1's). These properties have entries for the maximum number of dy-
namically reconfigurable PHBs that the platform supports for the specific OS image.

B.6  OF Platform Extensions 701

LoPAPR, Version 1.1 (March 24, 2016)

B.6.5.1.1 PCI Host Bridge Properties

For each PHB in the platform (called a PCI Bus Controller in the PCI Bus binding), a PCI Host Bridge Node shall be
defined as a child node of the system bus, in accordance with PCI Bus binding to: IEEE Std 1275-1994, Standard for
Boot (Initialization, Configuration) Firmware [6]. Each PCI PHB Node shall have a Unit Address defined in the
“reg” property that is unique and persistent from each boot-to-boot. One way for the platform to meet this require-
ment is to supply a virtual Unit Address based upon a unique identifier stored in the hardware. In this case, the size
field of the first “reg” property phys-address, size pair shall be zero. The following properties are modified or added
by this architecture and shall apply to each of these nodes.

Each PHB shall also have the “used-by-rtas” property, since RTAS is used for PCI Configuration.

“ranges” S

Standard property name defines this PHB’s physical address ranges.

prop-encoded-array: Two or more (child-phys, parent-phys, size) specifications.

This property is mandatory for PCI Host Bridges in LoPAPR implementations. The property value consists of four
(child-phys, parent-phys, size) specifications, as described in IEEE 1275, IEEE Standard for Boot (Initialization
Configuration) Firmware: Core Requirements and Practices [2].

The first specification shall specify the configured address and size of this PHB’s I/O Space. (I/O Space is shown
as “BIOn” to “TIOn” in Chapter 3, “Address Map,” on page 59.) The second specification shall specify the config-
ured address and size of this PHB’s Memory Space. (Memory Space is shown as “BPMn” to “TPMn” in the Com-
mon Hardware Reference Platform Architecture.)

“model” S

Standard property name indicating this PHB’s manufacturer, part number, and revision level. This property shall
be present if this PHB does not supply the following standard PCI configuration properties which represent the
values of standard PCI configuration registers: “vendor-id”, “device-id”, and “revision-id”.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which uniquely identifies this PHB and is correlated to its
manufacturer, part number, and revision level. (see IEEE 1275, IEEE Standard for Boot (Initialization Configura-
tion) Firmware: Core Requirements and Practices [2] for more information.) The string value is device dependent,
but shall supply information sufficient to identify the part to a level equivalent to the level achievable via the stan-
dard PCI configuration registers: “vendor-id”, “device-id”, and “revision-id”.

“64-bit-addressing” S

property name indicates this PHB’s capability to address more than 4 GB of memory.

prop-encoded-array: <none>

This property shall be present indicating that the PHB supports addressing more than 4 GB of memory (required
for all PHB nodes).

“external-control” S

property name indicates this PHB’s ability to support the PA external control facility.

prop-encoded-int: List of integers, each encoded as with encode-int.

The property value, if present, is a list of Resource ID’s the version of the PA external control facility supports.
This property shall be present if this PHB supports the PA external control facility, otherwise the property shall be
absent.

702 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,tce-alloc-info”

property name indicates the addresses of platform pre allocated TCE table space.

prop-encoded-array: One to N phys-addr, size pair(s). The first pair represents the memory area allocated by the
platform for the TCE tables associated with this PHB. Any subsequent pairs represent memory areas that the OS
should avoid using to minimize performance impacts.

Phys-addr is encoded as with encode-phys the number of cells for phys corresponds to “#ad-
dress-cells” value applicable to this node.

size the number of cells for size corresponds to the “#cell-size” value applicable to this node.

“ibm,max-completion-latency”

property name indicates the maximum DMA Read completion latency for IOAs under this PHB.

prop-encoded-array: Integer, encoded as with encode-int.

This property, when present (for example, see Requirement R1–9.1.10–2), indicates the maximum DMA Read
completion latency for IOAs under this PHB, in microseconds. For plug-in adapters, the latency value does not in-
clude latency of any additional PCI fabric (for example, PCI Express switches) on the plug-in adapter.

“ibm,extended-address” S

property name indicates this platform supports Peripheral Memory Spaces, Peripheral I/O Spaces, and SCA spaces
above 4 GB.

prop-encoded-array: <none>

This property must be present in all PHB nodes.

“ibm,pcie-link-width-stats”

property name indicates the collection of PCI Express link-width capabilities and measurements at the PE below
the PHB.

prop-encoded-array: 2 integers encoded with encode-int

The first integer represents the maximum PCI Express lane-width at the Partitionable Endpoint.

The second integer represents the actual PCI Express lane-width at the Partitionable Endpoint.

Implementation Note: In some cases, a PCIe device may train at a different width depending on the speed capabilities
of the link.

“ibm,pcie-link-speed-stats”

property name indicates the collection of PCI Express link-speed capabilities and measurements at the PE below
the PHB.

prop-encoded-array: 2 integers encoded with encode-int. The format of each integer is identical to the link
speed encodings defined in the PCI Express Capability Structure chapter of the PCI Express Base Specification
[22]. In the 2.0 version of that specification, it defines 0x1 = 2.5 GT/s and 0x2 = 5.0 GT/s.

The first integer represents the maximum PCI Express link-speed at the Partitionable Endpoint.

The second integer represents the actual PCI Express link-speed at the Partitionable Endpoint.

B.6  OF Platform Extensions 703

LoPAPR, Version 1.1 (March 24, 2016)

B.6.5.1.1.1 Properties for Children of PCI Host Bridges

The following properties are defined for PCI host bridges and their children.

“133mhz-capable” S

property name: The presence of this property indicates the device’s capability of operating at 133 megahertz. Only
present if PCI-X Status Register bit 17 is set.

prop-encoded-array: None.

“266mhz-capable” S

property name: The presence of this property indicates the device’s capability of operating at 266 megahertz. Only
present if PCI-X Status Register bit 30 is set.

prop-encoded-array: None.

“533mhz-capable” S

property name: The presence of this property indicates the device’s capability of operating at 533 megahertz. Only
present if PCI-X Status Register bit 31 is set.

prop-encoded-array: None.

“ibm,msi-ranges”

property name: Defines the Message Signaled Interrupt interrupt source number (as returned by H_XIRR)
range(s) assigned to this unit using the MSI capability structure. (Note this property is only supplied if the package
is assigned one or more message signaled interrupt numbers at boot time using the MSI capability structure, those
packages assigned level sensitive interrupts include the standard interrupts property.) The platform firmware as-
signs the interrupt source numbers in order to the first N Message Signaled Interrupt configuration spaces of the
adapter, setting the associated configuration spaces, in accordance with the platform's hardware configuration, to
produce the interrupt source numbers specified.

prop-encoded-array: List of one or more (int-number, range) specifications.

Int-number is the first interrupt source number in a contiguous range of interrupt source numbers encoded as with
encode-int.

Range is the one based count of consecutive interrupt source numbers that compose the specified range of inter-
rupt source numbers, encoded as with encode-int.

“ibm,msi-x-ranges”

property name defines the Message Signaled Interrupt interrupt source number (as returned by H_XIRR) range(s)
assigned to this IOA function using the MSI-X capability structure. (Note this property is only supplied if the
package is assigned one or more message signaled interrupt numbers at boot time using MSI-X capability struc-
ture, those packages assigned level sensitive interrupts include the standard interrupts property.) The platform
firmware assigns the interrupt source numbers in order to the first N MSI-X vectors of the IOA function, setting
the associated configuration spaces and MSI-X vectors, in accordance with the platform's hardware configuration,
to produce the interrupt source numbers specified.

prop-encoded-array: List of one or more (int-number, range) specifications.

Int-number is the first interrupt source number in a contiguous range of interrupt source numbers encoded as with
encode-int.

Range is the one based count of consecutive interrupt source numbers that compose the specified range of inter-
rupt source numbers, encoded as with encode-int.

704 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,req#msi”

property name: Defines the number of Message Signaled Interrupts requested by the adapter as communicated in
its MSI capability structure. This number may be greater than the number of Message Signaled Interrupts actually
assigned by the firmware.

prop-encoded-array: number of requested interrupts encoded as with encode-int.

“ibm,req#msi-x”

property name: Defines the number of MSI-X Interrupts requested by the adapter as communicated in the Table
Size field of the MSI-X Capability Structure for the adapter. This number may be greater than the number of
MSI-X interrupts actually assigned by the firmware.

prop-encoded-array: number of requested MSI-X interrupts encoded as with encode-int.

“ibm,connector-type”

property name to identify the connectors associated with a built-in IOA that supports wrap test. This property must
be provided if there is more than one connector for the same IOA on the platform.

prop-encoded-array: the concatenation, with encode+, of an arbitrary number of text strings, each encoded as
with encode-string.

“ibm,wrap-plug-pn”

property name to provide the part number(s) of the wrap plug(s) required for testing built-in IOAs with the default
connector or the connectors specified in “ibm,connector-type”. If this property is provided in the same
node with an “ibm,connector-type” property, there is a one-to-one correspondence between the strings in
each property. If this property is provided without an “ibm,connector-type” property, there is assumed to
be only one connector for the device (default connector) and this property should contain only one string. If multi-
ple wrap plugs may be used with the same connector, their part numbers shall be represented in the same string,
separated by commas.

prop-encoded-array: the concatenation, with encode+, of an arbitrary number of text strings, each encoded as
with encode-string.

“ibm,pci-config-space-type”

property name: Indicates if the platform supports access to an extended configuration address space from the PHB
up to and including this node.

0 = Platform supports only an eight bit register number for configuration address space accesses.

1 = Platform supports a twelve bit register number for configuration address space accesses.

This property may be provided in all PHB nodes and their children.

Note: The absence of this property implies the platform supports only an eight bit register number for configura-
tion address space accesses.

“ibm,reserved-explanation”

property name indicates why this PHB's “status” property contains the value of “reserved” or “re-
served-uninitialized”.

prop-encoded-array: Text string, encoded as with encode-string.

The property value, when present, can have the values specified in Table 246‚ ““ibm,reserved-explanation” Val-
ues‚” on page 705.

B.6  OF Platform Extensions 705

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,pe-total-#msi”

property name defines the maximum number of Message Signaled Interrupts (MSI plus MSI-X) that are available
to the PE below this device tree node. This number only indicates the number of available interrupts, not the num-
ber assigned. The number assigned for an IOA may be obtained by Function 0 (Query only) of the ibm,change-msi
RTAS call.

prop-encoded-array: Maximum number of interrupts encoded as with encode-int.

“ibm,ehci-boot-supported”

property name: indicates if this IOA function for USB 2.0 (EHCI) supports devices beneath it to be used for boot.

prop-encoded-array: None.

“ibm,pe-reset-is-flr”

property name: The presence of this property in the PCI Express function’s OF Device Tree node indicates that the
platform will use the Function Level Reset (FLR) of the function to reset the function when the ibm,set-slot-reset
RTAS call is used to reset the PE, and not the PCI Express Hot Reset.

prop-encoded-array: None.

“ibm,ddw-applicable”

property name: The Dynamic DMA Windows option RTAS calls may be used against the PE below this node.

prop-encoded-array: A list of three integers encoded as with encode-int.

This property may be provided in all PHB nodes or bridge nodes that are the PHB’s children. Separate properties
must exist for each PE that can participate in the DDW option (exists in the node above the PE). The existence of
this property in any node, indicates that the platform supports the Dynamic DMA Windows option for the platform
and for the PE below that node. Lack of this property in the bridge node above a PE indicates that the DDW option
RTAS calls are not applicable to that PE. The values in the property are defined as follows:

The first integer represents the token to be used for the ibm,query-pe-dma-window RTAS call.

The second integer represents the token to be used for the ibm,create-pe-dma-window RTAS call.

The third integer represents the token to be used for the ibm,remove-pe-dma-window RTAS call.

“ibm,ddw-extensions”

property name: Extensions to the Dynamic DMA Windows option RTAS calls may be used against the PE below
this node.

prop-encoded-array: A list of integers encoded as with encode-int.

This property may be provided in all PHB nodes or bridge nodes that are the PHB’s children. Separate properties
shall exist for each PE that can participate in the extensions to the DDW option (exists in the node above the PE).

Table 246. “ibm,reserved-explanation” Values

Value Explanation

storage-system-io Reserved for storage system product use

pcix-over-pcie
PCIe device is abstracted as a PCIx device in the

device tree for legacy compatibility

706 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

The existence of this property in any node, indicates that the platform supports the extensions to the Dynamic
DMA Windows option for the platform and for the PE below that node. Lack of this property in the bridge node
above a PE indicates that the extensions of the DDW option RTAS calls are not applicable to that PE. This prop-
erty is designed to be extended in the future by adding integers to the end of the list, reading software should be
prepared to handle earlier versions of the property that will have a short list as well as ignore longer lists from later
versions than it was designed to handle. The values in the property are defined as follows:

The first integer represents the number of extensions implemented. Subsequent integers represent values associ-
ated with each extension such as a token for an additional RTAS call or an architectural level of an extended inter-
face. The value of one indicates that only a single extension is implemented as specified by the second integer in
the list. Table 128‚ “DDW Option Extensions‚” on page 263 provides the definition of the subsequent integers as
defined for the LoPAPR level of the DDW option.

ibm,h-get-dma-xlates-supported

property name: to identify those PHBs for which H_GET_DMA_XLATES is supported on all child LIOBNs.

prop-encoded-array: <none>

ibm,h-get-dma-xlates-limited-supported

property name: to identify those PHBs for which H_GET_DMA_XLATES_LIMITED is supported on all child
LIOBNs.

prop-endoded-array: <none>

B.6.5.1.1.2 LPAR Option Properties

“ibm,dma-window”

property name to define the bus address window children of this bridge may use for dma.

prop-encoded-array: One (logical-bus-number, phys, size) triple where the logical bus number (LIOBN) is a one
cell cookie representing the unique range of TCE entries assigned to this bridge encoded as with encode-int,
the number of cells for phys corresponds to the node’s “ibm,#dma-address-cells” value while the number
of cells for size corresponds to the “ibm,#dma-size-cells” for this node.

Implementation Note: Platforms that support PHB level granularity of IO assignment to partitions place the
“ibm,dma-window” property in the PHB node, while platforms that support slot level granularity place the
“ibm,dma-window” property in the bridge node that creates the per slot bus isolation.

Note: The first element of the ibm,dma-window triple (the LIOBN) is used as a parameter to firmware DMA setup
routines to identify the specific I/O address space (TCE table) to be referenced.

“ibm,is-vf”

property name to define that the node represents an I/O Virtualized instance of an I/O adapter.

prop-encoded-array: A one cell value that represents the LoPAPR architectural level of the virtualization:

Table 247. “ibm,is-vf” Values

Value: Description:

0 Not used

1 Per LoPAPR

B.6  OF Platform Extensions 707

LoPAPR, Version 1.1 (March 24, 2016)

B.6.6 Memory Node

This section defines the LoPAPR modifications to the OF /memory node. In LoPAPR, the memory allocated to an OS
image may be divided into a number of allocation units called “regions” or “Logical Memory Blocks (LMB). An OS
image may be dynamically allocated additional regions or may be asked to release regions. Each LMB is either repre-
sented in the device tree by its own /memory node or by an entry in /ibm,dynamic-reconfiguration-mem-
ory nodes (see Section B.6.6.2‚ “ibm,dynamic-reconfiguration-memory‚” on page 708). The /memory node that
refers to the storage starting at real address zero (“reg” property starting at the value zero) always remains allocated
to an OS image. The client program is initially loaded into this storage, called the RMA, that is represented by the first
value of the “reg” property of this first /memory node. Additional storage regions may each be represented by their
own /memory node that includes dynamic reconfiguration (DR) properties or by an entry in /ibm,dynamic-re-
configuration-memory nodes.

To support dynamic addition and removal of regions, the / node contains the properties: ibm,drc-types (MEM),
ibm,drc-indexes ibm,drc-names and ibm,drc-power-domains (-1's). These properties have entries for the maximum
number of dynamically reconfigurable regions that the platform supports for the specific OS image.

B.6.6.1 Properties of the memory Node

In addition to the standard properties defined for the /memory node, the following are required for each node repre-
senting a dynamically allocable memory region. Platforms that support the dynamic reconfiguration of memory re-
gions represent each such logical memory block with its own /memory node. Any new memory granted to an OS
image is done so with a new /memory node, and OS images may free memory only in full blocks represented by one
of its currently held /memory nodes.

The value of “#address-cells” for this node is 1.

The value of “#size-cells” for this node is 0 because the children of this node do not consume any physical ad-
dress space.

The “ibm,my-drc-index” property as defined in Section B.6.1‚ “Properties for Dynamic Reconfiguration‚” on
page 670.

“ibm,preservable”

property name that denotes the platform’s ability to preserve the contents of the storage represented by this node.

prop-encoded-array: A integer encoded as with encode-int that represents the ability of the platform to pre-
serve the contents of the storage.

All non-negative values represents the expected length of time, in minutes, that the platform can sustain the state
of the storage. A value of 0 indicates the storage is not preservable and the client program may not register this
storage for preservation, this is the assumed state if the “preservable” property is not present. The largest
positive number represents an indefinite retention time as provided by such technologies as flash storage.

All others Reserved

Table 247. “ibm,is-vf” Values

Value: Description:

708 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Negative values indicate that the storage is preservable as long as external power is maintained, perhaps by an ex-
ternal battery not directly integrated into the platform.

“ibm,preserved”

property name that denotes the preservation state of the contents of the storage represented by this node.

prop-encoded-array: An integer encoded as with encode-int that represents the preservation state of the stor-
age. The defined states are:

0= The storage was not registered for preservation and thus not preserved. This is the assumed state if the “pre-
served” property is not present. This is also the state if the platform has lost knowledge of the preservation reg-
istration state of the storage.

1= The storage was registered for preservation and is has been preserved since the client program last modified it.

2= The storage was registered for preservation, however, the contents have not been preserved.

“ibm,expected#pages”

property name that denotes the number of pages that the client program is expected to use to virtually map the
LMB represented by this node.

prop-encoded-array: An integer encoded as with encode-int that represents the log base 2 of the expected
number of virtual pages that the client program will use to map the LMB represented by this node.

“ibm,no-h-migrate-dma”

property name that designates that the memory in the memory node in which this property resides cannot have the
H_MIGRATE_DMA hcall() used against it.

prop-encoded-value: <none> this is a name only property.

B.6.6.2 ibm,dynamic-reconfiguration-memory

This device tree node defines an alternative means to represent a number of dynamically-reconfigurable logical mem-
ory blocks (LMBs). This node must only be generated by OF when instructed to do so by the client program in the ELF
header. All memory which is not subject to dynamic reconfiguration (such as the RMA) is represented in /memory
node(s).

This node is a child of root. This node does not have a unit address or “reg” property.

The following properties are defined.

“ibm,lmb-size”

property name that defines the size of each dynamically reconfigurable LMB.

prop-encoded-array: An integer encoded as with encode-phys that represents the size in bytes of each LMB.

“ibm,associativity-lookup-arrays”

property name that defines a lookup array in which to find the ibm,associativity-array property value for the
LMBs.

prop-encoded-array: The number M of associativity lists encoded as with encode-int, the number N of entries
per associativity list encoded as with encode-int, followed by M associativity lists each of length N integers
encoded as with encode-int.

B.6  OF Platform Extensions 709

LoPAPR, Version 1.1 (March 24, 2016)

This property is used to duplicate the function of the “ibm,associativity” property in a /memory node.
Each “assigned” LMB represented has an index valued between 0 and M-1 which is used as in index into this table
to select which associativity list to use for the LMB. “unassigned” LMBs are place holders for potential DLPAR
additions, for which the associativity list index is meaningless and is given the reserved value of -1. This static
property, need only contain values relevant for the LMBs presented in the “ibm,dynamicreconfigura-
tion-memory” node; for a dynamic LPAR addition of a new LMB, the device tree fragment reported by the
ibm,configure-connector RTAS function is a /memory node, with the inclusion of the “ibm,associativity”
device tree property defined in Section B.6.2.2‚ “Properties of the Children of Root‚” on page 679.

“ibm,dynamic-memory”

property name that defines memory subject to dynamic reconfiguration.

prop-encoded-array: The number N of LMB list entries defined at boot time, encoded as with encode-int, fol-
lowed by N LMB list entries.

An LMB list entry consists of the following elements. There is one LMB list entry per LMB represented.

Logical address of the start of the LMB, encodes as with encode-phys. This corresponds to the first words in
the “reg” property in a /memory device tree node.

DRC index of the LMB, encoded as with encode-int. This corresponds to the “ibm,my-drc-index”
property in a /memory device tree node.

Four (4) bytes reserved for future expansion of flag.

Associativity list index for the LMB, encoded as with encode-int. This is used as an index into “ibm,asso-
ciativity-lookup-arrays” property defined above to retrieve the associativity list for the LMB. The as-
sociativity list corresponds to the “ibm,associativity” property in a /memory device tree node.

A flags word, encoded as with encode-int. This word represents 32 boolean flags. As of this definition, flag
bits are defined to correspond to the “ibm,preservable” and “ibm,preserved” properties in a /mem-
ory device tree node. This definition allows for additional flags to be added in the future.

The following bits in the “flags word” above are defined.

Table 248. Flag Word

Name Bit Position Description

preserved 0x00000001
If b'0', corresponds to the “ibm,preserved” property having a zero value.
If b'1', corresponds to the “ibm,preserved” property having a non-zero value, and the
preserved_state bit below indicates the state of preservation.

preservable 0x00000002
If b'0', corresponds to the “ibm,preservable” property having a zero value.
If b'1', corresponds to the “ibm,preservable” property having a non-zero value.

preserved_state 0x00000004
If b'0', corresponds to the “ibm,preserved” property having a 0x1 value.
If b'1', corresponds to the “ibm,preserved” property having a 0x2 value (and, in the
old binding, the LMB having a status of “fail”).

assigned 0x00000008
If b'1', this LMB is assigned to the partition as of boot time. If b'0', this LMB is not assigned
to the partition as of boot time.

No H_MIGRATE_DMA 0x00000010

If b'0', corresponds to non-existence of the “ibm,no-h-migrate-dma” in the memory
node.
If b'1', corresponds to existence of the “ibm,no-h-migrate-dma” in the memory
node.

710 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,memory-flags-mask”

property name that defined which flags in the “flags word” above are defined in this version of this architecture.

prop-encoded-array: An integer encoded as with encode-int with all flag bits recognized by this version of
this architecture having a b'1' value. For this version, the value will be 0x000000FF.

“ibm,memory-preservation-time”

property name that defined the time value that would appear in the “ibm,preservable” property in the old
bindings for a preservable LMB.

prop-encoded-array: An integer value encoded as with encode-int that represents the expected length of time,
in minutes, that the platform can sustain the state of power for a preservable LMB. The largest positive number
represents an indefinite retention time as provided by such technologies as flash storage. A value zero indicates
that no memory will be marked as preservable.

B.6.7 Memory Controller Nodes

This section describes memory-controller nodes and their properties. NUMA configurations, have multiple
memory-controller nodes in the device tree one for each Central Electronics Complex (CEC). In dynamic recon-
figuration NUMA environments, these /memory-controller nodes are subject to standard LoPAPR dynamic re-
configuration operations and contain standard LoPAPR dynamic reconfiguration properties.

B.6.7.1 Memory Controller Node Properties

No nodes of type memory-controller shall be defined anywhere in the device tree when the platform fully ab-
stracts the memory controller and the OS has no access to the memory controller (typically when running in a parti-
tion). Otherwise, one or more nodes of type memory-controller shall be defined as a child of “/” (the root) and
shall not have a “ranges” property. The following properties shall apply to each of these nodes. If the platform does
not abstract the functions of a platform's multiple memory controllers via firmware (such as RTAS) then the platform
shall include a node of type memory-controller for each Memory Controller in the platform.

A Memory Controller can also have the “used-by-rtas” property (see Section B.6.10.2‚ “Miscellaneous Node
Properties‚” on page 717), if it has functions abstracted by RTAS.

“device_type” S

Standard property name that denotes a Memory Controller node.

prop-encoded-array: A string, encoded as with encode-string.

The value of this property shall be “memory-controller”.

“reg” S

DRC invalid 0x00000020
If b'0', the DRC field of “ibm,dynamic-memory” property is valid.
If b'1', the DRC field of “ibm,dynamic-memory” property is invalid.

Associativity Index 0x00000040
If b'0', the Associativity List Index field of “ibm,dynamic-memory” property is valid.
If b'1', the Associativity List Index field of “ibm,dynamic-memory” property is
invalid.

Reserved Memory 0x00000080
If b'0', corresponds to the “status” property having a value of “okay”.
If b'1', corresponds to the “status” property having a value of “reserved”.

Table 248. Flag Word (Continued)

B.6  OF Platform Extensions 711

LoPAPR, Version 1.1 (March 24, 2016)

Standard property name defines the base physical address and size of this Memory Controller’s addressable regis-
ter space.

prop-encoded-array: One (phys-address, size) pair where phys-address is encoded as with encode-phys, and
size is encoded as with encode-int.

The property value shall be the base physical address and size of this Memory Controller’s register space.

“model” S

Standard property name indicating this Memory Controller’s manufacturer, part number and revision level.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property is a vendor dependent string which uniquely identifies this Memory Controller and shall
be correlated to its manufacturer, part number, and revision level. (see Core document for more information.)

“external-control” S

property name indicates this Memory Controller’s ability to support the PA external control facility.

prop-encoded-int: List of integers, each encoded as with encode-int.

The property value, if present, is a list of Resource ID’s the version of the PA external control facility supports.
This property shall be present if this Memory Controller supports the PA external control facility, otherwise the
property shall be absent.

“error-checking” S

Standard property name defines the error checking capability of the node.

prop-encoded-array: a string, encoded as with encode-string, where the value could equal “none”, “ecc”, or
“parity”.

The value of “#address-cells” for this node is 1.

The value of “#size-cells” for this node is 0 because the children of this node do not consume any physical ad-
dress space.

B.6.8 IBM,memory-module Nodes

Memory packaged on DIMMs or DIMM like modules are represented in the device tree with IBM,memory-module
nodes. These nodes represent physical packages, these packages do not necessarily map directly to a memory address
range.

No nodes of type IBM,memory-module shall be defined anywhere in the device tree when the platform supports
dynamic VPD via the RTAS ibm,get-vpd service. Instead the VPD that would normally be reported via the
“ibm,vpd” property in these nodes shall be reported by ibm,get-vpd.

B.6.8.1 Properties for Memory Modules

Memory modules appear as children of the memory node or, for platforms supporting memory DR operations (either
logical or physical), the memory-controller node of the device tree. This section defines properties for the
IBM,memory-module nodes and additional properties for the memory and memory-controller nodes.

712 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

B.6.8.2 IBM,memory-module Node Properties

An IBM,memory-module node is a child of the memory node or, for platforms supporting memory DR operations
(either logical or physical), the memory-controller node.

The “name” of the node is “IBM,memory-module”

The “device_type” of the node is “IBM,memory-module”

The “reg” standard property for an IBM,memory-module node is its memory module number which is an arbi-
trary OF selected enumeration.

The “ibm,size” property for an IBM,memory-module node is an integer which is less than 4GB and which by
itself indicates the size of the memory module, in bytes, if the memory module is smaller than 4GB and if “status”
is “okay” or “fail”.

If the memory module is larger than or equal to 4GB in size, then the “ibm,size-upper” property for an
IBM,memory-module node is present in addition to the “ibm,size” property. This property is an integer which
is multiplied times 4GB and then added to the value of the “ibm,size” property to get the size of the module, in
bytes. The property “ibm,size-upper” is not required if the memory module size is less than 4GB.

The “status” standard property for an IBM,memory-module node may have one of the following string values:

“okay” for a good memory module

“fail” for a bad memory module

“fail-no-matched-pair” for a missing memory module if one of a pair is missing

“fail-unsupport” for an unsupported memory module

“fail-partial” for a bad memory module where part of the memory on the module is bad and has not been
configured and part of the memory is good and has been configured.

“fail-excess-memory” for “okay” memory modules that are not configured because they exceed the sys-
tem memory addressability of the platform.

“disabled” for a memory module that has been manually deconfigured.

“ibm,mem-banks”

property name defines the number of memory banks contained within the memory module.

prop-encoded-array: an integer, encoded as with encode-int, which describes whether this is a 1, 2, or 4-bank
module, with a corresponding value of 1, 2 or 4 and so on to match the number of banks in the physical device.

“ibm,mem-type”

property name defines the memory module type.

prop-encoded-array: a string, encoded as with encode-string, that describes the type of module, with values
of “FP” (Fast Page), “EDO” (Extended Data Out), or “SDRAM” (Synchronous DRAM).

“ibm,mem-err-det”

property name defines the type of error detection mechanism supported by the module

prop-encoded-array: a string, encoded as with encode-string, with values of “none”, “parity”, or
“ECC”.

“ibm,mem-speed”

B.6  OF Platform Extensions 713

LoPAPR, Version 1.1 (March 24, 2016)

property name defines the access or clock speed supported by the module, in picoseconds

prop-encoded-array: an integer, encoded as with encode-int, which describes the access or clock speed sup-
ported by the module, in picoseconds.

B.6.9 Interrupt Controller Nodes

This section describes the properties for the LoPAPR interrupt controller node. If an interrupt controller node includes
the “used-by-rtas” property, then the platform includes firmware code for accessing the interrupt controller.

For LSIs, the platform shall adhere to the Open Firmware: Recommended Practice - Interrupt Mapping, Version 1.0
[9] interrupt structure OF representation.

B.6.9.1 PowerPC External Interrupt Controller Nodes

This section describes the properties for the PowerPC External Interrupt Controller nodes. PowerPC interrupt control-
lers are normally packaged inside other system chips, however, they are logically represented in the device tree by two
or more independent interrupt controller nodes. Each node reports either the interrupt source layer resources that are
housed in a single Bus Unit Controller (BUC) e.g. host bridge, or logical equivalent, or a subset of the resources asso-
ciated with the platform’s interrupt presentation layer. The node per BUC and presentation layer subset divisions pro-
vides a foundation for dynamic reconfiguration.

At a dynamic reconfiguration event, such as adding an IO drawer, or removing a processor, the interrupt controller
nodes associated with the added or removed hardware will also be added or removed. Therefore. platforms should re-
port, in individual nodes, each interrupt controller that occupies a separate physical package. And OSs should expect a
fine granularity of interrupt controller reporting.

“ibm,interrupt-domain”

property name that denotes a PowerPC External Interrupt Domain

prop-encoded-array: An integer encoded as with encode-int.

B.6.9.1.1 PowerPC External Interrupt Presentation Controller Node Properties

The following properties apply to this node.

“name” S

Standard property name that denotes a PowerPC External Interrupt Controller.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “interrupt-controller”.

“device_type” S

Standard property name that indicates an Interrupt Controller.

prop-encoded-array: A string, encoded as with encode-string.

The value of this property shall be “PowerPC-External-Interrupt-Presentation”.

“reg” S

Standard property name defines the base physical address(s) and size(s) of this PowerPC External Interrupt Pre-
sentation layer’s registers.

714 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int.

The entries shall represent the base address of a single set of PowerPC External Interrupt Presentation Layer Reg-
isters of the Interrupt Management Area. There shall be one entry for each interrupt server queue supported by this
unit. The order of the entries shall correspond to the entries in the “ibm,interrupt-server-ranges”
property described below.

“compatible” S

Standard property name to define alternate “name” property values.

prop-encoded-array: The concatenation, with encode+, of an arbitrary number of text strings, each encoded as
with encode-string.

The property value shall include “IBM,ppc-xicp”.

“ibm,interrupt-buid-size”

property name: Defines the number of bits implemented in the concatenation of the BUID fields.

prop-encoded-value: An integer in the range of 9 to 20 encoded as with encode-int.

As platforms grow in size so as to require use of larger BUIDs (values of the “ibm,interrupt-buid-size”
property greater than 9) the platform engineers need to interlock with their OS providers to ensure support.

“ibm,interrupt-server-ranges”

Property name that defines the interrupt server number(s) and range(s) handled by this unit.

prop-encoded-array: List of (server#, range) specifications.

Server# is encoded as with encode-int in the range of 0 - 2the largest value of the “ibm,inter-

rupt-server#-size” property contained in the device tree.

Range is encoded as with encode-int.

The first entry in this list shall contain the server# associated with the first “reg” property entry. The server# cor-
responds to a value of a processor’s “ibm,ppc-interrupt-server#s” property. The range shall be the
number of contiguous server#s supported by the unit (this also corresponds to the number of “reg” entries).

“interrupt-controller” S

Standard property name to indicate an interrupt (sub-)tree root.

prop-encoded-array: <none> The presence of this property indicates that this node represents an interrupt control-
ler.

“model” S

Standard property name indicating this unit’s manufacturer, part number, and revision level.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be a string which uniquely identifies the interrupt controller and shall be correlated
to the manufacturer, part number, and revision level. This value is device dependent (see the Core document for
more information).

B.6  OF Platform Extensions 715

LoPAPR, Version 1.1 (March 24, 2016)

B.6.9.1.2 PowerPC External Interrupt Source Controller Node Properties

Interrupt source controller resources as represented by “interrupt-ranges”, “#interrupt-cells”, and
“ibm,interrupt-server#-size” properties may be reported in stand-alone interrupt source controller nodes
or in other logical equivalent nodes which contain the “interrupt-controller” property. The following prop-
erties apply to these nodes.

“name” S

Standard property name that denotes a PowerPC External Interrupt Controller.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “interrupt-controller”.

“device_type” S

Standard property name that indicates the specific flavor of Interrupt Source Controller.

prop-encoded-array: A string, encoded as with encode-string.

The value of this property shall be one of the following:

“PowerPC-LSI-Source”.
For Level Sensitive Interrupt source controllers.

“PowerPC-MSI-Source”.
For Message Sensitive Interrupt source controllers such as used with PCI MSI.

“reg” S

Standard property name defines the base physical address(s) and size(s) of this PowerPC External Interrupt Source
if any.

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is encoded as with encode-phys, and size is encoded as with encode-int.

If the “device-type” of the interrupt source controller is “PowerPC-MSI-Source”, then the last “reg”
entry shall correspond to the interrupt controller’s 4 byte Message Interrupt Input Port.

“compatible” S

Standard property name to define alternate “name” property values.

prop-encoded-array: The concatenation, with encode+, of an arbitrary number of text strings, each encoded as
with encode-string.

The property value shall include “ibm,ppc-xics”.

“interrupt-ranges” S

Standard property name that defines the interrupt number(s) and range(s) handled by this unit.

prop-encoded-array: List of (int-number, range) specifications.

Int-number is encoded as with encode-int.

Range is encoded as with encode-int.

716 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

The first entry in this list shall contain the int-number associated with the first “reg” property entry. The int-num-
ber is the value representing the interrupt source as would appear in the PowerPC External Interrupt Architecture
XISR. The range shall be the number of sequential interrupt numbers which this unit can generate.

“interrupt-controller” S

Standard property name to indicate an interrupt (sub-)tree root.

prop-encoded-array: <none> The presence of this property indicates that this node represents an interrupt control-
ler.

“model” S

Standard property name indicating this unit’s manufacturer, part number, and revision level.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be a string which uniquely identifies the interrupt controller and shall be correlated
to the manufacturer, part number, and revision level. This value is device dependent (see the Core document for
more information).

“#interrupt-cells” S

Standard property name to define the number of cells in an interrupt-specifier within an interrupt domain.

prop-encoded-array: An integer, encoded as with encode-int, that denotes the number of cells required to rep-
resent an interrupt specifier in its child nodes.

The value of this property for the PowerPC External Interrupt option shall be 2. Thus all interrupt specifiers (as
used in the standard “interrupts” property) shall consist of two cells, each containing an integer encoded as
with encode-int. The first integer represents the interrupt number the second integer is the trigger code: 0 for
edge triggered, 1 for level triggered.

“ibm,interrupt-server#-size”

property name: Defines the number of bits implemented in the concatenation of the server#extension and server#
fields.

prop-encoded-value: An integer in the range of 8 to 24 encoded as with encode-int.

As platforms grow in size so as to require use of the server#extension field (values of the “ibm,inter-
rupt-server#-size” property greater than 8) the platform engineers need to interlock with their OS provid-
ers to ensure support.

B.6.10 Additional Node Properties

Additional properties and methods are defined in this section for LoPAPR binding adapters and/or devices.

B.6.10.1 Interrupt Properties

The properties in this section shall be implemented for any device that can present an interrupt for an LoPAPR platform
implementation. The platform shall adhere to the Open Firmware: Recommended Practice - Interrupt Mapping, Ver-
sion 1.0 [9] definition for the interrupt structure.

B.6  OF Platform Extensions 717

LoPAPR, Version 1.1 (March 24, 2016)

B.6.10.2 Miscellaneous Node Properties

This section defines properties which support devices, adapter and buses with geographical information. These proper-
ties shall be present for an LoPAPR platform.

“built-in” S

Standard property name: Any device that connects to an industry standard I/O expansion bus attached through a
non-standard connector.

prop-encoded-string: <none>.

Note: This property will also include platform ‘riser’ cards.

“used-by-rtas” S

Standard property name: Indicates the device can be in use by an RTAS Function Call.

prop-encoded-int: Presence of property indicates a device may have an I/O or resource conflict with a RTAS Func-
tion Call.

The use of the “slot-names” property defined below is deprecated in favor of the “ibm,loc-code” property.

“slot-names” S

property name: Describes external labeling of adapter/device connectors.

prop-encoded-array: An integer, encoded as with encode-int, followed by a list of strings, each encoded as
with encode-string.

The integer portion of the property value is a bitmask of available connectors; for each connector associated with
the adapter/device, the bit corresponding to that connector’s ID number is set from least-significant to most-signif-
icant ID number. The number of following strings is the same as the number of connectors; the first string gives
the platform nomenclature or label for the connector with the smallest ID number, and so on.

Note: Each device that has a connector should identify the order and contents of the list of strings in a binding.

“ibm,loc-code” S

property name to provide location code(s) for the Field Replacable Unit.

prop-encoded-array: an arbitrary number of strings, encoded as with encode-string.

“ibm,vpd”

property name to provide Vital Product Data (VPD) information as defined in Section 12.4‚ “Vital Product Data‚”
on page 341.

prop-encoded-array: the concatenation, with encode+, of one or more pairs of elements, the first element of each
pair being an integer (representing the length of the second element) encoded as with encode-int, and the sec-
ond element of each pair being a series of bytes (the VPD data) encoded as with encode-bytes.

“ibm,loc-code-map”

prop-name to identify that the interface may have child nodes, which may or may not be present in the device tree,
that have a physical location code based on their unit-address.

prop-encoded-array: A list of pairs (unit-address, location-code). The unit-address is the child device node's
“reg” property string-encoded according to the parent node's architecture and encoded as with encode-string.
The location-code is the child device node's “ibm,loc-code” property encoded as with encode-string.

718 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

If a child device under this node has a matching unit-address, the location code corresponds to the physical loca-
tion of that child device.

B.6.11 /aliases Node

A device alias, or simply alias, is a shorthand representation of a device-path. Aliases are properties of the aliases
node, encoded as with encode-string. Aliases are typically used by a user to facilitate not specifying a long path
name at the User Interface ‘ok’ prompt.

An implementation of OF for an LoPAPR platform shall provide the following aliases as properties of the aliases
node, if the corresponding device exists:

“disk” S

property name indicating the device path of the factory default disk that is the preferred boot disk1 for the plat-
form.

“tape” S

property name indicating the device path of the factory default tape.

“cdrom” S

property name indicating the device path of the factory default CDROM.

“keyboard” S

property name indicating the device path to the keyboard to be used for the User Interface.

“mouse” S

property name indicating the device path to the mouse to be used for the User Interface.

“screen” S

property name indicating the device path to the screen to be used for the User Interface.

“pc-keyboard” S

property name indicating the device path of the factory default PC-style keyboard.

“pc-mouse” S

property name indicating the device path of the factory default PC-style mouse.

“adb-keyboard” S

property name indicating the device path of the factory default ADB-style keyboard.

“adb-mouse” S

property name indicating the device path of the factory default ADB-style mouse.

“scsi” S

property name indicating the device path of the factory default built-in SCSI device.

1.Implementation Note: The preferred boot disk should be the disk that results in the fastest boot time. Implementations might automatically spin up
a disk at system power on and provide mechanisms for firmware to report that disk in this property.

B.6  OF Platform Extensions 719

LoPAPR, Version 1.1 (March 24, 2016)

“com1” S

property name indicating the device path of the factory default 16550-style serial port known as “com1.”

“com2” S

property name indicating the device path of the factory default 16550-style serial port known as “com2.”

“scca” S

property name indicating the device path of the factory default SCC-style serial port known as “SCCA.”

“sccb” S

property name indicating the device path of the factory default SCC-style serial port known as “SCCB.”

“floppy” S

property name indicating the device path of the factory default floppy drive.

“net” S

property name indicating the device path of the factory default built-in network interface controller.

“rtc” S

property name indicating the device path of the factory default real-time-clock chip.

“nvram” S

property name indicating the device path of the factory default NVRAM.

B.6.12 /event-sources Node

The /event-sources node describes the possible RTAS Error and Event Classes for interrupts. The
/event-sources node shall be defined to be a child of the root device tree node if the platform supports any event
interrupts. The following properties shall be defined for this node:

“name” S

Standard property name that denotes the Event Sources.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “event-sources”.

When events are reported as virtual interrupts there shall be a node of device_type “PowerPC-Exter-
nal-Interrupt-Presentation” from which the virtual interrupt source BUID size can be obtained. Also
the event-sources node represents the interrupt source node for virtual event interrupts and thus the following
properties shall be defined for this node:

“interrupt-controller” S

Standard property name: to indicate the events interrupt tree root.

prop-encoded-array: <none> The presence of this property indicates that this node represents a source of virtual
interrupts. Encoded with encode-null.

“#interrupt-cells” S

720 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Refer to the definition of the “#interrupt-cells” property for nodes of device_type “Pow-
erPC-LSI-Source” for information about the definition of this property for virtual event interrupts.

“interrupt-ranges” S

Refer to the definition of the “interrupt-ranges” property for nodes of device_type “Pow-
erPC-LSI-Source” for information about the definition of this property for virtual event interrupts.

Children of /event-sources present the interrupt specifiers associated with the reporting of platform events. Lo-
PAPR platforms have historically implied the default value of “#interrupt-cells” of 1 to report the associated
interrupt specifiers without the interrupt trigger specifier. However, all new designs shall present interrupt specifiers
with explicit trigger level values.

B.6.12.1 Child nodes of the Event Sources Node

The following specify standard child nodes of the /event-sources node. These nodes could be present in an Lo-
PAPR platform.

Children of the /event-sources node specify the interrupt specifiers associated with the reporting of platform
events. Interrupt designs shall use the 1275 standard “interrupts” property as configured to report the interrupt
specifier for the platforms PowerPC interrupt controller. The interrupt specifiers if the “interrupts” property indi-
cates one or more interrupt source numbers that are used to report event conditions.

B.6.12.1.1 internal-errors

The presence of the node indicates that all or some of the function has been implemented and will be reported using an
interrupt.

“name” S

Standard property name that denotes the internal error’s events.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “internal-error”.

B.6.12.1.2 epow-events

The presence of the node indicates that all or some of the function has been implemented and will be reported using an
interrupt.

“name” S

Standard property name that denotes the EPOW events.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “epow-events”.

B.6.12.1.3 ibm,io-events

The presence of the node indicates that all or some of the function has been implemented and will be reported using an
interrupt.

“name” S

Standard property name that denotes the I/O sub-system events.

B.6  OF Platform Extensions 721

LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “ibm,io-events”.

B.6.13 /reserved Node

This section defines a reserved node which shall have a “reg” property which allocates addresses (on the bus of
which it is a child) which is intended to be a place to identify hardware registers that do not otherwise belong to a rec-
ognized device.

“name” S

Standard property name that denotes reserved addresses that do not belong to a recognized device.

prop-encoded-array: A string, encoded as with encode-string.

The value of this string shall be “reserved”.

“device_type” S

Standard property name that indicates the device type.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be “reserved”.

“reg” S

Standard property name defines a hardware register address and range of addresses not intended for OS (OS) use.

prop-encoded-array: List of (phys-addr, size) specifications.

Phys-addr is a (phys.lo ... phys.hi) sequence equal to #address-cells, encoded as with encode-phys.
size is a sequence equal to #size-cells encoded as with encode-size.

The first entry in this list shall be a hardware register address (phys-addr) and a range of hardware addresses (size)
that is not intended for OS usage. Successive entries in this list shall be additional hardware addresses not intended
for OS usage.

B.6.14 /chosen Node

This section lists additional properties as required under the /chosen node with the following text in a manner that is
consistent with IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and
Practices [2], Section 3.5.

“nvram” S

Standard property name that defines the package Ihandle for CHRP NVRAM.

prop-encoded-array: an integer, as encoded with encode-int, that is the package Ihandle the CHRP NVRAM.

Note: The nvram Node identified in the /chosen Node shall support a size method as specified in Open Firmware
Recommended Practice: Device Support Extensions [5], Section 7.2. The size method will return a value that
is the total platform NVRAM size.

“ibm,rpa-client-config”

property name that defines the processed fields of the client program’s IBM,RPA-Client-Config ELF note section.

722 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: an array of integers encoded as with encode-int, that consist of the fields of the note sec-
tion that the firmware processed prior to loading the client program.

“ibm,architecture-vec-5”

property name: that presents the values of the option vector #5 negotiated by the ibm,client architec-
ture-support method. Presence of this property signifies that the client program load module invoked the
ibm,client architecture-support method.

prop-encoded-array: An array of bytes having the format of the fifth option vector from Table 244‚ “ibm,architec-
ture.vec option vectors‚” on page 681 representing the value chosen by the ibm,client architec-
ture-support method.

“ibm,client-architecture-support-reboot”

property name: that indicates that one or more reboots have occurred in this boot sequence in order to adjust the
platform settings to match the specification in the “ibm,client-architecture-support” open firm-
ware method or the IBM,RPA-Client-Config ELF header note. Note this property is not included for the first boot
in a sequence.

prop-encoded-array: encoded as with encode-int that specifies the number of reboots that have occurred in
this boot sequence in order to adjust the platform settings to match the specification in the “ibm,client-ar-
chitecture-support” open firmware method or the IBM,RPA-Client-Config ELF header note.

B.6.15 /vdevice Node

The node of type vdevice is a child of the root node. It is only present in trees that also include the
“ibm,hypertas_functions” property. It, and its children represent the virtualized devices that are imple-
mented by the platform firmware. Virtualized devices do not surface to a client program a direct hardware interface.
They do not appear to take up space in the client program’s address map. Standard property names associated with the
/vdevice node have special values as specified below.

“#address-cells” S

Standard property name encoded as with encode-int that specifies the number of cells required to represent a
child bus address. Shall have the value of 1.

“#size-cells” S

Standard property name encoded as with encode-int that specifies the number of cells required to encode the
size field of a child’s reg property. Shall have the value of 0 indicating that no child node may actually take physi-
cal address space.

“name” S

Standard property name string encoded as with encode-string that defines the name of node. The value shall
be the string “vdevice”.

“device_type” S

Standard property name string encoded as with encode-string that defines the device type of the node. The
value shall be the string “vdevice”.

“ibm,max-virtual-dma-size”

Vendor unique property name indicating the maximum size virtual dma transfer size supported by the platform

prop-encoded-array: a single integer encoded as with encode-int.

B.6  OF Platform Extensions 723

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,migration-control”

property name that indicates when platform firmware supports the ability for an I/O server partition to delay the
migration of a partition to a different server in order to let any in progress I/O to be completed. Specifically, this
property indicates that the DISABLE_MIGRATION and ENABLE_MIGRATION subfunctions of the
H_VIOCTL hypervisor call are supported.

prop-encoded-array: None, this is a name only property.

“ibm,reserved-virtual-addresses”

Vendor unique property name indicating ranges of the client program virtual address space that are reserved for
platform use.

prop-encoded-array: one or more pairs of abbreviated-virtual-address, virtual-address-length specifications repre-
senting the origin and length respectively of a reserved virtual address range.

abbreviated-virtual-address: Consists of two integers encoded as with encode-int representing the high order and
low order 32 bits respectively of the 64 bit abbreviated virtual address. The full virtual address is the abbrevi-
ated-virtual-address concatenated with 3 low order bytes of 0x00.

virtual-address-length: Consists of a single integer encoded as with encode-int representing the number of consec-
utive 4K pages contained within the range.

B.6.15.1 Children of the /vdevice Node

The children of the /vdevice node represent the individual virtual devices.

Children of the /vdevice node that support dma operations contain a the “ibm,my-dma-window” property as
defined below:

“ibm,my-dma-window”

property name that defines the bus address window(s) that this IOA may use for its dma.

prop-encoded-array: One or more (logical-I/O-bus-number, phys, size) triple(s) where the logical bus number is a
one cell cookie representing the unique range of TCE entries assigned to this IOA encoded as with encode-int,
the number of cells for phys corresponds to the node’s “ibm,#dma-address-cells” value while the number
of cells for size corresponds to the “ibm,#dma-size-cells” for this node. The first triple represents the TCE
range available for mapping local memory, while the second triple, if it exists, is where remote memory mapped
by remote partitions appears. The size field of the second triple shall be equal to the size field of the corresponding
remote partition’s first triple.

The “ibm,my-dma-window” property is the per device equivalent of the “ibm,dma-window” property
found in nodes representing bus bridges.

Children of the /vdevice node share the ability to display unique capabilities as represented by the following
properties.

“ibm,async-dma-required”

property name indicates that the virtual device requires the use of asynchronous virtual DMA interfaces (see
ISO-9660, Information processing -- Volume and file structure of CD-ROM for information interchange [14] for
definition of asynchronous virtual DMA interfaces).

prop-encoded-array: None, this is a name only property.

Children of the /vdevice node which act a a server to other virtual client devices, display the following property.

724 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,vserver”

property name indicates that the virtual device is a server to virtual devices.

prop-encoded-array: None, this is a name only property.

“ibm,mac-address-filters”

property name specifies the number of non-broadcast multicast MAC filters supported by the implementation.

prop-encoded-array: an integer in the range of 0-255 encoded as with encode-int.

“ibm,trunk-adapter”

property name that indicates that the virtual device is a trunk adapter server to the logical LAN.

prop-encoded-array: None, this is a name only property.

“ibm,illan-options”

property name: The existence of this property is required when any of the ILLAN sub-options are implemented
and indicates that the H_ILLAN_ATTRIBUTES hcall() is implemented, and that hcall() is then used to determine
which ILLAN options are implemented.

prop-encoded-array: None, this is a name only property.

B.6.15.1.1 Virtual Teletype Device

The virtual teletype device allows communication through the platform’s attached Hardware System Console. There is
one such virtual device node for each virtual terminal enumerated by the “ibm,termno” property. The unit ad-
dresses of the virtual teletype devices shall correspond to the enumeration presented in the “ibm,termno” property.
Such virtual terminals, as represented by the “ibm,termno” property, are intended for the use of the client program
and shall not be marked “used-by-rtas”. Similarly they may be “chosen” as the default input and output device.

“name” S

Standard property name encoded as with encode-string that defines the device name. The value shall be the
string “vty”.

“reg” S

Standard property name to define a unit address for the node. One (phys-addr, size) pair. The phys-addr is the unit
address of the device (corresponding to one of the virtual terminals enumerated by the “ibm,termno” prop-
erty), and the size shall have a length of zero.

“device_type” S

Standard property name encoded as with encode-string to specify the device type. The value shall be the
string “serial” indicating that the device emulates a serial terminal.

“compatible” S

Standard property name encoded as with encode-string to specify the device driver compatibility. The value
shall be one of the strings specified in Table 249‚ “Virtual tty compatibility strings‚” on page 725.

B.6  OF Platform Extensions 725

LoPAPR, Version 1.1 (March 24, 2016)

See Section 16.6‚ “Virtual Terminal (Vterm)‚” on page 582 for further detail on this virtual device.

B.6.15.1.2 Children of /vdevice node defined in other documents

Like children of the pci bus node, children of /vdevice may be defined by their own binding documents or via bind-
ing sections/tables in their device specifications. For example, the binding information for the LoPAPR Interpartition
Logical LAN, Virtual SCSI, and Virtual Terminal can be found in the appropriate sections of this document. The virtu-
alization of traditional physical devices repositions their associated device tree nodes to be children of /vdevice.
Examples include NVRAM and Real Time Clock (RTC) devices which are defined by Open Firmware Recommended
Practice: Device Support Extensions [5].

B.6.16 Barrier Synchronization Facility

This section describes the OF node that represents the optional Barrier Synchronization Register (BSR) facility. If the
platform provides a BSR facility it provides the ibm,bsr node as a child of / (root). If the platform provides a client
program with multiple independent facilities, it represents each such facility with a separate node. A given facility may
have multiple representations through parallel windows. Each window of a given facility is represented by a separate
“reg” property value. The following properties are the minimum required, optional support such as dynamic recon-
figuration will add properties per requirements called out in the Section 13.5.2‚ “For All DR Options - OF Require-
ments‚” on page 362.

“name” S

Standard property name encoded as with encode-string that defines the device name. The value shall be the
string “ibm,bsr” for legacy implementations and “ibm,bsr2” for POWER8 implementations and beyond.

“reg” S

Standard property name to define the addresses for the facility window(s).

prop-encoded-array: One or more (phys-addr, size) pair(s). The phys-addr, encoded as with encode-phys, is
the starting address (4 K aligned) of the window. The size, encoded in the number of cells specified by
“#size-cells” of the parent, is the length of the corresponding window.

“device_type” S

Standard property name encoded as with encode-string to specify the device type. The value shall be the
string “ibm,bsr”.

“compatible” S

Standard property name encoded as with encode-string to specify the device driver compatibility. The value
shall be the string “ibm,bsr”.

Table 249. Virtual tty compatibility strings

Compatible property String Value Comments

“hvterm1” Standard client virtual tty protocol

“hvterm2” Standard server virtual tty protocol

“hvterm-protocol” Client virtual tty protocol extended for control of modems etc.

726 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,#lock-bytes”

property name: Indicates the number of lock bytes per line of the BSR facility.

prop-encoded-array: One or more integers encoded as with encode-int. When the facility has multiple win-
dows, as represented by multiple values of the “reg” property, then there is a corresponding number of integers,
each integer representing the number of lock bytes per line of the corresponding window.

“ibm,lock-stride”

property name: Indicates the number of bytes between the beginning of lock lines in the BSR facility.

prop-encoded-array: One or more integers encoded as with encode-int. When the facility has multiple win-
dows, as represented by multiple values of the “reg” property, then there is a corresponding number of integers,
each integer representing the number of bytes to the beginning of the next lock line in the corresponding window.

B.6.17 Nodes of device_type “block” and “byte”

This section describes the OF nodes that provide access to storage devices in block or byte commands. This applies to
such nodes with and without a “reg” property.

“ibm,write-supported”

property name: Indicates the driver supports write functionality and has been verified by IBM. The use of the
write function without this property is discouraged.

prop-encoded-array: None, this is a name only property.

“ibm,16byte-cdb-supported”

property name: Indicates the driver supports using the 16 byte Command Descriptor Block format, which is
needed to access above 2 TB on 512 byte block-sized media.

prop-encoded-array: None, this is a name only property.

B.6.18 /ibm,platform-facilities

The node of type ibm,platform-facilities is a child of the root node. It and its children represent the
non-CPU platform computational facilities that are available. Platform facilities do not take up space in the client pro-
gram’s address map. Standard property names associated with the /ibm,platformfacilities node have special
values as specified below.

“#address-cells” S

Standard property name encoded as with encode-int that specifies the number of cells required to represent a
child bus address. Shall have the value of 1.

“#size-cells” S

Standard property name encoded as with encode-int that specifies the number of cells required to encode the
size field of a child’s reg property. Shall have the value of 0 indicating that no child node may actually take physi-
cal address space.

“name” S

Standard property name string encoded as with encode-string that defines the name of node. The value shall
be the string “ibm,platform-facilities”.

B.6  OF Platform Extensions 727

LoPAPR, Version 1.1 (March 24, 2016)

“device_type” S

Standard property name string encoded as with encode-string that defines the device type of the node. The
value shall be the string “ibm,platform-facilities”.

Some platform facilities configurations allow multiple facilities to share a common pool of interrupt server numbers.
Individual operations specify which interrupt server number from the pool shall be used to signal completion of the op-
eration. To represent such a configuration, the /ibm,platformfacilities node may either represent an inter-
rupt source controller for its children or the interrupt source controller associated with the shared pool may be
represented by a PowerPC External Interrupt Source Controller Node as an additional child node of the /ibm,plat-
form-facilities node (See Section B.6.9.1.2‚ “PowerPC External Interrupt Source Controller Node Proper-
ties‚” on page 715). Additionally, the node representing the platform facilities Interrupt Source Controller shall contain
the “ibm,interrupt-pool” property, and all platform facilities that share the common pool of interrupts shall
contain the “ibm,shared-interrupt-pool” property.

“ibm,interrupt-pool”

property name: that indicates this interrupt controller provides a shared pool of interrupt source numbers.

property encoded array: single cell encoded as with encode-int that represents the type of shared interrupt
pool being represented: Defined values are: 0 with all other values reserved.

“ibm,max-async-ops-per-processor”

property name: that indicates for the partition the allowed maximum number of outstanding operations for the
platform facility based upon the number of processors currently allocated to the partition. The total allowable
number of such operations outstanding across all partition processors is the product of the value of
“ibm,max-async-ops-per-processor” and the number of nodes of type cpu in the current partition de-
vice tree.

property encoded array: single cell encoded as with encode-int

B.6.18.1 Children of the /ibm,platform-facilities Node

The children of the /ibm,platform-facilities node represent the individual platform facilities. Standard property names asso-

ciated with the children of the /ibm,platform-facilities node have special values as specified below. Note the children of the

/ibm,platform-facilities node shall contain the following standard properties with their standard definitions:

 “compatible”

 “name” The defined Values for the “name” property of children of /ibm,platform-facilities are (were # is
the version number of the interface):

 ibm,random-v# Random number generator

 ibm,compression-v# Compression/Decompression engine

 ibm,sym-encryption-v# Symmetric encryption/decryption engine

 ibm,asym-encryption-v# Asymmetric encryption/decryption engine

 “status”

Optionally the children of the /ibm,platform-facilities node may contain as appropriate the following
standard properties with their standard definitions:

 “interrupts”

728 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Additionally the children of the /ibm,platform-facilities node may contain as appropriate the following
unique properties:

“ibm,resource-id”

property name: that indicates the platform facility resource identification handle.

property encoded array: single cell encoded as with encode-int

“ibm,max-sync-cop”

property name: that indicates the maximum characteristics of the parameters for a synchronous call of the platform
facility. These characteristics are represented as a series of integers encoded as with encode-int that may grow
over time as platform facilities evolve. The absence of this property indicates that synchronous operations are not
allowed for the given child.

property encoded array: a series of zero or more or more cells each encoded as with encode-int. The interpre-
tation of the series of integers is unique per the value of the “name” property:

 For the Random number generator: NULL value indicating that all calls are synchronous

 For the compression/decompression engine: Two series of cells the first series of cells represents the maximums that
can be synchronously compressed. The second series of cells represents the maximums that can be synchronously
decompressed.

 The first cell in each series contains the count of the number of data length, scatter/gather elements pairs that fol-
low – each being of the form

One cell data byte length

One cell total number of scatter/gather elements

 For the symmetric encryption/decryption engine: the series of cells report for each function code (FC) and mode
combination the maximum amount of data and scatter/gather list elements that can be processed with a given key
length. Thus the array consists of 1-N sub sequences each of the form:

 First cell contains the FC field

 Second cell contains the mode field

 Third cell contains the count of the number of key length, data length, scatter/gather elements triples that follow –
each being of the form:

One cell key bit length

One cell data byte length

One cell total number of scatter/gather elements

“ibm,max-sg-len”

property name: that indicates the maximum byte length of a scatter/gather list for the platform facility.

property encoded array: single cell encoded as with encode-int

“ibm,shared-interrupt-pool”

property name: that provides an indirect pointer to the node representing the shared interrupt pool used by this fa-
cility.

B.7  Symmetric Multi-Processors (SMP) 729

LoPAPR, Version 1.1 (March 24, 2016)

property encoded array: the phandle of the node representing the PowerPC External Interrupt Source Controller
that sources the interrupts of the shared interrupt pool used by this facility.

B.7 Symmetric Multi-Processors (SMP)

LoPAPR platforms can have Symmetric Multi-Processor (SMP) Configurations. In addition to the processor node
properties defined in Appendix C, “PA Processor Binding,” on page 753, a SMP Configuration will utilize the /cpus
node as explained in Section B.7.1‚ “SMP Platform Device Tree Structure‚” on page 729

B.7.1 SMP Platform Device Tree Structure

OF requires that multiple instances of any device that appears more than once in the device tree must be unique and
distinguishable by means of their “reg” properties. For LoPAPR platforms, processors shall not be directly attached
to the main physical bus (root node (“/”)). Instead, cpu devices shall be children of the /cpus node.

The /cpus node shall have one child node of device type cpu for each processor. The ihandle of the “executing”
processor shall be published in the “cpu” property of the /chosen node.

Note: The properties of a cpu device are already defined in Appendix C, “PA Processor Binding,” on page 753. The
only change for symmetric multiprocessor (SMP) systems is that there will be a cpu device node under the /cpus
node for each individual processor. Other properties of the cpu devices shall conform with the requirements stated
in Appendix C, “PA Processor Binding,” on page 753.

B.7.2 SMP Properties

The following properties are for a PA SMP environment. These SMP properties will be under the /cpus Node.

“slot-names” S

property name that describes platform labeling of plug-in cpu/processor card slots.

prop-encoded-array: An integer, encoded as with encode-int, followed by a list of strings, each encoded as
with encode-string.

The integer portion of the property value is a bitmask of possible processors; for each add-in slot on the bus, the bit
corresponding to that slot’s ID number is set from least-significant to most-significant ID number. The number of
following strings is the same as the number of slots; the first string gives the platform nomenclature for the slot
with the smallest ID number, and so on. The CPU’s “slot-names-index” property can be used as an index
into the bitmask integer of this property. The absence of this property indicates that no slots are present.

“smp-enabled” S

property name that indicates a platform can be SMP enabled.

prop-encoded-array: <NULL>

The presence of this property signifies that the platform is SMP enabled, even if it only has one processor.

B.7.2.1 Processor Node

The following properties are for a PA SMP environment. This SMP property will be under each /cpu Node.

“slot-names-index” S

730 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

property name: Identifies each cpu with a unique number.

prop-encoded-array: An integer, encoded as with encode-int.

The value of this integer is a platform unique number with a range from 0 to n-1 for each CPU where n is the num-
ber of slots. This number is used to index into the “slot-names” property to identify the value of the string as-
sociated with the slot name.

B.8 Device Power Management Properties/Methods

This section defines standard platform node properties, device node properties, and methods related to power manage-
ment. The properties and methods of this section shall be implemented on any platform which supports power manage-
ment except where noted. However, it is still being enhanced. OS providers who want to ensure that the data needed for
their power management policies is included should contact the authors of this document.

B.8.1 System Node Properties

The following defines properties are to be associated with the rtas and the power-management-events nodes of the de-
vice tree.

B.8.1.1 Properties assigned to the RTAS node

Power domains are a feature of platforms which support power management. Within the OF device tree, power do-
mains are represented by a power domain identifier which is defined to be an integer in the range 0 ... n-1, where n is
the number of power domains on the platform.

“power-domains-tree” S

Standard property name which defines the power domain hierarchy for this platform.

prop-encoded-array: An array of integers, each encoded as with encode-int, that is a flattened representation
of the power domain dependency tree.

The array consists of a number of tuples, one for each power domain defined on the platform. Each tuple consists
of the power domain identifier domain#, followed by the number of power levels #levels supported by the domain,
followed by an array of tuples, one for each level. These tuples consist of a level identifier level, followed by the
number of power sources from which the domain draws power, followed by an array of tuples (power-source-id,
power). The power domain tuple is terminated by the number of children #children followed by a list of the do-
main identifiers of each child. The power values are expressed in milliamperes and include only the power con-
sumed by support logic not represented as devices in the device tree including any RTAS abstracted devices within
the particular power domain.

“power-domains-controllers” S

Standard property name which defines the power domain controllers present on this platform.

prop-encoded-array: an array of integers, each encoded as with encode-int.

Each integer is the phandle of the device tree node that functions as the power domain controller for a domain. A
single controller may serve as the control point for multiple domains (the architecture calls them power domain
control points). Each device which serves as a controller encodes the “controls-power-domain” property.

“power-domains-names” S

Standard property name used to define the user readable names for the power domains.

B.8  Device Power Management Properties/Methods 731

LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: an array of strings, each encoded as with encode-string, that are the user readable
names for the domains.

The number of strings matches the number of domains and there is a one-to-one correspondence between the en-
tries in the “power-domain-controllers” property and the entries in this array.

“platform-power-sources” S

Standard property name defining the platform power sources.

prop-encoded-array: an array of integers, each encoded as with encode-int.

The array is structured as a number of tuples. Each of these tuples consists of the values source-voltage, (given in
millivolts), peak-power, continuous-use-power (both expressed in milliamperes supplied at the stated voltage),
and conversion-efficiency (expressed in percent).

“power-sources-names” S

Standard property name defining the platform power source names.

prop-encoded-array: an array of strings, each encoded as with encode-string, that are the user readable
names for the power sources.

The number of strings match the number of power sources and is in one-to-one correspondence to the entries in the
“platform-power-sources” property.

“platform-battery-sources” S

Standard property name defining the batteries utilized by a platform.

prop-encoded-array: an array of integers, each encoded as with encode-int.

Each value in this array is the manufacturer’s rated capacity of the battery expressed in milliwatt-hours.

“battery-sources-names” S

Standard property name defining the human-readable identifier of the batteries utilized by a platform.

prop-encoded-array: an array of strings, each encoded as with encode-string.

Each entry in this array corresponds one-for-one with the batteries defined in the “platform-bat-
tery-sources” property.

B.8.1.2 Properties of the power-management-events node

“power-type” S

Standard property name defining the power management event types implemented on a specific platform.

prop-encoded-array: an array of integers, each encoded as with encode-int.

B.8.2 Device Properties

“power-domains” S

Standard property name, indicating the power domains of which this device is a member.

prop-encoded-array: List of one or more domain-id’s to which this device belongs. Domain-id’s is encoded as with
encode-int.

732 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

The “power-domains” property should only list the domain-id’s of the lowest power domain tree nodes in
which this device has membership. If the device is a member of the default power domain 0 alone, this property
does not need to be provided.

“device-power-states” S

Standard property name which describes the power states this device supports.

prop-encoded-array: An array of integers, each encoded as with encode-int that defines the supported power
states for this device.

This property shall be provided for each physical device which has multiple power states, if platform firmware
provides device power state information.

The array consists of an integer representing the initial device power state after reset, followed by the number of
power sources from which the device draws power, followed by an arbitrary number of tuples, one for each sup-
ported power state of the device. Each tuple consists of the state, followed by an array of tuples (power-source-id,
power) giving the average power consumption from each power source during active use. This is followed by an-
other array of tuples (power-source-id, power) giving the idle power consumption for each power source. Each
power state tuple is terminated by the maximum expected power usage lifetime in seconds for the device if it were
to remain in that state. The value power is stated in the millamperes consumed at the voltage supplied by the
power source.

The value state shall be further constrained to have the following semantics:

The semantics of device power states may be further defined by device type specific bindings.

The interaction of the defined semantics of device power state and domain power level is defined in Table 251.
Combinations of Device Power State/Domain Power Level. Those combinations not marked are disallowed.

Table 250. Semantics of device state values

Value Semantics

100 This is the device’s most responsive state.

20-99 The device is functional. The range represents a range of performance.

11-19 Reserved

10 Device is not operational, but retains its internal functional parameters.

1-9 Reserved

0 Device not functional, may lose internal functional parameters.

B.8  Device Power Management Properties/Methods 733

LoPAPR, Version 1.1 (March 24, 2016)

“device-state-transitions” S

Standard property name that describes the legal power state transitions supported by the device.

prop-encoded-array: an array of integers, each encoded as with encode-int that defines the legal power state
transitions for this device.

The array is structured as a number of tuples, one for each possible transition. Each tuple consists of the starting
state, followed by the destination state, followed by an array of tuples (power-source-id, power), one for each
power source, followed by the time required to make the transition in microseconds, followed by the maximum
count allowed for this transition. The starting state and destination state are values defined in the “de-
vice-power-states” property. The value power is stated in the millamperes consumed. This property shall
be provided if platform firmware provides device power state information.

“power-sources” S

Standard property name which designates this device as a consumer of power sourced from a defined power
source.

prop-encoded-array: an array of integers, each encoded as with encode-int that gives the list of power sources
to which this device is connected.

The values are indices into the platform-power-sources data structure. This property shall be provided if platform
firmware provides device power state information.

“power-management-mapping” S

Standard property name that defines device power states and commands.

prop-encoded-array: an array of integers as encoded with encode-int.

This optional property provides a device dependent mapping between device power state and commands which
the device driver sends to its device. Also provides information concerning which device power states are sup-
ported for each of the four domain power levels. See the device type binding for a definition of the property value.

B.8.2.1 Properties for Power Domain Control Points

The following are specific to devices which can act as power domain control points.

“controls-power-domains” S

Standard property name which designates the domains over which this device exercises control.

Table 251. Combinations of Device Power State/Domain Power Level

 Device Power State

100 99-20 10 0

Domain Power
Level

Full On Allowed Allowed Allowed Allowed

Reduced Allowed Allowed Allowed

Freeze Allowed Allowed

Off Allowed

734 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: an array of integers, each encoded as with encode-int that defines the domains for which
this device can act a power domain control point.

A single device may serve as multiple logical control points.

B.8.3 Power Management Related Methods

This section defines methods associated with device tree nodes which serve as power domain controllers (the architec-
ture calls them control points).

set-power-level (domain# level -- actual-level) M

This method is only present for power domain controllers. The domain# is the power domain whose power level is
altered, and level is the desired level. actual-level reports the level to which the domain was actually set.

get-power-level (domain# -- level) M

This method is only present for power domain controllers. The domain# is the power domain that is being queried.
level is the current level at which the domain is now operating.

system-off (--) M

Method to turn the system off. This method is attached to the root node of the device tree and is only present in a
platform with software control over system power.

B.9 Configuration of Platform Resources

Any computer platform is composed of standard components which are invariant (platform ‘built-in’ standard I/O and
power management), optional components which are detectable (a second processor, for example), and configurable
components which are self-identifying (system memory, for example). Most computer platforms also provide one or
more industry standard I/O buses which allow the insertion of specialized functional adapter cards. These buses gener-
ally support a method for automatic identification, interrogation, and option selection of installed adapter cards.

A Platform shall also have the capability of configuring power management resources, if power management is imple-
mented by the platform, as defined in Section B.9.1‚ “Power Management Resource Configuration‚” on page 734

B.9.1 Power Management Resource Configuration

For a platform which supports device power management, all platform power management related information shall be
resident in the OF device tree prior to the transfer phase of software operation (see the definition of transfer phase in
Chapter 2, “System Requirements,” on page 41). Dummy devices shall be placed in the device tree for all standard I/O
bus connectors which are not in use to provide a node to assign the slot-names, power-domains, and power-sources
properties.

Ultimately, the goal is that pluggable devices would not only identify themselves to platform firmware but would also
provide all applicable power management related information. As an interim solution, a utility shall be provided either
in the platform firmware ROM or supplied as a loadable OF utility on external media. This utility interacts with a per-
son to obtain power management information concerning plug-in adapters and peripherals.

B.9.1.1 Power Management Information Utility

Any platform capable of being expanded via the addition of power-managed devices shall provide a device power
management information utility. The purpose of the utility is to allow a person (end-user or system developer) to enter

B.9  Configuration of Platform Resources 735

LoPAPR, Version 1.1 (March 24, 2016)

power management related device properties of plug-in adapters and peripherals which have no mechanism to auto-
matically report this information to firmware or system software. The need for this utility will disappear as standard
protocols are developed for interrogating pluggable adapters and devices to provide power management related infor-
mation.

In the most general case, the devices to be added to a node representing a standard bus or I/O port are in the form of
multilevel subtrees. The root of this subtree specifies the path to the node in the device tree where the subtree is to be
grafted.

The utility determines the path to the node at which to graft the new devices by interacting with a person to receive the
information. The utility uses the “slot-names” property to identify the location of the device for which it needs in-
formation. For example, the utility might prompt the user with, “Enter the name of the first device attached to the exter-
nal scsi connector labeled ‘SCSI1’.”

A data structure describing the subtree is stored in NVRAM. The root node of this subtree contains an
“in-graft-node” property which specifies the path to the parent node where the subtree is to be grafted into the
OF device tree.

As adapters and devices are enhanced to support the automatic reporting of power management information the parent
node would supply a method query-power-management-attributes which can be used by firmware to obtain this infor-
mation without the need for this utility. Any information obtained by direct device interrogation may update that sup-
plied via the PM NVRAM partition.

B.9.1.2 PM Configuration Process

When the platform is booted after a configuration change and the newly inserted adapter does not support the auto-
matic reporting of power management information, firmware should prompt the user asking if he wishes to supply this
information or potentially forfeit some or all of the power management capabilities of the device.

The utility records the information it obtains in the NVRAM Power Management Configuration Partition (NVRAM
Signature of 0x71 and name pm-config). On a subsequent reboot, platform firmware uses the information saved in
NVRAM to fill out the device tree adding new nodes and their properties, as well as adding properties and updating the
values of properties of existing device tree nodes.

B.9.1.3 PM Configuration Format

The NVRAM power management configuration partition is designed to be accessed primarily by firmware, but the
partition is designated global and the format is specified to allow a third party to write a power management informa-
tion utility which runs on the booted OS.

The data field of the power management NVRAM partition shall be defined as follows:

The data field is composed of a header, followed by a number of fixed length data blocks, and finally a variable length
property list area. The length of the header and each data block is 8 bytes. The data blocks use 16-bit integer offsets
into the partition as pointers to the data blocks and into the property list area. The base of this offset is the beginning of
the partition. This effectively limits the size of the PM configuration area to 64 KB. If more space is required, addi-
tional PM configuration partitions may be provided. Each pointer into the property list area locates the start of a
NULL-terminated string which represents a list of property name/value pairs.

The following table specifies the format of the header:

736 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

The PM Partition data area format value shall be 1.

The following table specifies the format of the data blocks:

Two data blocks are defined: one defining a device node and a second defining properties to be added to the base plat-
form device tree.

The data block type field shall have the value 1 for a data block which describes a device node. The data block type
field shall have a value 2 for a data block which describes a property.

Table 252. Power Management Configuration Data Header

Field Size Description

Version 1 byte Designates the version of the PM Partition data area format

Subtree_ptr 2 bytes Pointer to the first data block which describes a device subtree

Property_ptr 2 bytes Pointer to first data block which describes a property list to be added to the base platform device tree

Reserved 3 bytes Reserved

Table 253. Data Block Format

Field Size Description

Block_type 1 byte Designates the data block type

Data Block Data 7 bytes Remainder of data block, format specific to data block type

Table 254. Node Data Block Format

Field Size Description

Block_type 1 byte This field shall contain the value 0x01

Prop_list_ptr 2 bytes Pointer to a NULL terminated string containing the property list for this node

Child_ptr 2 bytes
Pointer to a data block defining a child node of this node. This pointer will be equal to 0x0000 if this node
has no children.

Sibling_ptr 2 bytes
Pointer to a data block defining a sibling node of this node. This pointer will be equal to 0x0000 if this
node has no siblings.

Reserved 1 byte Reserved

Table 255. Property Data Block Format

Field Size Description

Block_type 1 byte This field shall contain the value 0x02

Node_path 2 bytes
Pointer to a NULL terminated string giving the path name of the node to which the designated property
list belongs.

B.10  Client Program Requirements 737

LoPAPR, Version 1.1 (March 24, 2016)

The first node of a subtree shall have a “name” property equal to “/” and shall specify the “in-graft-node”
property. The child_ptr of this data block points to the first in a list of data blocks which describe the nodes which make
up the subtree to be grafted onto the system tree.

The final area of the partition is a set of NULL terminated strings which represent property name/value pair lists. The
last string in this area will be terminated by at least two NULL bytes. The property list for each node shall provide all
the required PM properties and their values. These include “power-domains”, “device-power-states”,
“device-state-transitions”, “power-sources”, “power-management-mapping”, and “con-
trols-power-domains”.

B.10 Client Program Requirements

For LoPAPR platforms, the client program requirements are defined in Appendix C, “PA Processor Binding,” on
page 753, with the following modifications. OF Client Programs for an LoPAPR platform shall execute in 32-bit mode
with an OF cell size of 1.

B.10.1 Load Address

The client’s load address is specified by the value of the load-base Configuration Variable. The value of
load-base defines the default load address for client programs when using the load method. Load-base shall be
a real address in real mode or a virtual address in virtual mode. Note that this address represents the area, within the
first LMB, into which the client program file will be read by load; it does not correspond to the addresses at which the
program will be executed. All of physical memory from load-base to either the start of OF physical memory or the
end of physical memory, whichever comes first, shall be available for loading the client program.

Note: The load-base address represents the area into which the client program will be read by load and does not
correspond to the address at which the program will be executed.

B.10.2 Initial Register Values

The “Initial Register Values” specified in the PA Binding (see Appendix C, “PA Processor Binding,” on page 753) are
modified as follows:

 r3 -- shall be 0 on client program entry

 r4 -- shall be 0 on client program entry

B.10.3 I/O Devices State

With the exception of the stdin and stdout devices, OF shall close all devices with the following conditions true:

All Devices - no DMA and not interrupting

Normal I/O Devices - not responding to access PCI Adapter/Devices

Property_list_ptr 2 bytes Pointer to a NULL terminated string containing the property list to be assigned to the designated node.

Reserved 3 byte Reserved

Table 255. Property Data Block Format (Continued)

Field Size Description

738 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

HOST Bridges - responding to config cycles and passing through config cycles to children

RTAS Devices - contract with OF to leave in state to perform intended function

B.10.4 Client Program Format

The data format of a client program compliant with this specification shall be either ELF (Executable and Linkage For-
mat) as defined by System V Application Binary Interface, PowerPC Processor Supplement [15], and extended by
Section B.10.4.1.1‚ “ELF Note Section‚” on page 738, or PE (Portable Executable) as defined by Peering Inside the
PE: A Tour of the Win32 Portable Executable File Format [13]. The standard ELF format contains explicit indication
as to the program's execution modes (e.g., 32- or 64-bit, Big- or Little-Endian). LoPAPR only supports the 32-bit ver-
sion (i.e., ELFCLASS32) for 32 and 64 bit platforms.

Note: Other client program formats may be supported, in an implementation specific manner, by an OF implementation.

A standard client program shall be statically linked, requiring no relocation of the image. The program's entry point
(e_entry) shall contain the address of the first PA instruction of the client program. It is the responsibility of the client
program to establish the appropriate value of the TOC (r2), if necessary.

Note: The entry point is the address of the first instruction of the client program, not that of a procedure descriptor.

B.10.4.1 ELF-Format

This section defines how OF recognizes and prepares to execute an ELF-Format Program.

B.10.4.1.1 ELF Note Section

Part of the process of loading a client program involves verifying its environmental requirements (e.g., endian-ness and
address translation mode) against the current firmware configuration. The client’s endian-ness can be directly deter-
mined by examining the ELF EI-DATA value; ELFDATA2LSB (1) implies Little-Endian while ELFDATA2MSB (2)
implies Big-Endian. However, the other client requirements (e.g., address translation mode) are defined by means of an
ELF Note Section (PT_NOTE), pointed to by the program header. The following describes the format of the Note Sec-
tion for a client program file.

As defined by System V Application Binary Interface, PowerPC Processor Supplement [15], an ELF file can be “anno-
tated” by means of Note Sections within the executable file. A Note Section contains a “header” followed by a (possi-
bly NULL) “descriptor”, as follows:

namesz

descsz

type

name
. . .

desc
. . .

header

descriptor

B.10  Client Program Requirements 739

LoPAPR, Version 1.1 (March 24, 2016)

Note: The endian format of the values corresponds to the endian-ness specified by the EI-DATA field of the file.

The format of a Note Section header can be described by an OF struct as:
struct \ Note Section header for OF
/L field ns.namesz \ length of ns.name, including NULL
/L field ns.descrsz
/L field ns.type
0 field ns.name \ NULL-terminated, /L padded

B.10.4.1.1.1 1275 PowerPC Note Definition

The ns.name field of the PowerPC OF Note Section shall be “PowerPC”; the ns.type field n shall be 0x1275.

Following the Note Section header is a descriptor (desc); the length (in bytes) of the descriptor is specified by a word in
the Note Section’s header (descsz). The interpretation of the descriptor depends upon the kind of Note Section in which
it is contained. For the PowerPC OF note, the format of the Note Section’s descriptor can be described by an OF struct,
as follows:
struct \ Note Section descriptor for CHRP OF
/L field ns.real-mode
/L field ns.real-base
/L field ns.real-size
/L field ns.virt-base
/L field ns.virt-size
/L field ns.load-base

If the ns.load-base value is not -1, then that value is compared against the current value of the load-base con-
figuration variable. If they are equal no further action is taken. If they are not equal then the load-base configura-
tion variable is set to the value of ns.load-base and the system is rebooted.

Note: DATA field of the file.

B.10.4.1.1.2 1275 IBM,RPA-Client-Config Note Definition

The ns.name field of the LoPAPR Client Program Configuration Note Section shall be “IBM,RPA-Client-Con-
fig”; the ns.type field shall be 0x12759999.

The format and requirements associated with this ELF Note Section are designed to allow for expandability of the sec-
tion definition (by adding fields to the end of the section) while retaining forward and backward compatibility for both
the 1275 firmware and Client Program. When the 1275 firmware code recognizes the “IBM,RPA-Client-Con-
fig” note, it creates a property named “ibm,rpa-client-config” within the /chosen node reads into this
property and interprets the lesser of the descriptor size or the maximum size of the descriptor that was defined when the
firmware was built. Should the note contain a smaller descriptor than was defined when the firmware was built, the
firmware assumes default values for the missing descriptor fields. In this way, new fields may be defined, and the four
cases of firmware/client program work as follows:

New Firmware/New Client Program:

Client Program Header Note contains old plus new fields.

Firmware reads all the new header and places it in “ibm,rpa-client-config” property.

Client Program gets feed back that new fields were interpreted by reading property in /chosen.

Old Firmware/Old Client Program:

Client Program Header Note contains old fields.

Firmware reads all the old definition header and places it in “ibm,rpa-client-config” property.

740 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Client Program gets feed back that the expected fields were interpreted by reading property in /chosen.

New Firmware/Old Client Program:

Client Program Header Note contains only old fields.

Firmware reads only the descriptor length defined in the note header, and places it in “ibm,rpa-cli-
ent-config” property.

Client Program gets feed back on the fields that were interpreted by reading property in /chosen.

Firmware uses default values for any missing fields.

Old Firmware/New Client Program:

Client Program Header Note contains old plus new fields.

Firmware reads only the length that it was defined when it was built, and places it in “ibm,rpa-client-con-
fig” property.

Client Program gets feed back that new fields were interpreted by reading property in /chosen, those missing
fields indicate function not implemented by the platform.

Following the Note Section header is a descriptor (desc); the length (in bytes) of the descriptor is specified by a word in
the Note Section’s header (descsz). The interpretation of the descriptor depends upon the kind of Note Section in which
it is contained. For the ELF header note named IBM,RPA-Client-Config of type 1275, the format of the Note Section’s
descriptor can be described by an OF struct, as follows:
struct \ Note Section descriptor for OF
/L field ns.lparaffinity \= “0/1” (default assumption to be “N”)
/L field ns.min-rmo-size \Minimum size of the Real Mode Accessible Storage Area in MB
/L field ns.min-rmo-percent \Minimum percentage of total storage that must be Real Mode Accessible
/L field ns.max-pft-size \Maximum size of the hardware page frame table as a power of 2
/L field ns.splpar \= “0/1” (default assumption to be “N”)
/L field ns.min-load \The minimum amount of code that must be loaded at load-base.

\ (default value -1)
/L field ns.new-mem-def \Flag to indicate use of ibm,dynamic-reconfiguration-memory definition.

\ (default value 0)
/L field ns.ignore-my-client-config \Flag: 1 = do not change boot configuration variables based
 \upon the values in this header.

\(default value 0)
/L field ns.large-page-ready \Flag to indicate the partition OS is prepared for large pages.
/L field ns.force_alpha_mode

Note: The size of the /L field is based off of e_ident (EI_CLASS) i.e. is 4 for ELFCLASS32.

The ns.lparaffinity field is a binary flag whose valid values are 0 or 1. If the field is not one of these valid val-
ues the value is assumed to be 0. If the character value is 1, the client program requests that the platform provide all
available affinity information.

The ns.min-rmo field specifies the minimum amount of real mode addressable storage (in bytes times 220) that the
client program needs to operate. The ns.min-rmo-percent field specifies the minimum percentage (valid values
0-100) of storage that must be real mode addressable for the client program to operate. The platform shall start the cli-
ent program with a quantity of real mode accessible storage (starting at location 0) of at least the ceiling of these two
values.

The ns.max-pft-size field value specifies the largest hardware Page Frame Table (in bytes times
2ns.max-pft-size) that the client program can support. The firmware shall not start a client program with a PFT
larger than this amount The minimum value is 18, the platform ignores the field if the value is less than 18 and uses the
platform defined default value.

B.10  Client Program Requirements 741

LoPAPR, Version 1.1 (March 24, 2016)

The ns.splpar field is a binary flag whose valid values are 0 or 1. If the field is not one of these valid values the
value is assumed to be 0. If the field’s value is 1, the client program supports running in shared processor logical parti-
tioning mode. If the character value is not 1 and the partition is running in shared processor mode, platform firmware
reports a platform-specific error code and halts the boot. However, if the client-program does not contain an
IBM,RPA-Client-Config note, firmware assumes the OS supports shared processor logical partition mode. This excep-
tion only applies to the ns.slpar field.

The ns.min-load field specifies the minimum amount of the client program load module that must be loaded at
load-base. If this value is a -1 then the entire load module must be loaded starting at load-base else the client
program load fails. The default value is assumed to be -1. If the value of is greater than the platform can support client
program load fails. Given that the platform can load the minimum amount of the client program load module at
load-base, it loads the amount up to the boundary specified by ns.min-load starting at load-base, then it
loads the rest of the load module into contiguous storage at a location selected by platform firmware (default, if possi-
ble, is that the residual is loaded immediately following the first segment resulting in a single segment load).

The ns.new-mem-def field is a flag which indicates if the ibm,dynamic-reconfiguration-memory representation of
reconfigurable memory may be used. The default value 0x00000000 indicates the new definition may not be used. The
value 0x00000001 indicates the new definition may be used. All other values are reserved for future use.

The ns.large-page-ready field is a flag which indicates if the partition OS is prepared to support large pages.
The default value 0x00000000 indicates that the OS is not prepared for large pages. The value 0x00000001 indicates
that the OS is prepared for large pages. All other values are reserved for future use.

If this variable indicates that the OS is not prepared for large pages and large pages are present in the partition configu-
ration, platform firmware reports a platform-specific error code which indicates this mismatch between the partition
configuration and the OS capabilities, removes all large pages from the device tree, and continues the OS boot.

If the value of the ns.ignore-my-client-config variable is 0x00000001, platform firmware must not exam-
ine the value of ns.large-page-ready until the client program calls the PROCESS-ELF-HEADER method. The
decision to continue boot should then be made based on the value of the ns.large-page-ready flag in the up-
dated ELF head passed by this method.

The ns.force_alpha_mode field is a flag which indicates that a non-HMC managed I/O services partition with
partition management support (VMC) configuration is being requested. The default value of 0x00000000 indicates that
the client expects to run in a configuration which is not an I/O services partition configuration. If the partition configu-
ration is not compatible with this setting, the system will be rebooted as a single partition which owns all of the system
resources. On reboot, the original partition configuration will be reinstated. The value 0x0000001 indicates that the cli-
ent is expecting to be executed in a non-HMC managed I/O services partition with partition management support
(VMC). If the partition is not in this mode, the system will be rebooted in this mode. In the case that the
ns.force_alpha_mode flag is compatible with the partition configuration, the boot process will continue. This flag will
be ignored when the system is HMC managed.

B.10.4.1.2 Recognizing ELF-Format Programs

The init-program shall recognize client program images that conform to all the requirements listed below as
“ELF-format” programs.

In the description below, field names refer to fields within the ELF “file header” structure, which is assumed to begin at
load-base, and offsets are relative to the beginning of that structure. Multi-byte numerical fields are interpreted accord-
ing to the endianess specified by the “data” field at offset 5.

 a) The “e_ident” field (at offset 0) contains the string “\7fELF”, where '\7f'’ is a byte whose value is (hex) 7f. This
indicates the beginning of an ELF file header.

 b) The “EI_CLASS” field (at offset 4) contains the value 1. This indicates the 32-bit variant of the ELF format.

 c) The “e-type” field (at offset 16) contains the value 2. This indicates that the ELF image is executable.

742 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

 d) The “e_machine” field (at offset 18) contains the value 20. This indicates that the ELF image is for the PA instruc-
tion set.

 e) The “e_version” field (at offset 20) contains the value 1.

 f) The “e_flags” field (at offset 36) contains the value 0.

B.10.4.1.3 Preparing ELF-Format Programs for Execution

Upon recognition of the client program image at load-base as an ELF-format program, init-program shall prepare the
program for execution by performing the following sequence of steps.

In the description below, the fields mentioned by name are within ELF “program header” structures, unless specified
otherwise.

 a) Search for an ELF “note” section of type “1275” as defined in the section “ELF Note Section”. If one is found,
and the values specified by its descriptor do not match the firmware's current operating mode, set the appropriate
configuration variables to the values specified in the note section descriptor, and restart the firmware so that it will
re-execute the boot command that resulted in the execution of init-program.

 b) Set the p_paddr field for each PT_LOAD segment equal to its p_vaddr field value if real-mode? is false and
p_paddr is -1. This effectively maps these segments v=r.

 c) Allocate and map, if required, sufficient physical memory for all program segments of type PT_LOAD (i.e.
whose “p_type” field contains the value 1) listed in the ELF image's program headers. Note that all PT_LOAD pro-
gram segments that have a p_paddr value that matches their location in physical memory need not be moved, but the
memory that they occupy must be claimed. This special case is added to allow large program images to be loaded
without the 2x memory required to move the segments.

 d) Copy the program headers to a “safe” location to guard against the possibility of them being overwritten by the
following steps.

 e) For each program segment of type “PT_LOAD”:

 1) Copy, if required, the initialized portion of the program segment from its current location in the loaded image
to the location given by the section's “p_paddr” field.

 2) Fill the rest of the segment with zero bytes (i.e., fill “p_memsz - p_filez” bytes beginning at the address
“p_paddr + p_filesz”).

 3) If real-mode? is false, then map the program segment to the virtual address specified by p_vaddr.

 f) Set the saved program state so that subsequent execution of “go” will begin execution at the address given by the
“e_entry” field in the ELF file header. The e_entry field is a physical address if real-mode? is true and is a
virtual address if real-mode? is false.

The implementation need not take precautions to ensure that the process of copying and zeroing program segments
does not overwrite the portions of the load image that have not yet been copied. In order to guarantee correct copying,
the value of the load-base configuration variable and the destination addresses of the various sections must be such
that such overwriting does not occur. One sufficient condition is that the region of memory beginning at load-base,
of size equal to the size of the loaded image, be disjoint from the regions of memory to which the program segments
are copied and zero-filled. Another sufficient condition is to specify a load-base in the Notes Section (PT_NOTE)
that ensures that the PT_LOAD segments are loaded at the address required by their program headers and thus are not
moved. There are other less-stringent sufficient conditions, especially for simple ELF images with a small number of
program segments that are to be copied to contiguous regions.

B.10  Client Program Requirements 743

LoPAPR, Version 1.1 (March 24, 2016)

An implementation shall permit the ELF image to contain other program segments in addition to those described
above, but need not take any action beyond that defined above as a result of the presence of such other program seg-
ments.

An implementation shall ignore all ELF sections. ELF sections are intended for binders, not loaders. Note that the
CHRP ELF Note Section is actual an ELF segment of type PT_NOTE and thus the above does not apply to it.

B.10.5 Additional Client Interface Requirements

This section describes processor assist callbacks for real and virtual memory management and a service.

B.10.5.1 Client Interface Callbacks

This section describes callbacks for memory management. These callbacks are provided by the client.

B.10.5.1.1 Real-Mode Memory Management Assist Callbacks

claim_mem

IN: [address] min_addr, [address] max_addr, size, align

OUT: throw-code, error, [address] real_addr

Allocate contiguous physical memory between min_addr and max_addr of size bytes (128KB max for an area in
the 0 to 16MB address range), with align alignment. The alignment boundary is the smallest power of two greater
than or equal to the value of align; an align value of 1 signifies one-byte alignment. A non-zero error code shall
be returned if the mapping cannot be performed. If error code is zero (i.e. allocation succeeded) the routine returns
the real address (real_addr) of the physical memory block which was allocated for OF.

release_mem

IN: [address] phys, size

OUT: throw-code

Free size bytes of physical memory starting at real address phys, making that physical memory available for later
use. That memory must have been previously allocated by claim_mem.

B.10.5.1.2 Virtual Address Translation Assist Callbacks

alloc_virt_mem

IN: size

OUT: throw-code, error, [address] virt_addr

Return the virtual address of a virtual memory area of size bytes aligned to a doubleword (8-byte) boundary. A
non-zero error code shall be returned if the allocation cannot be performed. If error code is zero (i.e. allocation
succeeded) the routine returns the virtual address (virt_addr) of the memory block which was allocated.

free_virt_mem

IN: [address] virt_addr, size

OUT: throw-code

Free memory allocated by alloc_virt_mem. The values virt_addr and size must correspond with memory previ-
ously allocated by alloc_virt_mem.

744 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

claim_virt

IN: size, align

OUT: throw-code, error, [address] virt_addr

Allocate a memory area of size bytes and alignment align. The alignment boundary is the smallest power of two
greater than or equal to the value of align; an align value of 1 signifies one-byte alignment. A non-zero error code
shall be returned if the allocation cannot be performed. If error code is zero (i.e. allocation succeeded) the routine
returns the virtual address (virt_addr) of the memory block which was allocated.

release_virt

IN: [address] virt, size

OUT: throw-code

Free size bytes of virtual memory starting at virtual address virt, making that physical memory and the correspond-
ing ranges of virtual address space available for later use. That memory must have been previously allocated by
claim_virt.

B.10.5.2 Client Interface Services

OF shall provide the following Client Interface Service:

test-method

IN: phandle, [string] method

OUT: missing-flag?

Tests whether the package method named method exists in the package phandle. missing-flag? is FALSE (0) if
the method exists or TRUE (-1) if the method does not exist.

OF may provide the following Client Interface Service:

ibm,enable-ci64

IN: none

OUT: none

After the successful invocation of this method, all Client Interface calls will utilize 64 bit cell items in their argu-
ment arrays. This does not affect how the device tree is presented, which will still assume that a cell is 32 bit in the
property values. The method returns using the cell size in which it was called. This method exists only on plat-
forms that present the “ibm,enable-ci64-capable” property in the root node.

B.11 Support Packages

This section describes the LoPAPR Binding specific requirements of OF support packages. These support packages
are disk-label and tape-label. For “network” and/or obp-tftp extensions, refer to Open Firmware: Recom-
mended Practice - TFTP Booting Extensions, Version 0.8 [10]. These packages support the loading and executing of a
client program. Another means of executing a Client Program is provided when an OS ROM is a “bootable device”
(Refer to Section B.6.2.4‚ “ROM Node(s)‚” on page 688, as an example).

B.11  Support Packages 745

LoPAPR, Version 1.1 (March 24, 2016)

B.11.1 “disk-label” Support Package

The process of loading and executing a client program is described in two stages. The first stage determines what par-
tition and/or file (if one exists) to read into memory. This is done by locating a partition and a file within the partition
(if the partition supports a file system structure) from the boot device, usually by means of a name lookup within a di-
rectory contained within a disk “partition”. The second stage examines the front portion (header) of the image for
“well-known” program formats. When the format of the image has been determined, the loading is completed in a
manner determined by that format.

The name of the partition (and, a file contained within the partition) can be explicitly specified by the user via the
load or boot command, or can be implicitly specified by the value of the “boot-device” property of the /op-
tions node. The partition and filename are the ARGUMENTS portion of the final COMPONENT of the
PATH_NAME, as described in section 4.3.1 of IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2].

The syntax for explicit partition/filename specification is given in section Section B.11.1.2‚ “Open Method Algo-
rithm‚” on page 746 below where partition identifies the partition to be used and filename is the name of a file within
that partition. If partition is omitted, the default partition (as determined by the partition format) is used. If filename is
omitted, the default filename (i.e., the filename component of the boot-device path-name) is used.

B.11.1.1 Media Layout Format

This section describes the media layout formats of Client Program Images that the disk-label support package for an
LoPAPR platform shall support; an implementation may support additional mechanisms, in an implementation-specific
manner. The disk-label package for a platform shall support at least four(4) media layout types:

 FAT (FAT12 and FAT16 File System)

 FDISK (Partitions 4, 5, 6, 0x41 and 0x96)

 ISO-9660 (9660 File System)

 UDF

An LoPAPR platform may choose to support the following media layout formats for historic reasons:

 Mac OS (MAC Binary Image)

B.11.1.1.1 FDISK Partition Types

The following FDISK partition types shall be supported:

Partition Type 4: FAT 12 or FAT 16 File System

Partition Type 5: Extended Chained Partitions

Partition Type 6: Extended Partitions

Partition Type 0x41: Single program image

Partition Type 0x96: ISO 9660 File System

Partition Type 0x??: UDF File System

FDISK partition type 0 is a free partition. Partition type 0x82 is reserved and should not be used by this architecture.

746 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

B.11.1.2 Open Method Algorithm

The open method of the disk-label support package shall implement a disk partition recognition algorithm that
supports at least the set of disk formats that are supported by the following algorithm. The following algorithm is in-
tended to support raw (uninterpreted) disks, raw partitions of disks beginning with an FDISK partition map, and files
on FAT, UDF and ISO-9660 file systems both within FDISK partitions and by themselves on disks without a partition
map.

 That open method shall accept an argument string (as returned by “my-args”) with the following syntax (accord-
ing to the algorithm below), where brackets denote an optional component:

 [partition][,[filename]]

If the argument string contains a comma, or if the argument string begins with a decimal digit, the partition component
is deemed to be present. Note that the arguments above are not the client arguments with the boot command.

If the partition component is present, it selects the desired partition, where partition 0 refers to the entire disk, partition
1 refers to the first partition, partition 2 to the second, and so forth. If the partition component is absent and the disk has
an FDISK or Mac partition map, the first “bootable” partition is used. If a “bootable” partition is not found, then fail in
an implementation specific manner with an error.

If the filename component is present, it selects a particular file within the file system on the disk or partition thereof.

Note: For historic reasons, the following algorithm includes support for the optional MAC OS media layout format.

 1 OPEN algorithm

 2 Set D.SIZE to -1

 2 If ARGUMENT$ is not the NULL string and the first character of ARGUMENT$ is in the range '0'--'9' or is
equal to ','

 3 LEFT-PARSE (ARGUMENT$) -> PARTITION$, FILENAME$

 2 Else

 3 Set PARTITION$ to the NULL string

 3 Set FILENAME$ to ARGUMENT$

 2 If PARTITION$ is not the NULL string

 3 If PARTITION$ is not a decimal number

 4 Return FALSE

 3 DECIMAL_STRING_TO_NUMBER (PARTITION$) -> PARTITION

 3 If PARTITION is 0

 4 GET_DISK_SIZE

 3 Else

 4 Read the first 512 bytes of the device into a buffer

 4 SELECT_EXPLICIT_PARTITION (PARTITION)

 4 If SELECT_EXPLICIT_PARTITION returned an error indication

 5 Return FALSE

 2 Else \ PARTITION$ is NULL

 3 Read the first 512 bytes of the device into a buffer

 3 SELECT_ACTIVE_PARTITION

 3 If SELECT_ACTIVE_PARTITION returned an error indication

 4 Return FALSE

 2 \ (At this point, D.OFFSET is set to the beginning of the selected partition and D.SIZE is set to the size of that
partition. If the entire disk was selected, D.OFFSET is 0 and D.SIZE is the size of the disk.)

 2 Call parent’s “seek” method with an argument of 0,0.

 2 Return TRUE

B.11  Support Packages 747

LoPAPR, Version 1.1 (March 24, 2016)

 1 CHECK_FOR_BPB procedure

 2 If the first four(4) bytes are EBCDIC 'IBMA'(hex character string C9C2D4C1), then the sector does not contain a
BPB.

 2 If the 16-bit little-endian quantity beginning at buffer offset 510 is 0xAA55, and the 16-bit little-endian quantity
beginning at buffer offset 11 (which is the BPB “bytes per sector” field) is either 256, 512, or 1024, and the byte
at offset 16 (the BPB “number of FATs” field is either 1 or 2, the sector is deemed to contain a BPB. Otherwise,
the sector does not contain a BPB.

 1 CHECK_FOR_ISO_9660 procedure

 2 Read 512-byte sector 64 (the beginning of logical 2048-byte sector 16)into a buffer.

 2 If the byte at offset 0 contains the binary number “1”, and the 5 bytes beginning at offset 1 contains the text string
“CD001”, the partition or raw disk is deemed to contain an ISO 9660 file system. Otherwise, the partition or raw
disk is deemed not to contain an ISO 9660 file system.

 1 CHECK_FOR_FDISK procedure

 2 If the buffer does not contain an FDisk partition map signature of “AA55” as a 16-bit little-endian number
beginning at buffer offset 510, the buffer is deemed not to contain an FDISK partition map.

 2 If none of the partition type code field (the bytes at buffer offsets 0x1C2,0x1D2, 0x1E2, and 0x1F2) contains a
recognizable partition type code (4,5, 6, 0x41, 0x96, or other types that may be recognized by the
implementation), the buffer is deemed not to contain an FDISK partition map.

 2 Otherwise, the buffer is deemed to contain an FDISK partition map.

 2 The implementation may, at its option, apply additional validity tests to the partition map information.

 1 CHECK_FOR_MAC_DISK procedure

 2 If the first (i.e., at the lowest offset) two bytes in the buffer contains the 16-bit big-endian signature 0x4552, then
the disk is deemed to be a Mac partitioned disk. Otherwise, the partition or raw disk is deemed not to be a Mac
partitioned disk.

Note: Subsequent 512 byte sectors will contain Mac partition map entries, each of which begins with the 16-bit big-endian
signature 0x504D. Each such partition map entry contains a field (V) indicating the total number of partition
entries in the map.

 1 INTERPOSE_BY_TYPE procedure

 2 If FILENAME$ is not the NULL string

 3 If PARTITION-TYPE is 0x96

 4 INTERPOSE[11](ISO-9660 File System package, FILENAME$)

 3 Else

 4 If PARTITION-TYPE is FAT,

 5 INTERPOSE (FAT File System package, FILENAME$)

 1 SELECT_ACTIVE_PARTITION (PARTITION) procedure

 2 CHECK_FOR_BPB

 3 If the buffer contains a BPB

 4 Set OFFSET to 0

 4 Set D.SIZE to the maximum size of the disk in bytes, as indicated by the information in the BIOS
Parameter Block

 4 If FILENAME$ is not the NULL string

 5 INTERPOSE (FAT File System package, FILENAME$)

 4 Return OKAY

 2 CHECK_FOR_FDISK

 2 If the buffer contains an FDISK partition map

 3 Search the FDisk partition map, reading new 512-byte sectors into the buffer if necessary to “chain” to
extended partition entries (i.e. ones whose type byte at offset 4 contains “5”) for the first (i.e., at the lowest
offset) partition entry whose “bootable” field (at offset 0 in the partition entry) contains 0x80.

 3 If a “bootable” partition was found:

 4 Set PARTITION-TYPE to that entry's “type” field (the byte at offset 4)

748 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

 4 Set D.OFFSET to the byte offset from the beginning of the disk of the beginning of the partition
denoted by that entry.

 4 Set D.SIZE to the size of the partition denoted by that entry.

 4 INTERPOSE_BY_TYPE

 4 Return OKAY

\ (If this point is reached, no partition was marked “bootable”)

 3 Search the FDisk partition map beginning in 512-byte sector 0,reading new 512-byte sectors into the buffer
if necessary to “chain” to extended partition entries, for the first partition (i.e., at the lowest offset) entry
whose “type” byte is neither 0 nor 5 (5 is the type code that indicates a “chained” extended partition entry).

 3 If one is found:

 4 Set PARTITION-TYPE to that entry's “type” field (the byte at offset 4)

 4 Set D.OFFSET to the byte offset from the beginning of the disk of the beginning of the partition
denoted by that entry.

 4 Set D.SIZE to the size of the partition in bytes denoted by that entry.

 4 INTERPOSE_BY_TYPE

 4 Return OKAY

 3 Else \ (If this point is reached, the partition map did not contain any valid partition entries)

 4 Return ERROR

 2 CHECK_FOR_ISO_9660

 2 If it is an ISO 9660 disk

 3 GET_DISK_SIZE

 3 If FILENAME$ is not the NULL string

 4 INTERPOSE (ISO-9660 File System package, FILENAME$)

 3 Return OKAY

 2 CHECK_FOR_MAC_DISK

 2 If this is a Mac partitioned disk

 3 Search the Mac partition table for the first “bootable” partition. A partition is “bootable” when the
pmPartStatus flags indicate that this is a valid, allocated, readable and bootable partition and the
pmProcessor field contains “powerpc” (using case-insensitive matching).

 3 If a Mac “bootable” partition is found

 4 If FILENAME$ is “%BOOT”

 5 If the Nth partition is marked bootable

 6 Set D.OFFSET to the byte offset from the beginning of the disk to the beginning of the
boot area, as given by the pmLgBootStart field.

 6 Set D.SIZE to the size of the partition in bytes denoted by pmBootSize.

 6 Return OKAY

 4 Else

 5 If the FILENAME$ is the NULL string

 6 Set D.OFFSET to the byte offset of the “real” partition data

 6 Set D.SIZE to the size of the “real” partition data

 5 Else

 7 INTERPOSE_BY_TYPE

 5 Return OKAY

 3 Else

 4 Return ERROR

 3 (If this point is reached, no “bootable” partition was found)

 3 Return ERROR

 1 GET-DISK-SIZE procedure

 2 Set OFFSET to 0

B.11  Support Packages 749

LoPAPR, Version 1.1 (March 24, 2016)

 2 If the parent has a “#blocks” method

 3 Execute the parent's “#blocks” and “block-size” methods

 3 Set D.SIZE to the product of the numbers they returned

 2 Else

 3 Set D.SIZE to -1

 1 SELECT_EXPLICIT_PARTITION procedure

 2 CHECK_FOR_BPB

 2 If the buffer contains a BPB

 3 If PARTITION is 1

 4 Set OFFSET to 0

 4 Set D.SIZE to the maximum size of the disk in bytes, as indicated by the information in the BIOS
Parameter Block

 4 If FILENAME$ is not the NULL string

 5 INTERPOSE (FAT File System package, FILENAME$)

 4 Return OKAY

 3 Else \ Have a BPB, but PARTITION <> 1

 4 Return ERROR

 2 CHECK_FOR_FDISK

 2 If an FDisk partition map is found

 3 Search the FDisk partition map beginning in 512-byte sector 0, reading new 512-byte sectors into the buffer
if necessary to “chain” to extended partition entries, for the Nth, where N is the value of PARTITION,
partition entry whose “type” byte is neither 0 nor 5 (5 is the type code that indicates a “chained” extended
partition entry).

 3 If the Nth partition is found:

 4 Set PARTITION-TYPE to that entry's “type” field (the byte at offset 4)

 4 Set D.OFFSET to the byte offset from the beginning of the disk to the beginning of the partition
denoted by that entry.

 4 Set D.SIZE to the size of the partition in bytes denoted by that entry.

 4 INTERPOSE_BY_TYPE

 4 Return OKAY

 3 Else \Nth partition does not exist

 4 Return ERROR

 2 CHECK_FOR_MAC_DISK

 2 If this is a Mac partitioned disk

 3 Search the Mac partition map for the Nth partition, where N is the value of PARTITION.

 3 If the Nth partition is valid, allocated, and readable

 4 If FILENAME$ is %BOOT

 5 If the Nth partition is marked bootable

 6 Set D.OFFSET to the byte offset from the beginning of the disk to the beginning of the
boot area, as given by the pmLgBootStart field.

 6 Set D.SIZE to the size of the partition in bytes denoted by pmBootSize.

 6 Return OKAY

 5 Else \Nth partition not “bootable”

 6 Return ERROR

 4 Else

 5 If FILENAME$ is not the NULL string

 6 INTERPOSE_BY_TYPE

 5 Return OKAY

 3 Else \ (If this point is reached, the partition is invalid)

 4 Return ERROR

750 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

 2 Else \ (If this point is reached, the partition map is not recognized)

 3 Return ERROR

This algorithm can be used to locate the correct partition and/or file and/or load image from the specified device. The
boot device is selected as described in 7.4.3.2 of IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2]. A filename can be explicitly given as the arguments field of the de-
vice-specifier (i.e., the field following the ':' of the last path component). Other formats may be recognized in an imple-
mentation-specific manner.

B.11.2 tape-label Support Package

The tape-label Support Package shall support tape as a standard byte device with the set of methods specified in
IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2],
Section 3.7.3. Presence of the bootinfo.txt file is optional.

The open method shall accept an argument string, where brackets denote an optional component:

[file number]

where the first file on the tape media is located at file number 0.

B.11.2.1 Tape Format

The LoPAPR tape format shall consist of files ending with a file mark (FM). The first block of data will be identified as
file 0. The bootinfo.txt file, if present, shall be located on the tape as file 0 (the first file). There shall be only one
bootinfo.txt file on the tape media. Refer to Figure 36‚ “Tape Boot Format‚” on page 750 for the LoPAPR Tape format.

Figure 36. Tape Boot Format

. . . File 0 File 1 File 2 File n File n+1
bootinfo.txt data file data file data file data file

. . . File 0 File 1 File 2 File n File n+1
data file data file data file data file data file

Optional bootinfo.txt File present

FM FM FM FM

FM FM FM FM

bootinfo.txt File not present

B.11  Support Packages 751

LoPAPR, Version 1.1 (March 24, 2016)

B.11.2.2 Tape bootinfo.txt File

The bootinfo.txt file shall have included for each set of <chrp-boot> tags a set of <boot-script> tags that contains a
pointer to the program image to be loaded (Refer to Section B.4.1.6‚ “Bootinfo Objects‚” on page 665). The form for
this tape pointer will be:

device specifier = device:file number

EXAMPLE: device specifier = tape:2 (For the specified set of <chrp-boot> tags, load the tape program image from
file 2).

A bootinfo.txt file may contain a multiple set of <chrp-boot> tags where each one can point to a different tape file
number. If a bootinfo.txt file is not present, file 0 should be a bootable file. Only file 0 will be loaded as a bootable im-
age. No other files will be searched if a bootinfo.txt file is not present unless the file number to load is specified by an
argument.

B.11.3 network Support Package

The network Support Package shall adhere to the Open Firmware: Recommended Practice - TFTP Booting Exten-
sions, Version 0.8 [10] documentation functions and conventions.

B.11.4 Program-image formats.

OF must recognize a client program that is formatted as ELF, as defined in System V Application Binary Interface,
PowerPC Processor Supplement [15], and PE, as defined in Peering Inside the PE: A Tour of the Win32 Portable Exe-
cutable File Format [13]. Other formats may be handled in an implementation-specific manner. Open Firmware: Rec-
ommended Practice - Forth Source and FCode Image Support, Version 1.0 [8] defines the FCode and Forth
Program-Image Formats.

After locating the file, OF reads the image into memory at the location specified by the load-base Configuration Vari-
able. Then, OF must perform the following procedure to prepare the image for execution.

init-program.
set restart? false
if the image is in ELF format (Refer to Section B.10.4.1.2‚ “Recognizing ELF-Format Programs‚” on page 741)

if the EI_DATA field does not match little-endian?
set little-endian? appropriately.
set restart? true

locate the PowerPC Note Section
if the Note Section’s values do not match

set Configuration Variables appropriately
set restart? true

if restart?
restart the system, possibly by executing reset-all

else
move and/or relocate the ELF image
(Refer to Section B.10.4.1.3‚ “Preparing ELF-Format Programs for Execution‚” on page 742).
set GO’s context with initial register values

else if the image is in PE format
if little-endian? is false

set little-endian? to true.
restart the system, possibly by executing reset-all

else
move and/or relocate the PE image.
set GO’s context with initial register values

752 LoPAPR Binding

 LoPAPR, Version 1.1 (March 24, 2016)

else if the image is FCode Image (hex characters F1,08)
setup system and do subsequent go and perform a byte load of the FCode
image

else if the image is Forth Code Source Image (ASCII characters \”<space>”)
setup system to evaluate Forth Source Image

else if the image is a bootinfo.txt file (i.e., begins with “<CHRP-BOOT>”)
setup system to parse the bootinfo.txt file

else
FAIL, in an implementation-specific manner.

LoPAPR, Version 1.1 (March 24, 2016)

C PA Processor Binding

C.1 Purpose of this Binding

This appendix specifies the application of OF to a PA Processor (which covers all PowerPC processors and their suc-
cessors), including requirements and practices to support unique firmware specific to a PA Processor. The core require-
ments and practices specified by OF must be augmented by processor-specific requirements to form a complete
specification for the firmware implementation for a PA processor. This appendix establishes such additional require-
ments pertaining to the processor and the support required by OF.

C.2 Overview

This appendix specifies the application of IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firm-
ware: Core Requirements and Practices [2] to computer systems that use the PA instruction set, including instruc-
tion-set-specific requirements and practices for debugging, client program interface and data formats. An
implementation of OF for PA shall implement the core requirements as defined in IEEE 1275, IEEE Standard for Boot
(Initialization Configuration) Firmware: Core Requirements and Practices [2] and the PA-specific extensions de-
scribed in this binding.

This appendix addresses Power ISA [1]. The descriptions that follow, and the relevant sections describing translation
features for this binding, assume that the system’s PA processor(s) implement the entire PA (that is, all books of Power
ISA [1]). Some processors may implement different Book II-III features; such processors may need a variant of this
binding describing the differences to the mapping functions, etc.

C.3 Terms

This standard uses the following technical terms.

core, core specification refers to IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core
Practices and Requirements

effective address The 64- or 32-bit address computed by the processor when executing a Storage Access or
Branch instruction, or when fetching the next sequential instruction. If address translation is dis-
abled, the real address is the same as the effective address. If address translation is enabled, the
real address is determined by, but not necessarily identical to, the effective address.

linkage area An area within the stack that is reserved for saving certain registers across procedure calls in
PA run-time models. This area is reserved by the caller and is allocated above the current stack
pointer (%r1).

Open Firmware (OF) The firmware architecture defined by the core specification or, when used as an adjective, a
software component compliant with the core specification.

procedure descriptor a data structure used by some PA run-time models to represent a C “pointer to procedure”. The
first word of this structure contains the actual address of the procedure.

real address An address that the processor presents on the processor bus.

754 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Real-Mode The mode in which all addresses passed between the client and OF are real addresses.

processor bus The bus that connects the CPU chip to the system.

segmented address translation

The process whereby an Effective Address (EA) is translated into a Virtual Address (VA) and
the virtual address is translated into a Real Address (RA). (seeSection C.5.1.2‚ “Segmented Ad-
dress Translation‚” on page 755 and Book III of Power ISA [1] for more detail.)

Table of Contents (TOC)

A data structure used by some PA run-time models that is used for access to global variables
and for inter-module linkage. When a TOC is used,%r2 contains its base address.

virtual address (in IEEE 1275 parlance)

The address that a program uses to access a memory location or memory-mapped device regis-
ter. Depending on the presence or absence of memory mapping hardware in the system, and
whether or not that mapping hardware is enabled, a virtual address may or may not be the same
as the physical (real) address that appears on an external bus. The IEEE 1275 definition of “vir-
tual address” corresponds to The PA's definition of “effective address.” Except as noted, this
document uses the IEEE 1275 definition of virtual address.

Virtual Address (in PA parlance)

An internal address within the PA address translation mechanism, used as in intermediate term
in the translation of an effective address to the corresponding real address.

Virtual-Mode The mode in which OF and its client share a single virtual address space, and address translation
is enabled; all addresses passed between the client and OF are virtual (translated) addresses.

C.4 Data Formats and Representations

The cell size shall be 32 bits. Number ranges for n, u, and other cell-sized items are consistent with 32-bit, two's-com-
plement number representation.

The required alignment for items accessed with a-addr addresses shall be four-byte aligned (i.e., a multiple of 4).

Each operation involving a qaddr address shall be performed with a single 32-bit access to the addressed location; sim-
ilarly, each waddr access shall be performed with a single 16-bit access. This implies four-byte alignment for qaddrs
and two-byte alignment for waddrs.

C.5 Memory Management

C.5.1 PA Address Translation Model

This section describes the model that is used for co-existence of OF and client programs (i.e., OSs) with respect to ad-
dress translation.

The following overview of translation is provided so that the issues relevant to OF for the PA can be discussed. Details
that are not relevant to OF issues (e.g., protection) are not described in detail; Power ISA [1], particularly Book III,
should be consulted for the details. For the scope of this section, terms will be used as defined in Power ISA [1].

C.5  Memory Management 755

LoPAPR, Version 1.1 (March 24, 2016)

C.5.1.1 Translation requirements

The default access mode of storage for load and stores (i.e., with translation disabled -- referred to as Real-Mode)
within the PA assumes that caches are enabled (in copy-back mode). In order to perform access to I/O device registers,
the access mode must be set to Cache-Inhibited, Guarded by establishing a translation with this mode and enabling
translation. Thus, even though most of a client program and/or OF can run with translation disabled, it must be enabled
when performing I/O.

C.5.1.2 Segmented Address Translation

Note: The use of the term Virtual Address in this section refers to the PA definition, while the rest of the document uses
the IEEE 1275 definition of virtual address.

Note: The following description of PA address translation is only one of several translation modes available and is given
for reference only. See Power ISA [1] for complete details.

An Effective Address (EA) of a PA processor is 64(32) bits wide. Each EA is translated into an 80(52)-bit Virtual Ad-
dress (VA) by prepending a 52(24)-bit Virtual Segment Id (VSID) to the 28 LSbs of the effective address. On 32-bit
implementations, the VSID is obtained by indexing into a set of 16 Segment Registers (SRs) using the 4 MSbs of the
EA. On 64-bit implementations, the VSID is looked up in a Segment Table using the 36 MSbs of the EA. Finally, the
virtual address is translated into a Real Address (RA). This is done by mapping the Virtual Page-Number (VPN) (bits
0-67(39) of the VA) into a Real Page Number (RPN) and concatenating this RPN with the byte offset (12 LSbs of the
VA). The mapping of VPN to RPN involves a hashing algorithm within a Hashed Page Table (HTAB) to locate a Page
Table Entry (PTE) that matches the VPN and using that entry’s RPN component. If a valid entry is not found, a Data
Storage Interrupt (DSI) or Instruction Storage Interrupt (ISI) is signalled, depending upon the source of the access.

This process is not performed for every translation! Processors will typically have a Translation Look-aside Buffer
(TLB) that caches the most recent translations, thus exploiting the natural spatial locality of programs to reduce the
overhead of address translation. 64-bit implementations may also implement a Segment Lookaside Buffer (SLB) for
the same reasons. On most PA processors, the TLB updates are performed in hardware. However, the architecture al-
lows an implementation to use a software-assisted mechanism to perform the TLB updates. Such schemes must not af-
fect the architected state of the processor unless the translation fails; i.e., the HTAB does not contain a valid PTE for
the VA and a DSI/ISI is signalled.

Note: One unusual feature of this translation mechanism is that valid translations might not be found in the HTAB; the
HTAB might be too small to contain all of the currently valid translations. This introduces a level of complexity
in the use of address translation by OF, as discussed below.

C.5.1.3 Block Address Translation

To further reduce the translation overhead for contiguous regions of virtual and real address spaces (e.g., a frame buf-
fer, or all of real memory), the Block Address Translation (BAT) mechanism is also supported by the PA. The Block
Address Translation involves the use of BAT entries that contain a Block Effective Page Index (BEPI), a Block Length
(BL) specifier and a Block Real Page Number (BRPN); the architecture defines 4 BAT entries for data (DBAT entries)
and 4 BAT entries for instruction (IBAT entries)1. BAT areas are restricted to a finite set of allowable lengths, all of
which are powers of 2. The smallest BAT area defined is 128 KB (217 bytes). The largest BAT area defined is 256 MB
(228 bytes). The starting address of a BAT area in both EA space and RA space must be a multiple of the area's length.

Block Address Translation is done my matching a number of upper bits of the EA (specified by the BL value) against
each of the BAT entries. If a match is found, the corresponding BRPN bits replace the matched bits in the EA to pro-
duce the RA.

1.The 601 has a single set of BAT entries that are shared by both instruction and data accesses.

756 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Block Address Translation takes precedence over Segmented Address Translation; i.e., if a mapping for a storage loca-
tion is present in both a BAT entry and a Page Table Entry or HTAB, the Block Address Translation will be used.

Note: Block Address Translation is a deprecated translation mode of the PA. This description is retained here for
historical reference. See Power ISA [1] for details on all supported addressing mechanisms.

C.5.2 OF’s use of memory

OF shall use the memory resources within the space indicated by the real-base, real-size, virt-base
and virt-size Configuration Variables defined for the PA. As described in the applicable platform binding, a
mechanism is defined to enable OF to determine if its current configuration is consistent with the requirements of the
client.

If the client program has specific requirements for physical memory or address space usage, it may establish require-
ments for OF's physical and/or virtual address space usage by means of its program header. When OF loads the client
program, it inspects the program header, and if its current usage of physical memory or virtual address space conflicts
with that specified in the program header, OF shall set the real-base, real-size, virt-base, and
virt-size to the configuration variables as specified in the header and restart itself. Real-base, real-size,
virt-base, and virt-size may be specified as -1, in which case the firmware is permitted to choose appropriate
values for the variables specified as -1.

If the values of the real-size and/or virt-size configuration variables do not provide sufficient memory and/or
virtual address space for the firmware's own use, then the firmware shall not attempt to load a client program and the
condition should be reported to the user. The possibility of not being able to comply with limitations on firmware's size
should be tested as the firmware is coming up in order to handle the possibility that a user established an unworkable
limitation on the size. Clients can minimize this exposure by setting size to -1 and allowing OF to choose the size.

A PA OF binding shall support two different addressing models, depending upon the setting of the real-mode? Con-
figuration Variable. This variable indicates the OF addressing mode that a client program expects; false (0) indicates
Virtual-Mode, true (-1) indicates Real-Mode; the default value of real-mode? is implementation dependent.

The management of real-mode? is analogous to little-endian?. OF determines its addressing mode using the
value of real-mode?. If the current state of real-mode? (and hence, the current state of OF) is incorrect, it shall
set real-mode? appropriately and reset itself, possibly by executing reset-all.

Memory that cannot be allocated for general purpose use, for example physical memory on LoPAPR systems used for
interrupt vectors and implementation specific areas, shall not appear in the “available” property of the memory
node. A Client Program that needs to use such memory for its architected purpose must not claim that area prior to use.

In the following two sections, some of conventions in Real-Mode and Virtual-Mode address translations are described.
Remaining sections describe the assumptions that OF makes about the state and control of the system in regard to OF’s
use of system resources for three OF interfaces (e.g. Device, User and Client interfaces).

C.5.2.1 Real-Mode

In Real-Mode (when real-mode? is true), the use of address translations by OF and its client are independent. Ei-
ther they do not use translation, or their translations are private; they do not share any translations. All interfaces be-
tween the two must pass the real address of the data. Any data structure shared by OF and its client that refers to virt
addresses in IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and
Practices [2], or this binding, must be real addresses.

C.5  Memory Management 757

LoPAPR, Version 1.1 (March 24, 2016)

Note: In particular, that the address of the Client interface handler, that is passed to the client, has to be a real address.

The Configuration Variables real-base and real-size should indicate the physical memory base and size in
which OF must locate itself. In Real-Mode, the Configuration Variables virt-base and virt-size do not have
meaning and should be set to -1.

C.5.2.2 Virtual-Mode

When real-mode? is false, OF shall configure itself to run in Virtual-Mode. In Virtual-Mode, OF and its client
will share a single virtual address space. This binding provides interfaces to allow OF and its client to ensure that this
single virtual address model can be maintained.

The Configuration Variables virt-base and virt-size should indicate the virtual address space base address
and size that OF should use. The Configuration Variables real-base and real-size should indicate the physical
memory base and size in which OF must locate itself.

C.5.2.3 Device Interface (Real-Mode)

While OF is performing system initialization and probing functions, it establishes and maintains its own translations.
In particular, it maintains its own Page Tables (and/or BAT entries) and handles any DSI/ISI interrupts itself.

Note: In Real-Mode, all translations will be virt=real; the primary reason for translation is to allow appropriate I/O
accesses.

C.5.2.4 Device Interface (Virtual-Mode)

OF will establish its own translation environment, handling DSI/ISI interrupts as in the Real-Mode case. However, this
environment will, in general, contain translations in which virtual addresses do not equal real addresses. The virtual ad-
dress space used by OF must be compatible with its client.

Note: Since these virtual addresses will be used by the Client and/or User Interfaces (e.g., for pointers to its code,
device-tree, etc.), their translations must be preserved until the client OS decides that it no longer requires the
services of OF.

C.5.2.5 Client Interface (Real-Mode)

In Real-Mode, addresses of client data are real.; the client must ensure that all data areas referred to across the Client
Interface are valid real addresses. This may require moving data to meet any requirements for contiguous storage areas
(e.g., for read/write calls). Translation shall be disabled before the client interface call is made.

OF will typically have to maintain its translations in order to perform I/O. Since the client may be running with transla-
tion enabled (except for the Client interface call), OF shall save the state of all relevant translation resources (e.g.,
SDR1, BATs) and restore them before returning to the client. Likewise, it may take over interrupts for its own use (e.g.,
for doing “lazy” allocation of BATs); it shall preserve the state of any interrupt vectors for its client.

Since the state of the address translation system is not predictable to any interrupts, the client shall ensure that inter-
rupts are disabled before calling the Client Interface handler and call the handler from only one CPU at a time. The cli-
ent shall also ensure that other processors do not generate translation exceptions for the duration of the call.

Client programs are not required to assume responsibility for physical memory management. The client program must
use the OF claim client interface service to allocate physical memory while physical memory is managed by OF. Phys-
ical memory shall remain managed by OF until the client program defines the real-mode physical memory manage-
ment assist callbacks. Physical memory must be managed by the client program once the client program defines the
real-mode physical memory management assist callbacks. OF shall use the client program's real-mode physical mem-

758 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

ory management assist callbacks to allocate physical memory after the client program has assumed physical memory
management.

In Real-Mode, claim methods shall not allocate more pages than are necessary to satisfy the request.

C.5.2.6 Client Interface (Virtual-Mode)

Client interface calls are essentially “subroutine” calls to OF. Hence, the client interface executes in the environment of
its client, including any translations that the OS has established. E.g., addresses passed in to the client interface are as-
sumed to be valid virtual addresses within the scope of the OS. Any DSI/ISI interrupts are either invalid addresses or
caused by HTAB “spills”. In either case, the OS has the responsibility for the handling of such exceptions.

Note: Addresses that the OF internal use will be those that were established by the Device interface (or, by subsequent
actions of the Client or User interface). Thus, the client must preserve these OF translations if it takes over the
virtual memory management function.

In addition to using existing translations, the Client Interface might require the establishment of new translations (e.g.,
due to map-in calls during open time), or the removal of old translations (e.g., during map-out calls during close
time). Since this requires altering the Client’s translation resources (e.g., Page Tables), possibly handling spill condi-
tions, OF cannot know how to perform these updates.

Hence, there shall be callback services provided by the client for use by OF for such actions; see Section C.9.5.1‚
“Real-Mode physical memory management assist callback‚” on page 780.

In order to let clients (i.e., target OSs) know where OF lives in the address space, the following rules shall be followed
by an OF implementation for the PA and by client programs.

OF:

 OF shall maintain its “translations” “mmu”-node property (see Section C.6.1.7‚ “Memory Management Unit prop-
erties‚” on page 774)

 OF’s claim methods shall not allocate more pages than are necessary to satisfy the request.

 When a client executes set-callback, OF shall attempt to invoke the “translate” callback. If the translate call-
back is implemented, OF shall cease use of address translation hardware, instead using the client callbacks for
changes to address translation.

The exit service must continue to work after a set-callback that takes over address translation. This implies that
OF takes responsibility for address translation hardware upon exit and must maintain internal information about
translations that it requests of the client.

Client Programs:

 Client programs that take control of the management of address translation hardware and expect to be able to subse-
quently invoke OF client services must provide callbacks to assist OF in address translation (see Section C.9.5.1‚
“Real-Mode physical memory management assist callback‚” on page 780).

 A client program shall not directly manipulate any address translation hardware before it either a) ceases to invoke
OF client services or b) issues a set-callback to install the “translate” callback.

C.6  Properties 759

LoPAPR, Version 1.1 (March 24, 2016)

Note: The intended sequence is that a client program will first issue a set-callback and then take control of address
translation hardware. Address translation hardware includes BAT entries, page table, segment registers, Machine
State Register and the interrupt vectors relating to translation faults.

C.5.2.7 User Interface (Real-Mode)

In Real-Mode, OF regains total control of the system. As with the Client interface in Real-Mode, it should save the
state of the translation resources (including interrupt vectors) upon entry and should restore them upon exit.

C.5.2.8 User Interface (Virtual-Mode)

When the User interface is invoked, OF is responsible for managing the machine. Therefore, it will take over control of
any relevant interrupt vectors for its own handling. In particular, it will take over DSI/ISI handling in order to report er-
rors to the user for bad addresses, protection violations, etc. However, as described above, one source of DSI/ISI may
simply be HTAB spills. As with the case of map-in and map-out calls, the User interface cannot know how to han-
dle such spill conditions, itself, or even if this is, in fact, a spill versus a bad address.

Hence, this binding defines callback services that the client provides for use by OF; see Section C.9.5.1‚
“Real-Mode physical memory management assist callback‚” on page 780.

C.6 Properties

This section describes the standard properties of a PA OF implementation.

C.6.1 CPU properties

C.6.1.1 The Device Tree

OF requires that the multiple instances of any device that appears more than once in the device tree must be distin-
guishable by means of their “reg” properties. The “reg” property must express the address of each node relative to
its parent bus. Furthermore, the core specification says that the root node of the device tree usually represents the main
physical bus of the system. Thus, if processors are not directly addressable on the main physical bus, as is expected to
be the case on many/most PA-based systems, the CPU nodes on such systems may not be children of the root node but
must instead be children of a pseudo-device node. In this case, the name of the pseudo-device node, which will usually
be a child of the root node, shall be “cpus”.

The “cpus” node shall have one child node of device_type “cpu” for each processor.

C.6.1.2 Physical Address Formats and Representations for CPU Nodes

C.6.1.2.1 Numerical Representation

The numerical representation of a processor’s “address” in a LoPAPR system shall consist of one cell, encoded as fol-
lows (Bit# 0 refers to the least significant bit):

760 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

where: pppppppp is an 8-bit integer representing the interprocessor interrupt identifier used by the platform.

C.6.1.2.2 Text Representation

The text representation of a processor’s “address” shall be an ASCII hexadecimal number in the range 0...FF.

Conversion of the hexadecimal number from text representation to numeric representation shall be case insensitive,
and leading zeros shall be permitted but not required.

Conversion from numeric representation to text representation shall use the lower case forms of the hexadecimal digits
in the range a..f, suppressing leading zeros.

C.6.1.2.3 Unit Address Representation

A processor’s “unit-number” (i.e. the first component of its “reg” value) is the interprocessor interrupt destination
identifier used by the platform. For a uni-processor platform, the “unit-number” shall be zero.

C.6.1.3 CPUS Node Properties

The following properties shall be created within the “cpus” node.

“#address-cells”

Standard property name to define the number of cells required to represent the physical addresses for the “cpu”
nodes (i.e., the children of the “cpus” node).

prop-encoded-array: Integer constant 1, encoded as with encode-int.

The value of “#address-cells” for the “cpus” node shall be 1.

“#size-cells”

Standard property name to define the number of cells necessary to represent the length of a physical address range.

prop-encoded-array: Integer constant 0, encoded as with encode-int.

The value of “#size-cells” for the “cpus” pseudo-device node is 0 because the processors that are represented
by the cpu nodes do not consume any physical address space.

C.6.1.4 CPU Node Properties

For each CPU in the system, a cpu-node shall be defined as a child of “cpus”. The following properties apply to
each of these nodes. The cpus node shall not have “reg” or “ranges” properties. In general, properties in a
cpu-node that affect the software interface (for example properties that convey the presence of instructions, presence of
registers, or location of resources) to the processor are preserved by the device tree once presented upon boot. For a list
of properties that may change before a reboot, see Table 122‚ “Properties of the Nodes That May Be Reported by
ibm,update-properties for a “Scope”‚” on page 252.

Table 256. Numerical Representation of a Processor’s “address”

Bit#
33222222
10987654

22221111
32109876

11111100
54321098

00000000
76543210

phys.lo cell: 00000000 00000000 00000000 pppppppp

C.6  Properties 761

LoPAPR, Version 1.1 (March 24, 2016)

“name”

Standard property name. The value of this property shall be of the form: “PowerPC,<name>”, where <name> is
the name of the processor chip which may be displayed to the user. <name> shall not contain underscores.

“device_type”

Standard property name. The value of this property for CPU nodes shall be “cpu”.

“reg”

Standard proper name to define a cpu node’s unit-address.

prop-encoded-array: an integer encoded as with encode-int.

For a cpu node, the first and only value of the “reg” property shall be the number of the per-processor interrupt
line assigned to the processor represented by the node. For a uni-processor platform, the value of the “reg”
property shall be zero.

“status”

Standard property name. The value of the is property shall be one of the following string values:

“okay” for a good processor.

“fail” for a processor that fails during power-on testing.

“fail-offline” for a processor that has been automatically deconfigured because of previous failures.

“disabled” for a processor that has been manually deconfigured.

“cpu-version”

property name: Represents the processor type.

prop-encoded-value: The value, encoded as with encode-int, shall be either the value obtained by reading the
Processor Version Register of the processor described by this node, or the logical processor version as given in
Table 257‚ “Logical Processor Version Values‚” on page 761. The first byte of the logical processor version value
shall be 0x0F. The values of the “Logical Processor Version” column of Table 257‚ “Logical Processor Version
Values‚” on page 761 indicate that the processor provides the base support described by that version of the archi-
tecture. The presence and value of all optional and implementation dependent features and facilities are described
by their corresponding properties.

Table 257. Logical Processor Version Values

Logical Processor Version Property Value

2.04 0x0F000001

2.05 0x0F000002

2.06 0x0F000003

2.06 plus:
URG field in DSCR (Bits 55-57)

0x0F100003

2.07 0x0F000004

2.08 0x0F000005

762 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“clock-frequency”

Standard property name, encoded as with encode-int, that represents the internal processor speed (in hertz) of
this node.

“ibm,extended-clock-frequency”

property name: Property that represents the internal processor speed in hertz of this node. This property allows the
encoding of multi-giga-hertz quantities.

prop-encoded-array: Consisting of the low order 32 bits of two cells (freq-hi, freq-lo) each encoded as with en-
code-int, such that their combined value is (the low order 32 bits of freq-hi || the low order 32 bits of freq-lo).

“timebase-frequency”

Standard property name, encoded as with encode-int, that represents the rate (in hertz) at which the PA Time-
Base and Decrementer registers are updated.

Note: The 601 PowerPC processor does not have a timebase frequency, therefore on a 601 PowerPC processor the
value reported in this property shall be 1 billion (1 x 109) which represents the logical rate of the real time clock.

“ibm,extended-timebase-frequency”

property name: Property that represents the rate in hertz at which the PA TimeBase and Decrementer registers are
updated. This property allows the encoding of multi-giga-hertz quantities.

prop-encoded-array: Consisting of the low order 32 bits of two cells (freq-hi, freq-lo) each encoded as with en-
code-int, such that their combined value is (the low order 32 bits of freq-hi || the low order 32 bits of freq-lo).

Note: The “ibm,extended-timebase-frequency” property will be deprecated from the architecture due to the
emergence of the “ibm,nominal-tbf” property and the lack of a need for a two cell version of the
“timebase-frequency” property. Implementations should not provide the
“ibm,extended-timebase-frequency” property.

“ibm,nominal-tbf”

property name: Property, encoded as with encode-int, that represents the design nominal timebase frequency
(in hertz).

“ibm,tbu40-offset”

property name: that provides the value that, when added (ignoring overflow) to the processor TimeBase, yields a
value consistent with other platform partitions that utilize their respective values of the property. If the property is
missing, the default value is zero.

prop-encoded-array: An eight byte, big endian, unsigned, binary value.

“64-bit”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node is a 64-bit implementation of
the PA. The absence of this property indicates that the microprocessor defined by this CPU node is a 32 bit imple-
mentation of the PA

“64-bit-virtual-address”

prop-encoded-array: <none>

C.6  Properties 763

LoPAPR, Version 1.1 (March 24, 2016)

This property, if present, indicates that the PA processor defined by this CPU node supports the 64-bit virtual ad-
dress subset of the 80-bit virtual address as defined by the PA. The absence of this property indicates that the PA
processor defined by this CPU node supports the full 80-bit virtual address defined by the PA. This property is
only valid for 64-bit implementations.

Note: The “64-bit-virtual-address” will be deprecated from the architecture. Implementations should not
provide this property.

“603-translation”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node uses the PowerPC 603 proces-
sor defined mechanism to update its Translation Lookaside Buffers (TLBs). The absence of this property indicates
that the PA processor defined by this CPU node does not use the PowerPC 603 processor defined mechanism to
update its TLBs.

“603-power-management”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node implements the PowerPC 603
processor defined power management states. The absence of this property indicates that the PA processor defined
by this CPU node does not support the PowerPC 603 processor defined power management states.

“bus-frequency”

Standard property name, encoded as with encode-int, that represents the speed (in hertz) of this processor’s
bus.

“ibm,extended-bus-frequency”

property name: Property that represents the rate in hertz of this processor’s bus. This property allows the encoding
of multi-giga-hertz quantities.

prop-encoded-array: Consisting of the low order 32 bits of two cells (freq-hi, freq-lo) each encoded as with en-
code-int, such that their combined value is (the low order 32 bits of freq-hi || the low order 32 bits of freq-lo).

“32-64-bridge”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node implements the “Bridge Facili-
ties and Instructions for 64-bit Implementations” as described in an appendix of Book III of Power ISA [1]. The
absence of this property indicates that the PA processor defined by this CPU node does not support these facilities
and instructions.

“external-control”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node implements the External Con-
trol Facility as described in the “Optional Facilities and Instructions” appendix of Book II of Power ISA [1]. The
absence of his property indicates that the PA processor defined by this CPU node does not support the External
Control Facility.

“general-purpose”

prop-encoded-array: <none>

764 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

This property, if present, indicates that the PA processor defined by this CPU node implements the floating point
instructions fsqrt, fsqrts and stfiwx. The absence of this property indicates that the PA processor defined by this
CPU node does not support the floating point instructions fsqrt, fsqrts and stfiwx.

“reservation-granule-size”

Standard property, encoded as with encode-int, that represents the reservation granule size (i.e., the minimum
size of lock variables) supported by this processor, in bytes.

“graphics”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node implements floating point in-
structions fres, frsqrte, and fsel. The absence of this property indicates that the PA processor defined by this CPU
node does not support the floating point instructions fres, frsqrte, and fsel.

“performance-monitor”

property name: Indicates that the processor described by this node implements a performance monitor.

prop-encoded-array: Consists of a pair of values, each encoded as with encode-int. The first value of the pair
shall be 0 indicating that the performance monitor functionality is implementation specific. The second value of
the pair represents the documentation describing the performance monitor functionality implemented by the pro-
cessor described by this node. The documentation represented by the second value is specified in Table 258‚
“Documentation for Implementation Specific Performance Monitors‚” on page 764.

“ibm,vmx”

property name that indicates that the processor supports the POWER VMX architecture.

prop-encoded-array: an integer encoded as with encode-int, that represents the level of the VMX architecture
supported. The first level supported is the value 1. The value of 1 represents the level of support described by the
A Vector/SIMD Multimedia eXtension to the PowerPC Architecture, Specification Revision 1.2.3, 7/18/97 specifi-
cation. The value of 2 represents the level of support provided by the VSX option of Power ISA [1] level 2.06.

“ibm,segment-page-sizes”

property name: that indicates the segment base page sizes and related encodings supported by the processor.

prop-encoded-array: one or more segment-page-size-descriptor(s).

segment-page-size-descriptor: a segment-page-size-header followed by a pte-lp-descriptor.

segment-page-size-header: Consists of three cells (X,Y,Z) encoded as with encode-int. The first cell repre-
sents the base page size of the segment (the page size which determines the hash value used to locate the segment's
page table entries) as 2X. The second cell contains the SLB encoding that, ORed with the RS register value for use
by a slbmte instruction, selects this segment's base page size. Note, the low order bits of the cell Y are aligned with

Table 258. Documentation for Implementation Specific Performance Monitors

Second Value Documentation

0
Power 5+ Performance

Monitor Programmer’s Guide

1
Power 7 Performance Monitor

Programmer’s Guide

C.6  Properties 765

LoPAPR, Version 1.1 (March 24, 2016)

the low order bits of RS and the RS's L and LP bits are zero prior to the logical OR operation. The third cell con-
tains the number of pte-lp-encodings in the pte-lp-descriptor.

pte-lp-descriptor: Consists of Z (from the segment-page-size-header) pte-lp-encoding(s), one for each of the page
sizes supported for this base segment page size.

pte-lp-encoding: Each pte-lp-encoding consists of two cells (P,Q) encoded as with encode-int. The first cell
represents the page size of the encoding as 2P (thus implying the number of low order RPN bits that are available
to page size encoding). The second cell, left shifted 12 bit positions, is the encoding to be entered into the available
low order RPN bits to represent this page size for this segment base page size.

Note: A segment-page-size-descriptor applies to a segment only if the size of the segment is greater than or equal to all
of the page sizes within the pte-lp-encoding(s) contained within the segment-page-size-descriptor.

“ibm,processor-page-sizes”

property name: Relates the number and sizes of the virtual memory page sizes supported by the processor describe
by this node.

prop-encoded-array: One to N cells in ascending value order, each encoded as with encode-int, each cell rep-
resents the size of a supported virtual memory page where the value of the cell is the power of 2 of the cell size. i.e.
a 4 K page size is represented by the value 12 (4 K= 212) etc.

“ibm,processor-segment-sizes”

property name: Relates the number and sizes of the virtual memory segment sizes supported by the processor de-
scribed by this node.

prop-encoded-array: One to N cells in ascending value order of the segment selector (SLBE B field), each en-
coded as with encode-int, each positive value cell represents the size of a supported virtual memory segment
where the value of the cell is the power of 2 of the segment size. That is, a 256Meg segment size is represented by
the value 28 (256Meg = 228) etc. (negative valued cells represent unsupported encodings).

“ibm,processor-storage-keys”

property name indicating the number of virtual storage keys supported by the processor described by this node.

prop-encoded-array: Consists of two cells encoded as with encode-int. The first cell represents the number of
virtual storage keys supported for data accesses while the second cell represents the number of virtual storage keys
supported for instruction accesses. The cell value of zero indicates that no storage keys are supported for the ac-
cess type.

“ibm,processor-vadd-size”

property name indicating the number of virtual address bits that are supported by the processor described by this
node.

prop-encode-array: An integer, encoded as with encode-int, that represents the number of supported virtual
address bits.

Note: A processor described by this node implements the least significant “ibm,processor-vadd-size” bits of
the architected virtual address.

“ibm,vrma-page-sizes”

property-name: Maps the VRMASD field values implemented by the processor described by this node to their
page sizes.

766 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

prop-encoded-array: Array of one or more VRMA page-size-descriptor(s) starting with the value selected by the
firmware when booting the partition, followed by the other values supported by the platform.

VRMA page-size-descriptor: A pair of cells encoded as with encode-int; The first cell is the log base 2 of the
page size. The second cell contains, in its low order bits, the VRMASD field value to achieve that supported size.
The high order bits of the second cell are zero.

“ibm,estimate-precision”

property name: Relates PA estimate instruction mnemonics to precisions supported by the processor described by
this node.

prop-encoded-array: One or more instruction-precision descriptor(s).

instruction-precision descriptor: An instruction descriptor followed by a precision descriptor. An instruction-pre-
cision descriptor relates one estimate instruction mnemonic to the precision supported by the processor described
by this node for that estimate instruction mnemonic.

instruction descriptor: Consists of one PA instruction mnemonic encoded as with encode-string.

precision descriptor: Consists of an integer, encoded as with encode-int, specifying the number of bits of pre-
cision the processor described by this node supports for an instruction mnemonic.

“ibm,dfp”

property name: Indicates that the processor described by this node supports the Decimal Floating Point (DFP) ar-
chitecture.

prop-encoded-value: an integer, encoded as with encode-int, that represents the level of DFP support of the
CPU described by this node. The absolute value of the integer represents the level of the DFP architecture sup-
ported. The sign of the integer indicates how the architecture level is supported. A positive integer indicates native
support while a negative integer indicates emulation assisted support. The absolute values supported are as fol-
lows:

1: Represents the level of support defined by Version 2.05 of the Power ISA [1].
2: Represents the level of support defined by Version 2.06 of the Power ISA [1].

“ibm,purr”

property name: Indicates that the processor described by this node implements a Processor Utilization of Re-
sources Register (PURR).

prop-encoded-value: an integer, encoded as with encode-int, that represents the level of PURR architecture
supported. The first level supported is the value 1 and is defined by Section 6.5 “Processor Utilization of Re-
sources Register” of Book III of version 2.02 of the PA.

“ibm,spurr”

property name: Indicates that the processor described by this node implements a Scaled Processor Utilization of
Resources Register (SPURR).

prop-encoded-value: an integer, encoded as with encode-int, that represents the level of SPURR architecture
supported. The value of 1 represents the level of support defined by Version 2.05 of the Power ISA [1].

“ibm,pa-features”

property name: Indicates level of support of several extended features of the Processor Architecture.

prop-encoded-array: One or more attribute-descriptor(s).

C.6  Properties 767

LoPAPR, Version 1.1 (March 24, 2016)

attribute-descriptor: Consists of an attribute-header immediately followed by an attribute-specifier.

attribute-header: Consists of two bytes. The first byte is an unsigned integer representing a value from 1 to 254.
The first byte specifies the number of bytes implemented by the platform of the attribute-specifier. The second
byte is an unsigned integer specifying the attribute-specifier-type.

attribute-specifier: The attribute-specifier is defined by the attribute-specifier-type of the attribute-header. The at-
tribute-specifier for the attribute-specifier-type value of 0 is defined by Table 259‚ “attribute-specifier definition
for attribute-specifier-type value 0‚” on page 767.

Table 259. attribute-specifier definition for attribute-specifier-type value 0

Byte Number Bit Number Attribute Name Description

0

0
Memory Management Unit

(MMU)
The value of 1 indicates MMU support; else not supported.

1 Floating Point Unit (FPU) The value of 1 indicates FPU support; else not supported.

2
Segment Lookaside Buffer

(SLB).
The value of 1 indicates SLB support; else not supported.

3 RUN field
The value of 1 indicates support for the RUN field of the Control

Register (CTRL, SPR #152); else not supported.

4 Reserved Reserved bits within defined bytes shall be zero.

5
Data Address Breakpoint

Register (DABR)
The value of 1 indicates DABR support; else not supported.

6
No Execute (N) bit in Page

Table Entries.
The value of 1 indicates No Execute (N) bit in Page Table Entry

support; else not supported.

7 Write Through Required (W) bit
The value of 1 indicates setting the W bit to 1 (write through

always) is supported; else attempting to set the W bit to 1 has no
effect

1

0
Memory Coherence Required

(M) bit

The value of 1 indicates that setting the M bit to 0 (main storage
not always coherent) is supported; else attempting to set the M bit

to 0 has no effect.

1
Data Storage Interrupt Status
Register (DSISR) set on an

alignment interrupt.

The value of 1 indicates that the DSISR is set on an alignment
interrupt as described by version 2.01 of PA; else the DSISR is

not set on alignment interrupt as described by version 2.01 of PA.

2
I=1 (cache inhibited) Large

Pages
The value of 1 indicates support for I=1 (cache inhibited) large

pages; else not supported.

3
Round to Integer (from floating

point) group of instructions.
The value of 1 indicates support for the frin, friz, frip, and frim

instructions; else these instructions are not supported.

4
Data Address Breakpoint

Register Extension (DABRX)
The value of 1 indicates support for the DABRX architecture as

defined by version 2.02 of PA; else not supported.

5 User Accessible SPRG3
The value of 1 indicates support for accessing SPRG3 in Problem

State; else SPRG3 is not accessible in Problem State.

6
Reading an invalid SLB entry

returns zeros.
The value of 1 indicates that reading an invalid SLB entry always

returns zeros; else non-zero values may be returned.

7
Support for “110” value of the

Page Protection (PP) bits.

The value of 1 indicates support for “110” value of the Page
Protection (PP) bits as described by version 2.04 of PA; else

“110” is not supported.as described by 2.04 of PA.

768 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

2

0
Virtualized Partition Memory

(VPM)
The value of 1 indicates support for Virtualized Partition Memory
(VPM) as described by version 2.04 of PA; else not supported.

1 2.05 Data Stream Support
The value of 1 indicates that data streams as described by version

2.05 of PA are supported; else not supported.

2 Reserved Reserved bits within defined bytes shall be zero.

3
Data Address Register (DAR)
set on an alignment interrupt.

The value of 1 indicates that the DAR is set on an alignment
interrupt as described by version 2.01 of PA; else the DAR is not

set on alignment interrupt as described by version 2.01 of PA.

4 Reserved Reserved bits within defined bytes shall be zero.

5
Program Priority Register

(PPR)

The value of 1 indicates that the PPR is implemented as described
by version 2.03 of PA; else the PPR is not implemented as

described by version 2.03 of PA.

6 2.02 Data Stream Support
The value of 1 indicates that data streams as described by version

2.02 of PA are supported; else not supported.

7 2.06 Data Stream Support
The value of 1 indicates that data streams as described by version
2.06 of PA are supported; else the 2.06 version data streams are

not supported.

3

0
LSD in DSCR(Bit 58) The value of 1indicates that “Load Stream Disable” bit of the

Data Stream Control Register is implemented

1
URG in DSCR (Bits 55::57) The value of 1 indicates that the “Depth Attainment Urgency”

field of the Data Stream Control Register is implemented.

2-7 Reserved Reserved bits within defined bytes shall be zero.

4

Storage Order Options Byte bits define the availability of specific options

0 2.06 Strong Storage Order
The value of 1 indicates that Strong Storage Order as defined by

version 2.06 of PA is supported; else not.

1-7
Reserved for future storage

order options
Reserved bits within defined bytes shall be zero.

5

0 Little Endian
The value of 1indicates support for Little Endian as described by

version 2.03 of PA; else not supported.

1
Come From Address Register

(CFAR)

The value of 1 indicates that the CFAR is implemented as
described by version 2.05 of PA; else the CFAR is not

implemented as described by version 2.05 of PA.

2 Elemental Barriers
The value of 1 indicates that elemental barriers are supported;

else elemental barriers are not supported.

3 2.07 load/store quadword
The value of 1 indicates that the load/store quadword category as
described by version 2.07 of POWER ISA is supported; else the

2.07 version load/store quadword category is not supported.

4-7 Reserved Reserved bits within defined bytes shall be zero.

6-7

Data Streaming Specifications

0 2.07 Data Streaming Support
The value of 1 indicates that data streams as described by version

2.07 of POWER ISA are supported; else the 2.07 version data
streams are not supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

Table 259. attribute-specifier definition for attribute-specifier-type value 0 (Continued)

Byte Number Bit Number Attribute Name Description

C.6  Properties 769

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,pi-features”

property name: Indicates level of support of processor implementation specific options not described by the Pro-
cessor Architecture.

prop-encoded-array: One or more pi-attribute-descriptor(s).

pi-attribute-descriptor: Consists of a pi-attribute-header immediately followed by a pi-attribute-specifier.

pi-attribute-header: Consists of two bytes. The first byte is an unsigned integer representing a value from 1 to 254.
The first byte specifies the number of bytes implemented by the platform of the pi-attribute-specifier. The second
byte is an unsigned integer specifying the pi-attribute-specifier-type.

pi-attribute-specifier: The pi-attribute-specifier is defined by the pi-attribute-specifier-type of the pi-attri-
bute-header. The pi-attribute-specifier for the pi-attribute-specifier-type value of 0 is defined by Table 260‚ “‘def-
inition for pi-attribute-specifier-type value 0‚” on page 770.

8-15 0-7 Reserved Co-Processor Option

Individual non-zero bits indicate available coprocessor types per
their architected ACOP bit locations. (the value

0x0000000000000000 indicates that moving to/from the ACOP
SPR or the ICSWX instruction should not be attempted)

16-17

Level of Vector Category Support

0 2.07 Vector Support
The value of 1 indicates that the vector category as described by
version 2.07 of POWER ISA is supported; else the 2.07 version

vector category is not supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

18-19

Level of Vector Scalar Category Support

0 2.07 Vector Scalar Support
The value of 1 indicates that the vector scalar category as

described by version 2.07 of POWER ISA is supported; else the
2.07 version vector scalar category is not supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

20-21

Level of Vector.XOR Category Support

0 2.07 Vector.XOR Support
The value of 1 indicates that the vector.xor category as described

by version 2.07 of POWER ISA is supported; else the 2.07
version vector.xor category is not supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

22-23

Level of Transactional Memory Category Support

0
2.07 Transactional Memory

Support

The value of 1 indicates that the Transactional Memory Category
as described by version 2.07 of POWER ISA is supported; else

the 2.07 version Transactional Memory Category is not
supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

24-255 0-7 Undefined Readers shall ignore undefined bytes if present.

Table 259. attribute-specifier definition for attribute-specifier-type value 0 (Continued)

Byte Number Bit Number Attribute Name Description

770 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

“ibm,negotiated-pa-features”

property name: Indicates level of support negotiated via the ibm,client-architecture-support
method (See Appendix B, “LoPAPR Binding,” on page 661) of several extended features of the Processor Archi-
tecture.

prop-encoded-array: One or more negotiated-pa-attribute-descriptor(s).

negotiated-pa-attribute-descriptor: Consists of a negotiated-pa-attribute-header immediately followed by a nego-
tiated-pa-attribute-specifier.

negotiated-pa-attribute-header: Consists of two bytes. The first byte is an unsigned integer representing a value
from 1 to 254. The first byte specifies the number of bytes implemented by the platform of the negotiated-pa-attri-
bute-specifier. The second byte is an unsigned integer specifying the negotiated-pa-attribute-specifier-type.

negotiated-pa-attribute-specifier: The negotiated-pa-attribute-specifier is defined by the negotiated-pa-attri-
bute-specifier-type of the negotiated-pa-attribute-header. The negotiated-pa-attribute-specifier for the negoti-
ated-pa-attribute-specifier-type value of 0 is defined by Table 261‚ “negotiated-pa-attribute-specifier definition
for negotiated-pa-attribute-specifier-type value 0‚” on page 770.

Table 260. ‘definition for pi-attribute-specifier-type value 0

Byte Number Bit Number Attribute Name Description

0

0
P4 Data Address Register

(DAR) setting on alignment
interrupt.

The value of 1 indicates that the DAR is set on an alignment
interrupt as described by version 2.01 of PA except for the case
where the interrupt is caused by an unsupported access to cache
inhibited space. In this case, the DAR will be set to the effective

address of the first access into the cache inhibited space. The
value of 0 indicates that the processor does not adhere to this

behavior.

1 Reserved Reserved bits within defined bytes shall be zero.

2
Ordered Thread

Activation/Deactivation

The value of 1 indicates that the
“ibm,ppc-interrupt-server-#s” property conveys the

order that threads need to be activated and deactivated in to
achieve optimal performance; else no need to activate and

deactivate threads in order.

3-7 Reserved Reserved bits within defined bytes shall be zero.

1-255 0-7 Reserved Reserved bits within defined bytes shall be zero.

Table 261. negotiated-pa-attribute-specifier definition for negotiated-pa-attribute-specifier-type value 0

Byte Number Bit Number Attribute Name Description

0
0 TC Set

The value of 1 indicates that the TC bit is implemented as
described by version 2.05 of PA and set to a value of 1; else the
TC bit is not implemented as described by version 2.05 of PA or

not set to a value of 1.

1-7 Reserved Reserved bits within defined bytes shall be zero.

1-255 0-7 Reserved Reserved bits within defined bytes shall be zero.

C.6  Properties 771

LoPAPR, Version 1.1 (March 24, 2016)

“ibm,raw-pi-features”

property name: Indicates level of support of processor implementation specific options not described by the Pro-
cessor Architecture and not supported on partitions that contain the “ibm,migratable-partition” prop-
erty.

prop-encoded-array: One or more raw-pi-attribute-descriptor(s).

raw-pi-attribute-descriptor: Consists of a raw-pi-attribute-header immediately followed by a raw-pi-attri-
bute-specifier.

raw-pi-attribute-header: Consists of two bytes. The first byte is an unsigned integer representing a value from 1 to
254. The first byte specifies the number of bytes implemented by the platform of the raw-pi-attribute-specifier.
The second byte is an unsigned integer specifying the raw-pi-attribute-specifier-type.

raw-pi-attribute-specifier: The raw-pi-attribute-specifier is defined by the raw-pi-attribute-specifier-type of the
raw-pi-attribute-header. The raw-pi-attribute-specifier for the raw-pi-attribute-specifier-type value of 0 is defined
by Table 262‚ “raw-pi-attribute-specifier definition for raw-pi-attribute-specifier-type value 0‚” on page 771.

“ibm,pa-optimizations”

property name: Indicates the level of support of performance variabilities described by the Processor Architecture.

prop-encoded-array: One or more pa-optimization-attribute-descriptor(s).

pa-optimization-attribute-descriptor: Consists of a pa-optimization-attribute-header immediately followed by a
pa-optimization-attribute-specifier.

pa-optimization-attribute-header: Consists of two bytes. The first byte is an unsigned integer representing a value
from 1 to 254. The first byte specifies the number of bytes implemented by the platform of the pa-optimization-at-
tribute-specifier. The second byte is an unsigned integer specifying the pa-optimization-attribute-specifier-type.

pa-optimization-attribute-specifier: The pa-optimization-attribute-specifier is defined by the pa-optimization-at-
tribute-specifier-type of the pa-optimization-attribute-header. The pa-optimization-attribute-specifier for the
pa-optimization-attribute-specifier-type value of 0 is defined by Table 263‚ “pa-optimization-attribute-specifier
definition for pa-optimization-attribute-specifier-type value 0‚” on page 771.

Table 262. raw-pi-attribute-specifier definition for raw-pi-attribute-specifier-type value 0

Byte Number Bit Number Attribute Name Description

0
0 FPR GPR Move Instructions

The value of 1 indicates that the PA processor defined by this
CPU node implements the mftgpr and mffgpr instructions as
described by IBM POWER6® CEC Book IV Implementation

Features; else not supported.

1-7 Reserved Reserved bits within defined bytes shall be zero.

1-255 0-7 Reserved Reserved bits within defined bytes shall be zero.

Table 263. pa-optimization-attribute-specifier definition for pa-optimization-attribute-specifier-type value 0

Byte Number Bit Number Attribute Name Description

0 0-7 Stream IDs
The value is an unsigned quantity indicating the number of data
stream IDs supported. The value of this byte shall be zero for

processors that do not support data streams.

772 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

C.6.1.5 TLB properties

Since the PA defines the MMU as being part of the processor, the properties defined by Section 3.6.5 of IEEE 1275,
IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2] and the follow-
ing MMU-related properties shall be presented under “cpu” nodes.

“tlb-size”

Standard property name, encoded as with encode-int, that represents the total number of TLB entries.

“tlb-sets”

Standard property name, encoded as with encode-int, that represents the number of associativity sets of the
TLB. A value of 1 indicates that the TLB is fully-associative.

“tlb-split”

This property, if present, shall indicate that the TLB has a split organization. The absence of this property shall in-
dicate that the TLB has a unified organization.

“d-tlb-size”

Standard property name, encoded as with encode-int, that represents the total number of d-TLB entries.

“d-tlb-sets”

Standard property name, encoded as with encode-int, that represents the number of associativity sets of the
d-TLB. A value of 1 indicates that the d-TLB is fully-associative.

“i-tlb-size”

Standard property name, encoded as with encode-int, that represents the total number of i-TLB entries.

“i-tlb-sets”

Standard property name, encoded as with encode-int, that represents the number of associativity sets of the
i-TLB. A value of 1 indicates that the i-TLB is fully-associative.

“tlbia”

prop-encoded-array: <none>

This property, if present, indicates that the PA processor defined by this CPU node implements the
tlbia instruction. The absence of this property indicates that the PA processor defined by this CPU node does not
support the tlbia instruction.

1 0-7 Default Prefetch Depth

The value in the Default Prefetch Depth (DPFD) field of the
Logical Partitioning Control Register (LPCR) as described by

version 2.05 of PA. Unimplemented high order bits shall be zero.
This byte is valid only if the “2.05 Data Stream Support” bit of
“ibm,pa-features” is set to one; else this byte is undefined.

2-255 0-7 Reserved Reserved bits within defined bytes shall be zero.

Table 263. pa-optimization-attribute-specifier definition for pa-optimization-attribute-specifier-type value 0 (Continued)

Byte Number Bit Number Attribute Name Description

C.6  Properties 773

LoPAPR, Version 1.1 (March 24, 2016)

C.6.1.6 Internal (L1) cache properties

The PA defines a Harvard-style cache architecture; however, unified caches are an implementation option. All of the
PA cache instructions act upon a cache “block”. The coherence block size, if different from the cache block size, is re-
ported via the “i-cache-line-size” and “d-cache-line-size” properties. The internal (also referred to
as “L1”) caches of PA processors are represented in the OF device tree by the following properties contained under
“cpu” nodes.

“cache-unified”

This property, if present, indicates that the internal cache has a physically unified organization. Absence of this
property indicates that the internal caches are implemented as separate instruction and data caches. Unless other-
wise noted, separate instruction and data caches require the architected instruction sequence for instruction modi-
fication so that data cache stores appear in the instruction cache.

“i-cache-size”

Standard property name, encoded as with encode-int, that represents the total size (in bytes) of the internal in-
struction cache.

“i-cache-sets”

Standard property name, encoded as with encode-int, that represents number of associativity sets of the inter-
nal instruction cache. A value of 1 signifies that the instruction cache is fully associative.

“i-cache-block-size”

Standard property name, encoded as with encode-int, that represents the internal instruction cache's block
size, in bytes.

“d-cache-size”

Standard property name, encoded as with encode-int, that represents the total size (in bytes) of the internal
data cache.

“d-cache-sets”

Standard property name, encoded as with encode-int, that represents number of associativity sets of the inter-
nal data cache. A value of 1 signifies that the data cache is fully associative.

“d-cache-block-size”

Standard property name, encoded as with encode-int, that represents the internal (L1) data cache's block size,
in bytes.

“l2-cache”

Standard property name, encoded as with encode-int, that represents the next level of cache in the memory hi-
erarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the phandle of
the device node that represents the next level of cache.

“i-cache-line-size”

Standard property name, encoded as with encode-int, that represents the internal instruction cache's coherency
block size (line size), in bytes, if different than its cache block size.

“d-cache-line-size”

774 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Standard property name, encoded as with encode-int, that represents the internal data cache's coherency block
size (line size), in bytes, if different than its cache block size.

Note: If this is a unified cache, the corresponding i- and d- sizes must be equal.

C.6.1.7 Memory Management Unit properties

To aid a client in “taking over” the translation mechanism and still interact with OF (via the client interface), the client
needs to know what translations have been established by OF. The following standard property shall exist within the
package to which the “mmu” property of the /chosen package refers.

“translations”

This property, consisting of sets of translations, defines the currently active translations that have been established
by OF (e.g., using map). Each set has the following format:

(virt size phys mode)

Each value is encoded as with encode-int.

C.6.1.8 SLB properties

Since the PA defines the MMU as being part of the processor, the properties defined by Section 3.6.5 of IEEE 1275,
IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2] and the follow-
ing MMU-related properties as appropriate to the specific processor implementation shall be presented under “cpu”
nodes.

“slb-size”

Standard property name, encoded as with encode-int, that represents the total number of SLB entries.

Note: Power ISA [1] requires that the SLB be fully-associative, and appear to be a unified organization. Therefore,
properties to report SLB sets, split, and sizes and sets of i and d SLBs are not defined.

C.6.2 Ancillary (L2,L3...) cache node properties

Some systems might include secondary (L2) or tertiary (L3), etc. cache(s). As with the L1 caches, they can be imple-
mented as either Harvard-style or unified. Unlike the L1 properties, that are contained within the “cpu” nodes, the
properties of ancillary caches are contained within other device tree nodes.

The following properties define the characteristics of such ancillary caches. These properties shall be contained within
a child node of one of the CPU nodes or, for platforms that support dynamic reconfiguration of cpus, the CPUS node;
this is to allow path-name access to the node. These properties shall always be contained within a child node of the
CPUS node. All “cpu” nodes that share the same ancillary cache (including the cpu node under which the ancillary
cache node is contained) shall contain an “l2-cache” property whose value is the phandle of that ancillary cache
node.

Note: The “l2-cache” property shall be used in one level of the cache hierarchy to represent the next level. The device
node for a subsequent level shall appear as a child of one of the caches in the hierarchy to allow path-name
traversal. The preceding sentence does not apply to platforms that support dynamic reconfiguration of cpus or
platforms designed after 07/2005.

“device_type”

Standard property name; the device_type of ancillary cache nodes shall be “cache”.

C.7  Methods 775

LoPAPR, Version 1.1 (March 24, 2016)

“cache-unified”

This property, if present, indicates that the cache at this node has a physically unified organization. Absence of this
property indicates that the caches at this node are implemented as separate instruction and data caches. Unless oth-
erwise noted, separate instruction and data caches require the architected instruction sequence for instruction mod-
ification so that data cache stores appear in the instruction cache.

“i-cache-size”

Standard property name, encoded as with encode-int, that represents the total size (in bytes) of the instruction
cache at this node.

“i-cache-sets”

Standard property name, encoded as with encode-int, that represents number of associativity sets of the in-
struction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

“d-cache-size”

Standard property name, encoded as with encode-int, that represents the total size (in bytes) of the data cache
at this node.

“d-cache-sets”

Standard property name, encoded as with encode-int, that represents number of associativity sets of the in-
struction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

“l2-cache”

Standard property name, encoded as with encode-int, that represents the next level of cache in the memory hi-
erarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the phandle of
the device node that represents the cache at the next level.

“i-cache-line-size”

Standard property name, encoded as with encode-int, that represents the internal instruction cache's line size,
in bytes, if different than its block size.

“d-cache-line-size”

Standard property name, encoded as with encode-int, that represents the internal data cache's line size, in
bytes, if different than its block size.

Note: If this is a unified cache, the corresponding i- and d- sizes must be equal.

C.7 Methods

This section describes the additional standard methods required of a PA OF implementation.

C.7.1 MMU related methods

The MMU methods defined by section 3.6.5. of IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2] shall be implemented by CPU nodes. The value of the mode parame-
ter for the relevant methods (e.g., map) shall be the value that is contained within PTEs that control Write-through,
Cache-Inhibit, Memory-coherent, Guarded and the 2 protection bits; thus, its format is: WIMGxPP, where x is a re-

776 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

served bit that shall be 0. In order for I/O accesses to be properly performed in a LoPAPR system, address ranges that
are mapped by map-in shall be marked as Cache-Inhibited, Guarded.

The default mode (i.e., the mode specified when the value of the mode argument is -1) for the map-in and modify
MMU methods of CPU nodes is defined as follows:

If the beginning of the physical address range affected by the operation refers to system memory, the values for
WIMGxPP shall be W=0, I=0, M=0, G=1, PP=10.

If the beginning of the physical address range affected by the operation refers to an I/O address, the values for
WIMGxPP shall be W=1, I=1, M=0, G=1, PP=10.

C.8 Client Interface Requirements

A PA OF implementation shall implement a client interface (as defined in chapter 6 of IEEE 1275, IEEE Standard for
Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2]) according to the specifications
contained within this section.

C.8.1 Calling Conventions

To invoke a client interface service, a client program constructs a client interface argument array as specified in the
core OF document, places its address in r3 and transfers to the client interface handler, with the return address in lr.
(A typical way of accomplishing this is to copy the client interface handler's address into ctr and executing a bc-
trl.)

The term “preserved” below shall mean that the register has the same value when returning as it did when the call was
made.

Table 264. Register usage conventions

Register(s) Value -- real-mode Value -- virt-mode Notes

If either the FWNMI,
or LPAR option is
implemented

If neither the FWNMI
or LPAR option is
implemented

If either the FWNMI,
or LPAR option is
implemented

If neither the FWNMI
or LPAR option is
implemented

msr
client interface shall
preserve

client interface shall
preserve

same as real-mode
client interface shall
not modify

cr
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode 1

r1-r2
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode

r3
argument array
address on client
interface entry

argument array
address on client
interface entry

same as real-mode same as real-mode 2

result value (true or
false) on client
interface return

result value (true or
false) on client
interface return

same as real-mode same as real-mode 2

r13-r31
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode

sprg0, sprg1, and
sprg3

client interface shall
preserve

client interface shall
not modify

same as real-mode same as real-mode

C.9  Client Program Requirements 777

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. Only the non-volatile fields (cr2-cr4) need to be preserved.

2. As defined by section 6.3.1. of IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firm-
ware: Core Requirements and Practices [2].

3. Other special purpose registers

The client interface handler shall perform the service specified by the contents of the argument array that begins at the
address in r3, place the return value (indicating success or failure of the attempt to invoke the client interface service)
back into r3, and return to the client program. This is typically done by a Branch to Link Register (blr).

The client interface handler shall preserve the contents of the Stack Pointer (r1), TOC Pointer (r2), Condition Register
(cr) all non-volatile registers (r13-r31) and all special purpose registers except lr, ctr and xer.

The preservation of r2 allows TOC-based client programs to function correctly. OF shall not depend upon whether its
client is TOC-based or not. If the client interface handler, itself, is TOC-based, it must provide for the appropriate ini-
tialization of its r2.

C.9 Client Program Requirements

C.9.1 Load Address

The client’s load address is specified by the value of the load-base Configuration Variable. The value of
load-base defines the default load address for client programs when using the load method. Load-base shall be
a real address in real mode or a virtual address in virtual mode. Note that this address represents the area into which the
client program file will be read by load; it does not correspond to the addresses at which the program will be exe-
cuted. All of physical memory from load-base to either the start of OF physical memory or the end of physical
memory, whichever comes first, shall be available for loading the client program.

fpscr
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode

f0-f31
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode

lr,
ctr,
xer

undefined undefined same as real-mode same as real-mode

sr0-sr15
client interface shall
preserve

client interface shall
preserve

same as real-mode
client interface shall
not modify

vr0-vr31
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real mode

dec
client interface shall
preserve

client interface shall
not modify

same as real-mode same as real mode

Other SPRs
client interface shall
preserve

client interface shall
preserve

same as real-mode same as real-mode 3

Table 264. Register usage conventions (Continued)

Register(s) Value -- real-mode Value -- virt-mode Notes

778 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

C.9.2 Initial Program State

This section defines the “initial program state”, the execution environment that exists when the first machine instruc-
tion of a client program of the format specified above begins execution. Many aspects of the “initial program state” are
established by init-program, which sets the saved program state so that subsequent execution of go will begin ex-
ecution of the client program with the specified environment.

C.9.2.1 Initial Register Values

Upon entry to the client program, the following registers shall contain the following values:

Notes:

1. OF will typically require the use of external interrupts for its user interface. However, when a client pro-
gram is invoked, external interrupts shall be disabled. If a client program causes the invocation of the user
interface, external interrupts may be re-enabled.

2. The 601 processor uses a different mechanism for controlling the endian-mode of the processor. On the 601,
the LE bit is contained in the HID0 register; this bit controls the endian-mode of both program and privi-
leged states.

3. OF does not make any assumptions about whether a client program is TOC-based or not. It is the responsi-
bility of the client program to set r2 to its TOC, if necessary.

Table 265. Initial Register Values

Register(s) Value Notes

msr EE = 0, interrupts disabled 1

PR = 0, supervisor state

FP = 1, floating point enabled

ME = 1, machine checks enabled

FE0, FE1 = 0, floating point exceptions disabled

IP, see Section C.9.4‚ “Interrupts‚” on page 779

IR,DR, see Section C.5.2.1‚ “Real-Mode‚” on page 756

SF=0, 32-bit mode

ILE,LE, little endian support 2

r1 See Section C.9.2.2‚ “Initial Stack‚” on page 779

r2 0 3

r3 reserved for platform binding 4

r4 reserved for platform binding 4

r5 See Section C.9.2.3‚ “Client Interface Handler Address‚” on page 779

r6, r7 See Section C.9.2.4‚ “Client Program Arguments‚” on page 779

Other user mode
registers

0

C.9  Client Program Requirements 779

LoPAPR, Version 1.1 (March 24, 2016)

4. As defined in the relevant section of the platform binding.

C.9.2.2 Initial Stack

Client programs shall be invoked with a valid stack pointer (r1) with at least 32 KB of memory available for stack
growth. The stack pointer shall be 16-byte aligned, reserving sufficient room for a linkage area (32 bytes above the ad-
dress in r1). If the system is executing in Real-Mode, the value in r1 is a real address; if in Virtual-Mode, the address in
r1 is a mapped virtual address.

C.9.2.3 Client Interface Handler Address

When client programs are invoked, r5 shall contain the address of the entry point of the client interface handler. If the
system is executing in Real-Mode, the value in r5 is a real address; if in Virtual-Mode, the address in r5 is a mapped
virtual address.

Note: This address points to the first instruction of the client interface handler, not to a procedure descriptor.

C.9.2.4 Client Program Arguments

The calling program may pass to the client an array of bytes of arbitrary content; if this array is present, its address and
length shall be passed in registers r6 and r7, respectively. For programs booted directly by OF, the length of this array
is zero. Secondary boot programs may use this argument array to pass information to the programs that they boot.

Note: The OF standard makes no provision for specifying such an array or its contents. Therefore, in the absence of
implementation-dependent extensions, a client program executed directly from an OF implementation will not be
passed such an array. However, intermediate boot programs that simulate or propagate the OF client interface to
the programs that they load can provide such an array for their clients.

Note: boot command line arguments, typically consisting of the name of a file to be loaded by a secondary boot program
followed by flags selecting various secondary boot and OS options, are provided to client programs via the
“bootargs” and “bootpath” properties of the /chosen node.

C.9.3 Caching

The caches of the processor shall be enabled when the client program is called. The I-cache shall be consistent with the
D-cache for all memory areas occupied by the client program. Memory areas allocated on behalf of the client program
shall be marked as cacheable. Accesses to “I/O” devices (especially, to devices across “bridges”) shall be made with
the register access words (e.g., %rl@). All processors in a SMP system shall have the same consistent view of all mem-
ory areas (for data references). No more than one processor shall have a modified copy of the same data area in its
cache when the client program is called.

Note: If firmware makes cacheable M=0 data references from different processors on a SMP system, it may have to
perform additional cache management to meet this requirement.

C.9.4 Interrupts

OF requires that interrupts be “vectored” to its handlers when it is in control of the processor; this will occur when the
User Interface is running. Client Interface calls are considered to execute in the environment of the client, and hence,
OF does not assume ownership of interrupts.

780 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Note: There used to be a paragraph here that said an area of memory was to be reserved by the client program for the
exclusive use of OF. This requirement has been removed, since the sharing of interrupt vectors on these platforms
has not been found to be practical.

OF shall save and restore the first location of each interrupt that it wants to “take over”. I.e., whenever OF needs the
use of an interrupt, it shall save the current contents of the corresponding entry point and replace that location with a
branch to its entry point. When OF returns control, it shall restore the RAM location to its original contents.

C.9.5 Client callbacks

This section defines the callback mechanism that allows OF to access services exported to it by the client program. As
described in section 6.3.2 and the glossary entries for callback and $callback in IEEE 1275, IEEE Standard for
Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2], the callback mechanism follows
the same rules as those of Client interface calls. I.e., an argument array is constructed by OF and the address of that ar-
ray is passed (via r3) to the client’s callback routine; the address of the callback routine is supplied to OF by means of
the set-callback client call.

If the system is running in Real-Mode, the address of the client callback routine shall be a real address; if it is running
in Virtual-Mode, the client callback routine address shall be a mapped virtual address.

C.9.5.1 Real-Mode physical memory management assist callback

Once the control of physical memory is transferred to the client program, OF which is running in real-mode shall use
the callback service provided by the client program to allocate physical memory. Client programs which expect OF to
operate in read-mode must implement the following physical memory management client callback routines for OF:

alloc-real-mem

IN: [address] min_addr, [address] max_addr, size, mode

OUT: error, [address] real_addr

This routine allocates a contiguous physical memory of size bytes within the address range between min_addr and
max_addr. The mode parameter contains the WIMGxPP bits as defined in Section C.7‚ “Methods‚” on page 775 A
non-zero error code shall be returned if the mapping cannot be performed. If error code is zero (i.e. allocation is
succeeded) the routine returns the base address of the physical memory allocated for OF.

C.9.5.2 Virtual address translation assist callbacks

As mentioned in Section C.5.2.6‚ “Client Interface (Virtual-Mode)‚” on page 758, when OF is in Virtual-Mode, client
programs that take over control of the system’s memory management must provide a set of callbacks that implement
MMU functions. This section defines the input arguments and return values for these callbacks. The notation follows
the style used in chapter 6 of the OF specification IEEE 1275, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices [2].

map

IN: [address] phys, [address] virt, size, mode

OUT: throw-code, error

This routine creates system-specific translation information; this will typically include the addition of PTEs to the
HTAB. If the mapping is successfully performed, a value of zero shall be placed in the error cell of the argument
array; a non-zero error code shall be returned in error if the mapping cannot be performed.

C.10  User Interface Requirements 781

LoPAPR, Version 1.1 (March 24, 2016)

unmap

IN: [address] virt, size

OUT: throw-code

The system removes any data structures (e.g., PTEs) for the virtual address range.

translate

IN: [address] virt

OUT: throw-code, error, [address] real, mode

The system attempts to compute the real address (real) to which the virtual address (virt) is mapped. If the transla-
tion is successful, a PTE shall be placed into the HTAB for this translation, the number of return cells shall be four
with the resulting real address returned in real and error shall be set to false (0). If the translation is not success-
ful, the number of return cells shall be two and error shall be set to a non-zero error code.

This call shall be made when OF handles a DSI/ISI within the User interface. A successful result of the translate
call indicates that OF can complete the interrupted access; a failure indicates that an access was made to an invalid
address.

C.10 User Interface Requirements

An implementation of OF for the PA shall conform to the core requirements as specified in IEEE 1275, IEEE Standard
for Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2] and the following PA-specific
extensions.

C.10.1 Machine Register Access

The following user interface commands represent PA registers within the saved program state. Executing the com-
mand returns the saved value of the corresponding register. The saved value may be set by preceding the command
with to; the actual registers are restored to the saved values when go is executed.

The following command displays the PA processor's saved program state.

.registers

C.10.1.1 Branch Unit Registers

%cr

Access saved copy of Condition Register.

%ctr

Access saved copy of Count Register.

%lr

Access saved copy of Link Register.

%msr

Access saved copy of the low order 16 bits of SRR1 register.

782 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

%srr0 and %srr1

Access saved copy of Save/Restore Registers.

%pc

An alias of “%srr0”

C.10.1.2 Fixed-Point Registers

%r0 through %r31

Access saved copies of fixed-point registers.

%xer

Access saved copy of XER register.

%sprg0 through %sprg3

Access saved copies of SPRG registers.

C.10.1.3 Floating-Point Registers

Unlike the other registers, the floating point unit registers are not normally saved, since they are not used by OF. The
following access words, therefore, access the registers directly.

%f0 through %f31

Access floating point registers.

%fpscr

Access Floating Point Status and Control Register.

C.11 Configuration Variables

In addition to the standard Configuration Variables defined by the core OF document IEEE 1275, IEEE Standard for
Boot (Initialization Configuration) Firmware: Core Requirements and Practices [2], the following Configuration Vari-
ables shall be implemented for the PA:

“little-endian?”

This boolean variable controls the endian-mode of OF. If true (-1), the endian-mode is Little-Endian; if false
(0), the endian-mode is Big-Endian. The default value is implementation dependent.

“real-mode?”

This boolean variable controls the address translation mode of OF. If true (-1), the addressing mode is
Real-Mode; if false (0), the addressing mode is Virtual-Mode. The default value is implementation dependent.

“real-base”

This integer variable defines the starting physical address to be used by OF.

“real-size”

This integer variable defines the size of the physical address space which can be used by OF.

C.12  MP Extensions 783

LoPAPR, Version 1.1 (March 24, 2016)

“virt-base”

This integer variable defines the starting virtual memory address which can be used by OF.

“virt-size”

This integer variable defines the size of the virtual address space which can be used by OF.

 “load-base”

This integer variable defines the default load address for client programs when using the load method. The de-
fault value is implementation dependent.

C.12 MP Extensions

This section specifies the application of OF to PA multiprocessor (MP) systems. An OF implementation for an MP PA
system shall implement the extensions described in this section as well as the requirements described in previous sec-
tions of this binding.

C.12.1 The Device Tree

This section defines an additional property under the /chosen node for a MP extension. Refer to Section C.6.1.1‚
“The Device Tree‚” on page 759 for more details about the device tree structure for a MP Configuration.

C.12.1.1 Additional Properties

/chosen Node Properties

“cpu”

property name, identifies the running CPU.

prop-encode-array: An integer, encoded as with encode-int, which contains the i-handle of the CPU node that
is associated with the “running” CPU.

C.12.2 Initialization

OF shall select one processor, using an algorithm of its choice, to be the “master” processor, which performs the role of
the single processor on a uniprocessor system, either booting the client or providing the user interface. OF shall place
all the remaining processors into stopped state, a state in which the processor does not perform OF or client functions
and does not interfere with the operation of the master processor. A processor in stopped state remains in that state un-
less and until an executing client starts it using the start-cpu client service defined below.

Client programs shall use the OF start-cpu client interface service to start all processors before it reclaims the OF
memory

On machines in which a machine check on one processor is broadcast to all processors, the processors which are either
in the idle or stopped state shall not change their states due to a machine check on another processor: OF shall not de-
pend on the contents of the low vector (IP=0) in the event of a machine check.

Figure 37‚ “Stopped, Running, and Idle State Diagram‚” on page 784 depicts the relationship of the Running, Stopped
and Idle States to each other. The Client Interface Service calls are shown as how to move between the states.

784 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Figure 37. Stopped, Running, and Idle State Diagram

Note: OF's memory cannot be reclaimed by a client if a CPU is in the “stopped” or “idle” state.

C.12.3 Client Interface Services

The following client interface services are added for MP support on PA systems. These interfaces make the client pro-
gram responsible for any Inter-CPU communication needed for these interfaces. The rationale for this is to architectur-
ally separate the Inter-CPU communication mechanism of the firmware from the client program and vice versa.

start-cpu

IN: nodeid, pc, arg

OUT: none

This client interface service starts the CPU. The nodeid is the phandle of a node whose device_type is “cpu”.

Start-cpu arranges for the CPU identified by phandle in nodeid to begin executing client code at the real ad-
dress given by the pc input with an argument, arg, passed in register r3. When it begins execution, the started pro-
cessor shall be in the endian mode of the client program, and in real (not translated) addressing mode. The contents
of registers other than r3 are indeterminate.

 A client should not call start-cpu for the processor on which it is running, effectively restarting with a new
pc and abandoning the only client thread. A jump or branch instruction shall be used instead to achieve the objec-
tive.

start-cpu

stop-self

idle-self resume-cpu

Stopped Running

Idle

C.12  MP Extensions 785

LoPAPR, Version 1.1 (March 24, 2016)

start-cpu permits more than one processor to run at the same time, enabling multi-threaded client execution.
In general, an OF client shall avoid multi-threaded operation within OF. Usually, this means that client threads
running on different CPUs must use mutual exclusion to prevent more than one processor from making client ser-
vice requests at any one time. The exceptions are that a client thread may invoke either the stop-self or
idle-self client services defined below at any time.

Note: The results are undefined if the CPU identified by *phandle* has already been started (e.g. it is already running and
has not exited) or *phandle* is not a valid package handle of a CPU device node.

stop-self

IN: none

OUT: none

OF places the processor on which the caller was running into the “stopped” state. The client program is not-resum-
able.

Note: When an MP client program exits, one CPU invokes the exit client interface service, the others invoke the
stop-self service.

idle-self

IN: none

OUT: none

OF places the CPU on which this service was invoked into an 'idle' state, saving the *current state* of the client
program, so that the client program may be resumed.

A processor in idle state can be resumed using resume-cpu service defined below or restarted using
start-cpu. If the processor is resumed, it executes a normal return to the client, as if its call to idle-self
had just completed.

Note: When a client program wants to enter the firmware user interface, one CPU invokes the enter client interface
service, the others invoke the idle-self service. The rational is that the user interface may affect the machine
state in any way that it desires, therefore the client shall not depend on it.

resume-cpu

IN: nodeid

OUT: none

This client interface service is used to resume an *idled* CPU. The nodeid is the phandle of a CPU node in idle
state.

resume-cpu arranges for that CPU to restore the CPU’s state as saved by idle-self and begin return to the
client, completing the idle-self client service call that placed the CPU into idle state. The results are undefined if
the CPU identified by *phandle* is not in an *idle* state by a previous call to the idle-self client interface ser-
vice.

786 PA Processor Binding

 LoPAPR, Version 1.1 (March 24, 2016)

Note: When the client program is resumed via the GO (or similar) user interface command, the client program is resumed
on the CPU which called the enter service; the client program is responsible for calling the resume-cpu
service to resume other idled CPU's, if that is the desired client program behavior.

C.12.4 Breakpoints

If the breakpoint is taken by the firmware, without the client program's assistance, the other CPUs will continue to run
in the client program. The client program may field the breakpoint 'trap' or 'vector' and idle the other CPUs before en-
tering the PROM. The platform binding document has to specify how this is done to avoid loss of state at breakpoint
time.

C.12.5 Serialization

The firmware is a single threaded program, from the client program's point of view. Only the idle-self,
stop-self, enter and exit client interfaces may be invoked simultaneously on different CPUs. Furthermore,
only a single CPU may invoke the enter or exit client interface at any one time. The other CPUs must use the
idle-self or stop-self client interface service.

Note: The results are undefined if the client program invokes client interface services including breakpoint traps (other
than the enter/exit stop-self/idle-self case listed above) simultaneously on more than a single
CPU.

Note: Since locking mechanisms are subject to client program policy, the client program is responsible for implementing
any necessary mechanism to insure that it adheres to this policy. Further, the client program should disable any
preemption mechanism before calling a client interface service to avoid rescheduling a thread of execution in the
firmware on a different CPU if such a mechanism exists in the client program.

LoPAPR, Version 1.1 (March 24, 2016)

D A Protocol for a Virtual TTY
Interface

D.1 Overview

This appendix defines a protocol to support partition use of a physical serial port using a virtual TTY (VTY) interface.
A protocol is required to send control and status information of the physical device using a data only transport.

Specifically, this protocol is used to allow the Virtual Terminal (VTERM) option, as defined in Section 16.6‚ “Virtual
Terminal (Vterm)‚” on page 582, as the interface to communicate with a physical serial port which is under control of
the platform instead of the OS.

This appendix describes a connection between the platform, which has physical control of the serial port and is an end-
point of the VTERM interface, and a partition, which is the other endpoint of the VTERM interface. The protocol de-
scribed here provides a means to communicate both data and control information over this data-only interface.

D.2 Protocol Definition

D.2.1 Packet Formation

All information is sent in packets. There are four types of packets supported for version 0, data packets, control pack-
ets, query packets and query response packets. A packet consists of a one byte header, which defines the type of packet,
followed by a one byte length field, followed by a two byte sequence number, followed by the packet payload, which
depends on the type of packet. This means that the minimum packet size is 5 bytes, in the case of a one-byte data
packet.

The one-byte length field for the packet is the length of the entire packet, including the header byte and the length field
itself.

On the partition side the H_GET_TERM_CHAR and H_PUT_TERM_CHAR hypervisor calls are used to read and
write data. These HCALLS read and write up to 16 bytes of data at once. There is no relationship between the data in a
particular HCALL and packet boundaries. A single packet can span multiple HCALLS, and a single HCALL can con-
tain data from more than one packet.

For version 0, the following packet headers are defined:

D.2.1.1 Data Packet

#define VS_DATA_PACKET_HEADER 0xFF

This packet type is used to send data.

The data packet is defined in Table 266‚ “VTERM Data Packet‚” on page 788.

788 A Protocol for a Virtual TTY Interface

 LoPAPR, Version 1.1 (March 24, 2016)

D.2.1.2 Control Packet

#define VS_CONTROL_PACKET_HEADER 0xFE

This packet type is used to send commands that control the operation of software or hardware on the other side of the
link, and to send notification of status changes on the other side.

The control packet is defined in Table 267‚ “VTERM Control Packet‚” on page 788.

The following control verbs are supported.

D.2.1.2.1 VSV_SET_MODEM_CTL Verb (0x01)

Protocol Version: 0x00

Note: One-way. This verb is only sent by the partition to the platform.

Data Member Definition: The data member for this verb consists of 8 bytes, as defined in Table 268‚
“VSV_SET_MODEM_CTL Verb Data Member‚” on page 788.

Table 266. VTERM Data Packet

Packet Offset Member Size (Bytes) Description

0x0 0x1 Packet Header (0xFF)

0x1 0x1 Total size of packet in bytes, including this header

0x2 0x2 Sequence Number (see description below)

0x4 variable Data

Table 267. VTERM Control Packet

Packet Offset Member Size (Bytes) Description

0x0 0x1 Packet Header (0xFE)

0x1 0x1 Total size of packet in bytes, including this header

0x2 0x2 Sequence Number (see description below)

0x4 0x2 Control verb (see description below)

0x6 optional and variable Depending on verb, further data

Table 268. VSV_SET_MODEM_CTL Verb Data Member

Packet Offset Member Size (Bytes) Description

0x6 0x4 VS_MODEM_CTL word (defined below)

0xA 0x4
VS_MODEM_CTL mask, defining which bits in the control
word above are to be updated.

D.2  Protocol Definition 789

LoPAPR, Version 1.1 (March 24, 2016)

VS_MODEM_CTL is a 4 byte bit-mask. The following bits are defined. Note that each bit position has an associated
protocol version. Note that some bits can bet set (noted as R/W in the table), others only can be read (noted as R/O in
the table). This verb will set only bits marked R/W.

The update of the serial port hardware driven by this command must be serialized with data packets.

In the data portion of the packet, the first word defines the bit values to be set; the second word is a mask defining
which bits are to be updated. See Table 269‚ “VS_MODEM_CTL Bit Definition‚” on page 789.

D.2.1.2.2 VSV_MODEM_CTL_UPDATE Verb (0x02)

Protocol Version: 0x00

Note: One-way. This verb is only sent by the platform to the partition.

Data Member Definition: The data member for this verb consists of 4 bytes, as defined in Table 270‚
“VSV_MODEM_CTL_UPDATE Verb Data Member‚” on page 789

This packet is sent by platform to the partition to inform the partition of a change in status of certain bits in the
VS_MODEM_CTL word. The bits which cause this command to be sent when they transition are defined in
Table 271‚ “VS_MODEM_CTL Word Bits‚” on page 789. This command should be serialized with data packets. The
protocol version in Table 271‚ “VS_MODEM_CTL Word Bits‚” on page 789 defines the first (lowest) version of the
protocol in which a transition of this bit should cause the command to be sent.

D.2.1.2.3 VSV_RENEGOTIATE_CONNECTION Verb (0x03)

Protocol Version: 0x00

Data Member Definition: No data member for this verb.

This verb forces the protocol into “closed” state; see the Connection Negotiation section below for the definition and
meaning of this state.

Table 269. VS_MODEM_CTL Bit Definition

Bit Position
Protocol Version

Supported
R/O, R/W Name Description

0x0000001 0x00 R/W TSDTR Data Terminal Ready

0x0000020 0x00 R/O TSCD Carrier Detect

Table 270. VSV_MODEM_CTL_UPDATE Verb Data Member

Packet Offset Member Size (Bytes) Description

0x6 0x4 VS_MODEM_CTL word (defined above)

Table 271. VS_MODEM_CTL Word Bits

Bit Name
Protocol Version

Supported
Description

TSCD 0x00 A transition of carrier detect must cause this packet to be sent.

790 A Protocol for a Virtual TTY Interface

 LoPAPR, Version 1.1 (March 24, 2016)

In normal operation it is expected that this command will be send from the partition to the platform. However, if the
platform is aware that it will be unable to continue for some reason for a finite period of time, it can send this command
to the partition.

The platform may send this command even if the protocol is not in an open state; this is to allow the platform to uncon-
ditionally close the platform during an error recovery processor.

When the partition transitions control of the VTY between independent entities, such as when it is given from OF con-
trol the to the OS, the protocol should be closed with this command by the component that is relinquishing it and re-
opened by the receiving component.

D.2.1.3 Query Packet

#define VS_QUERY_PACKET_HEADER 0xFD

This packet is used to send queries to the other side of the link. The other side responds by sending a query response
packet, defined below. There is in some case implied control of the state of the other side of the link, as a series of que-
ries and responses are used to initialize (or re-initialize) the protocol.

The query packet is defined in Table 272‚ “VTERM Query Packet‚” on page 790.

The following query verbs are supported:

D.2.1.3.1 VSV_SEND_VERSION_NUMBER Verb (0x01)

Protocol Version: 0x00

Response: The query response data member will contain the one-byte version number of the highest version of the
protocol supported by the driver.

D.2.1.3.2 VSV_SEND_MODEM_CTL_STATUS Verb (0x02)

Protocol Version: 0x00

Response: The query response data member will contain the four-byte VS_MODEM_CTL word defined above in the
VSV_SET_MODEM_CTL verb.

Note: One-way. This verb is only sent by the partition to the platform.

D.2.1.4 Query Response Packet

#define VS_QUERY_RESPONSE_PACKET_HEADER 0xFC

Table 272. VTERM Query Packet

Packet Offset Member Size (Bytes) Description

0x0 0x1 Packet Header (0xFD)

0x1 0x1 Total size of packet in bytes, including this header (0x6)

0x2 0x2 Sequence Number (see description below)

0x4 0x2 Query verb (see description below)

D.2  Protocol Definition 791

LoPAPR, Version 1.1 (March 24, 2016)

This packet is used to reply to query packets sent from the other side of the link, and are sent only in response to query
packets.

The query response packet is defined in Table 273‚ “VTERM Query Response Packet‚” on page 791.

D.2.2 Verb Formation

A verb, either for a command or query packet, consists of two bytes. The first byte is a version of the protocol associ-
ated with the verb, and the second byte is the verb itself. This allows the flexibility to redefine or add function to verbs
in the future. More importantly, it allows partners at either end of the protocol to find a “least common denominator” at
which they can work.

The connection sequence for partners to begin communication (defined below) causes each side of the protocol to learn
the highest level of the protocol supported by the party on the other side. If one party discover that the party on the
other end supports a lower version of the protocol, it is expected that only verbs at the lower version of the protocol
will be used. If an unknown verb is received, the command is discarded without response.

D.2.3 Sequence Numbers

Each packet has a sequence number. Sequence numbers start at 0 and increment by one with each packet sent. There
are separate name spaces for sequence numbers in each direction, but all packets of all types in a direction are in the
same sequence number name space. The sequence number is unsigned, and the number following 0xFFFF is 0x0. Se-
quence numbers are used to match query packets with query response packets, and for general debugging.

The sequence numbers in data packets represent a fair amount of bandwidth overhead, especially if the number of
bytes of data per packet is small in practice. If the performance of this facility is found to be inadequate due to band-
width reasons, developers on both sides should recognize that sequence numbers for data packets represents the “low
hanging fruit” to fix that problem, so are cautioned not to create logical dependencies on sequence numbers for data
packets. For other packet types logical dependencies are acceptable, and indeed are built into the protocol definition.

Implementation Note: Developers should consider field problem determination in their designs. However, other than
providing packet sequence numbers in the protocol, RAS is outside the scope of the protocol itself.

D.2.4 Flow Control

The partition side of the connection must understand what type or types of flow control are supported by the platform
(physical) side of the connection. The options are no flow control, software flow control and hardware flow control.

Table 273. VTERM Query Response Packet

Packet Offset Member Size (Bytes) Description

0x0 0x1 Packet Header (0xFC)

0x1 0x1 Total size of packet in bytes, including this header

0x2 0x2 Sequence Number (see description below)

0x4 0x2 Query verb -- matches the query verb for which this is a response

0x6 0x2
Query Sequence Number -- the sequence number of the query
packet for which this is a response

0x8 variable Verb-specific response data

792 A Protocol for a Virtual TTY Interface

 LoPAPR, Version 1.1 (March 24, 2016)

In version 0 of this protocol it is implied that only software flow control is implemented by the platform side. If future
platforms implement other options, a new version of this protocol must be created that includes a verb for the partition
side to determine what type or types of flow control are supported, and to negotiate what type is to be used in the case
that more than one is supported.

D.2.5 Packet Type and Verb Summary

A summary of packet types and verbs can be found in Table 274‚ “VTERM Packet Type and Verb Summary‚” on
page 792.

D.3 Connection Negotiation

This protocol itself has a state of being open or closed. The state is “closed” at partition boot time and remains closed
until a connection negotiation is initiated by the partition device driver. Once open, the state remains “open” until a
VSV_CLOSE_PROTOCOL command is sent by either side.

While closed, both parties should “listen” on the VTY interface. However, while closed, only query and query re-
sponse packets should be acted on; any data or control packets received should be discarded.

The connection process is initiated by the partition side. The sequence is as follows:

 Both sides are in closed state. Both side are “listening” to the VTY.

 The partition sends the VSV_SEND_VERSION_NUMBER query.

 The partition continues listening, but discard any packet that is not a VSV_SEND_VERSION_NUMBER query re-
sponse.

 The platform replies with the VSV_SEND_VERSION_NUMBER query response packet.

 The platform clears any pending data in the serial port hardware.

Table 274. VTERM Packet Type and Verb Summary

Packet ID Verb ID
Lowest
Version

Supported
Description

0xFF -- 0 VS_DATA_PACKET_HEADER

0xFE -- 0 VS_CONTROL_PACKET_HEADER

0xFE 0x1 0 VSV_SET_MODEM_CTL

0xFE 0x2 0 VSV_MODEM_CTL_UPDATE

0xFE 0x3 0 VSV_RENEGOTIATE_CONNECTION

0xFE 0x3 0 VSV_CLOSE_PROTOCOL (alias for above)

0xFC -- 0 VS_QUERY_RESPONSE_PACKET_HEADER

0xFC 0x1 0 VSV_SEND_VERSION_NUMBER

0xFC 0x2 0 VSV_SEND_MODEM_CTL_STATUS

0xFD -- 0 VS_QUERY_RESPONSE_PACKET_HEADER

D.3  Connection Negotiation 793

LoPAPR, Version 1.1 (March 24, 2016)

 The platform sends the VSV_SEND_VERSION_NUMBER query packet.

 The partition responds with the VSV_SEND_VERSION_NUMBER query response packet.

At this point the protocol is open; any data received in the serial hardware by the platform from this point should be put
into data packets and sent to the partition; any data packets received from the partition should be sent out the serial
hardware.

The platform should implement a time-out after sending a command that expects a response, and after the time-out log
an error. For version 0 of the protocol an appropriate value would be seconds or minutes; at least 10 seconds. The next
version of the protocol should consider a property in the device tree node to communicate an appropriate time-out
value.

794 A Protocol for a Virtual TTY Interface

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

E A Protocol for VSCSI
Communications

E.1 Introduction

The purpose of this Appendix is to define the protocol used by virtual SCSI (vscsi) client drivers and vscsi server driv-
ers in sufficient detail to ensure compatibility between unlike operating systems implementing these features. The
SCSI Architecture Model (SAM-2) defines the following simplified abstract model and terminology for a SCSI sys-
tem.

Figure 38. SCSI Initiator/Target Architecture

In Figure 38‚ “SCSI Initiator/Target Architecture‚” on page 795, the Application Client is the application producing or
consuming the data being stored. The SCSI Initiator Port is the virtual scsi client adapter running in the client partition.
The Service Delivery System is the Hypervisor. The SCSI Target Port is the vscsi host (vhost) adapter running in the
VIO server (VIOS). The Logical Unit is the entity providing the data storage services.

Note that the model is not symmetrical. Client adapters may communicate only with host adapters and host adapters
may communicate only with client adapters. Each may communicate with a maximum of one partner at any point in
time. Client adapters may exist only in client partitions. Host adapters may exist only in VIOSs. A client partition may
have multiple client adapters and they may communicate with host adapters in the same or different VIOSs. A SCSI
host adapter may have multiple Logical Units defined to it for use. Almost all messages are initiated by the client. The
client and host adapters communicate using Command/Response Queues (CRQ) defined earlier in this document. A
client may not read or write VIOS memory, it may only write to the VIOS CRQ. The VIOS may read and write to cli-
ent partition memory, if the client passes the VIOS a DMA mapped address for that memory.

SCSI Device SCSI Device

SCSI
Initiator

Port

SCSI
Target
Port

Application
Client

Logical
Unit

Service
Delivery

Subsystem

796 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

E.2 SCSI Remote DMA Protocol (SRP)

The protocol used for transferring data between the application client and the logical unit is the SCSI Remote DMA
Protocol (SRP), revision 16.a, as defined by the InterNational Committee for Information Technology Standards (IN-
CITS). Copies of the standard are available at the INCITS website at T10.org.

The client builds an SRP request in its address space, then DMA maps that request so that the VIOS can access it. The
client notifies the VIOS of the request by including that mapped address in a CRQ message. A SCSI Command Data
Block (CDB) is encapsulated within the SRP request. Also within the SRP request is a tag field, which is private to the
client. The VIOS must not modify that tag value in any way. When the request is complete, the VIOS notifies the client
of the completion by including that tag field in the CRQ message to the client. The client then uses that tag value to lo-
cate the request being completed.

If the SRP request expects to transfer any data, it also contains one of the two types of memory descriptors specified by
the SRP standard, to describe the buffer(s) to be used in the data transfer. In the SRP memory descriptor, the virtual ad-
dress field is the DMA mapped address of the buffer, to be used by the VIOS to transfer the data. The memory handle
field is not used and should be initialized to zero.

Using the H_SEND_CRQ call, the client sends the SRP request to the VIOS. The first 64 bits of the message describe
the type of message, the format, and the length. The second 64 bits of the CRQ message contain the DMA mapped ad-
dress of the SRP request in the client partition memory. The H_SEND_CRQ call in the client generates a virtual inter-
rupt in the VIOS, if the CRQ is going from empty to non-empty (edge-triggered interrupt).

The vhost driver uses the H_COPY_RDMA call and the mapped address to copy the SRP request from client partition
memory into VIOS memory, examines the LUN to which the request is addressed, builds the appropriate structure to
represent the request, according to the type of backing device, then queues the request to the backing device. The back-
ing device may be an actual physical storage device, a software emulator, or some combination of device and emula-
tion.

In the request is an SRP memory descriptor which contains one or more address/length pairs describing one or more
buffers in client partition memory address space. The memory handle field of the SRP memory descriptor is not used
by vscsi and should be initialized to zero. The virtual address field in the SRP memory descriptor is the DMA mapped
address of a buffer in client partition memory that the backing device uses to transfer data. When the backing device
services the request, it uses the same DMA services as it would to handle a request that had originated locally on the
VIOS. However, DMA services on the VIOS use the H_COPY_RDMA call and the mapped address(es) in the SRP
memory descriptor(s) to copy data directly between the client partition and the device, transparent to the device.

When the backing device has completed the request, it returns the request along with the results back to the VIOS
driver. The VIOS driver builds an SRP response structure and copies that response back into client partition memory
over the original SRP request. The SRP response includes any sense data that may have been returned with the request.
All virtual devices are “auto-sense” devices. The vhost driver then notifies the client partition of the completed request
by using H_SEND_CRQ to place a message in the client CRQ. The first 64 bits of the message describe the type, for-
mat, and length of the message. The second 64 bits are the “tag” field from the original SRP request. The client uses
the tag to locate the SRP response and processes the response as appropriate.

It is important to note that the client partition must not unmap or modify in any way any of the memory associated with
the request between the time that it notifies the VIOS of the request and the time that the VIOS notifies the client of the
response.

E.3 Connection Establishment

Before any data can be transferred the two partitions have to establish a connection. Each partition is required to use
H_REG_CRQ to register a Command/Response Queue (CRQ) with the Hypervisor to receive messages from the other
partition. The size of the queue must be a multiple of 4KB. That memory must be DMA mapped. The size of the CRQ

E.3  Connection Establishment 797

LoPAPR, Version 1.1 (March 24, 2016)

merely determines the number of requests that a client may send to the VIOS in a single burst. The VIOS dequeues the
requests as soon as it can, so in evenly balanced systems, where the VIOS has enough CPUs and memory to deal with
all of its clients, the size of the CRQ is not a major limiting factor.

After H_REG_CRQ returns H_SUCCESS, each partition uses H_SEND_CRQ to attempt to send the Initialization
message described previously in this document. This is a race condition that only one partition will win. The first parti-
tion to send the Initialization message receives an H_CLOSED return value from the Hypervisor, because the other
partition has not yet registered its queue. The winning partition must wait to receive the Initialization message from its
partner. The second partition to send the Initialization message receives an H_SUCCESS return value from the Hyper-
visor. That partition must wait for the Initialization Complete message from its partner. When a partition receives an
Initialization message during connection establishment, it must respond with the Initialization Complete message and
may then proceed to the next step. When a partition receives the Initialization Complete message during connection es-
tablishment, it may then proceed to the next step.

The next step in connection establishment is for the client to send one or more of the Management Datagrams (MAD)
messages, described in detail later in this appendix. Since this is before the completion of the SRP Login request, no
flow control has been established between the client and VIOS, so the client may send only one message at a time and
must wait for the response from the VIOS before sending the next one. The exception is the optional MAD_EMPY_IU
message. The client may follow that immediately with another message. The VIOS enforces flow control violations by
logging and informative error, then closing and reopening the CRQ.

The client is required to send the MAD_ADAPTER_INFO_REQUEST. This provides the information that the VIOS
displays with the lsmap command. The client may find it useful to save off and display the information that the VIOS
returns in the response to the MAD_ADAPTER_INFO_REQUEST. Customers and service personnel frequently find
this kind of information useful in unravelling some of the more elaborate configurations.

The client is required to send the MAD_CAPABILITIES_EXCHANGE if it wishes to participate in Partition Mobility
operations. If it does not send this message, the VIOS does not consider it to be capable of being migrated.

If the client wishes to take advantage of the “fast fail” feature, it should send the MAD_ENABLE_FAST_FAIL mes-
sage before the SRP login request.

The last step in connection establishment is the SRP login request. The Target Port Identifier field of the SRP Login re-
quest is not used by vscsi and should be initialized to zero. The client uses the SRP login request to specify the size of
the largest SRP Information Unit that it will send to the VIOS and the format of the type of memory descriptors it in-
tends to use. The size of the largest SRP Information Unit must also account for the size of the largest Management Da-
tagram that the client expects to send. The VIOS may reject the SRP login if it cannot support the requested options.
The VIOS will delay sending the response to the SRP login if it does not have any LUNs defined to it yet. This may be
the case if both partitions are booted simultaneously and the VIOS has not completed the configuration process when
the client sends the SRP login.

If the VIOS accepts the SRP login, it sends the SRP login response and notifies the client of this by placing the tag
value from the SRP Login in the CRQ message. The request limit delta field of the SRP login response contains the
maximum number of requests that the VIOS will allow the client to have active on the VIOS at any one time. This is
the flow control mechanism. If the client violates this limit by sending too many requests, the VIOS will terminate the
connection to the client. Note that each SRP response message also contains a request limit delta field. Typically, this is
set to 1, to indicate that this completed request means another can be initiated. But if the VIOS has substantial re-
sources added to it, it may increase the number of requests a client may have active, and will do so by setting a value
greater than one in this field. Once the SRP login has been accepted, the VIOS may increase the number of requests,
but it may never decrease that number until this connection is terminated.

After receiving an SRP Login Response for the VIOS, the client may then proceed with normal I/O data traffic. Usu-
ally, this starts with device discovery, where the client sends a REPORT_LUNS SCSI request to the VIOS. The VIOS
responds with the list of LUNs that have been defined to this host adapter. The client may then use other SCSI requests
to determine the identity and capabilities of each LUN.

798 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

If, after establishing a connection (VIOS sends SRP login response, and client receives it), a partition receives another
Initialization message, Initialization Complete message, an SRP Login, or SRP Login response without some indica-
tion that the connection has been terminated, usually a Transport Event (described later), that is a protocol violation.
Protocol violations are handled by logging an error, then closing and reopening the CRQ.

Likewise, after a connection has been terminated, the first messages must be either the Initialization or the Initializa-
tion Complete messages, as appropriate. Any other message is a protocol violation. And any SRP message received be-
fore a successful SRP Login is a protocol violation.

E.4 Connection Termination

A connection may be terminated by the client sending the VIOS an SRP_I_LOGOUT Information Unit. The VIOS
may send the client an SRP_T_LOGOUT Information Unit, but only if the client has provided resources for this by
sending the MAD EMPTY IU first. In the current implementation, neither is used and the drivers just call
H_FREE_CRQ to terminate the connection.

A connection may also be terminated by the abnormal termination of a partition. When a partition crashes, the Hyper-
visor invalidates all of the memory mappings for that partition and places a Transport Event in the CRQ of the partner.
If the partition that crashed was a client with requests active on the VIOS, when the storage drivers attempt to service
those “in flight” requests, they find that the DMA mappings associated with the requests are no longer valid and usu-
ally will log one or more errors to that effect.

When a partition calls H_FREE_CRQ or crashes, the Hypervisor notifies the partner partition by placing a Transport
Event in the partner’s CRQ. The first byte of the Transport Event is set to 0xFF, to indicate that this is a Transport
Event. The second byte describes the event. A value of 0x01 indicates that the partner partition failed (crashed). A
value of 0x02 indicates that the partner partition called H_FREE_CRQ. A value of 0x06 indicates to a client that it has
been migrated. Only clients that send the MAD_CAPABILITIES message are candidates for being migrated. A VIOS
cannot be migrated.

When a partition receives a Transport Event, it is not required to close its CRQ. It may instead just wait for an Initial-
ization message from the partner partition when it is ready to communicate again.

E.5 Client Migration

When a client receives the migrated Transport Event, it must unmap any memory associated with any requests cur-
rently active on the VIOS. The client will never receive any completions for those requests and must remap and restart
them at the end of the migration. Then the client must call H_ENABLE_CRQ until it returns H_SUCCESS. When the
CRQ has been successfully enabled, the client sends the Initialization message and waits for the Initialization Com-
plete message. It then goes through the rest of the connection establishment process, followed by the SRP login. After
the VIOS sends the SRP Login response, the client may resume normal data transfers, starting with any requests that
may have been active on the VIOS when the client was migrated.

Note that the partition identification information that the client sends in the MAD_ADAPTER_INFO message imme-
diately after the migration event may be stale and reflect the identification of the original client partition before the mi-
gration. A client may register for DLPAR notification of migration, use that notification to obtain the current partition
identification, and send another MAD_ADAPTER_INFO message to the VIOS with the correct information.

E.6  VSCSI Message Formats 799

LoPAPR, Version 1.1 (March 24, 2016)

E.6 VSCSI Message Formats

All virtual scsi communications between client and server occurs using the Reliable Command/Response Transport
and Logical Remote DMA functions defined earlier in this document. No other channels of communication are re-
quired to perform virtual SCSI functions.

These communications are made up of three classes of messages:

 Messages contained entirely within a single CRQ message

 SRP requests and responses, as defined by the SRP standard

 Management Datagrams

E.7 CRQ Message formats

CRQ messages are 16 bytes (128 bits) in length. Only the first byte is architected by the Reliable Command/Response
Transport specification described earlier in this document. That specification is repeated in Table 275‚ “First Byte of
the CRQ Message‚” on page 799.

If the first byte of a CRQ message is 0x80, then it is a valid Command/Response entry and the second byte describes
the format of message. Possible values for the second byte of the CRQ message when the first byte is 0x80 are shown
in Table 276‚ “Second Byte of the CRQ Message‚” on page 799.

Table 275. First Byte of the CRQ Message

Value Description

0x00 Element is unused -- all other bytes in the element are undefined

0x01 - 0x7F Reserved

0x80 Valid Command/Response Entry -- the second byte defines the entry format

0x81-0xFE Reserved

0xFF Valid Transport Event -- the second byte defines the specific transport event

Table 276. Second Byte of the CRQ Message

Format Byte Value Definition

0x00 Unused

0x01 VSCSI SRP format

0x02 Management Datagram (MAD) format

0x03 i5os private format

0x04 AIX private format

0x05 Linux private format

800 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

If the format byte is 0x01, then the rest of the message is a vscsi SRP request or response message. The rest of the CRQ
contents for this type of message is shown in Table 277‚ “CRQ VSCSI Client Message‚” on page 800, for messages
from the clients, and Table 278‚ “CRQ VSCSI VIOS Message‚” on page 801, for messages from the VIOS. Messages
with a format byte of 0x02 are Management Datagram messages, defined later in this Appendix. Messages formats of
0x03, 0x04, and 0x05 are reserved for private, Operating System-specific messages, and are currently unused by this
implementation. Messages with a format byte of 0x06 are messages contained entirely within the CRQ.

E.8 CRQ VSCSI Client Message Format

Client messages are sent from the client partitions to the VIOS. Table 277‚ “CRQ VSCSI Client Message‚” on
page 800 shows the format of these messages,

For this type of message, the first byte (CRQ Valid) must be 0x80, and the second byte (CRQ Format) must be 0x01.
Bytes 6 and 7 of the first long word are the IU Length, the length in bytes of the SRP Information Unit being passed.
The second long word, IU Data Pointer, is the DMA mapped address of the SRP Information Unit being passed, typi-
cally an SRP Request. The VIOS uses the IU length and IU Data Pointer to copy the SRP Request into VIOS local
memory for interpretation and processing.

Bytes 4 and 5 of the first long word, Timeout, are an optional suggested timeout value for this request. If this value is
greater than zero, then the value may be passed along to the backing device as a suggestion for how long this request is
expected to take to complete. The VIOS does not enforce any timeout values, but relies upon the underlaying backing
devices.

Management Datagram (MAD) messages also use this same format, with the exception that the second byte (CRQ For-
mat) must be set to 0x02. Bytes 6 and 7 of the first long word are the length of the MAD message, and the second long
word, IU Data Pointer, is the DMA mapped address of the MAD message being passed. MAD data structures are de-
fined later in this appendix. For MAD messages, the timeout value is not used.

E.9 CRQ VSCSI VIOS Message Format

VIOS messages are sent from the VIOS to the clients, usually in response to a request from the client. The VIOS mes-
sage format is shown Table 278‚ “CRQ VSCSI VIOS Message‚” on page 801.

0x06 Message in CRQ format

0x07 - 0xFF Reserved

Table 277. CRQ VSCSI Client Message

Byte Offset 0 1 2 3 4 5 6 7

0x00 CRQ Valid CRQ
Format

Reserved Timeout IU Length

0x08 IU Data Pointer (TCE)

Table 276. Second Byte of the CRQ Message (Continued)

E.10  Transport Events 801

LoPAPR, Version 1.1 (March 24, 2016)

For this type of message, the first byte, CRQ Valid, must be 0x80. This same type of message is used for SRP Re-
sponses and for responses to MAD messages. If this is an SRP Response, the second byte, CRQ Format, is 0x01. If this
is the response to a MAD message, the second byte is 0x02. Bytes 6 and 7 of the first long word, IU Length, contain the
length of the response. The second long word contains the tag field from the original request. Both the SRP Request
data structures and the MAD message data structures contain a tag field for use in this message.

The Status field of the VIOS message is for reporting special, non-SCSI status back to the client. This status is used for
improving failover times in configurations where the same storage device is visible to this client over multiple adapters
or when the same storage device is being shared by multiple clients in clustered configurations.

If the client enables the “fast fail” feature using the MAD_ENABLE_FAST_FAIL message, and if the VIOS deter-
mines that all paths to a device on that client adapter have failed, the VIOS will report a status of ADAPTER_FAILED
(0x10) in response to a request to that device.

If the storage devices that the client are using are being shared by other clients, as is the case of an IBM General Paral-
lel File System (GPFS™) configuration, and if the VIOS determines that all error recovery efforts on a device have
failed so that there is no point in any more retries from the client, the VIOS will report a status of DEVICE_BUSY
(0x08) in response to a request to that device.

In both cases (ADAPTER_FAILED and DEVICE_BUSY), the client response should be the same. The device is no
longer accessible and the client should abandon any error recovery or attempts to recover access to the device using
this client adapter. The client should attempt to failover to another path to the device, using another adapter, if that is
possible.

E.10 Transport Events

If the first byte (CRQ Valid) of the CRQ message is 0xFF, then this message is a Transport Event from the Hypervisor
and the connection to the partner has been terminated. The second byte will be the reason for the Transport Event, and
may be one of the following values:

0x01 - Partner Failed. The partner partition has crashed.

0x02 - Partner de-registered the CRQ. The partner partition called H_FREE_CRQ for this CRQ. This may be as a
result of error recovery, as in the case of a protocol error, or it may be the result of the system administrator remov-
ing a client or VIOS adapter.

0x06 - Client has been migrated as the result of a Partition Mobility operation. Only clients can be migrated and
only clients that send the MAD_CAPABILITIES message are considered to be candidates for migration.

E.11 Messages in CRQs

If the first byte (CRQ Valid) of the CRQ message is 0x80, and the second byte (CRQ Format) is 0x06, then this is a
message contained entirely within the CRQ. The rest of the message, including the IU Data Pointer, is unused and must

Table 278. CRQ VSCSI VIOS Message

Byte Offset 0 1 2 3 4 5 6 7

0x00 CRQ Valid CRQ
Format

Reserved Status Reserved IU Length

0x08 IU TAG

802 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

be initialized to zero. These messages do not require any resources on the client or VIOS, and are not subject to flow
control, so may be sent at any time. However, they should be used sparingly, because they do take up an entry in the
CRQ and they do require interrupt processing time to respond to them, The third byte defines the message.

Only two messages of this type have been defined to this point:

0xF5 - PING

0xF6 - PING RESPONSE

If the VIOS is not able to process interrupts, the client will likely be hung, waiting on a completion from the VIOS. To
detect this condition, the client may send a PING to the VIOS. If the VIOS is capable of processing an interrupt, it re-
sponds to the PING with a PING RESPONSE, directly at interrupt level. If the client does not receive the PING RE-
SPONSE within a reasonably short period of time, it may choose to declare the VIOS dead and attempt to failover to
another client adapter. Likewise, if the VIOS for some reason needs to determine if the client is still alive, it may send
a PING to the client. The client should respond as expeditiously as possible, with a PING RESPONSE.

E.12 VSCSI Management Datagrams (MADs)

VSCSI uses a number of messages that are not defined by the SRP standard. The paradigm used for these messages is
the Management Datagram, discussed in the SRP and Fibre Channel specifications. Like all SRP messages, the MADs
are initiated by the client partition and the VIOS responds to them. To initiate a MAD, the client sets the valid field to
0x80, sets the format field to 0x02 (MAD_FORMAT), sets the length field to the length of the data structure describing
the MAD, sets the ioba field to the mapped memory address of the data structure describing the MAD, and uses the
H_SEND_CRQ service provided by the Hypervisor to send the request to the VIOS.

Most of these MADs can be initiated any time after the initialization messages (INIT, INIT_COMPLETE) have been
exchanged. Some of them are most appropriately done before the SRP_login message and the start of normal data
transfer operations. These are: MAD_EMPTY_IU; MAD_ADAPTER_INFO_REQUEST;
MAD_CAPABILITIES_EXCHANGE; and MAD_ENABLE_FAST_FAIL. Note that before the SRP_login message,
resources allocated by the VIOS for a client are limited so a client should wait for one MAD to complete before issuing
another, with the single exception of the MAD_EMPTY_IU message. None of them are required for normal data trans-
fer operations between the client and VIOS. However, the MAD_ADAPTER_INFO_REQUEST provides information
that customers find highly desirable, so using it is strongly recommended. In addition, the
MAD_ADAPTER_INFO_REQUEST returns the size of the largest data transfer operation that the VIOS will accept
from this client. Failure to honor this limit can result in client failure. And the MAD_CAPABILITIES_EXCHANGE
message is required before a client is allowed to participate in partition mobility operation.

The inter_op structure is used to specify the type of MAD being sent.

typedef struct _inter_op_fields{
uint32_t type;
uint16_t status;
uint16_t length;
uint64_t tag;

}inter_op;

The type field describes the MAD and will be discussed in the paragraphs that follow.

The status field describes the result of the MAD operation. The client is required to initialize the status field to zero.
The VIOS responds one of three ways:

#define MAD_SUCCESS 0x0
#define MAD_NOT_SUPPORTED 0xF1
#define MAD_FAILED 0xF7

E.12  VSCSI Management Datagrams (MADs) 803

LoPAPR, Version 1.1 (March 24, 2016)

MAD_NOT_SUPPORTED is returned if the VIOS is down-level. MAD_FAILED is returned in every other situation
where the MAD did not succeed.

The length field is set to the length of the data structure(s) used in the command.

The tag field is reflected back to the client in the response to the MAD. The VIOS uses H_SEND_CRQ to send a re-
sponse with the format set to 0x02 (MAD_FORMAT) and the ioba field is set to the tag field specified by the client.

The type field may be set to one of the following:

#define MAD_EMPTY_IU 0x01
#define MAD_ERROR_LOGGING_REQUEST 0x02
#define MAD_ADAPTER_INFO_REQUEST 0x03
#define RESERVED 0x04
#define MAD_CAPABILITIES_EXCHANGE 0x05
#define MAD_PHYS_ADAP_INFO_REQUEST 0x06
#define MAD_TAPE_PASSTHROUGH_REQUEST 0x07
#define MAD_ENABLE_FAST_FAIL 0x08

E.12.1 #define MAD_EMPTY_IU 0x01

The client sends a MAD_EMPTY_IU command if it wishes to receive an SRP target_logout before the VIOS closes
the CRQ. The target_logout SRP response contains the reason that the VIOS is closing the CRQ.

The MAD_EMPTY_IU command uses the following data structure:

struct mad_empty_iu {
inter_op op;
uint64_t desp;
uint port;

};

The inter_op structure is initialized with the type field set to 0x01 (MAD_EMPTY_IU), the status field set to zero, the
length field set to the size of the mad_empty_iu structure, and the tag field set as described above.

The desp field is set to mapped memory address of the SRP_T_LOGOUT response data structure. The client must not
unmap, free, or re-use this memory until it receives the SRP target_logout or the CRQ is closed.

The port field is unused at this time.

E.12.2 #define MAD_ERROR_LOGGING_REQUEST 0x02

The client sends the MAD_ERROR_LOGGING_REQUEST when it wishes the VIOS to write an entry in the system
error log on its behalf. Hardware errors in physical storage components on the VIOS usually result in errors on the cli-
ent partition using that physical storage. The MAD_ERROR_LOGGING REQUEST places client errors in the system
error log in proximity to the original hardware error to enable service personnel to assess the impact of the original
hardware error.

The MAD_ERROR_LOGGING_REQUEST uses the following data structure:

struct mad_error_logging_request{
inter_op op;
uint64_t buffer;

};

804 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

The inter_op structure is initialized with the type field set to 0x02 (MAD_ERROR_LOGGING_REQUEST), the status
field set to zero, the length field set to the size of the mad_error_log structure plus the size of the buffer of additional
data, if any, and the tag field set as described above.

 The buffer field points to a mad_error_log structure.

struct mad_error_log{
uint64_t lun; // logical unit address
uint64_t correlator; // logged on both client and server in order to be

// able to associate an entry on the client with
// one on the server

uint64_t reserved; // future expansion
uint32_t error_id; // client partition specific (-1 if none is available)
int32_t buffer_size;

// size of character buffer to log
char client_name[32]; // for example “vscsi0”
char device_name[32]; // for example “hdisk0”
int32_t partition; // partition number

#define LOG_DATA_BINARY 1
#define LOG_DATA_ASCII 2

int32_t flags; // type of data in buffer
char buffer[1]; // start of the buffer, buffer_size bytes};

The lun field is set to the Logical Unit Number (LUN) of the device on the client that is logging the error.

The correlator field is optional. If used, it should have a unique value that can be used to correlate the error message on
the client with the error message on the VIOS.

The error_id field is set to a client-specific number associated with the error.

The buffer_size is set to the length of the buffer of additional data, which is optional.

The client_name array is set to the name by which this client adapter instance is known on the client partition, for ex-
ample “vscsi0”.

The device_name array is set to the name by which the device logging the error is known on the client partition, for ex-
ample “hdisk0”.

The partition field is set to the number of the client partition requesting that the error be logged.

The flags field specifies the type of data contained in the optional buffer.

The buffer, if used, starts immediately after the mad_error_log structure. The buffer is not logged by the VIOS at this
time.

E.12.3 #define MAD_ADAPTER_INFO_REQUEST 0x03

The client sends the MAD_ADAPTER_INFO_REQUEST to the VIOS to inform the VIOS of the client’s identity. The
VIOS responds with the equivalent information about itself. The VIOS uses the client information provided in the
MAD_ADAPTER_INFO_REQUEST for the display in the “lsmap” command. Use of this MAD is not enforced by
VIOS. However, customers have found the information useful enough to insist that it be used. The
MAD_ADAPTER_INFO_REQUEST may also be used after a Partition Mobility operation to allow the client to up-
date the information on the VIOS, which may have changed during the migration.

The MAD_ADAPTER_INFO_REQUEST uses the following data structure:

E.12  VSCSI Management Datagrams (MADs) 805

LoPAPR, Version 1.1 (March 24, 2016)

struct mad_adapter_information_request{
inter_op op;
uint64_t buffer;

};

The inter_op structure is initialized with the type field set to 0x03 (MAD_ADAPTER_INFO_REQUEST), the status
field set to zero, the length field set to the size of the mad_adapter_information_payload structure, and the tag field set
as described above. The buffer field points to mapped memory address of a mad_adapter_information_payload struc-
ture.

typedef struct mad_adapter_information_payload{
char srp_version[8]; // initially 16.a
char partition_name[96]; // root node property ibm,partition-name
uint32_t partition_number; // root node property ibm,partition-no

#define MAD_VERSION_1 1
uint32_t mad_version; // initially 1

#define OS400 0x01
#define LINUX 0x02
#define AIX 0x03
#define OFW 0x04

uint32_t os_type;
uint32_t port_max_txu[8];

}partner_info;

The srp_version field is a NULL-terminated character array with the version number of the SRP standard to which the
partition complies. Current versions of the VIOS and clients all support SRP revision 16.a. The VIOS does not validate
or enforce this field currently.

The partition name is the ASCII string representing the name of the partition from the root node in the Open Firmware
device tree.

The partition number is the integer number identifying the partition from the root node in the Open Firmware device
tree. Note that partition number 0 is reserved for the hypervisor.

The mad_version field is set to the version of MAD messages supported by the partition. The MAD messages de-
scribed in this document is version 1. The VIOS does not currently validate or enforce this version.

The os_type field is set to the type of Operating System being run on the partition. The VIOS uses this information to
allocate additional resources for client partitions that have unique requirements and to return different values for sense
data in error situations. The VIOS has been able to make minor behavior changes to the device on behalf of clients that
use this field.

The port_max_txu array is used by the VIOS to report the size of the largest single request that it can handle. Currently
only the first entry (port_max_txu[0]) is used. The client initializes this field to zero. The VIOS responds with at least
a value of 0x40000, meaning that it is prepared to deal with a request to transfer at least 256,000 bytes of data. The
VIOS can respond with a larger value, depending on the resources available and the capabilities of the physical device
providing storage.

NOTE: If the VIOS reports a maximum transfer value larger than the minimum of 0x40000, and subsequently a device
which cannot support that larger maximum transfer value is added to the device inventory of this host adapter, the
VIOS will log an informative error and not report that new device in a REPORT_LUNS request until the client
has issued another MAD adapter information request. This prevents the client from passing a data transfer request

806 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

to a device which is too large for that device to handle. The VIOS will return such requests with an error. Optical
devices typically have minimal maximum transfer values.

E.12.4 #define MAD_CAPABILITIES_EXCHANGE 0x05

The MAD_CAPABILITIES_EXCHANGE command is used to allow the client and VIOS to negotiate support for ca-
pabilities that may be required with a partition migration. The data structures used are the capabilities structure, fol-
lowed by at least one specific capability structure. The client uses a bit-mask to advertise the capabilities that it can
support by setting the bits representing those capabilities to one. The VIOS responds by turning off (setting to zero) the
bits for any capabilities that it cannot support. This allows clients and VIOSs at a variety of levels to cooperate in the
partition migration operation. The client is required to support a minimum level of capabilities in order to be consid-
ered to be a candidate for migration.

The MAD_CAPABILITIES_EXCHANGE command uses the following data structure:

struct capabilities_mad{
inter_op op;
uint64_t buffer;

};

The inter_op field is initialized with the type field set to 0x05 (MAD_CAPABILITIES_EXCHANGE), the status field
initialized to zero, the length field set to the size of the capabilities structures being passed, and the tag field set as de-
scribed above. The capabilities structures must include at least the capabilities structure and the mig_cap structure.

The buffer field contains the mapped memory address of a buffer containing these structures.

struct capabilities{
//Allows the server to put a LUN in the proper state
//after migration. The flags are needed if one or
//LUN are using client reserve

#define CLIENT_MIGRATED 0x01
#define CLIENT_RECONNECT 0x02

//The the client should always set this flag field, it will
//will be reset if the server found some capabilities in the
//list it is not capable of supporting. If the server resets this
//flag field there is at least one capability in the list it does
//support

#define CAP_LIST_SUPPORTED 0x04
//The server sets this flag it overwrites some filed in
//the capabilities list. It is not set for overwriting
//the name or location field

#define CAP_LIST_DATA 0x08
unsigned int flags;
//Either a Null string or NULL terminated ASCII strings.
//If string is not NULL it may be displayed by the server
//for the system administrator.
char name[32];
char loc[32];
// list of capabilities follow

};

The flags field is always set to at least CAP_LIST_SUPPORTED by the client. If the client is sending this command as
the result of a successful partition migration operation, it should also set the CLIENT_MIGRATED flag. If the client is
sending this command as the result of a VIOS reboot or the VIOS has reset the CRQ, it should also set the

E.12  VSCSI Management Datagrams (MADs) 807

LoPAPR, Version 1.1 (March 24, 2016)

CLIENT_RECONNECT flag. If the VIOS cannot support all of the capabilities in the list passed by the client, it will
turn off the CAP_LIST_SUPPORTED flag. If the VIOS overwrites some of the data in the capabilities list, it will set
the CAP_LIST_DATA flag.

The name array is filled with the NULL-terminated string representing the name by which this client adapter instance
is known on the client partition, for example “vscsi0”.

The loc array is filled with the NULL-terminated string from the “loc-code” field of the adapter node in the Open Firm-
ware device tree for this client adapter, for example “U9117.MMA.107086C-V6-C5-T1”.

Following the capabilities structure is a list of capabilities to be negotiated. Capabilities currently supported by the
VIOS are MIGRATION_CAPABILITIES and RESERVATION_CAPABILITIES.

struct capability_common{
//Which capability

#define MIGRATION_CAPABILITIES 0x01
#define RESERVATION_CAPABILITIES 0x02

unsigned int cap_type;
//length of this capability
//including the size of this structure
//in bytes
int16_t length;
//client initializes to 0x01, server zeros
//if this particular capability is not supported

#define SERVER_DOES_NOT_SUPPORTS_CAP 0x0
#define SERVER_SUPPORTS_CAP 0x01
#define SERVER_CAP_DATA 0x02

uint16_t server_support;
};

The capability_common structure is included in each capability structure and describes the type of capability being ne-
gotiated.

The cap_type field is set to the type of capability. MIGRATION_CAPABILITIES and
RESERVATION_CAPABILITIES are the only types of capabilities currently supported.

The length field is set to the size of the capabilities structure, currently either mig_cap or reserve_cap.

The server_support field is initialized by the client to 1. If the VIOS does not support that capability, it clears the field.

The capabilities structure used for negotiating migration capabilities is as follows:

struct mig_cap{
struct capability_common common;
unsigned int ecl;

};

The ecl field contains the effective capability level. The client sets it to the current migration capability level that this
client is capable of supporting. If this level is lower than the level that the VIOS can support or higher than the VIOS
currently supports, the VIOS sets the server_support to SERVER_CAP_DATA, sets the ecl field to the lowest level it
can support or the level currently supported, as appropriate, and sets flags field of the capabilities structure to
CAP_LIST_DATA, to inform the client of the difference in the levels of migration capabilities supported. Currently,
the only migration capability level supported is 1.

The structure used in negotiating reservation capabilities is as follows:

808 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

struct reserve_cap{
struct capability_common common;
//allow for future expansion of different
//types of reserves.

#define CLIENT_RESERVE_SCSI_2 0x01
unsigned int type;

};

If the client is capable of breaking and re-establishing SCSI-2 reservations after a migration event, it should set the type
field to CLIENT_RESERVE_SCSI_2. Otherwise, it should initialize the type field to zero.

E.12.5 #define MAD_PHYS_ADAP_INFO_REQUEST 0x06

The MAD_PHYS_ADAP_INFO_REQUEST returns data about the physical adapter to which the target device is at-
tached, if the device supports it. The only device currently supporting this request is virtual tape. The data structure
used with the MAD_PHYS_ADAP_INFO_REQUEST is as follows:

struct mad_phys_adapter_info_request{
inter_op op;
uint64_t buffer;

};

The client initializes the inter_op field, with the type set to 0x06 (MAD_PHYS_ADAP_INFO_REQUEST), the status
field initialized to zero, the length field set to the size of the mad_phys_adapter_info structure, the tag field set as de-
scribed above, and the buffer field set to the mapped memory address of a mad_phys_adapter_info structure.

struct mad_phys_adapter_info{
uint64_t lun;

#define MAD_PHYS_ADAP_INFO_VERSION 0x00000001
uint32_t version;

#ifndef MAX_FRUPN_SIZE
#define MAX_FRUPN_SIZE 128
#endif
#ifndef MAX_FRUSN_SIZE
#define MAX_FRUSN_SIZE 128
#endif
#ifndef MAX_PHYSLOC_SIZE
#define MAX_PHYSLOC_SIZE 256
#endif

char fruPartNumber [MAX_FRUPN_SIZE];
char fruSerialNumber [MAX_FRUSN_SIZE];
char physLocationCode [MAX_PHYSLOC_SIZE];
char reserved [4];

};

The client sets the lun field to the Logical Unit Number (LUN) of the virtual device for which it is requesting the phys-
ical adapter information, and it sets the version to 0x01 (MAD_PHYS_ADAP_INFO_VERSION).

If the target device supports returning the physical adapter information, the VIOS copies the Field Replaceable Unit
(FRU) part number, the FRU serial number, and the physical location code into the appropriate arrays and returns that
information to the client. This information is intended for use by customer service engineers, to assist them in repairing
physical tape devices.

E.12  VSCSI Management Datagrams (MADs) 809

LoPAPR, Version 1.1 (March 24, 2016)

E.12.6 #define MAD_TAPE_PASSTHROUGH_REQUEST 0x07

The MAD_TAPE_PASSTHROUGH_REQUEST enables or disables SCSI command data blocks (CDBs) to be passed
directly to the physical tape device driver without examination or emulation by the VIOS drivers.

The structure used with the MAD_TAPE_PASSTHROUGH_REQUEST is as follows:

struct mad_tape_passthrough{
inter_op op;
uint64_t lun;

#define MAD_TAPE_PASSTHRU_VERSION 0x00000001
uint32_t version;

/***
* The below defines are used to enable or
* disable the passthrough mode for virtual
* tape devices supported by the server
***/
#define TAPE_PASSTHROUGH_ENABLE 0x00000001
#define TAPE_PASSTHROUGH_DISABLE 0x00000002

uint32_t passThru;
};

The client initializes the inter_op structure by setting the type field to 0x07
(MAD_TAPE_PASSTHROUGH_REQUEST), setting the status field to zero, setting the length field to the size of the
mad_tape_passthrough structure, and setting the tag field as described above. The lun field is set to the Logical Unit
Number of a virtual tape device on this client adapter. The version is set to 0x00000001
(MAD_TAPE_PASSTHRU_VERSION). The passThru is set to either 0x00000001
(TAPE_PASSTHROUGH_ENABLE) or 0x00000002 (TAPE_PASSTHROUGH_DISABLE).

When tape passthrough is enabled, the SCSI Command Data Blocks are sent directly to the tape head driver, without
examination or emulation by the VIOS drivers.

E.12.7 #define MAD_ENABLE_FAST_FAIL 0x08

The MAD_ENABLE_FAST_FAIL command enables the VIOS to provide a hint to the client that a physical device is
no longer accessible so that a failover to alternate paths, if any, should be attempted.

The only structure used with the MAD_ENABLE_FAST_FAIL command is the inter_op structure. The type field is set
to 0x08 (MAD_ENABLE_FAST_FAIL), the status field is initialized to zero, the length field is set to the size of the
inter_op structure, and the tag field is set as described above.

When the MAD_ENABLE_FAST_FAIL has completed successfully and the VIOS determines that a device is no lon-
ger responding, when the VIOS is completing an I/O request for that device back to the client, the VIOS will set the
status field in the CRQ message to 0x10 (ADAPTER_FAILED), in addition to returning the normal device error and
sense data. Fast fail is disabled by closing the CRQ.

Two additional messages may be exchanged between clients and a VIOS - PING and PING_RESPONSE. If a partition
needs to know if the other partition is still functional and at least able to respond to an interrupt, it can send a PING
message to the other partition. The other partition should respond with a PING_RESPONSE. These are very light-
weight messages that require no resources. They fit entirely within the first 64-bit quantity of the CRQ message. The
PING_RESPONSE should be sent from the interrupt code, immediately after receiving the PING.

To send a PING, the valid bit is set to one, the CRQ format field is set to 0x06 (MESSAGE_IN_CRQ), and the status
field is set to 0xF5 (PING).

810 A Protocol for VSCSI Communications

 LoPAPR, Version 1.1 (March 24, 2016)

To send a PING_RESPONSE, the valid bit is set to one, the CRQ format field is set to 0x06 (MESSAGE_IN_CRQ),
and the status field is set to 0xF6 (PING_RESPONSE).

It is strongly recommended that PING messages be used very sparingly. One way to fill a CRQ with ping messages is
to halt the VIOS in kdb while the AIX client has requests active on it.

LoPAPR+, Version 1.1 (March 24, 2016)

F A Protocol for VMC
Communications

F.1 Overview

The Virtual Management Channel (VMC) is a logical device which provides an interface between the hypervisor and a
management partition. This management partition is intended to provide an alternative to HMC-based system manage-
ment. In the management partition, a Logical Partition Manager (LPM) application exists which enables a system ad-
ministrator to configure the system’s partitioning characteristics via a command line interface or web browser. Support
for conventional HMC management of the system may still be provided on a system; however, when an HMC is at-
tached to the system, the VMC interface is disabled by the hypervisor.

F.1.1 Logical Partition Manager

The LPM is a browser based LPAR configuration tool provided by the management partition. System configuration,
maintenance, and control functions which traditionally require an HMC can be implemented in the LPM using a com-
bination of HMC to hypervisor interfaces and existing operating system methods. This tool provides a subset of the
functions implemented by the HMC and enables basic partition configuration. The set of HMC to hypervisor messages
supported by the LPM component are passed to the hypervisor over a VMC interface, which is defined below. The ac-
tual content of these messages is defined in other documentation. In order to remain consistent with this existing HMC
documentation, this appendix generally uses the HMC terminology to refer to these messages and the LPM to hypervi-
sor connections.

F.1.2 Virtual Management Channel (VMC)

A logical device, called the virtual management channel (VMC), is defined for communicating between the LPM ap-
plication and the hypervisor. This device, similar to a VSCSI server device, is presented to a designated management
partition as a virtual device and is only presented when the system is not HMC managed.

This communication device borrows aspects from both VSCSI and ILLAN devices and is implemented using the CRQ
and the RDMA interfaces. The initialization process for CRQs is defined in Chapter 17, “Virtualized Input/Output,” on
page 597, and is not duplicated here. A three way handshake is defined that must take place to establish that both the
hypervisor and management partition sides of the channel are running prior to sending/receiving any of the protocol
messages defined in this appendix.

Transport Event CRQs are also defined in Chapter 17, “Virtualized Input/Output,” on page 597, and are not duplicated
here. They define the CRQ messages that are sent when the hypervisor detects one of the peer partitions has abnor-
mally terminated, or one side has called H_FREE_CRQ to close their CRQ.

Two new classes of CRQ messages are introduced for the VMC device. VMC Administrative messages are used for
each partition using the VMC to communicate capabilities to their partner. HMC Interface messages are used for the
actual flow of HMC messages between the management partition and the hypervisor. As most HMC messages far ex-
ceed the size of a CRQ bugger, a virtual DMA (RMDA) of the HMC message data is done prior to each HMC Interface
CRQ message. Only the management partition drives RDMA operations; hypervisor never directly causes the move-
ment of message data.

812 A Protocol for VMC Communications

LoPAPR+, Version 1.1 (March 24, 2016)

F.2 VMC CRQ Message Definition

For the VMC interface, all CRQ messages are defined to use the following base format:

Two general message formats are defined: administrative and HMC Interface. These are defined in the following sec-
tions.

F.2.1 Administrative Messages

The administrative message format is used to configure a VMC between the hypervisor and the management partition.
The two messages defined for this format are described in the following subsections.

F.2.1.1 VMC Capabilities

The capabilities message is an administrative message sent after the CRQ initialization sequence of messages and is
used to exchange VMC capabilities between the management partition and the hypervisor. The management partition
must send this message and the hypervisor must respond with a VMC Capabilities Response message before HMC in-
terface messages can begin. Any HMC interface messages received before the exchange of capabilities has completed
are dropped.

This message enables the management partition and the hypervisor to trade the following interface parameters:

1. # HMC’s. Maximum number of independent HMC connections supported. Multiple connections would be re-
quired to support HMC pass through mode.

2. Pool Size. Maximum number of buffers supported per HMC connection.

3. MTU. Maximum message size supported (bytes).

4. CRQ Size. Number of entries available in the CRQ for the source partition. The target partition must limit the
number of outstanding messages to one half or less.

5. Version. Indicates the code level of the management partition or the hypervisor with the high-order byte indicating
a major version and the low-order byte indicating a minor version.

Table 279. CRQ Message Base Format

1 B 1 B 14 B

Header Type Data

Table 280. VMC Capabilities Message

1 B 1 B 1 B 2 B 1 B 2 B 4 B 2 B 2 B

0x80 0x01 Reserved Reserved # HMC’s Pool Size MTU CRQ Size Version (Major/Minor)

F.2  VMC CRQ Message Definition 813

LoPAPR+, Version 1.1 (March 24, 2016)

F.2.1.2 VMC Capabilities Response

This command is sent by the hypervisor in response to the VMC Capabilities message. This command enables the hy-
pervisor to inform the management partition of the values it supports. Parameters are identical to the VMC Capabilities
message, with the addition of the following field:

Status. Zero is success. On failure, one of the following is returned:
1 - General failure
2 - Invalid version

The hypervisor and the management partition use the minimum value supported by each side for the parameters nego-
tiated with the capabilities message exchange.

F.2.2 HMC Interface Buffers

Buffers are used to transfer data between the management partition and the hypervisor. Many of the HMC Interface
messages defined in following sections indicate buffers that contain data that must be transferred. Note the following:

1. All buffers exist in the hypervisor memory, and data is moved between the hypervisor and the management parti-
tion by the management partition issuing H_COPY_RDMA.

2. To enable the management partition to access each buffer, the hypervisor must allocate virtual TCEs as well as the
actual buffer storage.

3. Each buffer is at least the minimum negotiated MTU bytes long.

4. Buffers are always owned by either the management partition or the hypervisor. Management partition-owned
buffers are used for messages (both commands and responses) sent to the hypervisor from the management parti-
tion. The hypervisor-owned buffers are used for messages (both responses and asynchronous events) sent from the
hypervisor to the management partition.

5. Each LPM interface message carrying HMC protocol (either direction) also carries a buffer, and the ownership of
this buffer transfers from sender to receiver.

6. There are no CRQ responses to the CRQ messages carrying HMC protocol. The HMC protocol responses are car-
ried in a message sent from the other direction.

7. The maximum depth of the buffer pool is the minimum value negotiated via the capabilities exchange.

8. For each of the HMC interface commands, Buffer ID is used to identify the transfer buffer and ranges from 0 to the
minimum negotiated pool size - 1.

9. There is a separate buffer pool for each LPM connection, each with the negotiated number of buffers.

Table 281. VMC Capabilities Response Message

1 B 1 B 1 B 2 B 1 B 2 B 4 B 2 B 2 B

0x80 0x81 Status Reserved # HMC’s Pool Size MTU CRQ Size Version (Major/Minor)

814 A Protocol for VMC Communications

LoPAPR+, Version 1.1 (March 24, 2016)

F.2.3 HMC Interface Messages

There are several different HMC Interface messages, as defined in the following sections. Each CRQ message has a
unique HMC Interface message type, and the HMC Interface message type defines the format for the remaining 14
bytes of data.

F.2.3.1 Interface Open

This command is sent by the management partition as the result of a management partition device request. It causes the
hypervisor to prepare a set of data buffers for the LPM connection indicated by HMC Idx (HMC index). A unique
HMC Idx would be used if multiple management applications running concurrently were desired. Before responding to
this command, the hypervisor must provide the management partition with at least one of these new buffers (see the
Add Buffer message defined below). The HMC Sn (HMC Session) field is used as a session identifier for the current
VMC connection. If the management partition disconnects (for example as the result of a crash in the LPM applica-
tion), the next open of the VMC device will result in the next HMC Sn value in the range from 1 to 255 being used.

This message is issued after the capabilities exchange has successfully completed and the hypervisor has issued an Add
Buffer command to create a buffer for the management partition for use in establishing an LPM connection. The man-
agement partition sends the unique 32-byte HMC ID to the hypervisor via an RDMA using the buffer established by
the hypervisor.

F.2.3.2 Interface Open Response

This command is sent by the hypervisor in response to the Interface Open message. The status of the open command is
returned in the Status field. Zero is success. On failure, the following is returned:

1 - General failure

When this message is received, the indicated buffer is again available for management partition use.

F.2.3.3 Interface Close

Table 282. Interface Open Command Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x02 Reserved Reserved HMC Sn HMC Idx Buffer ID Reserved

Table 283. Interface Open Response Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x82 Status Reserved HMC Sn HMC Idx Buffer ID Reserved

Table 284. Interface Close Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x03 Reserved Reserved HMC Sn HMC Idx Reserved Reserved

F.2  VMC CRQ Message Definition 815

LoPAPR+, Version 1.1 (March 24, 2016)

This command is sent by the management partition to terminate an LPM to hypervisor connection. When this com-
mand is sent, the management partition has quiesced all I/O operations to all buffers associated with this LPM connec-
tion, and has freed any storage for those buffers.

F.2.3.4 Interface Close Response

This command is sent by the hypervisor in response to the LPM Interface Close message. The status of the close com-
mand is returned in the Status field. Zero is success. On failure, the following is returned:

1 - General failure

F.2.3.5 Add Buffer

This message transfers a buffer from hypervisor ownership to management partition ownership. The LIOBA is ob-
tained from the virtual TCE table associated with the hypervisor side of the VMC device, and points to a buffer of size
MTU (as established in the capabilities exchange).

The hypervisor field is set to 0 if the buffer being added is to be used by the management partition for messages in-
bound to the hypervisor, and to 1 if the buffer being added is to be used for messages outbound from the hypervisor.

The typical flow for adding buffers:

1. A new LPM connection is opened by the management partition.

2. The hypervisor assigns new buffers for the traffic associated with that connection.

3. The hypervisor sends VMC Add Buffer messages to the management partition, informing it of the new buffers.

4. The hypervisor sends an HMC protocol message (to the LPM application) notifying it of the new buffers. This in-
forms the application that it has buffers available for sending HMC commands.

F.2.3.6 Add Buffer Response

Table 285. Interface Close Response Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x83 Status Reserved HMC Sn HMC Idx Reserved Reserved

Table 286. Add Buffer Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 4 B 4 B

0x80 0x04 Reserved hypervisor HMC Sn HMC Idx Buffer ID Reserved Buffer LIOBA

Table 287. Add Buffer Response Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x84 Status Reserved HMC Sn HMC Idx Buffer ID Reserved

816 A Protocol for VMC Communications

LoPAPR+, Version 1.1 (March 24, 2016)

This command is sent by the management partition to the hypervisor in response to the Add Buffer message. The Status
field indicates the result of the command. Zero is success. On failure, one of the following is returned:

1 - General failure
2 - Invalid HMC Index
3 - Invalid Buffer ID
4 - HMC connection has closed

F.2.3.7 Remove Buffer

This message requests an HMC buffer to be transferred from management partition ownership to hypervisor owner-
ship. The management partition may not be able to satisfy the request at a particular point in time if all its buffers are in
use. The management partition requires a depth of at least one inbound buffer to allow LPM commands to flow to the
hypervisor. It is, therefore, an interface error for the hypervisor to attempt to remove the management partition's last
buffer.

The hypervisor is expected to manage buffer usage with the LPM application directly and inform the management par-
tition when buffers may be removed. The typical flow for removing buffers:

1. The LPM application no longer needs a communication path to a particular hypervisor function. That function is
closed.

2. The hypervisor and the LPM application quiesce all traffic to that function. The hypervisor requests a reduction in
buffer pool size.

3. The LPM application acknowledges the reduction in buffer pool size.

4. The hypervisor sends a Remove Buffer message to the management partition, informing it of the reduction in buf-
fers.

5. The management partition verifies it can remove the buffer. This is possible if buffers have been quiesced.

F.2.3.8 Remove Buffer Response

This command is sent by the management partition to the hypervisor in response to the Remove Buffer message. The
Buffer ID field indicates which buffer the management partition selected to remove. The Status field indicates the result
of the command. Zero is success. On failure, the following is returned:

Table 288. Remove Buffer Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x05 Reserved Reserved HMC Sn HMC Idx Reserved Reserved

Table 289. Remove Buffer Response Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 8 B

0x80 0x85 Status Reserved HMC Sn HMC Idx Buffer ID Reserved

F.3  Example Management Partition VMC Driver Interface 817

LoPAPR+, Version 1.1 (March 24, 2016)

1 - General failure
2 - Invalid HMC Index
3 - No buffer found

F.2.3.9 Signal Message

This command is sent between the management partition and the hypervisor in order to signal the arrival of an HMC
protocol message. The command can be sent by both the management partition and the hypervisor. It is used for all
traffic between the LPM application and the hypervisor, regardless of who initiated the communication.

There is no response to this message.

F.3 Example Management Partition VMC Driver Interface

This section provides an example for the LPM implementation where a device driver is used to interface to the VMC
device. This driver consists of a new device, for example /dev/lparvmc, which provides interfaces to open, close, read,
write, and perform ioctl’s against the VMC device.

F.3.1 VMC Interface Initialization

The device driver is responsible for initializing the VMC when the driver is loaded. It first creates and initializes the
CRQ. Next, an exchange of VMC capabilities is performed to indicate the code version and number of resources avail-
able in both the management partition and the hypervisor. Finally, the hypervisor requests that the management parti-
tion create an initial pool of VMC buffers, one buffer for each possible HMC connection, which will be used for LPM
session initialization. Prior to completion of this initialization sequence, the device returns EBUSY to open() calls. EIO
is returned for all open() failures.

Figure 39. VMC Interface Initialization

Table 290. Signal Message

1 B 1 B 1 B 1 B 1B 1 B 2 B 4 B 4 B

0x80 0x06 Reserved Reserved HMC Sn HMC Idx Buffer ID Reserved Msg Len

Management partition Hypervisor

CRQ Init

CRQ Init Complete

Capabilities

Capabilities Response

Add Buffer (MHC Idx=0, 1, ...)

Add Buffer Response }Perform # HMCs Iterations

818 A Protocol for VMC Communications

LoPAPR+, Version 1.1 (March 24, 2016)

F.3.2 VMC Interface Open

After the basic VMC channel has been initialized, an HMC session level connection can be established. The applica-
tion layer performs an open() to the VMC device and executes an ioctl() against it, indicating the HMC ID (32 bytes of
data) for this session. If the VMC device is in an invalid state, EIO will be returned for the ioctl(). The device driver
creates a new HMC session value (ranging from 1 to 255) and HMC index value (starting at index 0 and potentially
ranging to 254 in future releases) for this HMC ID. The driver then does an RDMA of the HMC ID to the hypervisor,
and then sends an Interface Open message to the hypervisor to establish the session over the VMC. After the hypervi-
sor receives this information, it sends Add Buffer messages to the management partition to seed an initial pool of buf-
fers for the new HMC connection. Finally, the hypervisor sends an Interface Open Response message, to indicate that
it is ready for normal runtime messaging. The following illustrates this VMC flow:

Figure 40. VMC Interface Open

F.3.3 VMC Interface Runtime

During normal runtime, the LPM application and the hypervisor exchange HMC messages via the Signal VMC mes-
sage and RDMA operations. When sending data to the hypervisor, the LPM application performs a write() to the VMC
device, and the driver RDMA’s the data to the hypervisor and then sends a Signal Message. If a write() is attempted be-
fore VMC device buffers have been made available by the hypervisor, or no buffers are currently available, EBUSY is
returned in response to the write(). A write() will return EIO for all other errors, such as an invalid device state. When
the hypervisor sends a message to the LPM, the data is put into a VMC buffer and an Signal Message is sent to the
VMC driver in the management partition. The driver RDMA’s the buffer into the partition and passes the data up to the
appropriate LPM application via a read() to the VMC device. The read() request blocks if there is no buffer available to
read. The LPM application may use select() to wait for the VMC device to become ready with data to read.

Management partition Hypervisor

RDMA HMC ID

Interface Open

Add Buffer

Add Buffer Response

Interface Open Response

} Perform N Iterations

Management partition Hypervisor

Msg RDMA

Signal Msg

Signal Msg

Msg RDMA

F.3  Example Management Partition VMC Driver Interface 819

LoPAPR+, Version 1.1 (March 24, 2016)

Figure 41. VMC Interface Runtime

F.3.4 VMC Interface Close

HMC session level connections are closed by the management partition when the application layer performs a close()
against the device. This action results in an Interface Close message flowing to the hypervisor, which causes the ses-
sion to be terminated. The device driver must free any storage allocated for buffers for this HMC connection.

Figure 42. VMC Interface Close

Management partition Hypervisor

Interface Close

Interface Close Response

820 A Protocol for VMC Communications

LoPAPR+, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

G Firmware Assisted Dump Data
Format

This Appendix documents the dump data format, in support of the Configure Platform Assisted Kernel Dump option
(See Section 7.4.9‚ “ibm,configure-kernel-dump RTAS call‚” on page 255).

G.1 Register Save Area

The register save area is an area in the partition’s memory used to preserve the registers for the active CPUs during a
firmware assisted dump. The location and size of this area is specified by the partition when firmware assisted dump.
The minimum size will be sent to the partition in the PFDS KDUMP node.

The register save is a semi-free format list of registers for each CPU. Each list of registers for a CPU starts with
“CPUSTRT” and ends with “CPUEND”.

NumCpusOffset should be used to access the data to allow for additional fields to be added without affecting compati-
bility.

Notes:

1. Only CPUs that are online at the start of the Firmware Assisted Dump will have their register data saved.

2. Each group of GPRs, FPRs, and VRs will be listed in ascending array index (and ASCII identi-
fier) sorted order with no other interleaving registers. Further, registers whose value spans multi-
ple doublewords (currently only VR and VSR array elements) will be listed in high to low sorted
order with no other interleaving values. All other registers are not required to be in any specific
order (To make debug easier they will most likely be placed in ascending ASCII identifier order)

Table 291. Register Save Area Format

Offset Length (Bytes) Name Value Description

0x00 0x8 Magic Number
0x5245475341564500
“REGSAVE”

Identifies this area

0x08 0x4 Version 0x0 Current version

0x0C 0x4 NumCpusOffset 0x1C Offset to NumCpus field

0x10 0xC Padding 0x0 Must be initialized to 0

0x1C 0x4 NumCpus Actual number of CPUs
Number of CPUs (not the
number of entries)

0x20 0x10 RegEntry “CPUSTRT”

0x30 0x10 RegEntry <various register values>

...

822 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

0x?? 0x10 RegEntry “CPUEND”

0x?? 0x10 RegEntry “CPUSTRT”

...

Table 292. RegEntry Format

Offset Length (Bytes) Name Value Description

0x0 0x8 RegIdentifier See Below
ASCII, Padded with binary
zeros

0x08 0x8 RegData Register Data

Table 293. CPUSTRT and CPUEND have the following format

8 Byte Identifier 4 Byte Reserved 4 Byte Logical CPU ID

Table 294. 8-Byte RegEntries

8 Byte Identifier 8 Byte Register Value

Table 295. 4-Byte RegEntries

8 Byte Identifier 4 Byte Reserved 4 Byte Register Value

Table 296. Identifiers Supported in Version 0x0 of the Table

Identifier (Hex) Identifier (ASCII) Description

0x4350555354525400 CPUSTRT

0x435055454E440000 CPUEND

0x41434F5000000000 ACOP Available Coprocessor Register

0x414D520000000000 AMR Authority Mask Register

0x4346415200000000 CFAR Come From Address Register

0x4352000000000000 CR Condition Register

0x4354520000000000 CTR Count Register

0x4354524C00000000 CTRL Control Register

Table 291. Register Save Area Format (Continued)

Offset Length (Bytes) Name Value Description

G.1  Register Save Area 823

LoPAPR, Version 1.1 (March 24, 2016)

0x4441425200000000 DABR Data Address Breakpoint Register

0x4441425258000000 DABRX DABR Extended

0x4441520000000000 DAR Data Address Register

0x4445430000000000 DEC Decrementer

0x4453435200000000 DSCR Depth Stream Control Register

0x4453495352000000 DSISR Data Storage Interrupt Status Register

0x4650523030000000 FPR00 Floating Point Register 0

0x4650523031000000 FPR01 Floating Point Register 1

0x4650523032000000 FPR02 Floating Point Register 2

0x4650523033000000 FPR03 Floating Point Register 3

0x4650523034000000 FPR04 Floating Point Register 4

0x4650523035000000 FPR05 Floating Point Register 5

0x4650523036000000 FPR06 Floating Point Register 6

0x4650523037000000 FPR07 Floating Point Register 7

0x4650523038000000 FPR08 Floating Point Register 8

0x4650523039000000 FPR09 Floating Point Register 9

0x4650523130000000 FPR10 Floating Point Register 10

0x4650523131000000 FPR11 Floating Point Register 11

0x4650523132000000 FPR12 Floating Point Register 12

0x4650523133000000 FPR13 Floating Point Register 13

0x4650523134000000 FPR14 Floating Point Register 14

0x4650523135000000 FPR15 Floating Point Register 15

0x4650523136000000 FPR16 Floating Point Register 16

0x4650523137000000 FPR17 Floating Point Register 17

0x4650523138000000 FPR18 Floating Point Register 18

0x4650523139000000 FPR19 Floating Point Register 19

0x4650523230000000 FPR20 Floating Point Register 20

0x4650523231000000 FPR21 Floating Point Register 21

0x4650523232000000 FPR22 Floating Point Register 22

0x4650523233000000 FPR23 Floating Point Register 23

0x4650523234000000 FPR24 Floating Point Register 24

0x4650523235000000 FPR25 Floating Point Register 25

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

824 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

0x4650523236000000 FPR26 Floating Point Register 26

0x4650523237000000 FPR27 Floating Point Register 27

0x4650523238000000 FPR28 Floating Point Register 28

0x4650523239000000 FPR29 Floating Point Register 29

0x4650523330000000 FPR30 Floating Point Register 30

0x4650523331000000 FPR31 Floating Point Register 31

0x4650534352000000 FPSCR
Floating Point Status and Control
Register

0x4750523030000000 GPR00 General Purpose Register 0

0x4750523031000000 GPR01 General Purpose Register 1

0x4750523032000000 GPR02 General Purpose Register 2

0x4750523033000000 GPR03 General Purpose Register 3

0x4750523034000000 GPR04 General Purpose Register 4

0x4750523035000000 GPR05 General Purpose Register 5

0x4750523036000000 GPR06 General Purpose Register 6

0x4750523037000000 GPR07 General Purpose Register 7

0x4750523038000000 GPR08 General Purpose Register 8

0x4750523039000000 GPR09 General Purpose Register 9

0x4750523130000000 GPR10 General Purpose Register 10

0x4750523131000000 GPR11 General Purpose Register 11

0x4750523132000000 GPR12 General Purpose Register 12

0x4750523133000000 GPR13 General Purpose Register 13

0x4750523134000000 GPR14 General Purpose Register 14

0x4750523135000000 GPR15 General Purpose Register 15

0x4750523136000000 GPR16 General Purpose Register 16

0x4750523137000000 GPR17 General Purpose Register 17

0x4750523138000000 GPR18 General Purpose Register 18

0x4750523139000000 GPR19 General Purpose Register 19

0x4750523230000000 GPR20 General Purpose Register 20

0x4750523231000000 GPR21 General Purpose Register 21

0x4750523232000000 GPR22 General Purpose Register 22

0x4750523233000000 GPR23 General Purpose Register 23

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

G.1  Register Save Area 825

LoPAPR, Version 1.1 (March 24, 2016)

0x4750523234000000 GPR24 General Purpose Register 24

0x4750523235000000 GPR25 General Purpose Register 25

0x4750523236000000 GPR26 General Purpose Register 26

0x4750523237000000 GPR27 General Purpose Register 27

0x4750523238000000 GPR28 General Purpose Register 28

0x4750523239000000 GPR29 General Purpose Register 29

0x4750523330000000 GPR30 General Purpose Register 30

0x4750523331000000 GPR31 General Purpose Register 31

0x4C52000000000000 LR Link Register

0x4D4D435230000000 MMCR0 Monitor Mode Control Register 0

0x4D4D435231000000 MMCR1 Monitor Mode Control Register 1

0x4D4D435240000000 MMCRA Monitor Mode Control Register A

0x4D53520000000000 MSR Machine State Register

0x4e49410000000000 NIA Next Instruction Address

0x5049440000000000 PID Process ID Register

0x5049520000000000 PIR Processor Identification Register

0x504D433100000000 PMC1 Performance Monitor Counter 1

0x504D433200000000 PMC2 Performance Monitor Counter 2

0x504D433300000000 PMC3 Performance Monitor Counter 3

0x504D433400000000 PMC4 Performance Monitor Counter 4

0x504D433500000000 PMC5 Performance Monitor Counter 5

0x504D433600000000 PIMC6 Performance Monitor Counter 6

0x5055525200000000 PURR Processor Utilization Register

0x5056520000000000 PVR Processor Version Register

0x5344415200000000 SDAR Sampled Data Address Register

0x5349415200000000 SIAR Sampled Instruction Address Register

0x5350524730000000 SPRG0 Special Purpose Register General 0

0x5350524731000000 SPRG1 Special Purpose Register General 1

0x5350524732000000 SPRG2 Special Purpose Register General 2

0x5350524733000000 SPRG3 Special Purpose Register General 3

0x5350555252000000 SPURR Scaled Processor Utilization Register

0x5352523000000000 SRR0 Save Restore Register 0

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

826 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

0x5352523100000000 SRR1 Save Restore Register 1

0x5442000000000000 TB Time Base Register

0x5453520000000000 TSR Thread Status Register

0x55414D4F52000000 UAMOR User Authority Mask Override Register

0x565230305F484900 VR00_HI Vector Register 0 High

0x565230305F4C4F00 VR00_LO Vector Register 0 Low

0x565230315F484900 VR01_HI Vector Register 1 High

0x565230315F4C4F00 VR01_LO Vector Register 1 Low

0x565230325F484900 VR02_HI Vector Register 2 High

0x565230325F4C4F00 VR02_LO Vector Register 2 Low

0x565230335F484900 VR03_HI Vector Register 3 High

0x565230335F4C4F00 VR03_LO Vector Register 3 Low

0x565230345F484900 VR04_HI Vector Register 4 High

0x565230345F4C4F00 VR04_LO Vector Register 4 Low

0x565230355F484900 VR05_HI Vector Register 5 High

0x565230355F4C4F00 VR05_LO Vector Register 5 Low

0x565230365F484900 VR06_HI Vector Register 6 High

0x565230365F4C4F00 VR06_LO Vector Register 6 Low

0x565230375F484900 VR07_HI Vector Register 7 High

0x565230375F4C4F00 VR07_LO Vector Register 7 Low

0x565230385F484900 VR08_HI Vector Register 8 High

0x565230385F4C4F00 VR08_LO Vector Register 8 Low

0x565230395F484900 VR09_HI Vector Register 9 High

0x565230395F4C4F00 VR09_LO Vector Register 9 Low

0x565231305F484900 VR10_HI Vector Register 10 High

0x565231305F4C4F00 VR10_LO Vector Register 10 Low

0x565231315F484900 VR11_HI Vector Register 11 High

0x565231315F4C4F00 VR11_LO Vector Register 11 Low

0x565231325F484900 VR12_HI Vector Register 12 High

0x565231325F4C4F00 VR12_LO Vector Register 12 Low

0x565231335F484900 VR13_HI Vector Register 13 High

0x565231335F4C4F00 VR13_LO Vector Register 13 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

G.1  Register Save Area 827

LoPAPR, Version 1.1 (March 24, 2016)

0x565231345F484900 VR14_HI Vector Register 14 High

0x565231345F4C4F00 VR14_LO Vector Register 14 Low

0x565231355F484900 VR15_HI Vector Register 15 High

0x565231355F4C4F00 VR15_LO Vector Register 15 Low

0x565231365F484900 VR16_HI Vector Register 16 High

0x565231365F4C4F00 VR16_LO Vector Register 16 Low

0x565231375F484900 VR17_HI Vector Register 17 High

0x565231375F4C4F00 VR17_LO Vector Register 17 Low

0x565231385F484900 VR18_HI Vector Register 18 High

0x565231385F4C4F00 VR18_LO Vector Register 18 Low

0x565231395F484900 VR19_HI Vector Register 19 High

0x565231395F4C4F00 VR19_LO Vector Register 19 Low

0x565232305F484900 VR20_HI Vector Register 20 High

0x565232305F4C4F00 VR20_LO Vector Register 20 Low

0x565232315F484900 VR21_HI Vector Register 21 High

0x565232315F4C4F00 VR21_LO Vector Register 21 Low

0x565232325F484900 VR22_HI Vector Register 22 High

0x565232325F4C4F00 VR22_LO Vector Register 22 Low

0x565232335F484900 VR23_HI Vector Register 23 High

0x565232335F4C4F00 VR23_LO Vector Register 23 Low

0x565232345F484900 VR24_HI Vector Register 24 High

0x565232345F4C4F00 VR24_LO Vector Register 24 Low

0x565232355F484900 VR25_HI Vector Register 25 High

0x565232355F4C4F00 VR25_LO Vector Register 25 Low

0x565232365F484900 VR26_HI Vector Register 26 High

0x565232365F4C4F00 VR26_LO Vector Register 26 Low

0x565232375F484900 VR27_HI Vector Register 27 High

0x565232375F4C4F00 VR27_LO Vector Register 27 Low

0x565232385F484900 VR28_HI Vector Register 28 High

0x565232385F4C4F00 VR28_LO Vector Register 28 Low

0x565232395F484900 VR29_HI Vector Register 29 High

0x565232395F4C4F00 VR29_LO Vector Register 29 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

828 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

0x565233305F484900 VR30_HI Vector Register 30 High

0x565233305F4C4F00 VR30_LO Vector Register 30 Low

0x565233315F484900 VR31_HI Vector Register 31 High

0x565233315F4C4F00 VR31_LO Vector Register 31 Low

0x5652534156450000 VRSAVE VR Save Register

0x5653435200000000 VSCR VMX Status and Condition Register

0x56535230305F4849 VSR00_HI Vector Scalar Register 0 High

0x56535230305F4C4F VSR00_LO Vector Scalar Register 0 Low

0x56535230315F4849 VSR01_HI Vector Scalar Register 1 High

0x56535230315F4C4F VSR01_LO Vector Scalar Register 1 Low

0x56535230325F4849 VSR02_HI Vector Scalar Register 2 High

0x56535230325F4C4F VSR02_LO Vector Scalar Register 2 Low

0x56535230335F4849 VSR03_HI Vector Scalar Register 3 High

0x56535230335F4C4F VSR03_LO Vector Scalar Register 3 Low

0x56535230345F4849 VSR04_HI Vector Scalar Register 4 High

0x56535230345F4C4F VSR04_LO Vector Scalar Register 4 Low

0x56535230355F4849 VSR05_HI Vector Scalar Register 5 High

0x56535230355F4C4F VSR05_LO Vector Scalar Register 5 Low

0x56535230365F4849 VSR06_HI Vector Scalar Register 6 High

0x56535230365F4C4F VSR06_LO Vector Scalar Register 6 Low

0x56535230375F4849 VSR07_HI Vector Scalar Register 7 High

0x56535230375F4C4F VSR07_LO Vector Scalar Register 7 Low

0x56535230385F4849 VSR08_HI Vector Scalar Register 8 High

0x56535230385F4C4F VSR08_LO Vector Scalar Register 8 Low

0x56535230395F4849 VSR09_HI Vector Scalar Register 9 High

0x56535230395F4C4F VSR09_LO Vector Scalar Register 9 Low

0x56535231305F4849 VSR10_HI Vector Scalar Register 10 High

0x56535231305F4C4F VSR10_LO Vector Scalar Register 10 Low

0x56535231315F4849 VSR11_HI Vector Scalar Register 11 High

0x56535231315F4C4F VSR11_LO Vector Scalar Register 11 Low

0x56535231325F4849 VSR12_HI Vector Scalar Register 12 High

0x56535231325F4C4F VSR12_LO Vector Scalar Register 12 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

G.1  Register Save Area 829

LoPAPR, Version 1.1 (March 24, 2016)

0x56535231335F4849 VSR13_HI Vector Scalar Register 13 High

0x56535231335F4C4F VSR13_LO Vector Scalar Register 13 Low

0x56535231345F4849 VSR14_HI Vector Scalar Register 14 High

0x56535231345F4C4F VSR14_LO Vector Scalar Register 14 Low

0x56535231355F4849 VSR15_HI Vector Scalar Register 15 High

0x56535231355F4C4F VSR15_LO Vector Scalar Register 15 Low

0x56535231365F4849 VSR16_HI Vector Scalar Register 16 High

0x56535231365F4C4F VSR16_LO Vector Scalar Register 16 Low

0x56535231375F4849 VSR17_HI Vector Scalar Register 17 High

0x56535231375F4C4F VSR17_LO Vector Scalar Register 17 Low

0x56535231385F4849 VSR18_HI Vector Scalar Register 18 High

0x56535231385F4C4F VSR18_LO Vector Scalar Register 18 Low

0x56535231395F4849 VSR19_HI Vector Scalar Register 19 High

0x56535231395F4C4F VSR19_LO Vector Scalar Register 19 Low

0x56535232305F4849 VSR20_HI Vector Scalar Register 20 High

0x56535232305F4C4F VSR20_LO Vector Scalar Register 20 Low

0x56535232315F4849 VSR21_HI Vector Scalar Register 21 High

0x56535232315F4C4F VSR21_LO Vector Scalar Register 21 Low

0x56535232325F4849 VSR22_HI Vector Scalar Register 22 High

0x56535232325F4C4F VSR22_LO Vector Scalar Register 22 Low

0x56535232335F4849 VSR23_HI Vector Scalar Register 23 High

0x56535232335F4C4F VSR23_LO Vector Scalar Register 23 Low

0x56535232345F4849 VSR24_HI Vector Scalar Register 24 High

0x56535232345F4C4F VSR24_LO Vector Scalar Register 24 Low

0x56535232355F4849 VSR25_HI Vector Scalar Register 25 High

0x56535232355F4C4F VSR25_LO Vector Scalar Register 25 Low

0x56535232365F4849 VSR26_HI Vector Scalar Register 26 High

0x56535232365F4C4F VSR26_LO Vector Scalar Register 26 Low

0x56535232375F4849 VSR27_HI Vector Scalar Register 27 High

0x56535232375F4C4F VSR27_LO Vector Scalar Register 27 Low

0x56535232385F4849 VSR28_HI Vector Scalar Register 28 High

0x56535232385F4C4F VSR28_LO Vector Scalar Register 28 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

830 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

0x56535232395F4849 VSR29_HI Vector Scalar Register 29 High

0x56535232395F4C4F VSR29_LO Vector Scalar Register 29 Low

0x56535233305F4849 VSR30_HI Vector Scalar Register 30 High

0x56535233305F4C4F VSR30_LO Vector Scalar Register 30 Low

0x56535233315F4849 VSR31_HI Vector Scalar Register 31 High

0x56535233315F4C4F VSR31_LO Vector Scalar Register 31 Low

0x56535233325F4849 VSR32_HI Vector Scalar Register 32 High

0x56535233325F4C4F VSR32_LO Vector Scalar Register 32 Low

0x56535233335F4849 VSR33_HI Vector Scalar Register 33 High

0x56535233335F4C4F VSR33_LO Vector Scalar Register 33 Low

0x56535233345F4849 VSR34_HI Vector Scalar Register 34 High

0x56535233345F4C4F VSR34_LO Vector Scalar Register 34 Low

0x56535233355F4849 VSR35_HI Vector Scalar Register 35 High

0x56535233355F4C4F VSR35_LO Vector Scalar Register 35 Low

0x56535233365F4849 VSR36_HI Vector Scalar Register 36 High

0x56535233365F4C4F VSR36_LO Vector Scalar Register 36 Low

0x56535233375F4849 VSR37_HI Vector Scalar Register 37 High

0x56535233375F4C4F VSR37_LO Vector Scalar Register 37 Low

0x56535233385F4849 VSR38_HI Vector Scalar Register 38 High

0x56535233385F4C4F VSR38_LO Vector Scalar Register 38 Low

0x56535233395F4849 VSR39_HI Vector Scalar Register 39 High

0x56535233395F4C4F VSR39_LO Vector Scalar Register 39 Low

0x56535234305F4849 VSR40_HI Vector Scalar Register 40 High

0x56535234305F4C4F VSR40_LO Vector Scalar Register 40 Low

0x56535234315F4849 VSR41_HI Vector Scalar Register 41 High

0x56535234315F4C4F VSR41_LO Vector Scalar Register 41 Low

0x56535234325F4849 VSR42_HI Vector Scalar Register 42 High

0x56535234325F4C4F VSR42_LO Vector Scalar Register 42 Low

0x56535234335F4849 VSR43_HI Vector Scalar Register 43 High

0x56535234335F4C4F VSR43_LO Vector Scalar Register 43 Low

0x56535234345F4849 VSR44_HI Vector Scalar Register 44 High

0x56535234345F4C4F VSR44_LO Vector Scalar Register 44 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

G.1  Register Save Area 831

LoPAPR, Version 1.1 (March 24, 2016)

0x56535234355F4849 VSR45_HI Vector Scalar Register 45 High

0x56535234355F4C4F VSR45_LO Vector Scalar Register 45 Low

0x56535234365F4849 VSR46_HI Vector Scalar Register 46 High

0x56535234365F4C4F VSR46_LO Vector Scalar Register 46 Low

0x56535234375F4849 VSR47_HI Vector Scalar Register 47 High

0x56535234375F4C4F VSR47_LO Vector Scalar Register 47 Low

0x56535234385F4849 VSR48_HI Vector Scalar Register 48 High

0x56535234385F4C4F VSR48_LO Vector Scalar Register 48 Low

0x56535234395F4849 VSR49_HI Vector Scalar Register 49 High

0x56535234395F4C4F VSR49_LO Vector Scalar Register 49 Low

0x56535235305F4849 VSR50_HI Vector Scalar Register 50 High

0x56535235305F4C4F VSR50_LO Vector Scalar Register 50 Low

0x56535235315F4849 VSR51_HI Vector Scalar Register 51 High

0x56535235315F4C4F VSR51_LO Vector Scalar Register 51 Low

0x56535235325F4849 VSR52_HI Vector Scalar Register 52 High

0x56535235325F4C4F VSR52_LO Vector Scalar Register 52 Low

0x56535235335F4849 VSR53_HI Vector Scalar Register 53 High

0x56535235335F4C4F VSR53_LO Vector Scalar Register 53 Low

0x56535235345F4849 VSR54_HI Vector Scalar Register 54 High

0x56535235345F4C4F VSR54_LO Vector Scalar Register 54 Low

0x56535235355F4849 VSR55_HI Vector Scalar Register 55 High

0x56535235355F4C4F VSR55_LO Vector Scalar Register 55 Low

0x56535235365F4849 VSR56_HI Vector Scalar Register 56 High

0x56535235365F4C4F VSR56_LO Vector Scalar Register 56 Low

0x56535235375F4849 VSR57_HI Vector Scalar Register 57 High

0x56535235375F4C4F VSR57_LO Vector Scalar Register 57 Low

0x56535235385F4849 VSR58_HI Vector Scalar Register 58 High

0x56535235385F4C4F VSR58_LO Vector Scalar Register 58 Low

0x56535235395F4849 VSR59_HI Vector Scalar Register 59 High

0x56535235395F4C4F VSR59_LO Vector Scalar Register 59 Low

0x56535236305F4849 VSR60_HI Vector Scalar Register 60 High

0x56535236305F4C4F VSR60_LO Vector Scalar Register 60 Low

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

832 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

G.2 Hardware Page Table Entry Save Area

The hardware page table entry save area is an area in the partition’s memory used to preserve the hardware page table
entries corresponding to the VRMA entries that are used when Open Firmware is started. The location and size of this
area is specified by the partition when firmware assisted dump. The minimum size is reported to the partition in the
new PFDS KDUMP node.

When accessing the table the offset to NumEntries should be used to allow for different versions of the table. Newer
versions of the table will be compatible with all previous versions.

0x56535236315F4849 VSR61_HI Vector Scalar Register 61 High

0x56535236315F4C4F VSR61_LO Vector Scalar Register 61 Low

0x56535236325F4849 VSR62_HI Vector Scalar Register 62 High

0x56535236325F4C4F VSR62_LO Vector Scalar Register 62 Low

0x56535236335F4849 VSR63_HI Vector Scalar Register 63 High

0x56535236335F4C4F VSR63_LO Vector Scalar Register 63 Low

0x5845520000000000 XER Fixed-Point Exception Register

Table 297. HPT Entry Save Area Format

Offset Length (Bytes) Name Value Description

0x00 0x8 Magic Number
0x4850544553415645
“HPTESAVE”

Used to verify that this area contains what it
should

0x08 0x4 Version 0x0 Current version

0x0C 0x4 NumEntriesOffset 0x1C Offset to number of entries

0x10 0x8 Padding 0x0 Must be initialized to 0

0x18 0x8 NumEntries Actual Number Of Entries

0x20 0x18 HptEntry1

0x38 0x18 HptEntry2

...

Table 296. Identifiers Supported in Version 0x0 of the Table (Continued)

Identifier (Hex) Identifier (ASCII) Description

G.2  Hardware Page Table Entry Save Area 833

LoPAPR, Version 1.1 (March 24, 2016)

Note: The entries are not in any particular order. It is up to the user of the save area to sort the data.

Table 298. HPT Entry Format

Offset Length (Bytes) Name Value Description

0x0 0x8 HptEntryIndex Index into the HPT table for the entry

0x08 0x8 Dword0 HPT Entry High

0x10 0x8 Dword1 HPT Entry Low

834 Firmware Assisted Dump Data Format

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

H EEH Error Processing

This appendix describes the architectural intent for EEH error processing. This appendix does not attempt to illustrate
all possible scenarios, and other implementations are possible.

H.1 General Scenarios

In general, the device driver recovery consists of issuing an ibm,read-slot-reset-state2 call prior to doing any recovery
to determine if (1) the IOA is in the MMIO Stopped and DMA Stopped state (that is, that an error has occurred which
has put it into this state), and (2) whether or not the PE has been reset by the platform in the process of entering the
MMIO Stopped and DMA Stopped state, and then doing one of the following:

1. Simplest approach:

 Reset the PE

 Reconfigure the PE

2. Most general approach (detailed more in Section H.2‚ “More Detail on the Most General Approach‚” on
page 836):

 Release the PE for Load/Store

 Issue Load/Store instructions to get any desired state information from the IOA

 Call the ibm,slot-error-detail RTAS call to get the platform error information

 Log the error information

 Reset the PE

 Reconfigure the PE

3. Most robust (no reset unless necessary):

 Release the PE for Load/Store

 Issue Load/Store instructions to get any desired state information from the IOA

 Call the ibm,slot-error-detail RTAS call to get the platform error information

 Log the error information

 Device driver does IOA cleanup

 Release the PE for DMA and restart operations (no reset)

In any scenario, after several retries of a recoverable operation, the OS may determine that further recovery efforts
should cease. In such a case, calling ibm,slot-error-detail with Function 2 (Permanent Error), in addition to returning
error information, marks that the PE is no longer accessible due to previous errors.

836 EEH Error Processing

 LoPAPR, Version 1.1 (March 24, 2016)

H.2 More Detail on the Most General Approach

The following gives a more detailed look at scenario #2 in Section H.1‚ “General Scenarios‚” on page 835. This will be
broken up into two groups of operations: error logging and error recovery.

These scenarios assume that:

1. The ibm,configure-pe RTAS call is implemented.

2. The attempts at recovery stop when Max_Retries_Exceeded is true.

H.2.1 Error Logging

1. If the device driver is going to capture internal IOA-specific information as a part of the error logging process or if
the IOA controlled by the device driver requires a longer wait after reset than the normal PCI specified minimum
wait time, then the device driver determines whether its IOA has been reset as a result of entering EEH Stopped
State, by looking at the PE Recovery Info output of the ibm,read-slot-reset-state2 RTAS call.

2. The OS or device driver insures that all MMIOs to the IOA(s) in the PE are finished.

3. If the IOA requires longer wait after reset times than the specified minimum, and the PE was reset (see step #1) as
a result of the EEH event, then wait the additional necessary time before continuing.

4. The OS or device driver enables PE MMIOs by calling the ibm,set-eeh-option RTAS call with Function 2.

5. The OS or device driver calls the ibm,configure-pe RTAS call.

a. If the PCI fabric does not need configuring (the PE was not reset previous to the call or was reset but was pre-
viously configured with ibm,configure-pe), then the call returns without doing anything, otherwise it attempts
to configure the fabric up to but not including the endpoint IOA configuration registers.

b. If an EEH event occurs as a result of probing during the ibm,configure-pe RTAS call that results in a reset of
the PE, the PE will be returned in the PE state of 2. Software does not necessarily need to check this on return
from the call. The case where this occurs is expected to be rare, and probably signals a non-transient error. In
this case the software can continue on with the recovery phase of the EEH processing, and will eventually hit
the same EEH event on further processing.

6. If the PE was reset (see step #1) as a result of the EEH event, then if the device driver is going to gather IOA-spe-
cific information for logging, it needs to finish the configuration of the IOA PCI configuration registers, by restor-
ing the PCI configuration space registers of the IOA(s) in the PE (for example, BARs, Memory Space Enable,
etc.).

7. If desired, the device driver gathers IOA-specific information via MMIOs, by doing MMIOs to its IOA.

8. The OS or device driver calls ibm,slot-error-detail. Any data captured in step #7 is passed in the call. Note that
maximum amount of data will be captured in some cases only when the ibm,slot-error-detail call is made with PE
not in the MMIO Stopped State (as it should be in step #4).

a. If Max_Retries_Exceeded is true, then call ibm,slot-error-detail with Function 2 (Permanent Error).

b. If Max_Retries_Exceeded is not true, then call ibm,slot-error-detail with Function 1(Temporary Error).

9. The ibm,slot-error-detail RTAS call captures whatever PCI config space registers it can between the configuration
address passed in the call and the system (PHB), and including at the configuration address and at the PHB, and
returns them along with the device specific data in an error log in the return information from the call. This call
may encounter another EEH event, in which case it returns what information it can in the call, with a Status of 0
(Success).

H.2  More Detail on the Most General Approach 837

LoPAPR, Version 1.1 (March 24, 2016)

10. The OS or device driver logs the log entry returned from the ibm,slot-error-detail RTAS call.

11. If Max_Retries_Exceeded is not true, then the next step is PE Recovery, otherwise stop and mark the IOA(s) in the
PE as unusable.

H.2.2 PE Recovery

1. OS or device driver does a PE reset sequence. Note that this step is required even if the PE was reset as a result of
the initial EEH event, because the error logging steps (for example, the ibm,configure-pe or ibm,slot-error-detail
calls) could have encountered another EEH event.

a. The device driver or OS calls ibm,set-slot-reset with Function 1 or 3 to activate the reset.

b. The minimum reset active time is waited.

c. The device driver or OS calls ibm,set-slot-reset with Function 0 to deactivate the reset.

d. The minimum reset inactive to first configuration cycles is waited. If the IOA requires more than the standard
PCI specified time, then wait that longer time, instead.

2. The OS or device driver calls ibm,configure-pe.

 Note: If an EEH event occurs as a result of probing during the ibm,configure-pe RTAS call that results in a reset
of the PE, the PE will be returned in the PE state of 2. Software does not necessarily need to check this on return
from the call. The case where this occurs is expected to be rare, and probably signals a non-transient error. In
this case the software can continue on with the recovery phase of the EEH processing, and will eventually hit
the same EEH event on further processing.

3. The device driver restores the PCI configuration spaces of the IOA(s) in the PE.

4. The device driver initializes the IOA for operations.

838 EEH Error Processing

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

I CMO Characteristics Definitions

This appendix defines the string that is returned by the ibm,get-system-parameter RTAS call when the parameter token
value of 44 (CMO Characteristics) is specified on the ibm,get-system-parameter RTAS call as per Section 7.3.16.1‚
“ibm,get-system-parameter‚” on page 211.

I.1 CMO Terms

The LoPAPR Cooperative Memory Over-commitment option (CMO) defines terms as presented in Table 299‚ “CMO
Terms‚” on page 839.

I.2 Key Words And Values

Table 300‚ “CMO Characteristics‚” on page 839 defines the key words and the associated legal values that will be re-
turned in the ASCII NULL terminated string when the parameter token value of 44 (CMO characteristics) is specified
on the ibm,get-system-parameter RTAS call. The key word and value is separated by an ASCII equal (“=”). Each key
word, value pair is delimited by an ASCII comma in the string. The numerical value of the characteristic corresponding
to the key word is the decimal number that corresponds to the numeric characters in the value part of the key word,
value pair.

Table 299. CMO Terms

Term Definition

CMO Page Size
Page size as determined by the hypervisor. CMO page size is expressed as the power of 2 of the page size. For
example, a 4K page size is represented by the value of 12 (4K = 212).

Primary Paging Service
Partition

The primary paging service partition identifies the primary VIOS which provides access to paging services and
devices for partitions participating in CMO. The primary paging service partition value is the partition number of
the VIOS.

Secondary Paging Service
Partition

The secondary paging service partition identifies the secondary VIOS in a redundant Paging Service Partition
configuration. If the hypervisor detects a problem with the primary VIOS, it fails over to the secondary VIOS. The
secondary paging service partition value is the partition number of the secondary VIOS.

Table 300. CMO Characteristics

Characteristics Key Word Values Notes

CMO Page Size CMOPageSize 1 - 64

Primary Paging Service Partition PrPSP -1 through N
Set to -1 when the partition is not in CMO
mode (i.e. is a dedicated memory partition)

Secondary Paging Service Partition SecPSP -1 through N

840 CMO Characteristics Definitions

 LoPAPR, Version 1.1 (March 24, 2016)

LoPAPR, Version 1.1 (March 24, 2016)

J Platform Dependent hcall()s

This appendix defines the set of hypervisor calls (hcall()s) that are platform dependent. The existence and/or imple-
mentation of the hcall() can vary between firmware releases and between hardware platforms.

J.1 hcall()s Supported by Firmware Release & Hardware Platform

Table 301‚ “Platform Dependent hcall()s Supported by Release and Hardware Platform‚” on page 841 is a list of plat-
form specific hcall()s, which will be described in this appendix.

J.2 Supported hcall()s

J.2.1 H_GetPerformanceCounterInfo (0xF080)

This call returns information about the performance of selectable performance counters maintained by the hardware or
from data collected by the Hypervisor.

Syntax:

int64 /* H_Success, H_Privilege, H_Authority */
/* H_Hardware, H_Not_Available */

hcall(const uint64 H_GetPerformanceCounterInfo /* Retrieve performance info */
uint64 size, /* Size of getPerformanceCounterInfoParms */
getPerformanceCounterInfoParms*) /* Requested/Response data */

Parameters:

 size – size of the getPerformanceCounterInfoParms

 getPerformanceCounterInfoParms – parameter list indicating which performance counter information to retrieve.
Table 302‚ “Performance_Counter_Info_Parms struct‚” on page 842

Semantics:

 Validate the getPerformanceInfoParms is accessible, else H_Privilege.

 Validate the size and contents of getPerformanceCounterInfoParms, else H_Parameter.

Table 301. Platform Dependent hcall()s Supported by Release and Hardware Platform

Function Name/Section
Hypervisor Call Function

Token
Firmware Releases

Supported
Hardware Platform

Supported

Reserved 0xF000-0xF07C

H_GetPerformanceCounterInfo / J.2.1 0xF080 eFW 3.5 and later Power 6 and later

842 Platform Dependent hcall()s

 LoPAPR, Version 1.1 (March 24, 2016)

 Validate information is available for the firmware level and platform, else H_Not_Available.

 Validate partition is permitted to retrieve performance information, else H_Authority.

 Copy requested performance counters into getPerformanceInfoParms and return H_Success.

The possible values for Requested_Information are as shown in Table 303‚ “Performance Counter Info
Requested_Information Values‚” on page 842.

Table 302. Performance_Counter_Info_Parms struct

Member Name Member Type IN/OUT Description

Requested_Information uint_32 INPUT
See Table 303‚ “Performance Counter Info Requested_Information
Values‚” on page 842

starting_index int_32 BOTH

At input, the partition id of the first processor/partition to retrieve
performance metrics. If -1 is specified for this parameter, only
information for the current processor/partition is returned.
At output, the actual first processor/partition id that was found.

returned_values uint_32 OUTPUT Number of lists of counters returned

reserved uint_32 N/A Alignment

reserved uint_64[2] N/A Alignment

counter_value perf_data BOTH Array of counters values

Table 303. Performance Counter Info Requested_Information Values

Name Value Description

Dispatch_PURR_by_processor 0x0000 0010

The value for the counter_value is a list of values per physical processor as follows:

 uint64 processor time (in PURR cycles) that the processor was running work on
behalf of partitions since the boot of the CEC

 uint32 hardware processor id

 uint16 owning partition id (0xFFFF is shared or unowned)

 uint8 processor state (0x01-Not Installed, 0x02-Guarded Off, 0x03-Unlicensed,
0x04-Shared, 0x05-Borrowed, 0x06-Dedicated)

 uint8[1] reserved

 uint32 hardware chip id (a value of -1 will be returned for Not Installed processors)

 uint32 hardware module id

 uint32 primary affinity domain

 uint32 secondary affinity domain

 uint32 processor version (a value of -1 will be returned for Not Installed processors)

 uint16 logical processor index

 uint8[10] reserved

J.2  Supported hcall()s 843

LoPAPR, Version 1.1 (March 24, 2016)

Entitled_capped
_uncapped_donated
_idle_PURR
_by_partition

0x0000 0020

The value for the counter_value is a list of uint64 values as follows:

 Partition id

 Hypervisor collected PURR cycles that the partition was entitled to consume since the
boot of the CEC (or partition creation).

 Hypervisor collected PURR cycles that the partition consumed as capped cycles since
boot of the CEC (or partition creation). For a dedicated partition, all cycles consumed
will be reported as capped cycles. For shared, these are the capped (entitled) cycles
consumed by the partition.

 Hypervisor collected PURR cycles that the partition consumed as uncapped shared
partition cycles since boot of the CEC (or partition creation).

 Hypervisor collected PURR cycles that were donated from a dedicated partition to
uncapped partitions since boot of the CEC (or partition creation).

 Partition collected PURR cycles that the partition considers as idle cycles. These
cycles can be subtracted from the total cycles consumed to calculate the partition’s
view of utilization. Note that not all operating system versions will report this value.

Run_instructions
_run_cycles
_by_partition

0x0000 0030

The value for the counter_value is a list of uint64 values as follows:

 Partition id

 Hypervisor collected instructions completed while the run latch is set since boot of the
CEC (or partition creation). Note that this value will be zero on processors versions
that do not provide the ability to collect this information.

 Hypervisor collected cycles while the run latch is set since boot of the CEC (or parti-
tion creation). Note that this value will be zero on processors versions that do not pro-
vide the ability to collect this information.

System_performance
_capabilities

0x00000040

The value for the counter_value is a list of values for the requesting partition as follows:

 uint8 Is partition allowed to get performance data for other partitions (boolean).

 uint8[15] Reserved

Note: This request can only be issued by a partition to obtain data about itself (i.e.
starting_index must always be -1) H_NOT_AVAILABLE will be returned otherwise.

Processor_bus_utilization_ABC
_links

0x00000050

The value for the counter_value is a list of values per physical chip as follows:

 uint32 hardware chip id

 uint32[3] RESERVED

 uint64 idle cycles for A link

 uint64 time value (in cycles) data for A link was collected

 uint64 idle cycles for B link

 uint64 time value (in cycles) data for B link was collected

 uint64 idle cycles for C link

 uint64 time value (in cycles) data for C link was collected

Table 303. Performance Counter Info Requested_Information Values (Continued)

Name Value Description

844 Platform Dependent hcall()s

 LoPAPR, Version 1.1 (March 24, 2016)

Processor_bus_utilization_WXYZ
_links

0x00000060

The value for the counter_value is a list of values per physical chip as follows:

 uint32 hardware chip id

 uint32[3] RESERVED

 uint64 idle cycles for W link

 uint64 time value (in cycles) data for W link was collected

 uint64 idle cycles for X link

 uint64 time value (in cycles) data for X link was collected

 uint64 idle cycles for Y link

 uint64 time value (in cycles) data for Y link was collected

 uint64 idle cycles for Z link

 uint64 time value (in cycles) data for Z link was collected

Set MMCRH
(LAB ONLY)

0x8000 1000

At input, counter_value is a single value with what to set the Performance Monitor Mode
Control Register H to:

 uint64 value to set MMCRH to in all processors

There will be no output for this function other than errors.
Note 1: A passed value of (-1) will mean that collection of these values should be disabled.
Note 2: Whenever this value is changed, the programmable counters (HPMC1 & HPMC2)
will be reset in the next collection cycle.

Retrieve HPMCx
(LAB ONLY)

0x8000 2000

The value for the counter_value is a list of values per physical processor as follows:

 uint32 hardware processor id

 uint32 reserved

 uint64 current value of MMCRH for this processor

 uint64 elapsed timebase value in cycles since current MMCRH was set

 uint64 value for HPMC1 since current MMCRH was set

 uint64 value for HPMC2 since current MMCRH was set

 uint64 value for HPMC3 since current MMCRH was set

 uint64 current value for HPMC3

 uint64 value for HPMC4 since current MMCRH was set

 uint64 current value for HPMC4

Table 303. Performance Counter Info Requested_Information Values (Continued)

Name Value Description

LoPAPR, Version 1.1 (March 24, 2016)

K A Protocol for VNIC
Communications

K.1 Introduction

The VNIC protocol defined in this appendix defines the protocol to be used with VNIC virtual IOA, as defined in
Section 17.3‚ “Virtual Network Interface Controller (VNIC)‚” on page 652. VNIC provides a mechanism which mini-
mizes the number of times data is copied within the memory of the physical system. The virtual I/O model described
herein allows for either zero copy using the redirected DMA or single copy when the data is first moved to the memory
space of firmware before being DMAed to the client partition.

This protocol is designed to fulfill the following requirements:

1. Fast, efficient transfer and reception of Ethernet frames

2. Exploitation of adapter multiple transmit and receive queue support.

3. Partition mobility capable

4. Promiscuous mode support

5. Stateless TCP and IP checksum offload

6. TCP large send offload

7. Multiple interrupt source support

8. Notification of physical Ethernet link state

9. Physical Ethernet link state control if configured

10. Statistics, trace, and dump support

11. Extensible protocol for future functional additions

K.2 VNIC Adapter

The intent of this protocol is to support the implementation, within the client logical partition, of a VNIC adapter de-
vice driver (VNIC client) which is functionally similar to a physical Ethernet adapter device driver. The VNIC can
send and receive Ethernet packets, add receive buffers to the virtualized hardware, handle physical and logical link sta-
tus, acquire hardware statistics, and utilize advanced hardware features like checksum offload. The VNIC interface
also provides tracing, logging, and dumping facilities.

It is the firm intent of this protocol that no changes be required in any layer 3 or higher communication protocol (e.g.
TCP, IP, etc.).

A partition may have multiple VNIC Adapters.

846 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.3 Zero Copy DMA Models

Unlike the Interpartition Logical LAN option (See Chapter 17, “Virtualized Input/Output,” on page 597), the VNIC
protocol allows for the physical Ethernet adapter associated with the VNIC device to securely target memory pages as-
sociated with a VNIC adapter for virtual I/O operations. LoPAPR defines two modes of LRDMA (See Chapter 17,
“Virtualized Input/Output,” on page 597).

The use of Redirected RDMA is completely invisible to the VNIC adapter, and has no impact on the VNIC protocol
defined here. It is left entirely to the discretion of the server firmware whether it first moves data from a physical
adapter into its own memory before moving (DMAing) the data to the VNIC adapter, or whether the physical adapter
sets up the I/O request in such a way that the physical device DMAs directly to the memory of the client adapter. The
virtualizing firmware uses the RDMA mode that best suits its needs for a given virtual I/O operation.

K.4 Protocol Overview

The CRQ and Sub-CRQ facilities as defined in Chapter 17, “Virtualized Input/Output,” on page 597 are used to send
and receive VNIC commands to system firmware. The different VNIC command types are defined in Table 306‚
“VNIC Command Types‚” on page 847.

Throughout this document, boolean values assume 0 to be false, 1 to be true. Unless otherwise specified, all lengths are
expected to be given in terms of bytes. Any setting or capability changed or enabled after a successful
H_REGISTER_CRQ will be cleared when H_FREE_CRQ is performed.

The format of a VNIC command is shown in Table 304‚ “Format of the VNIC command‚” on page 846. The Com-
mand Type field of the VNIC command is defined in Table 306‚ “VNIC Command Types‚” on page 847. The Return
Code for a a VNIC command is always at offset 12 in the response, as shown in Table 304‚ “Format of the VNIC com-
mand‚” on page 846.

All VNIC commands have VNIC command values from 0x0 to 0x7F. Each response to a VNIC command has a VNIC
command value that is equal to the command with the 0x80 bit in the command turned on.

In the event firmware receives a command it doesn’t understand, a response will be returned with an UnknownCom-
mand return code set at offset 12, and the VNIC command type set to the passed in command type with the 0x80 bit
turned on.

Table 304. Format of the VNIC command

Byte Offset 0 1 2 3 4 5 6 7

0x00 0x80 Command
Type

Command dependent

0x08 Command dependent Return Code or Command Dependent

Table 305. VNIC Return Code

Field Name
Byte

Offset
Length Definition

Architected Return Value 0 1
This field contains a value from Table 307‚ “VNIC Architected
Return Values‚” on page 849 that contains the high level return
code for the operation.

K.4  Protocol Overview 847

LoPAPR, Version 1.1 (March 24, 2016)

Detailed Error Data 1 3
This field contains an unarchitected detailed error code that can
be used by firmware to further classify the error returned in the
architected return value.

Table 306. VNIC Command Types

Command Type
Command

value
Sent by Description Location

VERSION_EXCHANGE 0x01 VNIC Client
Used to inform firmware of level of
protocol VNIC supports

Section K.6.1‚ “Version Exchange‚” on
page 854

VERSION_EXCHANGE_RSP 0x81 Firmware
Used to inform VNIC of level of protocol
firmware supports

Section K.6.1‚ “Version Exchange‚” on
page 854

QUERY_CAPABILITY 0x02 VNIC Client
Query firmware for a specific VNIC
capability

Section K.6.2‚ “VNIC Capabilities‚” on
page 854

QUERY_CAPABILITY_RSP 0x82 Firmware Response for a QUERY_CAPABILITY
Section K.6.2‚ “VNIC Capabilities‚” on
page 854

REQUEST_CAPABILITY 0x03 VNIC Client
Request firmware to start using a specific
capability value

Section K.6.2‚ “VNIC Capabilities‚” on
page 854

REQUEST_CAPABILITY_RSP 0x83 Firmware
Response from firmware to a
REQUEST_CAPABILITY command

Section K.6.2‚ “VNIC Capabilities‚” on
page 854

LOGIN 0x04 VNIC Client
Used to exchange Sub-CRQ information
with system firmware in preparation for
functional use of the virtualized adapter

Section K.6.3‚ “Login Support‚” on
page 857

LOGIN_RSP 0x84 Firmware
Response from firmware with firmware’s
Sub-CRQ information in preparation for
functional use.

Section K.6.3‚ “Login Support‚” on
page 857

QUERY_PHYS_PARMS 0x05 VNIC Client
Used by VNIC client to enquire about
physical port parameters such as line speed,
duplex setting, etc.

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

QUERY_PHYS_PARMS_RSP 0x85 Firmware
A response to the
QUERY_PHYS_PARMS request
containing the requested information

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

QUERY_PHYS_CAPABILITIES 0x06 VNIC Client
Used by VNIC client to enquire about
physical port capabilities such as line
speed.

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

QUERY_PHYS_CAPABILITIES_RSP 0x86 Firmware
A response to the
QUERY_PHYS_CAPABILITIES request
containing the requested information.

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

SET_PHYS_PARMS 0x07 VNIC Client
Used by the VNIC to set physical port
parameters such as line speed if allowed.

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

SET_PHYS_PARMS_RSP 0x87 Firmware
Response indicating status of
SET_PHYS_PARMS request

Section K.6.4‚ “Physical Port Parameters‚”
on page 859

ERROR_INDICATION 0x08 Firmware
Used to indicate to either side of an error
condition.

Section K.6.10‚ “Error Reporting
Support‚” on page 871

Table 305. VNIC Return Code (Continued)

Field Name
Byte

Offset
Length Definition

848 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

REQUEST_ERROR_INFO 0x09 VNIC Client
Used to request detailed error data about a
previous asynchronous error condition

Section K.6.10‚ “Error Reporting
Support‚” on page 871

REQUEST_ERROR_RSP 0x89 Firmware
Used to return detailed error data in
response to a request

Section K.6.10‚ “Error Reporting
Support‚” on page 871

REQUEST_DUMP_SIZE 0x0A VNIC Client
Used to request an estimate of how much
size a VNIC collected debug dump will
require.

Section K.6.7‚ “Dump Support‚” on
page 864

REQUEST_DUMP_SIZE_RSP 0x8A Firmware
Used to inform VNIC of the dump size
estimate.

Section K.6.7‚ “Dump Support‚” on
page 864

REQUEST_DUMP 0x0B VNIC Client
Used to request firmware to perform an
adapter & firmware dump to assist in
problem determination

Section K.6.7‚ “Dump Support‚” on
page 864

REQUEST_DUMP_RSP 0x8B Firmware
Used to inform VNIC Client when the
requested dump has been completed

Section K.6.7‚ “Dump Support‚” on
page 864

LOGICAL_LINK_STATE 0x0C VNIC Client
Used by VNIC Client to tell firmware to
start and stop packet reception

Section K.6.5‚ “Logical Link State‚” on
page 860

LOGICAL_LINK_STATE_RSP 0x8C Firmware
Used to inform VNIC Client of the status of
the LINK_STATE request

Section K.6.5‚ “Logical Link State‚” on
page 860

REQUEST_STATISTICS 0x0D VNIC Client
Used to retrieve standard network adapter
statistics (bytes/packet sent/rcvd, etc.)

Section K.6.9‚ “Statistics Support‚” on
page 869

REQUEST_STATISTICS_RSP 0x8D Firmware
Used to inform VNIC Client when statistics
were successfully collected

Section K.6.9‚ “Statistics Support‚” on
page 869

REQUEST_RAS_COMP_NUM 0x0E VNIC Client

Used by VNIC Client to retrieve the
number of independent firmware
components that can have their RAS
capabilities controlled in firmware
associated with the VNIC

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

REQUEST_RAS_COMP_NUM_RSP 0x8E Firmware
Response to the
REQUEST_RAS_COMP_NUM
command.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

REQUEST_RAS_COMPS 0x0F VNIC Client

Used by VNIC Client to retrieve the list of
component ids that can have their RAS
capabilities controlled in firmware for this
VNIC.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

REQUEST_RAS_COMPS_RSP 0x8F Firmware
Response to the
REQUEST_RAS_COMPS_RSP.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

CONTROL_RAS 0x10 VNIC Client
Request firmware to modify RAS
characteristics to allow for easier problem
determination.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

CONTROL_RAS_RSP 0x90 Firmware
Response to the CONTROL_RAS
command.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

COLLECT_FW_TRACE 0x11 VNIC Client
This allows the VNIC Client to collect a
trace for a firmware component.

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

COLLECT_FW_TRACE_RSP 0x91 Firmware
Inform VNIC Client the trace collection is
complete

Section K.6.8‚ “Reliability, Availability,
and Service (RAS) Support‚” on page 865

LINK_STATE_INDICATION 0x12 Firmware Inform VNIC Client of link state changes.
Section K.6.11‚ “Link State Change‚” on
page 873

Table 306. VNIC Command Types (Continued)

K.4  Protocol Overview 849

LoPAPR, Version 1.1 (March 24, 2016)

CHANGE_MAC_ADDR 0x13 VNIC Client
Request system firmware to change the
current VNIC MAC address

Section K.6.12‚ “Change MAC Address‚”
on page 874

CHANGE_MAC_ADDR_RSP 0x93 Firmware
Inform VNIC Client of MAC address
change request status

Section K.6.12‚ “Change MAC Address‚”
on page 874

MULTICAST_CTRL 0x14 VNIC Client
Request system firmware to change current
multicast MAC address settings

Section K.6.13‚ “Multicast Support‚” on
page 874

MULTICAST_CTRL_RSP 0x94 Firmware Inform VNIC Client of multicast response
Section K.6.13‚ “Multicast Support‚” on
page 874

GET_VPD_SIZE 0x15 VNIC Client Query firmware for the size of VPD
Section K.6.14‚ “VPD Support‚” on
page 875

GET_VPD_SIZE_RSP 0x95 Firmware Return the size of VPD to VNIC client
Section K.6.14‚ “VPD Support‚” on
page 875

GET_VPD 0x16 VNIC Client
Request system firmware to return VPD
associated with adapter.

Section K.6.14‚ “VPD Support‚” on
page 875

GET_VPD_RSP 0x96 Firmware Response to GET_VPD.
Section K.6.14‚ “VPD Support‚” on
page 875

TUNE 0x17 VNIC Client
Pass debugging information to system
firmware

Section K.6.16‚ “Debugging Support‚” on
page 878

TUNE_RSP 0x97 Firmware Response to TUNE command.
Section K.6.16‚ “Debugging Support‚” on
page 878

QUERY_IP_OFFLOAD 0x18 VNIC Client
Request details about TCP, UDP, and IP
offload capabilities

Section K.6.6‚ “TCP, UDP, and IP Offload
Support‚” on page 861

QUERY_IP_OFFLOAD_RSP 0x98 Firmware
Response to QUERY_IP_OFFLOAD
command.

Section K.6.6‚ “TCP, UDP, and IP Offload
Support‚” on page 861

CONTROL_IP_OFFLOAD 0x19 VNIC Client
Enable and disable TCP, UDP, and IP
offload capabilities

Section K.6.6‚ “TCP, UDP, and IP Offload
Support‚” on page 861

CONTROL_IP_OFFLOAD_RSP 0x99 Firmware
Response to CONTROL_IP_OFFLOAD
command.

Section K.6.6‚ “TCP, UDP, and IP Offload
Support‚” on page 861

ACL_CHANGE_INDICATION 0x1A Firmware
Inform VNIC client of dynamic changes to
access controls

Section K.6.15‚ “Access Control Support‚”
on page 876

ACL_QUERY 0x1B VNIC Client
Request information about access control
limitations in place for this VNIC.

Section K.6.15‚ “Access Control Support‚”
on page 876

ACL_QUERY_RSP 0x9B Firmware Response to ACL_QUERY command.
Section K.6.15‚ “Access Control Support‚”
on page 876

REQUEST_DEBUG_STATS 0x1C VNIC Client
Request unarchitected statistics block used
for debugging firmware problems.

Section K.6.9‚ “Statistics Support‚” on
page 869

REQUEST_DEBUG_STATS_RSP 0x9C Firmware
Response to REQUEST_DEBUG_STATS
command.

Section K.6.9‚ “Statistics Support‚” on
page 869

Table 307. VNIC Architected Return Values

Return Code Value Definition

Success 0 The requested operation completed successfully.

Table 306. VNIC Command Types (Continued)

850 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.5 Typical VNIC Protocol Flows

K.5.1 Boot Flow

This section gives an overview of the typical VNIC startup sequence.

1. The operating system discovers a VNIC device in the device tree.

2. The operating system instantiates the VNIC client device driver, allocates a buffer for the VNIC CRQ, which is
then TCE-mapped using the VNIC’s TCE table. Since the VNIC protocol is a command/response protocol, the
VNIC client should allocate a CRQ buffer big enough to handle a response for every command it wishes to have
outstanding concurrently with firmware with an allowance for unsolicited asynchronous error and link state
change CRQ events.

3. VNIC client calls H_REG_CRQ specifying the unit address and IOBA of the CRQ page(s), and waits for either
H_Success or an INITIALIZATION message as defined in Section 17.2.3.1‚ “Reliable Command/Response
Transport Option‚” on page 637.

4. VNIC client sends either an INITIALIZATION_COMPLETE or an INITIALIZATION message to firmware us-
ing H_SEND_CRQ, as defined in Section 17.2.3.1‚ “Reliable Command/Response Transport Option‚” on
page 637.

5. Once the INITIALIZATION and INITIALIZATION_COMPLETE messages have been exchanged, the VNIC cli-
ent sends a VERSION_EXCHANGE using H_SEND_CRQ, specifying the latest version of the VNIC protocol
supported by the VNIC client.

6. Firmware responds with a VERSION_EXCHANGE_RSP specifying the version it supports. Both VNIC client
and firmware must support the lower of the two versions. Until and unless the VNIC client receives a

PartialSuccess 1

The requested operation completed partially successful.
The parameters were valid, but not all resources could be
obtained to completely satisfy the command. Check the
specific function definition for details.

Permission 2 The request called for permissions not available.

NoMemory 3 The request failed due to insufficient memory.

Parameter 4 One or more parameters were in error in the request.

UnknownCommand 5 The specific VNIC command is unknown.

Aborted 6 The command was aborted by some other action.

InvalidState 7 The requested command is invalid at this time.

InvalidIOBA 8 An I/O bus address passed as a parameter was invalid.

InvalidLength 9 A length passed as a parameter was invalid.

UnsupportedOption 10
A reserved value or option was used on an existing
command that system firmware does not support.

Reserved 11-255 These return codes are reserved.

Table 307. VNIC Architected Return Values (Continued)

Return Code Value Definition

K.5  Typical VNIC Protocol Flows 851

LoPAPR, Version 1.1 (March 24, 2016)

VERSION_EXCHANGE_RSP, no further VNIC commands may be sent.

7. VNIC client may now use QUERY_CAPABILITY commands to interrogate what the firmware supports cur-
rently. Multiple QUERY_CAPABILITY commands may be send in parallel, up to one for each capability being
interrogated.

8. Firmware will respond with QUERY_CAPABILITY_RSP messages for each query sent.

9. Once the queries are returned, the VNIC client uses the REQUEST_CAPABILITY commands to inform the firm-
ware of the capabilities it plans on using. Until the capability has been requested and a successful response has
been received, it will not function, and commands which use the capabilities will fail.

10. Only the Capability-related commands are usable prior to sending a Login command.

11. The VNIC client determines how many Sub-CRQs to set up based on the capabilities negotiated with the server
and partition configuration, and attempts to set those up by allocating memory, mapping them with TCEs, and
calling H_REG_SUB_CRQ iteratively for each Sub-CRQ.

12. Once the VNIC client has successfully gotten each Sub-CRQ it needs registered (with some possibly failing due to
unavailable resources), it parcels them out to specific queues (Transmit Completion and Receive Completion), and
does a REQUEST_CAPABILITY for the appropriate number of each from firmware.

13. Once the VNIC client has all SubCrqs registered, he sends a LOGIN CRQ to the server, specifying each Sub-CRQ
handle and purpose as defined in the LOGIN command structure, and waits for a LOGIN_RSP which includes the
server’s Sub-CRQ handles and purposes.

14. Once the LOGIN_RSP has been returned successfully, the VNIC client is free to utilize the Transmit Submission
Sub-CRQs and Receive Buffer Add Sub-CRQs, as well as any other VNIC command.

15. Once the VNIC client is ready to receive frames (for the Logical Link State to transition to Link Up), it sends a
LOGICAL_LINK_STATE command to firmware. If the VNIC client is also in control of the physical port, send-
ing the LOGICAL_LINK_STATE command has the side effect of initiating physical port link negotiation, as ap-
propriate.

16. The firmware will send a LOGICAL_LINK_STATE_RSP once the link state is up.

K.5.2 Adapter reboot

In the event that system firmware encounters an error, needs to update the firmware on the adapter, or needs to remove
the virtualized adapter from the partition, the following flows will happen.

1. Firmware will close its CRQ and Sub-CRQs.

2. VNIC client receives a TRANSPORT_EVENT specifying Partner Partition Closed or receives an H_Closed re-
turn code on a H_SEND_CRQ or H_SEND_SUB_CRQ hypervisor call.

3. VNIC client closes all Sub-CRQs and CRQ using H_FREE_SUB_CRQ and H_FREE_CRQ. (Optionally, only
H_FREE_CRQ could be used to close the CRQ and all Sub-CRQs.)

4. VNIC client cleans up all outstanding unacknowledged transmit frames.

5. VNIC client cleans up all receive buffers that had been given to the firmware.

6. VNIC client opens the CRQ, and attempts the boot sequence.

852 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.5.3 Partition Mobility

In the event that an active partition is migrated to a new platform, the following sequence takes place.

1. VNIC client receives a TRANSPORT_EVENT event specifying Partner Partition Suspended (Defined in
Table 232‚ “Transport Event Codes‚” on page 622).

2. VNIC client pauses submission of new transmit frames and receive add buffers.

3. VNIC client closes all Sub-CRQs.

4. VNIC client completes all outstanding unacknowledged transmit frames. This may involve queueing them for re-
transmission once the VNIC is recovered, or completing them as dropped, letting higher layers of the TCP/IP
stack perform retransmission.

5. VNIC client calls H_ENABLE_CRQ until H_Success is returned.

6. VNIC client attempts the boot sequence.

K.5.4 Dump

Typical dump collection flow:

1. VNIC client decides on the need for a VNIC dump.

2. VNIC client sends a REQUEST_DUMP_SIZE command (see Table 322‚ “REQUEST_DUMP_SIZE and
REQUEST_DUMP_SIZE_RSP Commands‚” on page 864) to system firmware.

3. Firmware responds with a REQUEST_DUMP_SIZE_RSP with an estimate on the amount of storage required to
store the dump into VNIC client memory.

4. VNIC client allocates a buffer big enough to hold the dump, and maps it with TCEs.

5. VNIC client sends a REQUEST_DUMP command (see Table 323‚ “REQUEST_DUMP Command‚” on
page 865) to system firmware containing the IOBAs referring to the dump buffer.

6. System firmware uses the supplied dump buffer to collect the memory that’s previously been registered by firm-
ware as important for dumps.

7. System firmware optionally collects physical adapter debug data into the dump buffer as well.

8. System firmware sends a REQUEST_DUMP_RSP (see Table 324‚ “REQUEST_DUMP_RSP Command‚” on
page 865) to the VNIC client, indicating the dump is complete.

K.5.5 Frame Transmission

Transmission of Ethernet frames using the VNIC protocol is accomplished using two or more Subordinate CRQs. The
VNIC client allocates one or more Transmit Completion Sub-CRQs and system firmware allocates one or more Trans-
mit Submission CRQs. The handles for each are exchanged during the LOGIN processing.

The following numbered sequence details the simplified transmission of an Ethernet frame. As with any CRQ or Sub-
ordinate CRQ based protocol, the listed virtual interrupts may not occur for every CRQ or Sub-CRQ that is sent using
H_SEND_CRQ, H_SEND_SUB_CRQ, or H_SEND_SUB_CRQ_INDIRECT. It is the firm intent of this protocol to
allow the VNIC client and system firmware to batch frame transmission submission and transmit complete indications
to minimize the number of virtual interrupts and to make the transmission of Ethernet frames as efficient as possible.
Multiple Sub-CRQs may be presented to either the VNIC or system firmware with a single virtual interrupt.

K.5  Typical VNIC Protocol Flows 853

LoPAPR, Version 1.1 (March 24, 2016)

1. Operating system chooses a VNIC adapter to use for frame transmission.

2. VNIC client device driver either copies the frame into a private buffer that’s already been mapped via a TCE or
maps the frame with a TCE.

3. VNIC client device driver constructs a Transmit Descriptor (or multiples) describing the TCE mapped buffer (see
Table 352‚ “Transmit Descriptor Version Zero‚” on page 879).

4. VNIC client device driver uses H_SEND_SUB_CRQ to pass the Transmit Descriptor to system firmware’s Trans-
mit Submission Sub-CRQ.

5. System firmware receives the Sub-CRQ event, and transforms it into the appropriate format for the specific Ether-
net adapter being virtualized, and uses its embedded device driver to send the frame out the wire. The system firm-
ware uses RDMA to DMA the frame directly from the VNIC client.

6. The physical Ethernet device driver interrupts system firmware (or system firmware polls for completion at appro-
priate times) indicating the frame has been successfully transmitted. System firmware constructs a Transmit Com-
pletion Sub-CRQ event (see Table 353‚ “Transmit Completion Descriptor‚” on page 881), and places that
Sub-CRQ onto the Transmit Completion Sub-CRQ.

7. VNIC client removes the TCE mapping for the frame, and makes it available to its network stack.

K.5.6 Frame Reception

Reception of Ethernet frames is accomplished using two or more Sub-CRQs, similar to frame transmission. System
firmware creates one or more Receive Buffer Add Sub-CRQs and the VNIC client creates one or more Receive Com-
pletion Sub-CRQs.

The following numbered sequence details the simplified reception of an Ethernet frame. As with any CRQ or Subordi-
nate CRQ based protocol, the listed virtual interrupts may not occur for every CRQ or Sub-CRQ that is sent using
H_SEND_CRQ, H_SEND_SUB_CRQ, or H_SEND_SUB_CRQ_INDIRECT. It is the firm intent of this protocol to
allow the VNIC client and system firmware to batch frame reception and buffer adding to minimize the number of vir-
tual interrupts and to make the reception of Ethernet frames as efficient as possible. Multiple Sub-CRQs may be pre-
sented to either the VNIC or system firmware with a single virtual interrupt.

1. When the VNIC client is started, the VNIC allocates several memory buffers to be used to the reception of Ether-
net frames. The VNIC client maps those buffers with TCEs using its TCE mapping services.

2. For each receive buffer, the VNIC client creates Add Receive Buffer Descriptor events (see Table 357‚ “Receive
Buffer Add Descriptor‚” on page 884), and gives them to system firmware via the Receive Buffer Add Sub-CRQ
using H_SEND_SUB_CRQ or H_SEND_SUB_CRQ_INDIRECT. Once this is done, the VNIC client should not
use or otherwise modify the receive buffer until it’s been given back to the VNIC client using the Receive
Sub-CRQ or the Sub-CRQs and CRQ have been freed using H_FREE_SUB_CRQ and H_FREE_CRQ.

3. As system firmware receives the Receive Buffer Add Sub-CRQ events, it uses its physical adapter device driver to
add the receive buffer to the physical adapter’s receive queues.

4. A frame arrives for the physical adapter off of the physical wire, and the adapter dmas the frame directly to the
VNIC client’s memory for one of the receive buffers.

5. System firmware receives an interrupt from the physical adapter saying a frame has arrived, and uses the informa-
tion it saves to generate a Receive Completion event Sub-CRQ (see Table 356‚ “Receive Completion Descriptor‚”
on page 883), and places it on the appropriate Receive Completion Sub-CRQ.

6. The VNIC client receives a virtual interrupt for its Receive Completion Sub-CRQ, and passes the frame up its net-
work stack.

854 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6 VNIC Commands

All VNIC commands are sent using H_SEND_CRQ.

K.6.1 Version Exchange

The VERSION_EXCHANGE command as defined in Table 308‚ “VERSION_EXCHANGE and
VERSION_EXCHANGE_RSP Command‚” on page 854 allow the VNIC protocol to be easily updated in the future.
Each side is required to support the highest common version of the VNIC protocol specification, as exchanged right af-
ter the low level CRQ registration flows.

K.6.2 VNIC Capabilities

The VNIC capabilities command as defined in Table 310‚ “CAPABILITIES Commands‚” on page 855 is used to cre-
ate an abstracted architecture for discovering and utilizing different NIC advanced functions on adapters, in an
adapter-independent manner. As new capabilities are introduced in adapters, more capability values will be added.

To discover which capabilities a VNIC currently supports, multiple QUERY_CAPABILITY commands should be sent
from the VNIC client for each capability of interest. System firmware will return the current capability setting, or a bad
return code if the capability isn’t supported. System firmware will return UnsupportedOption for any capability it
doesn’t understand.

If the VNIC client wishes to use one of the supported capabilities, it must be enabled via the correct
REQUEST_CAPABILITY command. If a capability has a variable number of settings (settable via the Number field),

Table 308. VERSION_EXCHANGE and VERSION_EXCHANGE_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This field should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field should be either VERSION_EXCHANGE or
VERSION_EXCHANGE_RSP.

Version 2 2

Maximum version that VNIC client supports on a VERSION_EXCHANGE and
the maximum version that system firmware supports on a
VERSION_EXCHANGE_RSP. Each side must support the highest common
version between the two versions. A value from Table 309‚ “VNIC Protocol
Versions‚” on page 854 will be contained in this field.

Reserved 4 8 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 309. VNIC Protocol Versions

Value Definition

1 Initial VNIC protocol version

2-65535 Reserved

K.6  VNIC Commands 855

LoPAPR, Version 1.1 (March 24, 2016)

and system firmware doesn’t support the value, a PartialSuccess return code will be returned with the capped value in
the response.

If the VNIC client wishes to use REQUEST_CAPABILITY to determine if any specific capabilities are valid without
performing QUERY_CAPABILITY commands, that’s acceptable, but there may be side effects as a result.

Table 310. CAPABILITIES Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This field should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field should be QUERY_CAPABILITIES, REQUEST_CAPABILITIES,
or their associated responses.

Capability 2 2
This value should be one of the values from Table 311‚ “VNIC Capabilities‚” on
page 855.

Number 4 8
This field is used for both REQUESTs and QUERYs. For a REQUEST, it’s the
value that the VNIC client wishes to use. On any RSP, it’s the new (or
unchanged) current value of the capability.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 311. VNIC Capabilities

Value Field Name Behavior

1
Minimum Number of firmware-supported
Transmit Completion/Submission Queues

- Query-only
- Integer value returned in Number

2
Minimum Number of firmware-supported
Receive Completion Queues

- Query-only
- Integer value returned in Number

3
Minimum Number of firmware-supported
Receive Buffer Add Queues per Receive
Completion Queue

- Query-only
- Integer value returned in Number

4
Maximum Number of firmware-supported
Transmit Completion/Submission Queues

- Query-only
- Integer value returned in Number

5
Maximum Number of firmware-supported
Receive Completion Queues

- Query-only
- Integer value returned in Number

6
Maximum Number of firmware-supported
Receive Buffer Add Queues per Receive
Completion Queue

- Query-only
- Integer value returned in Number

7
Requested Number of Transmit
Completion/Submission Queues

- Settable
- Positive integer value set and returned in Number

8
Requested Number of Receive Completion
Queues

- Settable
- Positive integer value set and returned in Number

9
Requested Number of Receive Buffer Add
Queues per Receive Completion Queue

- Settable
- Positive integer value set and returned in Number

10
Minimum Number of Transmit Entries Per
Sub-CRQ

- Query only
- Positive integer value set and returned in Number

856 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

11
Minimum Number of Receive Buffer Add
Entries per Sub-CRQ

- Query only
- Positive integer value set and returned in Number

12
Maximum Number of Transmit Entries Per
Sub-CRQ

- Query only
- Positive integer value set and returned in Number

13
Maximum Number of Receive Buffer Add
Entries per Sub-CRQ

- Query only
- Positive integer value set and returned in Number

14
Requested Number of Transmit Entries Per
Sub-CRQ

- Settable
- Positive integer value set and returned in Number

15
Requested Number of Receive Buffer Add
Entries per Sub-CRQ

- Settable
- Positive integer value set and returned in Number

16 TCP/IP offload supported

- Query only
- Boolean value returned in Number. If TRUE, TCP/IP
offload commands defined in Section K.6.6‚ “TCP, UDP,
and IP Offload Support‚” on page 861 are supported.

17 Promiscuous mode requested
- Settable
- Boolean value returned in Number

18 Promiscuous mode supported
- Query only
- Boolean value returned in Number

19 Minimum MTU size
- Query only
- Positive integer value set and returned in Number

20 Maximum MTU size
- Query only
- Positive integer value set and returned in Number

21 Requested MTU size

- Settable
- Positive integer value set and returned in Number
- This setting can impact the minimum number of queues or
receive buffer sizes supported, and should either be set early
or other capabilities will need to be reevaluated.

22
Maximum Number of Unique Multicast MAC
address filters

- Query only
- Positive integer value set and returned in Number

23 VLAN Header insertion supported

- Query only
- Boolean value returned in Number
- This is controlled on a packet by packet basis in the transmit
descriptor.

24 Reserved

25 Maximum Transmit Scatter Gather entries

- Query only
- Positive integer value reflecting the maximum number of
IOBAs that can be used to describe a single frame using
Transmit Descriptors.

26 Receive Scatter/Gather Mode supported

- Query only
- Boolean value set and returned in Number.
- If supported, this can enable chaining of receive buffers
together to minimize the amount of memory that needs to be
added in the form of Receive Buffers (Particularly if Large
Receive Offload is enabled).

Table 311. VNIC Capabilities (Continued)

Value Field Name Behavior

K.6  VNIC Commands 857

LoPAPR, Version 1.1 (March 24, 2016)

K.6.3 Login Support

The use of the LOGIN and LOGIN_RSP commands is defined in Section K.5‚ “Typical VNIC Protocol Flows‚” on
page 850. The format of the LOGIN command is defined in Table 312‚ “LOGIN Request‚” on page 857, and the
LOGIN_RSP command is defined in Table 315‚ “LOGIN_RSP Command‚” on page 859.

There must be exactly one Transmit Submission Sub-CRQ for each Transmit Completion Sub-CRQ, and vice versa.
Each is implicitly tied to the other by virtue of the order each appears in the array of handles in the LOGIN Buffer and
LOGIN Response buffer. (i.e. The first entry in each are associated, the second entry in each are associated, etc.)

27 Receive Scatter/Gather Mode Requested

- Settable
- Boolean value set and returned in Number.
- This setting can impact the number of queues or receive
buffer sizes supported, and should be set before configuring
those values.

28-65535 Reserved

Table 312. LOGIN Request

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This should be set to LOGIN.

Reserved 2 6 This field is reserved, and should be set to 0.

IOBA 8 4
This field is an I/O bus address referring to a TCE-mapped buffer containing
the LOGIN Buffer as defined in Table 313‚ “LOGIN Buffer‚” on page 857.

Length 12 4
This field is the length of the TCE-mapped LOGIN buffer. This value should
match that as seen in the LOGIN Buffer.

Table 313. LOGIN Buffer

Field Name
Byte

Offset
Length Definition

Total Length 0 4 This field is the total length of the LOGIN Buffer.

Version 4 4
This field contains the version of LOGIN Buffer layout. The initial version
should be set to 1.

Number of Transmit
Completion Sub-CRQs

8 4
This field contains the number of Transmit Completion Sub-CRQs as allocated
by the VNIC client.

Offset to Transmit Completion
Sub-CRQ handles

12 4
Offset from the beginning of the LOGIN buffer to the start of an array of 8 byte
elements containing the array of Transmit Completion Sub-CRQ handles.

Number of Receive Completion
Sub-CRQs

16 4
This field contains the number of Receive Completion Sub-CRQs as allocated
by the VNIC client.

Table 311. VNIC Capabilities (Continued)

Value Field Name Behavior

858 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Offset to Receive Completion
Sub-CRQ handles

20 4
Offset from the beginning of the LOGIN Buffer to the start of an array of 8 byte
elements containing the array of Receive Completion Sub-CRQ handles.

Login Response buffer IOBA 24 4

This field contains an I/O buffer address referencing a TCE-mapped buffer to
be used for the system firmware to place its LOGIN Response buffer
containing its variable length array of Sub-CRQ handles. This can point to the
same storage as the LOGIN Buffer, as necessary.

Login Response buffer length 28 4

This field contains the length of the Login Response buffer described in the
Login Response buffer IOBA. The VNIC client needs to ensure that system
firmware will have enough space to place each Sub-CRQ handle as requested
prior to LOGIN using REQUEST_CAPABILITY commands.

Transmit Completion Sub-CRQ
handle array

variable variable
This is a variable sized array containing the Sub-CRQ handles obtained from
H_REGISTER_SUB_CRQ for the Transmit Completion Sub-CRQ handles.

Receive Completion Sub-CRQ
handle array

variable variable
This is a variable sized array containing the Sub-CRQ handles obtained from
H_REGISTER_SUB_CRQ for the Receive Completion Sub-CRQ handles.

Table 314. LOGIN Response Buffer

Field Name
Byte

Offset
Length Definition

Total Length 0 4 This field is the total length of the Login Response Buffer.

Version 4 4
This field contains the version of LOGIN Response Buffer layout. The initial
version should be set to 1.

Number of Transmit
Submission Sub-CRQs

8 4
This field contains the number of Transmit Submission Sub-CRQs as requested
by the VNIC client and allocated by firmware.

Offset to Transmit Submission
Sub-CRQ handles

12 4
Offset from the beginning of the LOGIN Response Buffer to the start of an array
of 8 byte elements containing the array of Transmit Submission Sub-CRQ
handles.

Number of Receive Buffer Add
Sub-CRQs

16 4

This field contains the total number of Receive Buffer Add Sub-CRQs as
requested by the VNIC client and allocated by the firmware. The first n
correspond to the first Receive Completion Sub-CRQ, the next n to the second,
etc., where n is the Requested number of Receive Buffer Add Sub-CRQs per
Receive Completion Queue requested by the VNIC client.

Offset to Receive Buffer Add
Sub-CRQ handles

20 4
Offset from the beginning of the LOGIN Response Buffer to the start of an array
of 8 byte elements containing the array of Receive Buffer Add Sub-CRQ
handles.

Offset to Receive Buffer Add
Buffer Size

24 4

Offset from the beginning of the LOGIN Response Buffer to the start of an array
of 8 byte sizes. There is one size for each Receive Buffer Add Sub-CRQ, and
each size represents the receive buffer size possible for that specific Receive
Buffer Add Sub-CRQ.

Number of Supported Transmit
Descriptors

28 4
This field contains the number of supported Transmit Descriptors, as detailed in
Section K.7.1‚ “Frame Transmission‚” on page 879.

Offset to Supported Transmit
Descriptors array

32 4
Offset from the beginning of the LOGIN Response Buffer to the start of an array
of 1 byte values. There is one value for each supported Transmit Descriptor
format, sorted so the formats with best performance will be first in the array.

Table 313. LOGIN Buffer (Continued)

Field Name
Byte

Offset
Length Definition

K.6  VNIC Commands 859

LoPAPR, Version 1.1 (March 24, 2016)

K.6.4 Physical Port Parameters

A VNIC client may always use the QUERY_PHYS_PARM command to retrieve information about the current physi-
cal port state such as current link speed and state.

A VNIC client may always use the QUERY_PHYS_CAPABILITIES command to retrieve information about the cur-
rent capabilities of the physical adapter associated with the VNIC, including allowed speed, duplex, and ability to mod-
ify those values.

If the VNIC client wishes to determine all bits that are supported by firmware, it may choose to send a
QUERY_PHYS_CAPABILITIES command with no bits turned on. Firmware will respond with all possible bits it sup-
ports. If the VNIC client wishes to determine if a specific bit combination is supported by firmware, it may turn on
those specific bit combinations. In that case, firmware will validate the combination, and validate the specific combina-
tion.

If the system administrator has configured the VNIC to have physical port configuration authority, the VNIC client
may also use the SET_PHYS_PARMS command to change those values.

The SET_PHYS_PARMS, QUERY_PHYS_PARMS, and QUERY_PHYS_CAPABILITIES commands all use a com-
mon command format defined in Table 316‚ “Physical Port Parameters Commands‚” on page 860.

Transmit Submission Sub-CRQ
handle array

variable variable
This is a variable sized array containing the Sub-CRQ handles obtained from
H_REGISTER_SUB_CRQ for the Transmit Submission Sub-CRQ handles.

Receive Buffer Add Sub-CRQ
handle array

variable variable
This is a variable sized array containing the Sub-CRQ handles obtained from
H_REGISTER_SUB_CRQ for the Receive Buffer Add Sub-CRQ handles.

Receive Buffer Add Buffer Size
array

variable variable
This is a variable sized array containing the Receive Buffer Sizes must use for
the respective Receive Buffer Add Sub-CRQs.

Supported Transmit Descriptors
array

variable variable
This is a variable sized array containing the performance-order sorted array of
one byte supported Transmit Descriptor formats.

Table 315. LOGIN_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This should be set to LOGIN_RSP.

Reserved 2 10 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 314. LOGIN Response Buffer (Continued)

Field Name
Byte

Offset
Length Definition

860 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6.5 Logical Link State

When the VNIC does not have authority to change the physical port parameters, the LOGICAL_LINK_STATE com-
mand and response provide a method for the VNIC to inform system firmware when it’s ready to receive packets. The
format of the LOGICAL_LINK_STATE and LOGICAL_LINK_STATE_RSP commands is defined in Table 317‚
“LOGICAL_LINK_STATE and LOGICAL_LINK_STATE_RSP commands‚” on page 861.

The current VNIC logical link state will always be returned in the Link State field on a
LOGICAL_LINK_STATE_RSP.

Table 316. Physical Port Parameters Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be either SET_PHYS_PARMS, QUERY_PHYS_PARMS,
QUERY_PHYS_CAPABILITIES, or the respective response values.

Flags 2 1

The following bits are used to either request the specific capability on a
SET_PHYS_PARMS, indicate the capability to use that capability on a
QUERY_PHYS_CAPABILITIES, or return the current value of the
capability on a QUERY_PHYS_PARMS command.
Bit 0: External loopback mode
Bit 1: Internal loopback mode
Bit 2: Promiscuous mode
Bit 3: Physical Link Active (VNIC can communicate onto the physical
media)
Bit 4: Autonegotiate Duplex
Bit 5: Full duplex mode
Bit 6: Half duplex mode
Bit 7: If set, the VNIC has the ability to change physical port parameters.

Flags 3 1
Bit 0: Adapter Logical Link Active (multiple VNICs on the same adapter can
communicate)
Bit 1-7: Reserved

Speed 4 4

The following bits are used to either request the specific speed on a
SET_PHYS_PARMS, indicate the capability to use that speed on a
QUERY_PHYS_CAPABILITIES, or return the current speed on a
QUERY_PHYS_PARMS command.
Bit 0: Autonegotiate speed
Bit 1: 10 megabit speed
Bit 2: 100 megabit speed
Bit 3: 1 gigabit speed
Bit 4: 10 gigabit speed
Bit 5-31: These bits are reserved, and should be set to 0.

MTU 8 4

This field is used to request a MTU for this VNIC client, and to return the
current MTU setting. If this value exceeds the allowed value in the case
where there are multiple VNICs associated with the same physical adapter,
this MTU will be capped to an allowable value, and a PartialSuccess return
code will be returned on the SET_PHYS_PARMS command.

Return Code 12 4
On a response, this is a return code for the operation as defined in Table 305‚
“VNIC Return Code‚” on page 846.

K.6  VNIC Commands 861

LoPAPR, Version 1.1 (March 24, 2016)

K.6.6 TCP, UDP, and IP Offload Support

The QUERY_IP_OFFLOAD command as defined in Table 318‚ “QUERY_IP_OFFLOAD and
QUERY_IP_OFFLOAD_RSP Commands‚” on page 861 allows the VNIC client to determine what facilities exist in
the VNIC system firmware, and its limitations, if any.

Based on the capabilities and limitations, the CONTROL_IP_OFFLOAD command as defined in Table 319‚
“CONTROL_IP_OFFLOAD and CONTROL_IP_OFFLOAD_RSP Command‚” on page 862 allows the VNIC client
to enable appropriate offload capabilities. QUERY_IP_OFFLOAD and CONTROL_IP_OFFLOAD must be done
prior to successful LOGIN exchange.

All offload parameters are off by default.

Table 317. LOGICAL_LINK_STATE and LOGICAL_LINK_STATE_RSP commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be either LOGICAL_LINK_STATE or
LOGICAL_LINK_STATE_RSP.

Link State 2 1

This field is used to request a logical link state change by the VNIC client
without a corresponding change to the physical link state. The intended use
for this is when a VNIC client is associated with a NIC VF that doesn’t have
control over the physical port to control when the VNIC client receives
incoming frames.
If this field is a 0, the link should be down, if the field is a 1, the link should
be up.
if this field is 0xFF, no logical link state change will be done, and the current
logical link state will be returned in the response.

Reserved 3 9 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 318. QUERY_IP_OFFLOAD and QUERY_IP_OFFLOAD_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be either QUERY_IP_OFFLOAD or
QUERY_IP_OFFLOAD_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

Length 4 4 This field contains the length of the QUERY_IP_OFFLOAD buffer

IOBA 8 4

This field is an I/O bus address referring to a TCE-mapped buffer used
by system firmware to return IP offload information. On reception of a
successful QUERY_IP_OFFLOAD_RSP, the buffer will be filled in
with the structure as defined in Table 320‚ “QUERY_IP_OFFLOAD
Buffer‚” on page 862.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

862 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Table 319. CONTROL_IP_OFFLOAD and CONTROL_IP_OFFLOAD_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be CONTROL_IP_OFFLOAD or
CONTROL_IP_OFFLOAD_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4

This field is an I/O bus address referring to a TCE-mapped buffer
containing the parameters to enable or disable TCP, UDP, and IP
offload. The format of this buffer is defined in Table 321‚
“CONTROL_IP_OFFLOAD Buffer‚” on page 863.

Length 8 4 This field contains the length of the CONTROL_IP_OFFLOAD buffer.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 320. QUERY_IP_OFFLOAD Buffer

Field Name
Byte

Offset
Length Definition

Total Length 0 4 This field is the total length of the QUERY_IP_OFFLOAD Buffer.

Version 4 4
This field contains the version of QUERY_IP_OFFLOAD Buffer layout. The
initial version should be 1.

IPv4 Checksum offload
supported

8 1 This field is 1 if supported

IPv6 Checksum offload
supported

9 1 This field is 1 if supported.

TCP over IPv4 checksum
offload supported

10 1 This field is 1 if supported.

TCP over IPv6 checksum
offload supported

11 1 This field is 1 if supported.

UDP over IPv4 checksum
offload supported

12 1 This field is 1 if supported.

UDP over IPv6 checksum
offload supported

13 1 This field is 1 if supported.

Large send offload over IPv4
supported

14 1 This field is 1 if supported.

Large send offload over IPv6
supported

15 1 This field is 1 if supported.

Large receive offload over IPv4
supported

16 1 This field is 1 if supported.

Large receive offload over IPv4
supported

17 1 This field is 1 if supported.

Reserved 18 14 This field is reserved, and is set to 0.

K.6  VNIC Commands 863

LoPAPR, Version 1.1 (March 24, 2016)

Maximum IPv4 header size 32 2
This field contains the maximum size of the IPv4 header for offload operations,
or 0xFFFF if no limit.

Maximum IPv6 header size 34 2
This field contains the maximum size of the IPv6 header for offload operations,
or 0xFFFF if no limit.

Maximum TCP header size 36 2
This field contains the maximum size of the TCP header for offload operations,
or 0xFFFF if no limit.

Maximum UDP header size 38 2
This field contains the maximum size of the UDP header for offload operations,
or 0xFFFF if no limit.

Maximum Large send offload
size

40 4
This field contains the maximum size of a pseudo-frame for large send offload
operations, or 0xFFFFFFFF if no limit.

Maximum Large receive
offload size

44 4
This field contains the maximum size of a pseudo-frame for large receive offload
operations, or 0xFFFFFFFF if no limit.

Reserved 48 16 This field is reserved, and is set to 0.

IPv6 Extension Header
supported

64 1
This field contains a 0 if no extension headers are supported.
This field contains a 1 if extension headers are supported with limits
This field contains a 0xFF if all IPv6 extension headers are supported

TCP Pseudosum required 65 1
This field is 0 if no pseudosum is required in the frame.
This field is 1 if a standard pseudosum is required to be put in the frame.
All other values are reserved.

Reserved 66 30 This field is reserved, and is set to 0.

Number of IPv6 extension
headers supported

96 2 This field must be non zero if the IPv6 Extension Header supported field is 1.

Offset to List of supported IPv6
extension headers

98 4
This field contains an offset from the start of the QUERY_IP_OFFLOAD buffer
to the array of supported extension header values.

Reserved 102 154 This field is reserved, and should be set to 0.

Array of IPv6 extension header
types

variable variable
This is an array of one byte values that are the extension header types supported
by IPv6 offload.

Table 321. CONTROL_IP_OFFLOAD Buffer

Field Name
Byte

Offset
Length Definition

Total Length 0 4 This field is the total length of the CONTROL_IP_OFFLOAD Buffer.

Version 4 4
This field contains the version of CONTROL_IP_OFFLOAD Buffer layout.
The initial version should be set to 1.

Enable IPv4 Checksum offload 8 1 This field is 1 if desired

Enable IPv6 Checksum offload 9 1 This field is 1 if desired.

Enable TCP over IPv4
checksum offload

10 1 This field is 1 if desired.

Table 320. QUERY_IP_OFFLOAD Buffer (Continued)

Field Name
Byte

Offset
Length Definition

864 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6.7 Dump Support

The dumps collected via the VNIC interface is a smart dump that depends upon a working device driver. If the portion
of system firmware servicing the physical adapter has run into catastrophic problems, an entire memory image of the
associated firmware will be collected automatically, and collected in a similar fashion to platform dumps.

If the VNIC client detects that the VNIC interface is not providing the services in the manner it expects, it may utilize
the dump support to collect focused debugging data collected and stored in VNIC client storage that’s been
TCE-mapped.

The format of the REQUEST_DUMP command is defined in Table 323‚ “REQUEST_DUMP Command‚” on
page 865, and the format of the REQUEST_DUMP_RSP command is defined in Table 324‚
“REQUEST_DUMP_RSP Command‚” on page 865.

Enable TCP over IPv6
checksum offload

11 1 This field is 1 if desired.

Enable UDP over IPv4
checksum offload

12 1 This field is 1 if desired.

Enable UDP over IPv6
checksum offload

13 1 This field is 1 if desired.

Enable Large send offload over
IPv4

14 1 This field is 1 if desired.

Enable Large send offload over
IPv6

15 1 This field is 1 if desired.

Enable bad packet reception 16 1 This field is 1 if desired

Reserved 17 111 This field is reserved, and should be set to 0.

Table 322. REQUEST_DUMP_SIZE and REQUEST_DUMP_SIZE_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be either REQUEST_DUMP_SIZE or
REQUEST_DUMP_SIZE_RSP.

Reserved 2 6 This field is reserved, and should be set to 0.

Length 8 4
This field is set to the estimated length of the VNIC dump in the
REQUEST_DUMP_RSP if the return code was Success.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 321. CONTROL_IP_OFFLOAD Buffer (Continued)

Field Name
Byte

Offset
Length Definition

K.6  VNIC Commands 865

LoPAPR, Version 1.1 (March 24, 2016)

K.6.8 Reliability, Availability, and Service (RAS) Support

The VNIC RAS support allows the tracing of information within system firmware, and control of consistency checking
done by firmware. Individual components of firmware will be exposed to the VNIC Client, and each component can
independently have their tracing and error checking levels increased and decreased. Each individual component’s trace
information can be collected independently from others.

Trace entries will be returned to the VNIC client in timebase order.

The upper 16 bits of the trace ID for the Firmware Trace Data Format are an AIX RAS tracehook ID, and the lower 16
bits are an AIX RAS subhookid.

Prior to a successful LOGIN request, all components related to the VNIC may not be available in the list of compo-
nents. To get a complete list of all possible components, the RAS commands should be delayed until after a successful
LOGIN unless a pre-LOGIN problem is being diagnosed.

The CONTROL_RAS command can be used to resize the individual components’ trace buffers, but due to the limited
memory available in the system firmware, increasing the sizes of one trace buffer may require decreasing the size of a
different component’s trace buffer.

The REQUEST_RAS_COMP_NUM and REQUEST_RAS_COMP_NUM_RSP commands are defined in Table 325‚
“REQUEST_RAS_COMP_NUM and REQUEST_RAS_COMP_NUM_RSP Commands‚” on page 866, and the
REQUEST_RAS_COMPS and REQUEST_RAS_COMPS_RSP command format is defined in Table 326‚

Table 323. REQUEST_DUMP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_DUMP.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4
This field is an I/O bus address referring to a TCE-mapped buffer used
by system firmware to place the VNIC dump.

Length 8 4 This field contains the length of the VNIC dump buffer.

Reserved 12 4 This field is reserved and should be set to 0.

Table 324. REQUEST_DUMP_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_DUMP_RSP.

Reserved 2 6 This field is reserved, and should be set to 0.

Dumped Length 8 4 This field contains the amount of data placed into the dump buffer.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

866 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

“REQUEST_RAS_COMPS and REQUEST_RAS_COMPS_RSP Commands‚” on page 866. The
COLLECT_FW_TRACE and COLLECT_FW_TRACE_RSP commands are defined in Table 328‚
“COLLECT_FW_TRACE and COLLECT_FW_TRACE_RSP Commands‚” on page 867.

.

Table 325. REQUEST_RAS_COMP_NUM and REQUEST_RAS_COMP_NUM_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be REQUEST_RAS_COMP_NUM or
REQUEST_RAS_COMP_NUM_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

Number of Components 4 4
This field contains the number of individual firmware components whose RAS
characteristics can be independently modified.

Reserved 8 4 This field is reserved, and should be set to 0.

Return Code 12 4
On a response, this field will contain a return code for the request as defined in
Table 305‚ “VNIC Return Code‚” on page 846. This field is reserved for a
request.

Table 326. REQUEST_RAS_COMPS and REQUEST_RAS_COMPS_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be REQUEST_RAS_COMPS or
REQUEST_RAS_COMPS_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4

This field contains an I/O bus address of a TCE-mapped buffer containing an
array of Firmware Component structures as defined in Table 330‚ “Firmware
Component Format‚” on page 868. The VNIC client should ensure the buffer is
large enough to contain the number of components as returned in a
REQUEST_RAS_COMP_NUM_RSP command.

Length 8 4
This field is the length of the buffer referred to by the IOBA field. It should be
some multiple of the size of the Firmware Component format.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 327. CONTROL_RAS and CONTROL_RAS_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be CONTROL_RAS or CONTROL_RAS_RSP.

K.6  VNIC Commands 867

LoPAPR, Version 1.1 (March 24, 2016)

Correlator 2 1
This field contains a Correlator for a Firmware Component as defined in
Table 330‚ “Firmware Component Format‚” on page 868 that this
command should act on.

Level 3 1
This value should be a value between 0 and 9, where a larger number
indicates a higher detail of tracing or error checking.

Operation 4 1

This field controls what action the CONTROL_RAS command performs.
If this value is a 1, use the Level field to modify the current trace level of
the specified component.
If this value is a 2, use the Level field to modify the current error checking
level of the specified component.
If this value is a 3, suspend the tracing for the specified component that was
previously on.
If this value is a 4, resume the tracing for the specified component that was
previously suspended.
If this value is a 5, turn tracing for the specified component on.
If this value is a 6, turn tracing for the specified component off.
If this value is a 7, change the size of the specified trace buffer for the
specified component.
All other values are reserved.

Trace Buffer Size 5 3

If Operation is a 7, this field contains the requested size of the specified
trace buffer. On a response, will be filled in with the current size of the trace
buffer.
For all other Operation values, this field is reserved.

Reserved 8 4 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 328. COLLECT_FW_TRACE and COLLECT_FW_TRACE_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be COLLECT_FW_TRACE or
COLLECT_FW_TRACE_RSP.

Correlator 2 1
This field contains a Correlator for a Firmware Component as defined in
Table 330‚ “Firmware Component Format‚” on page 868 that this
command should act on.

Reserved 3 1 This field is reserved, and should be set to 0.

IOBA 4 4
This field contains the I/O bus address of a TCE-mapped buffer of the
indicated size that will be used by firmware to return the trace.

Buffer Length 8 4

This field contains the length of the buffer in bytes used to collect the trace
information. On a COLLECT_FW_RSP, this value will indicate how much
trace data is actually placed in the buffer. The trace data is an array of entries
with the format as defined in Table 329‚ “Firmware Trace Data Entry
Format‚” on page 868.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 327. CONTROL_RAS and CONTROL_RAS_RSP Commands (Continued)

Field Name
Byte

Offset
Length Definition

868 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Table 329. Firmware Trace Data Entry Format

Field Name
Byte

Offset
Length

Trace ID 0 4

Number Valid Trace Data 4 1

Reserved 5 3

PMC Registers 8 8

Timebase 16 8

Trace Data 1 24 8

Trace Data 2 32 8

Trace Data 3 40 8

Trace Data 4 48 8

Trace Data 5 56 8

Table 330. Firmware Component Format

Field Name
Byte

Offset
Length Definition

Component Name 0 48
This field contains an ASCII string containing a readable name of the
component.

Trace Buffer Size 48 4 This field contains the size of the trace buffer.

Correlator 52 1
This field contains a value to be used on a COLLECT_FW_TRACE or
CONTROL_RAS command to identify which component to operate
on.

Trace Level 53 1

This field shows the current trace level, as defined in Table 327‚
“CONTROL_RAS and CONTROL_RAS_RSP Commands‚” on
page 866.
A value of 0xFF indicates this component does not support tracing.

Parent Correlator 54 1
This field contains the correlator of the parent component. If this value
is 0xFF, there is no parent.

Error Checking 55 1

This field contains the error checking level for this component. It
contains a value from 0-9, where 0 means no extra error checking, and
9 means the highest level of consistency checking.
A value of 0xFF indicates this component does not support changing its
level of error checking.

Trace State 56 1
If this field is a 0, the component’s tracing is turned off. If this field is
a 1, the component’s tracing is turned on.

Reserved 57 7 This field is reserved, and should be set to 0.

Description 64 192
This field contains an ASCII string containing a readable description of
the component.

K.6  VNIC Commands 869

LoPAPR, Version 1.1 (March 24, 2016)

K.6.9 Statistics Support

The REQUEST_STATISTICS command as defined in Table 331‚ “REQUEST_STATISTICS Command‚” on page 869
is used by the VNIC client to obtain statistic counters kept by system firmware and the physical adapter supporting the
VNIC.

The REQUEST_STATISTICS_RSP command is defined in Table 332‚ “REQUEST_STATISTICS_RSP Command‚”
on page 869.

In the event a given VNIC does not support the retrieval of certain of the statistics, the statistic will have a -1 value re-
turned in it.

The REQUEST_DEBUG_STATS command defined in Table 334‚ “REQUEST_DEBUG_STATS command‚” on
page 871 is used by the VNIC client to retrieve an unarchitected block of statistics that is implementation dependent
which may be used to debug firmware problems. This is an optional command, and the actual data returned may vary
from implementation to implementation.

Table 331. REQUEST_STATISTICS Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_STATISTICS.

Flags 2 1

Bit 0: If set, retrieve the physical port statistics. If the VNIC doesn’t have
authority to retrieve the physical port statistics, the command may fail. If this bit
is 0, retrieve the logical port statistics.
Bit 1: If this field is set to 1, clear the statistics. If this field is set to 0, do not
clear any statistics.
Bit 2-7: This fields are reserved, and should be set to 0.

Reserved 3 1 This field is reserved, and should be set to 0.

IOBA 4 4
This field is an I/O bus address referring to a TCE-mapped buffer used by system
firmware to place the VNIC statistics block as defined in Table 333‚ “VNIC
Statistics Version 1‚” on page 870.

Length 8 4 This field contains the length of the VNIC statistics buffer.

Reserved 12 4 This field is reserved and should be set to 0.

Table 332. REQUEST_STATISTICS_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_STATISTICS_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

Reserved 4 8 This field is reserved and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

870 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Table 333. VNIC Statistics Version 1

Field Name
Byte

Offset
Length

Version 0 4

Promiscuous 4 4

Received Packets 8 8

Bytes Received 16 8

Packets Sent 24 8

Bytes Sent 32 8

Unicast Packets Sent 40 8

Unicast Packets Received 48 8

Multicast Packets Sent 56 8

Multicast Packets Received 64 8

Broadcast Packets Sent 72 8

Broadcast Packets Received 80 8

Alignment Errors 88 8

FCS Errors 96 8

Single Collision Frames 104 8

Multiple Collision Frames 112 8

SQE Test Errors 120 8

Deferred Transmissions 128 8

Late Collisions 136 8

Excess Collisions 144 8

Internal MAC Transmit Errors 152 8

Carrier Sense 160 8

Too Long Frames 168 8

Internal MAC Receive Errors 176 8

DMA Receive Overrun 184 8

DMA Transmit Underrun 192 8

Receive No Resource 200 8

Too Short Frames 208 8

Reserved 216 40

K.6  VNIC Commands 871

LoPAPR, Version 1.1 (March 24, 2016)

K.6.10 Error Reporting Support

If system firmware encounters an error processing requests related to the physical adapter being virtualized by the
VNIC interface, it will generate ERROR_INDICATION commands to the VNIC client, as defined in Table 335‚
“ERROR_INDICATION Command‚” on page 871. The VNIC client may then, at its discretion, obtain detailed error
information using the REQUEST_ERROR_INFO command as defined in Table 336‚ “REQUEST_ERROR_INFO
Command‚” on page 872. It is the intent that the VNIC client should log the detailed error information using its normal
error logging infrastructure and methods.

The REQUEST_ERROR_INFO_RSP command as defined in Table 336‚ “REQUEST_ERROR_INFO Command‚”
on page 872 is used by firmware to indicate the successful retrieval of error information. The retrieval of detailed error
information allows firmware to reuse the resources for tracking that error. Detailed error information can only be re-
quested for a specific error once.

If system firmware encounters an error while the VNIC client is not connected, firmware will log the detailed error in-
formation using firmware error logging methods.

Firmware will have a finite amount of space reserved for storing detailed error information. In some situations, some
detailed error information may be unavailable in response to a REQUEST_ERROR_INFO command if too many er-
rors are being logged in firmware. If the detailed error information is overwritten prior to the VNIC client performing
the relative REQUEST_ERROR_INFO command, an error return code will be returned.

If the fatal error bit is set, the VNIC firmware has encountered a fatal error preventing it from automatically recovering
from the error. The VNIC client should use the RAS facilities to collect any error information, collect any RAS tracing,
statistics, and possibly a dump. Once all available error data has been collected, it is the VNIC client’s responsibility to
cause the VNIC to restart. This can be accomplished in one of two ways: by freeing its CRQ using H_FREE_CRQ, or
by initiating a VNIC reset using the H_VIOCTL FW_RESET subfunction.

Table 334. REQUEST_DEBUG_STATS command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be REQUEST_DEBUG_STATS or
REQUEST_DEBUG_STATS_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4
This field is an I/O bus address referring to a TCE-mapped buffer used by system
firmware to place the VNIC debug statistics block.

Length 8 4
This field contains the length of the VNIC statistics buffer. On a
REQUEST_DEBUG_STATS_RSP, contains the amount of data filled in.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 335. ERROR_INDICATION Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

872 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

VNIC Command 1 1 This field will be ERROR_INDICATION.

Flags 2 1
Bit 0: If this bit is 1, this is a fatal error.
Bit 1-7: These fields are reserved, and should be set to 0.

Reserved 3 1 This field is reserved, and should be set to 0.

Error Identification 4 4

This field is set to the error identification number that can be used
to retrieve detailed information about the error using the
REQUEST_ERROR_INFO command. If this value is set to 0,
there is no more detailed error information to retrieve, and the
ERROR_INDICATION contains all relevant information.

Detailed Error Size 8 4
This field contains the size of the detailed error information
associated with the error.

Error Cause 12 2
This field contains a value as detailed in Table 338‚ “Error
Cause‚” on page 873 showing the cause of the error.

Reserved 14 2 This field is reserved, and should be set to 0.

Table 336. REQUEST_ERROR_INFO Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_ERROR_INFO.

Reserved 2 2 This field is reserved, and should be set to 0.

Buffer IOBA 4 4
This field contains the I/O bus address of a TCE-mapped buffer
to be used by system firmware to write the detailed error
information into.

Buffer Length 8 4 This field contains the length of the TCE-mapped buffer.

Error Identification 12 4
This field contains the error identification from an
ERROR_INDICATION command that specifies which detailed
error information to obtain.

Table 337. REQUEST_ERROR_INFO_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be REQUEST_ERROR_INFO_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

Table 335. ERROR_INDICATION Command (Continued)

Field Name
Byte

Offset
Length Definition

K.6  VNIC Commands 873

LoPAPR, Version 1.1 (March 24, 2016)

K.6.11 Link State Change

This LINK_STATE_INDICATION command as defined in Table 339‚ “LINK_STATE_INDICATION Command‚” on
page 873 is an unacknowledged command sent by system firmware to inform the VNIC client when the state of the
link changes. The VNIC client can also use QUERY_PHYS_PARMS at any time to poll for link state changes.

Error Identification 4 4

This field contains the error identification from an
ERROR_INDICATION command. This field can be used to
correlate this response to s REQUEST_ERROR_INFO
command, allowing multiple requests for errors to be outstanding
at the same time.

Length 8 4
This field contains the length of data successfully returned in the
TCE-mapped buffer.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚
“VNIC Return Code‚” on page 846.

Table 338. Error Cause

Value Definition

Adapter Problem 0

Bus Problem 1

Firmware Problem 2

Device Driver Problem 3

EEH Recovery 4

Firmware Updated 5

Low Memory 6

Reserved 7-65535

Table 339. LINK_STATE_INDICATION Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be LINK_STATE_INDICATION.

Reserved 2 2 This field is reserved, and should be set to 0.

Physical Link State 4 1
If this field is a 0, the physical link is down, if the field is a 1,
the physical link is up.

Table 337. REQUEST_ERROR_INFO_RSP Command (Continued)

Field Name
Byte

Offset
Length Definition

874 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6.12 Change MAC Address

The CHANGE_MAC_ADDR command defined in Table 340‚ “CHANGE_MAC_ADDR and
CHANGE_MAC_ADDR_RSP Commands‚” on page 874 allows the VNIC client to change the current MAC address.
The request to change may fail due to Access Control List entries set up by the administrator.

K.6.13 Multicast Support

The MULTICAST_CTRL command defined in Table 341‚ “MULTICAST_CTRL and MULTICAST_CTRL_RSP
Commands‚” on page 875 allows the VNIC client to manage the reception of Multicast Ethernet traffic. Individual
multicast MAC addresses may be enabled and disabled, as well as all multicast traffic.

The VNIC client can choose to enable more than the maximum unique multicast Ethernet addresses as returned in the
Capabilities exchange. In the event the VNIC client does so, system firmware will either enable the MAC address via a
non-exact hashing multicast reception mechanism if the hardware supports it, or will enable all multicast addresses.
When this is done, system firmware will report exact matches through the unique multicast Ethernet filter via the Exact
Match bit defined in the Receive Completion Descriptor as defined in Table 356‚ “Receive Completion Descriptor‚”
on page 883. If the Exact Match bit is off, and a multicast packet was returned in the Receive Completion Descriptor,
the multicast packet either matches a non-exact hashing mechanism if one exists or system firmware has enabled all
multicast MAC address reception.

Logical Link State 5 1

If this field is a 0, the logical link is down and the VNIC cannot
communicate with other VNICs on the same adapter, if the field
is a 1, the logical link is up, and the VNIC can communicate
with other VNICs on the same adapter.

Reserved 6 10 This field is reserved, and should be set to 0.

Table 340. CHANGE_MAC_ADDR and CHANGE_MAC_ADDR_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1
This field will be CHANGE_MAC_ADDR or
CHANGE_MAC_ADDR_RSP.

MAC Address 2 6
This field contains the new requested MAC address on a
CHANGE_MAC_ADDR command, and the current MAC address on
a CHANGE_MAC_ADDR_RSP.

Reserved 8 4 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 339. LINK_STATE_INDICATION Command (Continued)

Field Name
Byte

Offset
Length Definition

K.6  VNIC Commands 875

LoPAPR, Version 1.1 (March 24, 2016)

K.6.14 VPD Support

The VPD commands may be used by the VNIC client to collect, store, and display VPD related to the physical adapter
backing the VNIC. As the exact adapter may change during partition mobility operations, it is suggested this data not
be relied upon operationally, and be used with the understanding that it may change from request to request.

The VPD commands are defined in Table 342‚ “GET_VPD_SIZE Command‚” on page 875, Table 343‚
“GET_VPD_SIZE_RSP Command‚” on page 875, Table 344‚ “GET_VPD Command‚” on page 876, and Table 345‚
“GET_VPD_RSP Command‚” on page 876.

Table 341. MULTICAST_CTRL and MULTICAST_CTRL_RSP Commands

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be MULTICAST_CTRL or MULTICAST_CTRL_RSP.

MAC Address 2 6
This field contains the new requested multicast MAC address, as
appropriate for the specific options requested.

Flags 8 1

Bit 0: Enable specified multicast MAC address
Bit 1: Disable specified multicast MAC address
Bit 2: Enable the reception of all multicast MAC addresses. This does
not affect the multicast addresses enabled through Bit 0.
Bit 3: Disable the reception of all multicast MAC addresses. This does
not affect the multicast addresses enabled through Bit 0.
Bit 4-7: These bits are reserved, and should be set to 0.

Reserved 9 3 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC
Return Code‚” on page 846.

Table 342. GET_VPD_SIZE Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be GET_VPD_SIZE.

Reserved 2 14 This field is reserved, and should be set to 0.

Table 343. GET_VPD_SIZE_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be GET_VPD_SIZE_RSP.

Reserved 2 2 This field is reserved, and should be set to 0.

876 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6.15 Access Control Support

The VNIC may have certain Access Control Lists (ACLs) in effect, and some of these may change dynamically. The
ACL_CHANGE_INDICATION command defined in Table 346‚ “ACL_CHANGE_INDICATION‚” on page 877 is
sent by system firmware to the VNIC client in the event any of the ACLs have changed dynamically.

The ACL_QUERY command defined in Table 347‚ “ACL_QUERY‚” on page 877 and its associated response defined
in Table 348‚ “ACL_QUERY_RSP‚” on page 877 may be used by the VNIC client to obtain information about the
ACLs in effect to enable earlier error checking or ease of use functions.

Length 4 8 This field contains the length of the VPD present.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 344. GET_VPD Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be GET_VPD.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4
This field is an I/O bus address referring to a TCE-mapped buffer used by system
firmware to place the VNIC VPD.

Length 8 4 This field contains the length of the VPD buffer.

Reserved 12 4 This field is reserved and should be set to 0.

Table 345. GET_VPD_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be GET_VPD_RSP.

Reserved 2 10 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 343. GET_VPD_SIZE_RSP Command (Continued)

Field Name
Byte

Offset
Length Definition

K.6  VNIC Commands 877

LoPAPR, Version 1.1 (March 24, 2016)

Table 346. ACL_CHANGE_INDICATION

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be ACL_CHANGE_INDICATION.

Change Type 2 2
If this field is a 0, the MAC address ACLs have changed.
If this field is a 1, the VLAN id ACLs have changed.
All other values are reserved.

Reserved 4 12 This field is reserved, and should be set to 0.

Table 347. ACL_QUERY

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be ACL_QUERY.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4

This field is an I/O bus address referring to a TCE-mapped buffer
used by system firmware to place the ACL information. Upon
reception of a ACL_QUERY_RSP with a Success return code,
this buffer will be filled in with the structure as defined in
Table 349 on page 877

Size 8 4 This field contains the size of the buffer mapped by the IOBA.

Reserved 12 4 This field is reserved, and should be set to 0.

Table 348. ACL_QUERY_RSP

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be ACL_QUERY_RSP.

Reserved 2 10 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚
“VNIC Return Code‚” on page 846.

Table 349. ACL Buffer

Field Name
Byte

Offset
Length Definition

Total Length 0 4 This field is the total length of the ACL Buffer.

878 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

K.6.16 Debugging Support

The TUNE command defined in Table 350‚ “TUNE Command‚” on page 878 may be used by the VNIC client to
opaquely pass tuning data from the VNIC client to system firmware. As the exact firmware backing a VNIC client may
change during partition mobility operations, it is suggested this data not be relied upon operationally, and be used with
the understanding that it may change from adapter to adapter.

A TUNE_RSP command defined in Table 351‚ “TUNE_RSP Command‚” on page 879 will be generated by system
firmware upon completion of the TUNE command.

This command is an optional VNIC command, and may not be supported for all VNIC implementations or versions of
system firmware.

Version 4 4
This field contains the version of ACL Buffer layout. The initial version should
be set to 1.

MAC ACLs in effect 8 1 This field contains a 1 if there are MAC restrictions in effect, zero otherwise.

VLAN id ACLs in effect 9 1 This field contains a 1 if there are VLAN id ACLs in effect, zero otherwise.

Reserved 10 22 This field is reserved, and should be set to 0.

Number of Allowed MAC
addresses

32 4 This field contains the number of allowable MAC addresses.

Offset to array of allowed MAC
addresses

36 4
This field contains an offset from the start of the ACL Buffer to an array of six
byte MAC addresses.

Number of allowed VLAN ids 40 4 This field contains the number of allowable VLAN ids.

Offset to array of allowed
VLAN ids

44 4
This field contains an offset from the start of the ACL buffer to an array of 2 byte
VLAN ids.

Reserved 48 80 This field is reserved, and should be set to 0.

Array of allowed MAC
addresses

variable variable
This is the array of six byte MAC addresses, with a size as defined in the Number
of Allowed MAC address field.

Array of allowed VLAN ids variable variable
This is the array of two byte VLAN ids, with a size as defined in the Number of
Allowed VLAN ids field.

Table 350. TUNE Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be TUNE.

Reserved 2 2 This field is reserved, and should be set to 0.

IOBA 4 4
This field is an I/O bus address referring to a TCE-mapped buffer used by system
firmware to obtain the tuning parameters.

Length 8 4 This field contains the length of the VPD buffer.

Table 349. ACL Buffer (Continued)

Field Name
Byte

Offset
Length Definition

K.7  Subordinate CRQ Definitions 879

LoPAPR, Version 1.1 (March 24, 2016)

K.7 Subordinate CRQ Definitions

Frame transmission and reception is handled through the Subordinate CRQ infrastructure, using the
H_SEND_SUB_CRQ and H_SEND_SUB_CRQ_INDIRECT hypervisor calls.

K.7.1 Frame Transmission

Since each Transmit Completion Sub-CRQ is tied to a specific Transmit Submission Sub-CRQ, the Transmit Descrip-
tor correlator must only be unique for a given Transmit Completion Sub-CRQ.

Several versions of Transmit Descriptors exist. Each version has a Descriptor Version byte at byte offset one in the de-
scriptor, which specifies the layout of the later thirty bytes. A sorted array is returned in the LOGIN response specify-
ing all versions of transmit descriptor supported by the VNIC. The versions of the transmit descriptor offering the best
performance appear in the array first. All VNIC versions will support Transmit Descriptor Version Zero defined in
Table 352‚ “Transmit Descriptor Version Zero‚” on page 879, but that version may not offer the best performance.

Transmit Descriptor Version Two defined in Table 355‚ “Transmit Descriptor Version Two‚” on page 882 is designed
to be used in combination with a previous use of Transmit Descriptor Version Zero or Transmit Descriptor Version One
defined in Table 354‚ “Transmit Descriptor Version One‚” on page 881

Reserved 12 4 This field is reserved and should be set to 0.

Table 351. TUNE_RSP Command

Field Name
Byte

Offset
Length Definition

CRQ Type 0 1 This should be set to 0x80 to indicate a valid CRQ event.

VNIC Command 1 1 This field will be TUNE_RSP.

Reserved 2 10 This field is reserved, and should be set to 0.

Return Code 12 4
This is a return code for the operation as defined in Table 305‚ “VNIC Return
Code‚” on page 846.

Table 352. Transmit Descriptor Version Zero

Field Name Byte Offset Length Definition

Sub-CRQ Format 0 1 This value should be set to 0x80 to indicate a valid Sub-CRQ event.

Descriptor Version 1 1 This field is 0 for a Version Zero Transmit Descriptor

Table 350. TUNE Command (Continued)

Field Name
Byte

Offset
Length Definition

880 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Flags 2 1

Bit 0: If set to 1, this frame should use the large send offload feature of
the physical adapter, assuming it was previously enabled through the use
of CONTROL_IP_OFFLOAD command.
Bit 1: If set to 1, this frame should use the IP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 2: If set to 1, this frame should use the TCP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 3: If set to 1, this frame should use the physical adapter’s capability
of inserting VLAN headers, using the VLAN header field as the source
for the values to insert.
Bit 4:If set to 1, this frame should use the UDP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 5: If set to 1, this frame spans multiple transmit descriptors.
Bit 6: If set to 1, this frame contains the last fragment of a complete
packet for transmission.
Bit 7:If set to 1, this frame requires a transmit completion event to be
posted to the VNIC client’s Transmit Completion Sub-CRQ. If set to 0,
no completion event will be generated unless an error occurred.

IP Header offset 3 1

Bit 0:If set to zero, this frame contains an IPv4 frame. If set to 1, this
frames contains an IPv6 frame.
Bits 1-7: This field should be set to the offset of IP header in the first
descriptor of a chain if any checksum offload or large send offload is
enabled.
If neither checksum offload nor large send offload are enabled, this
should be set to 0.

TCP/UDP Header offset or IP
Data offset

4 2

In the first descriptor of a chain, if any checksum offload or large send
offload function should be done for this packet, this field must be set to
the offset of the first byte of data after the IP header and extension
headers.
If no checksum offload or large send offload function should be done for
this packet, this field must be set to 0.

VLAN Header 6 2
If VLAN header insertion has been enabled, this field contains the
VLAN header to be inserted if indicated in the Flags byte.

Reserved 8 1 This field is reserved and should be set to 0.

MSS Size 9 3 If large send offload is enabled, this field contains the MSS size.

Correlator 12 4

This field is set to a unique opaque value generated by the VNIC client
that allows the device driver to correlate a transmit submission to an
eventual completion. This value must be set even if the Completion
Required bit is set to 0 in the event an error happens.

IOBA1 16 4
This field contains an I/O bus address valid for the VNIC device that
refers to the first chunk of the transmit frame for this descriptor.

Length1 20 4 This contains the length of the frame fragment pointed to by IOBA1.

IOBA2 24 4
This field contains an I/O bus address valid for the VNIC device that
refers to the second fragment of the transmit frame for this descriptor. If
the corresponding length field is 0, this field is ignored.

Length2 28 4
This contains the length of the frame fragment pointed to by IOBA2. If
IOBA2 is invalid, this field should be set to 0.

Table 352. Transmit Descriptor Version Zero (Continued)

Field Name Byte Offset Length Definition

K.7  Subordinate CRQ Definitions 881

LoPAPR, Version 1.1 (March 24, 2016)

Table 353. Transmit Completion Descriptor

Field Name Byte offset Length Definition

Sub-CRQ Format 0 1 This value should be set to 0x80 to indicate a valid Sub-CRQ event.

Number of Completions 1 1
This is the number of return code and correlator pairs of this descriptor that
are valid. It must be a value from 1 to 5.

Return Codes 2 10
This is an array of 5 two byte integer return codes as defined in Table 307‚
“VNIC Architected Return Values‚” on page 849.

Correlators 12 20
This is an array of five four-byte correlator values as taken from the
Transmit Submission Descriptor.

Table 354. Transmit Descriptor Version One

Field Name Byte Offset Length Definition

Sub-CRQ Format 0 1 This value should be set to 0x80 to indicate a valid Sub-CRQ event.

Descriptor Version 1 1 This field is 1 for a Version One Transmit Descriptor

Flags 2 1

Bit 0: If set to 1, this frame should use the large send offload feature of
the physical adapter, assuming it was previously enabled through the use
of CONTROL_IP_OFFLOAD command.
Bit 1: If set to 1, this frame should use the IP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 2: If set to 1, this frame should use the TCP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 3: If set to 1, this frame should use the physical adapter’s capability
of inserting VLAN headers, using the VLAN header field as the source
for the values to insert.
Bit 4:If set to 1, this frame should use the UDP checksum feature of the
physical adapter, assuming it was previously enabled through the use of
CONTROL_IP_OFFLOAD command.
Bit 5: If set to 1, this frame spans multiple transmit descriptors.
Bit 6: If set to 1, this frame contains the last fragment of a complete
packet for transmission.
Bit 7:If set to 1, this frame requires a transmit completion event to be
posted to the VNIC client’s Transmit Completion Sub-CRQ. If set to 0,
no completion event will be generated unless an error occurred.

IP Header offset 3 1

Bit 0:If set to zero, this frame contains an IPv4 frame. If set to 1, this
frames contains an IPv6 frame.
Bits 1-7: This field should be set to the offset of IP header in the first
descriptor of a chain if any checksum offload or large send offload is
enabled.
If neither checksum offload nor large send offload are enabled, this
should be set to 0.

TCP/UDP Header offset or IP
Data offset

4 2

In the first descriptor of a chain, if any checksum offload or large send
offload function should be done for this packet, this field must be set to
the offset of the first byte of data after the IP header and extension
headers.
If no checksum offload or large send offload function should be done for
this packet, this field must be set to 0.

882 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

VLAN Header 6 2

If this frame is a VLAN-tagged frame, this field contains the VLAN tag
even if it is already present in the frame, and even if VLAN offload is
disabled. If already present in the frame, this merely provides a hint to
enable fast transmission of this frame. If the VLAN header is not present
in the frame, this field contains the VLAN header to be inserted if
indicated in the Flags byte.

Reserved 8 1 This field is reserved and should be set to 0.

MSS Size 9 3 If large send offload is enabled, this field contains the MSS size.

Correlator 12 4

This field is set to a unique opaque value generated by the VNIC client
that allows the device driver to correlate a transmit submission to an
eventual completion. This value must be set even if the Completion
Required bit is set to 0 in the event an error happens.

IOBA1 16 4
This field contains an I/O bus address valid for the VNIC device that
refers to the first chunk of the transmit frame for this descriptor.

Length1 20 4 This contains the length of the frame fragment pointed to by IOBA1.

Destination MAC address 24 6
This field contains the destination MAC address as specified in the frame
to be sent. The frame still must contain this information; this merely
provides a hint to enable fast transmission of this frame.

Ethertype 30 2
This field contains a copy of the ethertype from the specified frame to be
sent. The frame still must contain this information; this merely provides
a hint to enable fast transmission of this frame.

Table 355. Transmit Descriptor Version Two

Field Name Byte Offset Length Definition

Sub-CRQ Format 0 1 This value should be set to 0x80 to indicate a valid Sub-CRQ event.

Descriptor Version 1 1

This field is 2 for a Version Two Transmit Descriptor. This transmit
descriptor should be used following another valid Transmit Descriptor
Format such as Version Zero or Version One. It inherits any advanced
features from the previous Transmit Descriptor.

Flags 2 1

Bit 0-5: These bits are reserved, and should be set to 0.
Bit 6: If set to 1, this frame contains the last fragment of a complete
packet for transmission.
Bit 7:If set to 1, this frame requires a transmit completion event to be
posted to the VNIC client’s Transmit Completion Sub-CRQ. If set to 0,
no completion event will be generated unless an error occurred.

Reserved 3 1 This field is reserved, and should be set to 0.

IOBA1 4 4
This field contains an I/O bus address valid for the VNIC device that
refers to the first chunk of the transmit frame for this descriptor.

Length1 8 4
This field contains the length of the frame fragment pointed to by
IOBA1.

Correlator 12 4

This field is set to a unique opaque value generated by the VNIC client
that allows the device driver to correlate a transmit submission to an
eventual completion. This value must be set even if the Completion
Required bit is set to 0 in the event an error happens.

Table 354. Transmit Descriptor Version One (Continued)

Field Name Byte Offset Length Definition

K.7  Subordinate CRQ Definitions 883

LoPAPR, Version 1.1 (March 24, 2016)

K.7.2 Frame Reception

Multiple Receive Buffer Add Sub-CRQs can be configured to allow the VNIC client to efficiently allocate receive buf-
fers of different sizes. In the event multiple Sub-CRQs are allocated for this purpose, it is the VNIC client’s responsi-
bility to always allocate the receive buffer size for the Receive Buffer Add Sub-CRQs that are returned by system
firmware as defined in Table 314‚ “LOGIN Response Buffer‚” on page 858.

System firmware will configure the correct buffer sizes based on the current VNIC maximum transmission unit, cur-
rent number of Receive Buffer Add Sub-CRQs, and physical adapter capabilities. In all cases, all receive buffers given
to an individual Receive Buffer Add Sub-CRQ must be of the same size.

Since a Receive Buffer Correlator may appear on only a single Receive Completion Sub-CRQ, the Receive Buffer
Correlators must be unique for a given Receive Completion Sub-CRQ.

Since every buffer added to all Receive Buffer Add Sub-CRQs associated with a given Receive Completion Sub-CRQ
could be received simultaneously, each Receive Completion Sub-CRQ should be sized to handle every possible buffer
given to system firmware on its associated Receive Buffer Add Sub-CRQs.

Some implementations of VNIC devices may have alignment requirements. To ensure efficient use of receive buffers,
VNIC clients are encouraged to use at least cache-line aligned receive buffers.

.

IOBA2 16 4
This field contains an I/O bus address valid for the VNIC device that
refers to the second chunk of the transmit frame for this descriptor.

Length2 20 4 This contains the length of the frame fragment pointed to by IOBA2.

IOBA3 24 4
This field contains an I/O bus address valid for the VNIC device that
refers to the third chunk of the transmit frame for this descriptor.

Length3 28 4 This contains the length of the frame fragment pointed to by IOBA3.

Table 356. Receive Completion Descriptor

Field Name
Byte

Offset
Length Definition

Sub-CRQ Format 0 1 This should be set to 0x80 to indicate a valid Sub-CRQ event.

Flags 1 1

Bit 0: If this bit is a 1, it indicates system firmware has validated the IP
checksum field in the referenced packet was verified to be good.
Bit 1: If this bit is a 1, it indicates system firmware has validated the
TCP/UDP checksum field in the referenced packet was verified to be good.
Bit 2: If this bit is a 1, it indicates this frame contains the end of a packet.
Bit 3: If this bit is a 1, this packet is an exact match for one of the requested
multicast MAC addresses for this VNIC.
Bit 4: If this bit is a 1, the TCP/UDP checksum field contains either the
complete TCP/UDP checksum or a partial TCP/UDP checksum in the case
of an IP fragment packet.
Bit 5-7: These bits are reserved, and will be set to 0.

Offset to start of frame data 2 2
This field contains an offset to the start of actual frame data in the returned
frame.

Length 4 4 This field contains the length of valid data in this descriptor.

Table 355. Transmit Descriptor Version Two (Continued)

Field Name Byte Offset Length Definition

884 A Protocol for VNIC Communications

 LoPAPR, Version 1.1 (March 24, 2016)

Correlator 8 8
This field is the correlator taken from the Receive Buffer Add descriptor that
allows the VNIC client to associate this completion with a previously added
receive buffer.

TCP/UDP Checksum 16 2
If the TCP/UDP checksum bit is a 1, this field contains either the complete
packet’s TCP/UDP checksum or a partial TCP/UDP checksum in the event
the packet is an IP fragment.

Reserved 18 14 These fields are reserved, and will be set to 0.

Table 357. Receive Buffer Add Descriptor

Field Name
Byte

Offset
Length Definition

Sub-CRQ Format 0 1 This should be set to 0x80 to indicate a valid Sub-CRQ event.

Reserved 1 7 This bytes are reserved, and should be set to 0.

Correlator 8 8
This field is an opaque value that is returned to the VNIC client when the
buffer described by this descriptor is used to receive a frame from the
network.

IOBA 16 4
This field contains the I/O bus address for the TCE-mapped memory buffer
to be used for frame reception.

Length 20 4
This field contains the length of the memory buffer described by this
descriptor.

Reserved 24 8 These bytes are reserved, and should be set to 0.

Table 356. Receive Completion Descriptor (Continued)

Field Name
Byte

Offset
Length Definition

LoPAPR, Version 1.1 (March 24, 2016)

L When to use: Fault vs. Error Log
Indicators (Lightpath Mode)

This appendix gives highly recommended Service Indicator activation models for typical system issues, when the
Lightpath mode is implemented. The purpose of this appendix is to get consistency across platforms, and to answer
common questions about how to handle specific issues. The reason that these are recommended rather than required, is
due to the range of systems that are involved, specifically related to the different types of physical layouts (for exam-
ple: deskside, blade and blade chassis, rack-mounted and particularly high end racks).

This appendix does not change the architectural requirements specified in other parts of this document, nor the require-
ment for implementations to support those requirements. If there are any inconsistencies between this appendix and the
requirements in the rest of this document, the requirements take precedence over this appendix. It is very important,
therefore, that designers understand the requirements in this architecture, and more specifically, those in Chapter 16,
“Service Indicators,” on page 511.

Table 358‚ “Service Indicator Activation Models for Typical System Issues (Lightpath Mode)‚” on page 886 gives the
recommended models. The general model, though, is still dictated by the following requirement, copied here from
Chapter 2:

R1–16.2.1.1–1. The detector of a fault condition must do the following:

 If the a fault occurs which cannot be isolated appropriately without the user performing some procedure, then
activate the Error Log indicator.

 If a fault occurs which can be isolated to a single FRU and if there exists a Fault indicator for the FRU, then ac-
tivate that FRU Fault indicator, otherwise activate the Error Log indicator.

 If a fault occurs which cannot be isolated to a single FRU and if there exists a Fault indicator for the most likely
FRU in the FRU list, then activate that FRU Fault indicator, otherwise activate the Error Log indicator.

 If a fault occurs which is isolated to a group of FRUs (called a FRU group) and if there exists a Fault indicator
for each of the FRUs, then activate all the FRU Fault indicators, otherwise activate the Error Log indicator.

886 When to use: Fault vs. Error Log Indicators (Lightpath Mode)

 LoPAPR, Version 1.1 (March 24, 2016)

Table 358. Service Indicator Activation Models for Typical System Issues (Lightpath Mode)

Component or
problem area

Problem or issue

Indicator activation?
(see notes 1, 2)

Entry
made in
Service
Focal

Point error
log?

IBM Call
Home?

Comments
FRU Fault
indicator?

(see notes 3, 4)

Error Log
indicator?

(see note 4)

All Any not already covered in this table
Consult with the xipSIA architecture team for the proper

behavior

Power supply or fan

Redundant optional one missing no no no no
This row for information only (this
is not a Serviceable Event).

Redundant non-optional one missing no yes yes no

Failed redundant yes no yes yes

Failed non-redundant yes no yes yes

Power regulator not
in power supply

Failed yes no yes yes
Treated the same as any other FRU
or component on a FRU which
fails.

Power

Insufficient power with all power
supplies installed and operational for
power domain

no yes yes no
For components that will not
power up due to lack of power (for
example, a blade in a chassis), and
when that component implements
a fast blink capability for the green
power LED, that component’s
green power LED remains in the
fast blink mode.

Insufficient power with missing power
supply

no yes yes no

Disabled button
pressed

Unable to power on or off component
due to power button being disabled

no no no no
These rows for information only
(these are not a Serviceable
Events).KVM or media tray button pressed,

but not active because disabled
no no no no

Temperature
detected out of
tolerance

Warning only (no performance
throttling or shut-down)

no no
brand

dependent
no

Performance throttling or shut-down
due to over-temp condition

yes no yes no

FRU Fault indicator must be at
component that is throttled or
shut-down (temperature indicators,
which are not architected, do not
roll-up to Enclosure Fault
indicators).

Memory (DIMMs)

No memory installed at all, or memory
that is installed is mismatched

yes no yes no

Invalid memory configuration above
the base memory (missing memory,
mismatched memory, unsupported
memory)

no yes yes no

Failed or predicted to fail yes no yes yes

System VPD Invalid or missing yes no yes yes

Lack of some of the required fields
in the call-home may result in the
call-home being flagged as a lack
of entitlement.

  887

LoPAPR, Version 1.1 (March 24, 2016)

Notes:

1. Never activate both a Fault indicator and an Error Log indicator for the same problem. See also Require-
ment R1–16.2.1.1–1, referenced immediately above Table 358.

2. Fault indicators above the FRU Fault indicator are not specified here, but the requirements specify that a
FRU Fault is rolled-up to the next higher level indicator (specifically, the Enclosure Fault indicator).

3. Enclosure Fault indicators and above are only roll-up indicators and are never activated without a FRU
Fault indicator being activated. Therefore the column in Table 358 indicates a FRU Fault indicator. That is,
if no FRU Fault indicator exists for the problem, then the Error Log indicator is used instead (per Require-
ment R1–16.2.1.1–1, referenced immediately above Table 358).

4. The activation of the Error Log indicator (previously known as the System Information (Attention) indica-
tor) and Fault indicators are regulated by the following requirements, among others:

Battery

Missing or failed yes no yes
brand

dependent

Rechargeable battery needing
reconditioning

no yes yes no

CPU Failed or predicted to fail yes no yes yes

Planar or CEC Failed yes no yes yes

Disk Failed or predicted to fail yes no yes yes

Boot device
Missing boot device no yes yes no

Corrupt image no yes yes no

I/O adapter Fail or non-recoverable EEH error yes no yes yes

Service Processor
(FSP, BMC, IMM)

Hardware failure no yes yes yes

Firmware failure no yes yes
brand

dependent

BIOS or Flash
Corrupted single side no yes yes no

Both sides corrupted yes no yes yes

All Unisolated event no yes yes no
See also Requirement R1–
16.2.1.1–1

Switch Failed yes no yes yes

System chassis
controller (AMM,
CME, ITME)

Failed yes no yes yes

Midplane Failed yes no yes yes

Cables Failed or missing N/A yes yes yes

Table 358. Service Indicator Activation Models for Typical System Issues (Lightpath Mode) (Continued)

Component or
problem area

Problem or issue

Indicator activation?
(see notes 1, 2)

Entry
made in
Service
Focal

Point error
log?

IBM Call
Home?

Comments
FRU Fault
indicator?

(see notes 3, 4)

Error Log
indicator?

(see note 4)

888 When to use: Fault vs. Error Log Indicators (Lightpath Mode)

 LoPAPR, Version 1.1 (March 24, 2016)

R1–16.2.1.1–6. The Error Log indicator must be activated only for Serviceable Events. Serviceable Events
are platform, global, regional and local error events that require a service action and possibly a call home
when the serviceable event must be handled by a service representative or at least reported to the service
provider. Activation of the Error Log indicator notifies the customer of the event and the event indicates to
the customer that there must be some intervention to rectify the problem. The intervention may be a service
action that the customer can perform or it may require a service provider.

R1–16.2.1.1–5. For each activation of the Error Log and Enclosure Fault Indicators, one of the following
must be true:

 If the platform is functional enough to allow it, then an associated entry must be made in an error log that
can be queried by a user interface.

 In the case where the platform is not functional enough to allow logging of an error log entry, then there
must exist a way for the user to determine the failure associated with the indicator activation (for exam-
ple, an error code on an op panel on the system).

LoPAPR, Version 1.1 (March 24, 2016)

Bibliography

This section lists documents which were referenced in this specification or which provide additional information, and
some useful information for obtaining these documents. Referenced documents are listed below. When any of the fol-
lowing standards are superseded by an approved revision, the revision shall apply.

1. Power ISA

2. IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices

IEEE part number DS02683, ISBN 1-55937-426-8

3. Core Errata, IEEE P1275.7/D4

4. Open Firmware Recommended Practice:OBP-TFTP extension

5. Open Firmware Recommended Practice: Device Support Extensions

6. PCI Bus binding to: IEEE Std 1275-1994, Standard for Boot (Initialization, Configuration) Firmware

7. Open Firmware: Recommended Practice - Interrupt Mapping

8. Open Firmware: Recommended Practice - Forth Source and FCode Image Support, Version 1.0

9. Open Firmware: Recommended Practice - Interrupt Mapping, Version 1.0

10. Open Firmware: Recommended Practice - TFTP Booting Extensions, Version 0.8

11. Open Firmware: Recommended Practice - Interposition, Version 0.2

12. MS-DOS Programmer's Reference

Published by Microsoft

13. Peering Inside the PE: A Tour of the Win32 Portable Executable File Format

Found in the March, 1994 issue of Microsoft Systems Journal

14. ISO-9660, Information processing -- Volume and file structure of CD-ROM for information interchange

Published by International Organization for Standardization

15. System V Application Binary Interface, PowerPC Processor Supplement

By Sunsoft

16. ISO Standard 8879:1986, Information Processing -- Text and Office Systems -- Standard Generalized Markup
Language (SGML)

17. IEEE 996, A Standard for an Extended Personal Computer Back Plane Bus

18. PCI Local Bus Specification

890 Bibliography

 LoPAPR, Version 1.1 (March 24, 2016)

All designers are responsible for assuring that they use the most current version of this document at the time that
they design conventional PCI related components or platforms. See the PCI SIG website for the most current ver-
sion of this document.

19. PCI-to-PCI Bridge Architecture Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design conventional PCI related components or platforms. See the PCI SIG website for the most current ver-
sion of this document.

20. PCI Standard Hot-Plug Controller and Subsystem Specification

21. PCI-X Protocol Addendum to the PCI Local Bus Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design PCI-X related components or platforms. See the PCI SIG website for the most current version of this
document.

22. PCI Express Base Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design PCI Express related components or platforms. See the PCI SIG website for the most current version of
this document.

23. PCI Express to PCI/PCI-X Bridge Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design PCI Express related components or platforms. See the PCI SIG website for the most current version of
this document.

24. System Management BIOS (SMBIOS) Reference Specification

25. (List Number Reserved for Compatibility)

26. (List Number Reserved for Compatibility)

27. (List Number Reserved for Compatibility)

28. IBM RS/6000® Division, Product Topology Data System, Product Development Guide

Version 2.1

29. Single Root I/O Virtualization and Sharing Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design PCI Express SR-IOV related components or platforms. See the PCI SIG website for the most current
version of this document.

30. Multi-Root I/O Virtualization and Sharing Specification

All designers are responsible for assuring that they use the most current version of this document at the time that
they design PCI Express MR-IOV related components or platforms. See the PCI SIG website for the most current
version of this document.

LoPAPR, Version 1.1 (March 24, 2016)

Glossary

This glossary contains an alphabetical list of terms, phrases, and abbreviations used in this document.

Term Definition

AC Alternating current

ACR Architecture Change Request

AD Address Data line

Adapter A device which attaches a device to a bus or which converts one bus to another; for example,
an I/O Adapter (IOA), a PCI Host Bridge (PHB), or a NUMA fabric attachment device.

addr Address

Architecture The hardware/software interface definition or software module to software module interface
definition.

ASCII American National Standards Code for Information Interchange

ASR Address Space Register

BAT Block Address Translation

BE Big-Endian or Branch Trace Enable bit in the MSR (MSRBE)

BIO Bottom of Peripheral Input/Output Space

BIOS Basic Input/Output system

BIST Built in Self Test

Boundedly undefined Describes some addresses and registers which when referenced provide one of a small set of
predefined results.

BPA Bulk Power Assembly. Refers to components used for power distribution from a central point
in the rack.

BPM Bottom of Peripheral Memory

BSCA Bottom of System Control Area

BSM Bottom of System Memory

BUID Bus Unit Identifier. The high-order part of an interrupt source number which is used for hard-
ware routing purposes by the platform.

CCIN Custom Card Identification Number

CD-ROM Compact Disk Read-Only Memory

CIS Client Interface Service

CMO Cooperative Memory Over-commitment option. See Section 14.12.3‚ “Cooperative Memory
Over-commitment Option (CMO)‚” on page 474

CMOS Complimentary Metal Oxide Semiconductor

892 Glossary

 LoPAPR, Version 1.1 (March 24, 2016)

Conventional PCI Behavior or features that conform to PCI Local Bus Specification [18].

CPU Central Processing Unit

CR Condition Register

CTR Count Register

DABR Data Address Breakpoint Register

DAR Data Address Register

DASD Direct Access Storage Device (a synonym for “hard disk”)

DBAT Data Block Address Translation

DC Direct current

DEC Decrementer

DIMM Dual In-line Memory Module

DMA Direct Memory Access

DMA Read A data transfer from System Memory to I/O. A DMA Read Request is the inbound operation
and the DMA Read Reply (or Read Completion) is the outbound data coming back from a DMA
Read Request.

DMA Write A data transfer to System Memory from I/O or a Message Signalled Interrupt (MSI) DMA
Write. This is an inbound operation.

DOS Disk OS

DR Data Relocate bit in MSR (MSRDR)

DRA Deviation Risk Assessment

DRAM Dynamic Random Access Memory

DRC Delayed Read Completion. A transaction that has completed on the destination bus and is now
moving toward the originating bus to complete.

DR Connector.

DR entity An entity that can participate in DR operations. That is, an entity that can be added or removed
from the platform while the platform power is on and the system remains operational.

DRR Delayed Read Request. A transaction that must complete on the destination bus before complet-
ing on the originating bus.

DSISR Data Storage Interrupt Status Register

DWR Delayed Write Request. A transaction that must complete on the destination bus before com-
pleting on the originating bus.

EA Effective Address

EAR External Access Register

ECC Error Checking and Correction

EE External interrupt Enable bit in the MSR (MSREE)

EEH Enhance I/O Error Handling

EEPROM Electrically Erasable Programmable Read Only Memory

  893

LoPAPR, Version 1.1 (March 24, 2016)

EPOW Environment and Power Warning

Error Log indicator An amber indicator that indicates that the user needs to look at the error log or problem deter-
mination procedures, in order to determine the cause. Previously called System Information
(Attention).

FCode A computer programming language defined by the OF standard which is semantically similar
to the Forth programming language, but is encoded as a sequence of binary byte codes repre-
senting a defined set of Forth words.

FE0 Floating-point Exception mode 0 bit in the MSR (MSRFE0)

FE1 Floating-point Exception mode 1bit in the MSR (MSRFE1)

FIR Fault Isolation Registers

FLR Function Level Reset (see PCI Express documentation). An optional reset for PCI Express
functions that allows resetting a single function of a multi-function IOA.

FP Floating-Point available bit in the MSR (MSRFP)

FPSCR Floating-Point Status And Control Register

FRU Field Replaceable Unit

FSM Finite State Machine

GB Gigabytes - as used in this document it is 2 raised to the power of 30

HB Host Bridge

HMC Hardware Management Console - used generically to refer to the system component that per-
forms platform administration function where ever physically located. The HMC is outside of
this architecture and may be implemented in multiple ways. Examples include: a special HMC
applications in another system, an external appliance, or in an LPAR partition using the Virtual
Management Channel (VMC) interface to the hypervisor.

Hz Hertz

IBAT Instruction block address translation

ID Identification

IDE Integrated Device Electronics

IDU Interrupt Delivery Unit

IEEE Institute of Electrical and Electronics Engineers

I2C Inter Integrated-circuit Communications

I/O Input/Output

I/O bus master Any entity other than a processor, cache, memory controller, or host bridge which supplies both
address and data in write transactions or supplies the address and is the sink for the data in read
transactions.

I/O device Generally refers to any entity that is connected to an IOA (usually through a cable), but in some
cases may refer to the IOA itself (that is, a device in the device tree that happens to be used for
I/O operations).

I/O Drawer An enclosure in a rack that holds at least one PHB and at least one IOA.

ILE Interrupt Little-Endian bit in MSR (MSRILE)

Instr Instruction

894 Glossary

 LoPAPR, Version 1.1 (March 24, 2016)

Interrupt Number See Interrupt Vector below.

Interrupt Vector The identifier associated with a specific interrupt source. The identifier’s value is loaded into
the source’s Interrupt Vector Register and is read from the Interrupt Delivery Unit’s Interrupt
Acknowledge Register.

IOA I/O Adapter. A device which attaches to a physical bus which is capable of supporting I/O (a
physical IOA) or logical bus (a virtual IOA). The term “IOA” without the usage of the qualifier
“physical” or “virtual” will be used to designate a physical IOA. Virtual IOAs are defined fur-
ther in Chapter 17, “Virtualized Input/Output,” on page 597. In PCI terms, an IOA may be de-
fined by a unique combination of its assigned bus number and device number, but not
necessarily including its function number. That is, an IOA may be a single or multi-function
device, unless otherwise specified by the context of the text. In the context of a PCIe I/O Vir-
tualized (IOV) device (not to be confused with a virtual IOA), an IOA is a single or multiple
function device (for example, a PCIe Virtual Function (VF) or multiple VFs). An IOA function
may or may not have its own set of resources, that is may or may not be in its own Partitionable
Endpoint (PE) domain (see also Section 4.1‚ “I/O Topologies and Endpoint Partitioning‚” on
page 71).

IOA function That part of an IOA that deals with a specific part of the IOA as defined by the configuration
space “Function” part of Bus/Device/Function. For single-function IOAs, the IOA Function
and the IOA are synonymous.

IP Interrupt Prefix bit in MSR (MSRIP)

IPI Interprocessor Interrupt

IR Instruction Relocate bit in MSR register (MSRIR) or infrared

ISF Interrupt 64-bit processor mode bit in the MSR (MSRISF)

ISO International Standards Organization

ISR Interrupt Source Register

ISU Interrupt Source Unit

KB Kilobytes - as used in this document it is 2 raised to the power of 10

KHz Kilo Hertz

LAN Local Area Network

LCD Liquid Crystal Display

LE Little-Endian bit in MSR (MSRLE) or Little-Endian

LED Light Emitting Diode

LMB Logical Memory Block. The Block of logical memory addresses associated with a dynamically
reconfigurable memory node.

Load A Load Request is the outbound (from the processor) operation and the Load Reply is the in-
bound data coming back from a Load Request. When it relates to I/O operations, this is an
MMIO Load.

LR Link Register

LSb Least Significant bit

LSB Least Significant Byte

LSI Level Sensitive Interrupt

  895

LoPAPR, Version 1.1 (March 24, 2016)

LUN Logical Unit Number

L1 Primary cache

L2 Secondary cache

MB Megabytes - as used in this document it is 2 raised to the power of 20

ME Machine check Enable

MMIO Memory Mapped I/O. This refers to the mapping of the address space required by an I/O device
for Load or Store operations into the system’s address space.

MES Miscellaneous Equipment Specification

MFM Modified frequency modulation

MHz Mega Hertz

MOD Address modification bit in the MSR (MSRMOD)

MP Multiprocessor

MSb Most Significant bit

MSB Most Significant Byte

MSI Message Signalled Interrupt

MSR Machine State Register

MTT Multi-TCE-Table option. See Section 14.5.4.2.4‚ “H_PUT_TCE_INDIRECT‚” on page 421.

N/A Not Applicable

Nibble Refers to the first or last four bits in an 8 bit byte

NUMA Non-Uniform Memory Access

NUMA fabric Mechanism and method for connecting the multiple nodes of a NUMA system

NVRAM Nonvolatile Random Access Memory

OF Open Firmware

OP Operator

OS Operating System

OUI Organizationally Unique Identifier

PA Processor Architecture

PAP Privileged Access Password

LoPAPR Used within the Linux on Power Architecture Platform Reference document to denote: (1) the
architectural requirements specified by the Linux on Power Architecture Platform Reference
document, (2) the Linux on Power Architecture Platform Reference document itself, and (3) as
an adjective to qualify an entity as being related to this architecture.

Partitionable Endpoint This refers to the I/O granule that may be treated as one for purposes of assignment to an OS
(for example, to an LPAR partition). May be an I/O adapter (IOA), or groups of IOAs and
bridges, or portions of IOAs. PE granularity supported by the hardware may be finer than is sup-
ported by the firmware. Grouping of multiple PEs into one DR entity may limit assignment of
a the separate PEs to different LPAR partitions. See also DR entity.

PC Personal Computer

896 Glossary

 LoPAPR, Version 1.1 (March 24, 2016)

PCI Peripheral Component Interconnect. An all-encompassing term referring to conventional PCI,
PCI-X, and PCI Express.

PCI bus A general term referring to either the PCI Local Bus, as specified in PCI Local Bus Specifica-
tion [18] and PCI-X Protocol Addendum to the PCI Local Bus Specification [21] for conven-
tional PCI and PCI-X, or a PCI Express link, as specified in PCI Express Base Specification
[22] for PCI Express.

PCI Express Behavior or features that conform to PCI Express Base Specification [22].

PCI link A PCI Express link, as specified in PCI Express Base Specification [22].

PCI-X Behavior or features that conform to PCI-X Protocol Addendum to the PCI Local Bus Specifi-
cation [21].

PD Presence Detect

PE When referring to the body of the LoPAPR, this refers to a Partitionable Endpoint. PE has a dif-
ferent meaning relative to Appendix B, “LoPAPR Binding,” on page 661 (see Section B.3‚
“Terms‚” on page 661 for that definition).

PEM Partition Energy Management option. See Section 14.14‚ “Partition Energy Management Op-
tion (PEM)‚” on page 492.

Peripheral I/O Space The range of real addresses which are assigned to the I/O Space of a Host Bridge (HB) and
which are sufficient to contain all of the Load and Store address space requirements of all the
devices in the I/O Space of the I/O bus that is generated by the HB. A keyboard controller is an
example of a device which may require Peripheral I/O Space addresses.

Peripheral Memory Space
The range of real addresses which are assigned to the Memory Space of a Host Bridge (HB) and
which are sufficient to contain all of the Load and Store address space requirements of the de-
vices in the Memory Space of the I/O bus that is generated by the HB. The frame buffer of a
graphics adapter is an example of a device which may require Peripheral Memory Space ad-
dresses.

Peripheral Space Refers to the physical address space which may be accessed by a processor, but which is con-
trolled by a host bridge. At least one peripheral space must be present and it is referred to by the
suffix 0. A host bridge will typically provide access to at least a memory space and possibly to
an I/O space.

PHB PCI Host Bridge

PIC Programmable Interrupt Controller

PIR Processor Identification Register

Platform Refers to the hardware plus firmware portion of a system composed of hardware, firmware, and
OS.

Platform firmware Refers to all firmware on a system including the software or firmware in a support processor.

Plug-in I/O card A card which can be plugged into an I/O connector in a platform and which contains one or
more IOAs and potentially one or more I/O bridges or switches.

Plug-in Card An entity that plugs into a physical slot.

PMW Posted memory write. A transaction that has complete on the originating bus before completing
on the destination bus

PnP Plug and Play

POP Power On Password

  897

LoPAPR, Version 1.1 (March 24, 2016)

POST Power-On Self Test

PR Privileged bit in the MSR (MSRPR)

Processor Architecture Used throughout this document to mean compliance with the requirements specified in Power
ISA [1].

Processor revision number
A 16-bit number that distinguishes between various releases of a particular processor version,
for example different engineering change levels.

PVN Processor Version Number. Uniquely determines the particular processor and PA version.

PVR Processor Version Register. A register in each processor that identifies its type. The contents of
the PVR include the processor version number and processor revision number.

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RAS Reliability, Availability, and Serviceability

Real address A real address results from doing address translation on an effective address when address
translation is enabled. If address translation is not enabled, the real address is the same as the
effective address. An attempt to fetch from, load from, or store to a real address that is not phys-
ically present in the machine may result in a machine check interrupt.

Reserved The term “reserved” is used within this document to refer to bits in registers or areas in the ad-
dress space which should not be referenced by software except as described in this document.

Reserved for firmware use
Refers to a given location or bit which may not be used by software, but are used by firmware.

Reserved for future use Refers to areas of address space or bits in registers which may be used by future versions of this
architecture.

RI Recoverable interrupt bit in the MSR (MSRRI)

RISC Reduced Instruction Set Computing

RMA Real Mode Area. The first block of logical memory addresses owned by a logical partition, con-
taining the storage that may be accessed with translate off.

ROM Read Only Memory

Root Complex A PCI Express root complex as specified in PCI Express Base Specification [22].

RPN Real Page Number

RTAS Run-Time Abstraction Services

RTC Real Time Clock

SAE Log Service Action Event log

SCC Serial Communications Controller

SCSI Small Computer System Interface

SE Single-step trace enabled bit in the MSR (MSRSE)

Service Focal Point The common point of control in the system for handling all service actions

Serviceable Event Serviceable Events are platform, global, regional and local error events that require a service
action and possibly a call home when the serviceable event must be handled by a service repre-
sentative or at least reported to the service provider. Activation of the Error Log indicator noti-

898 Glossary

 LoPAPR, Version 1.1 (March 24, 2016)

fies the customer of the event and the event indicates to the customer that there must be some
intervention to rectify the problem. The intervention may be a service action that the customer
can perform or it may require a service provider.

SES Storage Enclosure Services (can also mean SCSI Enclosure Services in relation to SCSI stor-
age)

SF Processor 32-bit or 64-bit processor mode bit in the MSR (MSRSF)

SFP Service Focal Point

Shrink-wrap OS A single version of an OS that runs on all compliant platforms.

Shrink-wrap Application
A single version of an application program that runs on all compliant platforms with the appli-
cable OS.

SMP Symmetric multiprocessor

SMP Mode Non-LPAR mode. That is, when there is no hypervisor running.

SMS System Management Services

Snarf An industry colloquialism for cache-to-cache transfer. A typical scenario is as follows: (1)
cache miss from cache A, (2) line found modified in cache B, (3) cache B performs castout of
modified line, and (4) cache A allocates the modified line as it is being written back to memory.

Snoop The act of interrogating a cache for the presence of a line, usually in response to another party
on a shared bus attempting to allocate that line.

SPRG Special Purpose Registers for General use

SR System Registers

SRC Service Reference Code

SRN Service Request Number

Store A Store Request is an outbound (from the processor) operation. When it relates to I/O opera-
tions, this is an MMIO Store.

System Refers to the collection of hardware, system firmware, and OS software which comprise a com-
puter model.

System address space The total range of addressability as established by the processor implementation.

System Control Area Refers to a range of addresses which contains the system ROM(s) and an unarchitected, re-
served, platform-dependent area used by firmware and Run-Time Abstraction services for con-
trol of the platform. The ROM areas are defined by the OF properties in the openprom and
os-rom nodes of the OF device tree.

System Information (Attention) indicator

See Error Log indicator.

System firmware Refers to the collection of all firmware on a system including OF, RTAS and any legacy firm-
ware.

System Memory Refers to those areas of memory which form a coherency domain with respect to the PA pro-
cessor or processors that execute application software on a system.

System software Refers to the combination of OS software, device driver software, and any hardware abstraction
software, but excludes the application software.

TB Time Base

  899

LoPAPR, Version 1.1 (March 24, 2016)

TCE Translation Control Entry

TLB Translation Look-aside Buffer

TOD Time Of Day

TOSM Top of system memory

TPM Top of Peripheral Memory

tty Teletypewriter or ASCII character driven terminal device

UI User Interface

USB Universal Serial Bus

v Volt

VGA Video Graphics Array

VMC Virtual Management Channel

VPD Vital Product Data

VPNH Virtual Processor Home Node option. See Section 14.11.6‚ “Virtual Processor Home Node Op-
tion (VPHN)‚” on page 467.

900 End of LoPAPR Document

 LoPAPR, Version 1.1 (March 24, 2016)

End of LoPAPR Document

	Title Page
	Copyright and Disclaimer
	Table of Contents
	List of Tables
	List of Figures
	About this Document
	Document Control
	Version
	Page Numbering and End of Document

	Goals of This Specification
	Audience for This Document
	Suggested Reading
	Conventions Used in This Document
	Requirement Enumeration
	Big-Endian Numbering
	Hypertext Links
	Specific Terms
	Typographical Conventions

	1 Introduction
	1.1 Platform Topology

	2 System Requirements
	2.1 System Operation
	2.1.1 Control Flow
	2.1.2 POST
	2.1.3 Boot Phase
	2.1.3.1 Identify and Configure System Components
	2.1.3.2 Generate a Device Tree
	2.1.3.3 Initialize/Reset System Components
	2.1.3.4 Locate an OS Boot Image
	2.1.3.5 Load the Boot Image into Memory
	2.1.3.6 Boot Process
	2.1.3.6.1 The Boot Prompt
	2.1.3.6.2 The Menus
	2.1.3.6.3 The f1 Key
	2.1.3.6.4 The f5 and f6 Keys
	2.1.3.6.5 CDROM Boot
	2.1.3.6.6 Tape Boot
	2.1.3.6.7 Network Boot
	2.1.3.6.8 Service Processor Boot
	2.1.3.6.9 Console Selection
	2.1.3.6.10 Boot Retry
	2.1.3.6.11 Boot Failures
	2.1.3.6.12 Persistent Memory and Memory Preservation Boot (Storage Preservation Option)

	2.1.4 Transfer Phase
	2.1.5 Run-Time
	2.1.6 Termination
	2.1.6.1 Power Off
	2.1.6.2 Reboot

	2.2 Firmware
	2.3 OS Installation
	2.3.1 Tape Install
	2.3.2 Network Install

	2.4 Diagnostics
	2.5 Platform Class
	2.6 Security
	2.7 Endian Support
	2.8 64-Bit Addressing Support
	2.9 Minimum System Requirements
	2.10 Options and Extensions
	2.11 IBM LoPAPR Platform Implementation Requirements
	2.11.1 IBM Server Requirements

	2.12 Behavior for Optional and Reserved Bits and Bytes

	3 Address Map
	3.1 Address Areas
	3.2 Address Decoding (or Validating) and Translation
	3.2.1 Load and Store Address Decoding and Translation
	3.2.2 DMA Address Validation and Translation
	3.2.2.1 DMA Addressing Requirements
	3.2.2.2 DMA Address Translation and Control via the TCE Mechanism

	3.2.3 Example Address Maps

	4 I/O Bridges and Topologies
	4.1 I/O Topologies and Endpoint Partitioning
	4.2 PCI Host Bridge (PHB) Architecture
	4.2.1 PHB Implementation Options
	4.2.2 PCI Data Buffering and Instruction Queuing
	4.2.2.1 PCI Load and Store Ordering
	4.2.2.2 PCI DMA Ordering
	4.2.2.3 PCI DMA Operations and Coherence

	4.2.3 Byte Ordering Conventions
	4.2.4 PCI Bus Protocols
	4.2.5 Programming Model
	4.2.6 Peer-to-Peer Across Multiple PHBs
	4.2.7 Dynamic Reconfiguration of I/O
	4.2.8 Split Bridge Implementations
	4.2.8.1 Coherency Considerations with IOA to IOA Communications via System Memory

	4.3 I/O Bus to I/O Bus Bridges
	4.3.1 What Must Talk to What
	4.3.2 PCI to PCI Bridges

	4.4 Bridge Extensions
	4.4.1 Enhanced I/O Error Handling (EEH) Option
	4.4.1.1 EEH Option Requirements
	4.4.1.2 Slot Level EEH Event Interrupt Option

	4.4.2 Error Injection (ERRINJCT) Option
	4.4.2.1 ERRINJCT Option Hardware Requirements
	4.4.2.2 ERRINJCT Option OF Requirements

	4.4.3 Bridged-I/O EEH Support Option

	5 Processor and Memory
	5.1 Processor Architecture
	5.1.1 Processor Architecture Compliance
	5.1.2 PA Processor Differences
	5.1.2.1 64-bit Implementations

	5.1.3 Processor Interface Variations
	5.1.4 PA Features Deserving Comment
	5.1.4.1 Multiple Scalar Operations
	5.1.4.2 External Control Instructions (Optional)

	5.1.5 cpu Node “Status” Property
	5.1.6 Multi-Threading Processor Option

	5.2 Memory Architecture
	5.2.1 System Memory
	5.2.2 Memory Mapped I/O (MMIO) and DMA Operations
	5.2.3 Storage Ordering and I/O Interrupts
	5.2.4 Atomic Update Model
	5.2.5 Memory Controllers
	5.2.6 Cache Memory
	5.2.7 Memory Status information
	5.2.8 Reserved Memory
	5.2.9 Persistent Memory

	6 Interrupt Controller
	6.1 Interrupt Controller Virtualization
	6.2 PowerPC External Interrupt Option
	6.2.1 PowerPC External Interrupt Option Requirements
	6.2.2 PowerPC External Interrupt Option Properties
	6.2.3 MSI Option

	6.3 Platform Reserved Interrupt Priority Level Option

	7 Run-Time Abstraction Services
	7.1 RTAS Introduction
	7.2 RTAS Environment
	7.2.1 Machine State
	7.2.2 Register Usage
	7.2.3 RTAS Critical Regions
	7.2.4 Resource Allocation and Use
	7.2.5 Instantiating RTAS
	7.2.6 RTAS Device Tree Properties
	7.2.6.1 RTAS Device Tree Properties for Indicators and Sensors
	7.2.6.1.1 Indicators
	7.2.6.1.2 Sensors

	7.2.7 Calling Mechanism and Conventions
	7.2.8 Return Codes

	7.3 RTAS Call Function Definition
	7.3.1 NVRAM Access Functions
	7.3.1.1 nvram-fetch
	7.3.1.2 nvram-store

	7.3.2 Time of Day
	7.3.2.1 Time of Day Inputs/Outputs
	7.3.2.2 get-time-of-day
	7.3.2.3 set-time-of-day
	7.3.2.4 set-time-for-power-on

	7.3.3 Error and Event Reporting
	7.3.3.1 event-scan
	7.3.3.2 check-exception
	7.3.3.3 rtas-last-error
	7.3.3.4 Platform Dump Option
	7.3.3.4.1 ibm,platform-dump
	7.3.3.4.2 Platform Dump Directory Structure

	7.3.4 PCI Configuration Space
	7.3.4.1 ibm,read-pci-config
	7.3.4.2 ibm,write-pci-config

	7.3.5 Operator Interfaces and Platform Control
	7.3.5.1 Op Panel Display
	7.3.5.2 Service Processor
	7.3.5.2.1 Surveillance
	7.3.5.2.2 Surveillance on SMP Systems

	7.3.5.3 display-character
	7.3.5.4 set-indicator
	7.3.5.4.1 Indicators
	7.3.5.4.1.1 Indicator 9000 Surveillance
	7.3.5.4.1.2 Indicator 9005 Global Interrupt Queue Control

	7.3.5.5 get-sensor-state
	7.3.5.5.1 Sensors
	7.3.5.5.1.1 Example Implementation of Sensors
	7.3.5.5.1.2 Power Supply Sensors
	7.3.5.5.1.3 Environmental Sensors
	7.3.5.5.1.4 Sensor 9005 Global Interrupt Queue Control State

	7.3.6 Power Control
	7.3.6.1 set-power-level
	7.3.6.2 get-power-level
	7.3.6.3 power-off
	7.3.6.4 ibm,power-off-ups

	7.3.7 Reboot and Flash Update Calls
	7.3.7.1 system-reboot
	7.3.7.2 ibm,update-flash-64-and-reboot
	7.3.7.3 Flash Update with Discontiguous Block Lists
	7.3.7.4 ibm,manage-flash-image
	7.3.7.5 ibm,validate-flash-image
	7.3.7.6 ibm,activate-firmware

	7.3.8 SMP Support
	7.3.8.1 stop-self
	7.3.8.2 start-cpu
	7.3.8.3 query-cpu-stopped state

	7.3.9 Miscellaneous RTAS Calls
	7.3.9.1 ibm,os-term
	7.3.9.2 Ibm,exti2c

	7.3.10 PowerPC External Interrupt Option
	7.3.10.1 ibm,get-xive
	7.3.10.2 ibm,set-xive
	7.3.10.3 ibm,int-off
	7.3.10.4 ibm,int-on
	7.3.10.5 MSI Support
	7.3.10.5.1 ibm,change-msi
	7.3.10.5.2 ibm,query-interrupt-source-number

	7.3.11 Enhanced I/O Error Handling (EEH) Option Functions
	7.3.11.1 ibm,set-eeh-option
	7.3.11.2 ibm,set-slot-reset
	7.3.11.3 ibm,read-slot-reset-state2
	7.3.11.4 ibm,get-config-addr-info2
	7.3.11.5 ibm,slot-error-detail

	7.3.12 Bridged-I/O EEH Support Option
	7.3.12.1 ibm,configure-bridge
	7.3.12.2 ibm,configure-pe

	7.3.13 Error Injection Option
	7.3.14 Firmware Assisted Non-Maskable Interrupts Option (FWNMI)
	7.3.15 Memory Statistics
	7.3.16 System Parameters Option
	7.3.16.1 ibm,get-system-parameter
	7.3.16.2 ibm,set-system-parameter
	7.3.16.3 HMC Parameter
	7.3.16.4 Capacity on Demand (CoD) Option
	7.3.16.4.1 CoD Capacity Card Info
	7.3.16.4.2 Predictive Failure Sparing with Free Resources
	7.3.16.4.3 Enhanced CoD Capacity Info

	7.3.16.5 Restart Parameters
	7.3.16.5.1 partition_auto_restart Parameter
	7.3.16.5.2 platform_auto_power_restart Parameter

	7.3.16.6 Remote Serial Port System Management Parameters
	7.3.16.7 Surveillance Parameters
	7.3.16.8 Call Home Parameter
	7.3.16.9 Current Flash Image Parameter
	7.3.16.10 Platform Dump Max Size Parameter
	7.3.16.11 Storage Preservation Option System Parameters
	7.3.16.12 SCSI Initiator Identifier System Parameters
	7.3.16.13 CoD Options
	7.3.16.14 Platform Error Classification
	7.3.16.15 Firmware Boot Options
	7.3.16.16 Platform Processor Diagnostics Options
	7.3.16.17 Processor Module Information
	7.3.16.18 Cede Latency Settings Information
	7.3.16.19 Target Active Memory Compression Factor
	7.3.16.20 Performance Boost Modes Vector
	7.3.16.21 Universally Unique IDentifier

	7.4 ibm,get-indices RTAS Call
	7.4.1 ibm,set-dynamic-indicator RTAS Call
	7.4.2 ibm,get-dynamic-sensor-state RTAS Call
	7.4.3 ibm,get-vpd RTAS Call
	7.4.4 Managing Storage Preservation
	7.4.5 ibm,lpar-perftools RTAS Call
	7.4.6 ibm,suspend-me RTAS Call
	7.4.7 ibm,update-nodes RTAS Call
	7.4.8 ibm,update-properties RTAS Call
	7.4.9 ibm,configure-kernel-dump RTAS call
	7.4.10 DMA Window Manipulation Calls
	7.4.10.1 ibm,query-pe-dma-window
	7.4.10.2 ibm,create-pe-dma-window
	7.4.10.3 ibm,remove-pe-dma-window
	7.4.10.4 Extensions to Dynamic DMA Windows
	7.4.10.4.1 ibm,reset-pe-dma-windows

	8 Non-Volatile Memory
	8.1 System Requirements
	8.2 Structure
	8.3 Signatures
	8.4 Architected NVRAM Partitions
	8.4.1 System (0x70)
	8.4.1.1 System NVRAM Partition
	8.4.1.1.1 Name
	8.4.1.1.2 Value
	8.4.1.1.3 OF Configuration Variables
	8.4.1.1.3.1 Boolean Configuration Variables
	8.4.1.1.3.2 Integer Configuration Variables
	8.4.1.1.3.3 String Configuration Variables
	8.4.1.1.3.4 Byte Configuration Variables

	8.4.1.2 DASD Spin-up Control

	8.4.2 Free Space (0x7F)

	8.5 NVRAM Space Management

	9 I/O Devices
	9.1 PCI IOAs
	9.1.1 Resource Locking
	9.1.2 PCI Expansion ROMs
	9.1.3 Assignment of Interrupts to PCI IOAs
	9.1.4 PCI-PCI Bridge Devices
	9.1.5 Graphics Controller and Monitor Requirements for Clients
	9.1.6 PCI Plug-in Graphic Cards
	9.1.7 PCI Cache Support Protocol
	9.1.8 PCI Configuration Space for IOAs
	9.1.9 PCI IOA Use of PCI Bus Memory Space Address 0
	9.1.10 PCI Express Completion Timeout
	9.1.11 PCI Express I/O Virtualized (IOV) Adapters

	9.2 Multi-Initiator SCSI Support
	9.3 Contiguous Memory
	9.4 Re-directed Serial Ports
	9.5 System Bus IOAs

	10 Error and Event Notification
	10.1 Introduction
	10.2 RTAS Error and Event Classes
	10.2.1 Internal Error Indications
	10.2.1.1 Error Indication Mechanisms

	10.2.2 Environmental and Power Warnings
	10.2.3 Hot Plug Events

	10.3 RTAS Error and Event Information Reporting
	10.3.1 Introduction
	10.3.2 RTAS Error/Event Return Format
	10.3.2.1 Reporting and Recovery Philosophy, and Description of Fields
	10.3.2.1.1 Version
	10.3.2.1.2 Severity
	10.3.2.1.3 RTAS Disposition
	10.3.2.1.4 Optional Part Presence
	10.3.2.1.5 Initiator
	10.3.2.1.6 Target
	10.3.2.1.7 Type
	10.3.2.1.8 Extended Event Log Length / Change Scope
	10.3.2.1.9 RTAS Event Return Format Fixed Part

	10.3.2.2 Version 6 Extensions of Event Log Format
	10.3.2.2.1 RTAS General Extended Event Log Format, Version 6
	10.3.2.2.2 Platform Event Log Format, Version 6
	10.3.2.2.3 Platform Event Log Format, Main-A Section
	10.3.2.2.4 Platform Event Log Format, Main-B Section
	10.3.2.2.4.1 Error/Event Severity
	10.3.2.2.4.2 Event Sub-Type
	10.3.2.2.4.3 Error Action Flags

	10.3.2.2.5 Platform Event Log Format, Logical Resource Identification section
	10.3.2.2.6 Platform Event Log Format, Primary SRC Section
	10.3.2.2.6.1 FRU Replacement or Maintenance Procedure Priority
	10.3.2.2.6.2 Failing Component Type Description

	10.3.2.2.7 Platform Event Log Format, Dump Locator Section
	10.3.2.2.8 Platform Event Log Format, EPOW Section
	10.3.2.2.9 Platform Event Log Format, IO Events Section
	10.3.2.2.10 Platform Event Log Format, Failing Enclosure MTMS
	10.3.2.2.11 Platform Event Log Format, Impacted Partitions
	10.3.2.2.12 Platform Event Log Format, Failing Memory Address

	10.3.3 Location Codes

	10.4 Error Codes
	10.4.1 Displaying Codes on the Standard Operator Panels
	10.4.2 Firmware Error Codes

	11 The Symmetric Multiprocessor Option
	11.1 SMP System Organization
	11.2 An SMP Boot Process
	11.2.1 SMP-Safe Boot
	11.2.2 Finding the Processor Configuration
	11.2.3 SMP-Efficient Boot
	11.2.4 Use of a Service Processor

	12 Product Topology
	12.1 VPD and Location Code OF Properties
	12.2 System Identification
	12.3 Hardware Location Codes
	12.3.1 Converged Location Code Labels
	12.3.1.1 Prefix Summary Table
	12.3.1.2 Unit Location Label
	12.3.1.3 Planar Location Label
	12.3.1.4 Air Handler Location Label
	12.3.1.5 Card Connector Location Label
	12.3.1.6 Device Location Label
	12.3.1.7 Electrical Location Label
	12.3.1.8 Port Location Label
	12.3.1.9 Worldwide Unique Identifier
	12.3.1.10 Logical Path Label
	12.3.1.11 Virtual Planar Location Label
	12.3.1.12 Firmware Location Label
	12.3.1.13 Horizontal Placement Location Label
	12.3.1.14 EIA Location Label
	12.3.1.15 Frame Location Label
	12.3.1.16 Virtual Function Location Label
	12.3.1.17 Mechanical Location Label
	12.3.1.18 Resource Location Label

	12.3.2 Converged Location Code Rules
	12.3.2.1 Usage of Location Codes
	12.3.2.2 Persistence of Location Codes
	12.3.2.3 Forming Location Codes
	12.3.2.4 Length Restrictions
	12.3.2.5 Location Labels Content
	12.3.2.6 Physical Representation
	12.3.2.7 Multiple Function FRUs
	12.3.2.8 Multiple Connectors for One Port
	12.3.2.9 Location Label Numbering Scope
	12.3.2.10 FRU Orientation
	12.3.2.11 Unit Location Codes
	12.3.2.12 Planar Location Codes
	12.3.2.13 Card Connector Location Codes
	12.3.2.14 Riser Card Connector Location Codes
	12.3.2.15 Blade Daughter Card Connector Location Codes
	12.3.2.16 Virtual Card Connector Location Codes
	12.3.2.17 Port Location Codes
	12.3.2.17.1 Resources without Port VPD
	12.3.2.17.2 Determining Port Number
	12.3.2.17.3 Physical Device Location Codes

	12.3.2.18 SCSI Device Logical Path Location Codes -- Real and Virtual
	12.3.2.19 SAS Device Logical Path Location Codes
	12.3.2.20 IDE/ATAPI Device Logical Path Location Codes
	12.3.2.21 Fibre Channel Device Logical Path Location Codes -- Real and Virtual
	12.3.2.22 Location Codes for SR-IOV Adapter Virtual Functions
	12.3.2.23 Group Labels
	12.3.2.24 Sandwich FRU Location Label
	12.3.2.25 Sandwich FRU Child Location Labels
	12.3.2.26 Location Code Reported by Sensors
	12.3.2.27 Sensor Locations
	12.3.2.28 Location Code Reported for Indicators
	12.3.2.29 Indicator Locations
	12.3.2.30 Firmware Location Codes
	12.3.2.31 Bulk Power Assembly (BPA) Location Codes
	12.3.2.32 Internal Battery Features Location Codes
	12.3.2.33 Media Drawer Location Codes
	12.3.2.34 Horizontal Placement Location Labels
	12.3.2.35 EIA Location Label
	12.3.2.36 Blade Chassis Location Codes
	12.3.2.37 Location Codes for Hot-pluggable Devices
	12.3.2.38 Location Code for USB Attached Devices

	12.4 Vital Product Data
	12.4.1 Introduction
	12.4.2 VPD Data Structure Description
	12.4.3 Keyword Format Definition
	12.4.3.1 VPD fields
	12.4.3.2 Additional Fields for Product Specific use

	13 Dynamic Reconfiguration (DR) Architecture
	13.1 DR Architecture Structure
	13.2 Definitions Used in DR
	13.3 Architectural Limitations
	13.4 Dynamic Reconfiguration State Transitions
	13.5 Base DR Option
	13.5.1 For All DR Options - Platform Requirements
	13.5.2 For All DR Options - OF Requirements
	13.5.2.1 General Requirements
	13.5.2.2 “ibm,drc-indexes” Property
	13.5.2.3 “ibm,my-drc-index” Property
	13.5.2.4 “ibm,drc-names” Property
	13.5.2.5 “ibm,drc-power-domains” Property
	13.5.2.6 “ibm,drc-types” Property
	13.5.2.7 “ibm,phandle” Property

	13.5.3 For All DR Options - RTAS Requirements
	13.5.3.1 General Requirements
	13.5.3.2 set-power-level
	13.5.3.3 get-sensor-state
	13.5.3.4 set-indicator
	13.5.3.5 ibm,configure-connector RTAS Call

	13.5.4 For All DR Options - OS Requirements
	13.5.4.1 Visual Indicator States
	13.5.4.2 Other Requirements

	13.6 PCI Hot Plug DR Option
	13.6.1 PCI Hot Plug DR - Platform Requirements
	13.6.2 PCI Hot Plug DR - Boot Time Firmware Requirements
	13.6.3 PCI Hot Plug DR - Run Time Firmware Requirements
	13.6.4 PCI Hot Plug DR - OS Requirements

	13.7 Logical Resource Dynamic Reconfiguration (LRDR)
	13.7.1 Platform Requirements for LRDR
	13.7.2 DR Properties for Logical Resources
	13.7.3 Architectural Intent -- Logical DR Sequences:
	13.7.3.1 Acquire Logical Resource from Resource Pool
	13.7.3.2 Release Logical Resource

	13.7.4 RTAS Call Semantics/Restrictions
	13.7.4.1 set-indicator (isolation-state, isolate)
	13.7.4.1.1 Isolation of CPUs
	13.7.4.1.2 Isolation of MEM Regions
	13.7.4.1.3 Isolation of PHBs and Slots

	13.7.4.2 set-indicator (dr-indicator)
	13.7.4.3 ibm,configure-connector

	14 Logical Partitioning Option
	14.1 Overview
	14.1.1 Real Mode Accesses
	14.1.1.1 Offset and Limit Registers
	14.1.1.2 Reserved Virtual Addresses

	14.1.2 General LPAR Reservations and Conventions

	14.2 Processor Requirements
	14.3 I/O Sub-System Requirements
	14.4 Interrupt Sub-System Requirements
	14.5 Hypervisor Requirements
	14.5.1 System Reset Interrupt
	14.5.2 Machine Check Interrupt
	14.5.3 Hypervisor Call Interrupt
	14.5.4 Hypervisor Call Functions
	14.5.4.1 Page Frame Table Access
	14.5.4.1.1 H_REMOVE
	14.5.4.1.2 H_ENTER
	14.5.4.1.3 H_READ
	14.5.4.1.4 H_CLEAR_MOD
	14.5.4.1.5 H_CLEAR_REF
	14.5.4.1.6 H_PROTECT
	14.5.4.1.7 H_BULK_REMOVE

	14.5.4.2 Translation Control Entry Access
	14.5.4.2.1 H_GET_TCE
	14.5.4.2.2 H_PUT_TCE
	14.5.4.2.3 H_STUFF_TCE
	14.5.4.2.4 H_PUT_TCE_INDIRECT

	14.5.4.3 Processor Register Hypervisor Resource Access
	14.5.4.3.1 H_SET_SPRG0
	14.5.4.3.2 H_SET_DABR
	14.5.4.3.3 H_PAGE_INIT
	14.5.4.3.4 H_SET_XDABR
	14.5.4.3.5 H_SET_MODE

	14.5.4.4 Debugger Support hcall()s
	14.5.4.4.1 H_LOGICAL_CI_LOAD
	14.5.4.4.2 H_LOGICAL_CI_STORE

	14.5.4.5 Virtual Terminal Support
	14.5.4.6 Dump Support hcall()s
	14.5.4.6.1 H_HYPERVISOR_DATA

	14.5.4.7 Interrupt Support hcall()s
	14.5.4.7.1 H_EOI
	14.5.4.7.2 H_CPPR
	14.5.4.7.3 H_IPI
	14.5.4.7.4 H_IPOLL
	14.5.4.7.5 H_XIRR / H_XIRR-X

	14.5.4.8 Memory Migration Support hcall()s
	14.5.4.8.1 H_MIGRATE_DMA

	14.5.4.9 Performance Monitor Support hcall()s
	14.5.4.9.1 H_PERFMON

	14.5.4.10 H_GET_DMA_XLATES_LIMITED

	14.6 RTAS Requirements
	14.7 OF Requirements
	14.8 NVRAM Requirements
	14.9 Administrative Application Communication Requirements
	14.10 RTAS Access to Hypervisor Virtualized Resources
	14.11 Shared Processor LPAR Option
	14.11.1 Virtual Processor Areas
	14.11.1.1 Per Virtual Processor Area
	14.11.1.2 Dispatch Trace Log Buffer
	14.11.1.3 SLB Shadow Buffer

	14.11.2 Shared Processor LPAR OF Extensions
	14.11.2.1 Shared Processor LPAR Function Sets in “ibm,hypertas-functions”
	14.11.2.2 Device Tree Variances

	14.11.3 Shared Processor LPAR Hypervisor Extensions
	14.11.3.1 Virtual Processor Preempt/Dispatch
	14.11.3.2 H_REGISTER_VPA
	14.11.3.3 H_CEDE
	14.11.3.4 H_CONFER
	14.11.3.5 H_PROD
	14.11.3.6 H_GET_PPP
	14.11.3.7 H_SET_PPP
	14.11.3.8 H_PURR
	14.11.3.9 H_POLL_PENDING

	14.11.4 Pool Idle Count Function Set
	14.11.4.1 H_PIC

	14.11.5 Thread Join Option
	14.11.5.1 H_JOIN

	14.11.6 Virtual Processor Home Node Option (VPHN)
	14.11.6.1 H_HOME_NODE_ASSOCIATIVITY
	14.11.6.2 VPA Home Node Associativity Changes Counters

	14.12 Virtualizing Partition Memory
	14.12.1 Partition Migration/Hibernation
	14.12.2 Virtualizing the Real Mode Area
	14.12.2.1 H_VRMASD

	14.12.3 Cooperative Memory Over-commitment Option (CMO)
	14.12.3.1 CMO Background (Informative)
	14.12.3.2 CMO Page Usage States
	14.12.3.2.1 Setting CMO Page Usage States using HPT hcall() flags Parameter
	14.12.3.2.2 Setting CMO Page Usage States with H_BULK_REMOVE

	14.12.3.3 CMO Extensions for I/O Mapping Hcall()s
	14.12.3.3.1 CMO I/O Mapping Extended Return Codes
	14.12.3.3.2 CMO I/O Mapping Extended Return Parameter

	14.12.3.4 H_SET_MPP
	14.12.3.5 H_GET_MPP
	14.12.3.5.1 H_GET_MPP_X

	14.12.3.6 Restoration Failure Interrupt
	14.12.3.7 H_MO_PERF
	14.12.3.8 Expropriation/Subvention Notification Option
	14.12.3.8.1 ESN Augmentation of CMO Page Usage States
	14.12.3.8.2 Expropriation Notification
	14.12.3.8.2.1 ESN VPA Fields
	14.12.3.8.2.2 Expropriation Interrupt

	14.12.3.8.3 ESN Subvention Event Notification
	14.12.3.8.3.1 SNS Memory Area
	14.12.3.8.3.2 SNS Registration (H_REG_SNS)
	14.12.3.8.3.3 SNS Event Processing

	14.12.3.8.4 ESN Interrupts
	14.12.3.8.4.1 Subvention Notification Queue Transition Interrupt
	14.12.3.8.4.2 Restoration Paradox Failure

	14.12.4 Virtual Partition Memory Pool Statistics Function Set
	14.12.4.1 H_VPM_PSTAT

	14.13 Logical Partition Control Modes
	14.13.1 Secondary Page Table Entry Group (PTEG) Search

	14.14 Partition Energy Management Option (PEM)
	14.14.1 Long Term Processor Cede
	14.14.2 H_GET_EM_PARMS
	14.14.2.1 H_BEST_ENERGY

	14.15 Platform Facilities
	14.15.1 H_RANDOM
	14.15.2 Co-Processor Facilities
	14.15.2.1 14.15.2.1 H_COP_OP:
	14.15.2.2 14.15.2.2 H_STOP_COP_OP

	15 Non Uniform Memory Access (NUMA) Option
	15.1 Summary of Extensions to Support NUMA
	15.2 NUMA Resource Associativity
	15.3 Relative Performance Distance
	15.3.1 Form 0
	15.3.2 Form 1

	15.4 Dynamic Reconfiguration with Cross CEC I/O Drawers
	15.5 Maximum Associativity Domains
	15.6 Platform Resource Reassignment Notification Option (PRRN)

	16 Service Indicators
	16.1 General
	16.1.1 Basic Platform Definitions
	16.1.1.1 “Enclosure”, Packaging, and Other Terminology
	16.1.1.2 Service Indicator Visibility and Transparency to the OS
	16.1.1.3 Service Indicator
	16.1.1.4 Service Indicator Modes
	16.1.1.4.1 Lightpath Mode
	16.1.1.4.2 Guiding Light Mode

	16.1.1.5 Covert Storage Channels
	16.1.1.6 Service Focal Point (SFP) and Service Partition
	16.1.1.7 Logical Indicators vs. Physical Indicators

	16.1.2 Machine Classes and Service Strategy
	16.1.3 General Information about Service Indicators
	16.1.4 Secondary Light Panels
	16.1.5 Group Identify Operation
	16.1.6 System-Level Diagrams

	16.2 Service Indicator Requirements
	16.2.1 Service Indicator General Requirements
	16.2.1.1 Fault Detection and Problem Determination Requirements
	16.2.1.2 FRU-Level and Connector Indicator Requirements
	16.2.1.3 Enclosure-Level Indicator Requirements
	16.2.1.4 Rack-Level Indicator Requirements
	16.2.1.5 Row-Level Indicator Requirements
	16.2.1.6 Shared Indicator (Multiple Partition System) Requirements
	16.2.1.7 Additional Indicator Requirements
	16.2.1.8 Blade Systems Chassis-level Indicator Requirements
	16.2.1.9 Service Indicator State Diagrams

	16.2.2 Requirements for 9002, 9006, and 9007 Indicators
	16.2.3 Lightpath User Interface (UI) Requirements
	16.2.3.1 Lightpath UI Base Enablement Requirements
	16.2.3.2 See/Select/Service (Triple-S) User Interface Requirements

	16.3 Green Indicator Requirements
	16.3.1 Green Indicator Uses and General Requirements
	16.3.2 Green Indicator States
	16.3.2.1 Power Supply Green Indicators
	16.3.2.2 System Power Green Indicators
	16.3.2.3 HDD Green Indicators
	16.3.2.4 Other Component/FRU Green Indicators
	16.3.2.5 Communication Link Green Indicators

	16.4 Interpartition Logical LAN (ILLAN) Option
	16.4.1 Logical LAN IOA Data Structures
	16.4.1.1 Buffer Descriptor
	16.4.1.2 Buffer List
	16.4.1.3 Receive Queue
	16.4.1.4 MAC Multicast Filter List
	16.4.1.5 Receive Buffers

	16.4.2 Logical LAN Device Tree Node
	16.4.3 Logical LAN hcall()s
	16.4.3.1 H_REGISTER_LOGICAL_LAN
	16.4.3.2 H_FREE_LOGICAL_LAN
	16.4.3.3 H_ADD_LOGICAL_LAN_BUFFER
	16.4.3.4 H_FREE_LOGICAL_LAN_BUFFER
	16.4.3.5 H_SEND_LOGICAL_LAN
	16.4.3.6 H_MULTICAST_CTRL
	16.4.3.7 H_CHANGE_LOGICAL_LAN_MAC
	16.4.3.8 H_ILLAN_ATTRIBUTES
	16.4.3.9 Other hcall()s extended or used by the Logical LAN Option
	16.4.3.9.1 H_VIO_SIGNAL
	16.4.3.9.2 H_EOI
	16.4.3.9.3 H_XIRR
	16.4.3.9.4 H_PUT_TCE
	16.4.3.9.5 H_GET_TCE
	16.4.3.9.6 H_MIGRATE_DMA

	16.4.4 RTAS Calls Extended or Used by the Logical LAN Option
	16.4.5 Interpartition Logical LAN Requirements
	16.4.6 Logical LAN Options
	16.4.6.1 ILLAN Backup Trunk Adapter Option
	16.4.6.2 ILLAN Checksum Offload Support Option
	16.4.6.2.1 General
	16.4.6.2.2 H_SEND_LOGICAL_LAN Semantic Changes
	16.4.6.2.3 Checksum Offload Padded Packet Support Option

	16.4.6.3 ILLAN Buffer Size Control Option
	16.4.6.3.1 General
	16.4.6.3.2 H_SEND_LOGICAL_LAN Semantic Changes

	16.5 Virtual SCSI (VSCSI)
	16.5.1 VSCSI General
	16.5.2 Virtual SCSI Requirements
	16.5.2.1 Client Partition Virtual SCSI Device Tree Node
	16.5.2.2 Server Partition Virtual SCSI Device Tree Node

	16.6 Virtual Terminal (Vterm)
	16.6.1 Vterm General
	16.6.2 Vterm Requirements
	16.6.2.1 Character Put and Get hcall()s
	16.6.2.1.1 H_GET_TERM_CHAR
	16.6.2.1.2 H_PUT_TERM_CHAR

	16.6.2.2 Interrupts
	16.6.2.3 Client Vterm Device Tree Node (vty)
	16.6.2.4 Server Vterm
	16.6.2.4.1 Server Vterm Device Tree Node (vty-server) and Other Requirements
	16.6.2.4.2 Server Vterm hcall()s
	16.6.2.4.2.1 H_VTERM_PARTNER_INFO
	16.6.2.4.2.2 H_REGISTER_VTERM
	16.6.2.4.2.3 H_FREE_VTERM

	16.7 Virtual Fibre Channel (VFC) using NPIV
	16.7.1 VFC and NPIV General
	16.7.2 VFC and NPIV Requirements
	16.7.2.1 Client Partition VFC Device Tree Node
	16.7.2.2 Server Partition VFC Device Tree Node

	17 Virtualized Input/Output
	17.1 Terminology used with VIO
	17.2 VIO Architectural Infrastructure
	17.2.1 VIO Infrastructure - General
	17.2.1.1 Properties of the /vdevice OF Tree Node
	17.2.1.2 RTCE Table and Properties of the Children of the /vdevice Node
	17.2.1.3 VIO Interrupt Control
	17.2.1.3.1 H_VIO_SIGNAL

	17.2.1.4 General VIO Requirements
	17.2.1.5 Shared Logical Resources
	17.2.1.5.1 H_GRANT_LOGICAL
	17.2.1.5.2 H_RESCIND_LOGICAL
	17.2.1.5.3 H_ACCEPT_LOGICAL
	17.2.1.5.4 H_RETURN_LOGICAL

	17.2.1.6 H_VIOCTL
	17.2.1.6.1 GET_VIOA_DUMP_SIZE Subfunction Semantics
	17.2.1.6.2 GET_VIOA_DUMP Subfunction Semantics
	17.2.1.6.3 GET_ILLAN_NUMBER_VLAN_IDS Subfunction Semantics
	17.2.1.6.4 GET_ILLAN_VLAN_ID_LIST Subfunction Semantics
	17.2.1.6.5 GET_ILLAN_SWITCH_ID Subfunction Semantics
	17.2.1.6.6 DISABLE_MIGRATION Subfunction Semantics
	17.2.1.6.7 ENABLE_MIGRATION Subfunction Semantics
	17.2.1.6.8 GET_PARTNER_INFO Subfunction Semantics
	17.2.1.6.9 GET_PARTNER_WWPN_LIST Subfunction Semantics
	17.2.1.6.10 DISABLE_ALL_VIO_INTERRUPTS Subfunction Semantics
	17.2.1.6.11 DISABLE_VIO_INTERRUPT Subfunction Semantics
	17.2.1.6.12 ENABLE_VIO_INTERRUPT Subfunction Semantics
	17.2.1.6.13 GET_ILLAN_MAX_VLAN_PRIORITY Subfunction Semantics
	17.2.1.6.14 GET_ILLAN_NUMBER_MAC_ACLS Subfunction Semantics
	17.2.1.6.15 GET_MAC_ACLS Subfunction Semantics
	17.2.1.6.16 GET_PARTNER_UUID Subfunction Semantics
	17.2.1.6.17 FW_Reset Subfunction Semantics
	17.2.1.6.18 GET_ILLAN_SWITCHING_MODE Subfunction Semantics
	17.2.1.6.19 DISABLE_INACTIVE_TRUNK_RECEPTION Subfunction Semantics:

	17.2.2 Partition Managed Class Infrastructure - General
	17.2.2.1 Command/Response Queue (CRQ)
	17.2.2.1.1 CRQ Format and Registration
	17.2.2.1.2 CRQ Entry Format
	17.2.2.1.3 CRQ Entry Processing
	17.2.2.1.4 CRQ Facility Interrupt Notification
	17.2.2.1.5 Extensions to Other hcall()s for CRQ
	17.2.2.1.5.1 H_MIGRATE_DMA
	17.2.2.1.5.2 H_XIRR, H_EOI

	17.2.2.1.6 CRQ Facility Requirements

	17.2.2.2 Redirected RDMA (Using H_PUT_RTCE, and H_PUT_RTCE_INDIRECT)
	17.2.2.2.1 H_PUT_RTCE
	17.2.2.2.2 H_PUT_RTCE_INDIRECT
	17.2.2.2.3 H_REMOVE_RTCE
	17.2.2.2.4 Redirected RDMA TCE Recovery and In-Flight DMA
	17.2.2.2.5 LIOBN Attributes
	17.2.2.2.6 H_LIOBN_ATTRIBUTES
	17.2.2.2.7 Extensions to Other hcall()s for Redirected RDMA
	17.2.2.2.7.1 H_PUT_TCE, H_PUT_TCE_INDIRECT, and H_STUFF_TCE
	17.2.2.2.7.2 H_MIGRATE_DMA

	17.2.2.3 Subordinate Command/Response Queue (Sub-CRQ)
	17.2.2.3.1 Sub-CRQ Format and Registration
	17.2.2.3.2 Sub-CRQ Entry Format
	17.2.2.3.3 Sub-CRQ Entry Processing
	17.2.2.3.4 Sub-CRQ Facility Interrupt Notification
	17.2.2.3.5 Extensions to Other hcall()s for Sub-CRQ
	17.2.2.3.5.1 H_MIGRATE_DMA
	17.2.2.3.5.2 H_XIRR, H_EOI

	17.2.2.3.6 Sub-CRQ Facility Requirements

	17.2.3 Partition Managed Class - Synchronous Infrastructure
	17.2.3.1 Reliable Command/Response Transport Option
	17.2.3.1.1 Reliable CRQ Format and Registration
	17.2.3.1.2 Reliable CRQ Entry Format
	17.2.3.1.3 Reliable CRQ Entry Processing
	17.2.3.1.4 Reliable Command/Response Transport Interrupt Notification
	17.2.3.1.5 Reliable Command/Response Transport hcall()s
	17.2.3.1.5.1 H_REG_CRQ
	17.2.3.1.5.2 H_FREE_CRQ
	17.2.3.1.5.3 H_SEND_CRQ
	17.2.3.1.5.4 H_ENABLE_CRQ

	17.2.3.1.6 Reliable Command/Response Transport Option Requirements

	17.2.3.2 Logical Remote DMA (LRDMA) Option
	17.2.3.2.1 Copy RDMA
	17.2.3.2.1.1 H_COPY_RDMA
	17.2.3.2.1.2 H_WRITE_RDMA
	17.2.3.2.1.3 H_READ_RDMA

	17.2.3.2.2 Logical Remote DMA Option Requirements

	17.2.3.3 Subordinate CRQ Transport Option
	17.2.3.3.1 Sub-CRQ Format and Registration
	17.2.3.3.2 Sub-CRQ Entry Format
	17.2.3.3.3 Sub-CRQ Entry Processing
	17.2.3.3.4 Sub-CRQ Transport Interrupt Notification
	17.2.3.3.5 Sub-CRQ Transport hcall()s
	17.2.3.3.5.1 H_REG_SUB_CRQ
	17.2.3.3.5.2 H_FREE_SUB_CRQ
	17.2.3.3.5.3 H_SEND_SUB_CRQ
	17.2.3.3.5.4 H_SEND_SUB_CRQ_INDIRECT

	17.2.3.3.6 Subordinate CRQ Transport Option Requirements

	17.3 Virtual Network Interface Controller (VNIC)
	17.3.1 VNIC General
	17.3.2 VNIC Requirements

	A SPLPAR Characteristics Definitions
	A.1 SPLPAR Terms
	A.2 Key Words And Values

	B LoPAPR Binding
	B.1 Purpose of this System Binding
	B.2 Overview
	B.2.1 General Requirements for OF

	B.3 Terms
	B.4 LoPAPR Boot Flow
	B.4.1 Boot Overview
	B.4.1.1 Additional Requirements for probe-all Method
	B.4.1.2 LoPAPR Multiboot
	B.4.1.3 Bootinfo Configuration Variables
	B.4.1.4 Bootinfo Properties
	B.4.1.5 Standard Locations for Bootinfo Objects
	B.4.1.6 Bootinfo Objects
	B.4.1.6.1 Bootinfo Entities
	B.4.1.6.2 Bootinfo Character Sets
	B.4.1.6.3 Element Tag Descriptions
	B.4.1.6.4 CHRP-BOOT Element
	B.4.1.6.5 OS-NAME element
	B.4.1.6.6 BOOT-SCRIPT element
	B.4.1.6.7 ICON element
	B.4.1.6.7.1 BITMAP element

	B.4.1.7 Multiboot Menu

	B.4.2 Reboot-Command Variable Description

	B.5 LoPAPR Processor
	B.5.1 Processor Endian-ness Support
	B.5.2 Multi-Threading Support

	B.6 OF Platform Extensions
	B.6.1 Properties for Dynamic Reconfiguration
	B.6.2 OF Root Node
	B.6.2.1 Root Node Properties
	B.6.2.2 Properties of the Children of Root
	B.6.2.3 Root Node Methods
	B.6.2.4 ROM Node(s)
	B.6.2.4.1 ROM Node Properties
	B.6.2.4.2 ROM Node Methods

	B.6.2.5 ROM Child Node(s)
	B.6.2.5.1 ROM Child Node Properties
	B.6.2.5.2 ROM Child Node Methods

	B.6.3 Run Time Abstraction Services (RTAS) Node
	B.6.3.1 RTAS Node Properties
	B.6.3.2 /RTAS node DR Sensors and Indicators
	B.6.3.3 RTAS Function Property Names
	B.6.3.4 RTAS Node Methods

	B.6.4 Properties of the Node of type cpu
	B.6.5 Extensions for LoPAPR I/O Sub-Systems
	B.6.5.1 PCI Host Bridge Nodes
	B.6.5.1.1 PCI Host Bridge Properties
	B.6.5.1.1.1 Properties for Children of PCI Host Bridges
	B.6.5.1.1.2 LPAR Option Properties

	B.6.6 Memory Node
	B.6.6.1 Properties of the memory Node
	B.6.6.2 ibm,dynamic-reconfiguration-memory

	B.6.7 Memory Controller Nodes
	B.6.7.1 Memory Controller Node Properties

	B.6.8 IBM,memory-module Nodes
	B.6.8.1 Properties for Memory Modules
	B.6.8.2 IBM,memory-module Node Properties

	B.6.9 Interrupt Controller Nodes
	B.6.9.1 PowerPC External Interrupt Controller Nodes
	B.6.9.1.1 PowerPC External Interrupt Presentation Controller Node Properties
	B.6.9.1.2 PowerPC External Interrupt Source Controller Node Properties

	B.6.10 Additional Node Properties
	B.6.10.1 Interrupt Properties
	B.6.10.2 Miscellaneous Node Properties

	B.6.11 /aliases Node
	B.6.12 /event-sources Node
	B.6.12.1 Child nodes of the Event Sources Node
	B.6.12.1.1 internal-errors
	B.6.12.1.2 epow-events
	B.6.12.1.3 ibm,io-events

	B.6.13 /reserved Node
	B.6.14 /chosen Node
	B.6.15 /vdevice Node
	B.6.15.1 Children of the /vdevice Node
	B.6.15.1.1 Virtual Teletype Device
	B.6.15.1.2 Children of /vdevice node defined in other documents

	B.6.16 Barrier Synchronization Facility
	B.6.17 Nodes of device_type “block” and “byte”
	B.6.18 /ibm,platform-facilities
	B.6.18.1 Children of the /ibm,platform-facilities Node

	B.7 Symmetric Multi-Processors (SMP)
	B.7.1 SMP Platform Device Tree Structure
	B.7.2 SMP Properties
	B.7.2.1 Processor Node

	B.8 Device Power Management Properties/Methods
	B.8.1 System Node Properties
	B.8.1.1 Properties assigned to the RTAS node
	B.8.1.2 Properties of the power-management-events node

	B.8.2 Device Properties
	B.8.2.1 Properties for Power Domain Control Points

	B.8.3 Power Management Related Methods

	B.9 Configuration of Platform Resources
	B.9.1 Power Management Resource Configuration
	B.9.1.1 Power Management Information Utility
	B.9.1.2 PM Configuration Process
	B.9.1.3 PM Configuration Format

	B.10 Client Program Requirements
	B.10.1 Load Address
	B.10.2 Initial Register Values
	B.10.3 I/O Devices State
	B.10.4 Client Program Format
	B.10.4.1 ELF-Format
	B.10.4.1.1 ELF Note Section
	B.10.4.1.1.1 1275 PowerPC Note Definition
	B.10.4.1.1.2 1275 IBM,RPA-Client-Config Note Definition

	B.10.4.1.2 Recognizing ELF-Format Programs
	B.10.4.1.3 Preparing ELF-Format Programs for Execution

	B.10.5 Additional Client Interface Requirements
	B.10.5.1 Client Interface Callbacks
	B.10.5.1.1 Real-Mode Memory Management Assist Callbacks
	B.10.5.1.2 Virtual Address Translation Assist Callbacks

	B.10.5.2 Client Interface Services

	B.11 Support Packages
	B.11.1 “disk-label” Support Package
	B.11.1.1 Media Layout Format
	B.11.1.1.1 FDISK Partition Types

	B.11.1.2 Open Method Algorithm

	B.11.2 tape-label Support Package
	B.11.2.1 Tape Format
	B.11.2.2 Tape bootinfo.txt File

	B.11.3 network Support Package
	B.11.4 Program-image formats.

	C PA Processor Binding
	C.1 Purpose of this Binding
	C.2 Overview
	C.3 Terms
	C.4 Data Formats and Representations
	C.5 Memory Management
	C.5.1 PA Address Translation Model
	C.5.1.1 Translation requirements
	C.5.1.2 Segmented Address Translation
	C.5.1.3 Block Address Translation

	C.5.2 OF’s use of memory
	C.5.2.1 Real-Mode
	C.5.2.2 Virtual-Mode
	C.5.2.3 Device Interface (Real-Mode)
	C.5.2.4 Device Interface (Virtual-Mode)
	C.5.2.5 Client Interface (Real-Mode)
	C.5.2.6 Client Interface (Virtual-Mode)
	C.5.2.7 User Interface (Real-Mode)
	C.5.2.8 User Interface (Virtual-Mode)

	C.6 Properties
	C.6.1 CPU properties
	C.6.1.1 The Device Tree
	C.6.1.2 Physical Address Formats and Representations for CPU Nodes
	C.6.1.2.1 Numerical Representation
	C.6.1.2.2 Text Representation
	C.6.1.2.3 Unit Address Representation

	C.6.1.3 CPUS Node Properties
	C.6.1.4 CPU Node Properties
	C.6.1.5 TLB properties
	C.6.1.6 Internal (L1) cache properties
	C.6.1.7 Memory Management Unit properties
	C.6.1.8 SLB properties

	C.6.2 Ancillary (L2,L3...) cache node properties

	C.7 Methods
	C.7.1 MMU related methods

	C.8 Client Interface Requirements
	C.8.1 Calling Conventions

	C.9 Client Program Requirements
	C.9.1 Load Address
	C.9.2 Initial Program State
	C.9.2.1 Initial Register Values
	C.9.2.2 Initial Stack
	C.9.2.3 Client Interface Handler Address
	C.9.2.4 Client Program Arguments

	C.9.3 Caching
	C.9.4 Interrupts
	C.9.5 Client callbacks
	C.9.5.1 Real-Mode physical memory management assist callback
	C.9.5.2 Virtual address translation assist callbacks

	C.10 User Interface Requirements
	C.10.1 Machine Register Access
	C.10.1.1 Branch Unit Registers
	C.10.1.2 Fixed-Point Registers
	C.10.1.3 Floating-Point Registers

	C.11 Configuration Variables
	C.12 MP Extensions
	C.12.1 The Device Tree
	C.12.1.1 Additional Properties

	C.12.2 Initialization
	C.12.3 Client Interface Services
	C.12.4 Breakpoints
	C.12.5 Serialization

	D A Protocol for a Virtual TTY Interface
	D.1 Overview
	D.2 Protocol Definition
	D.2.1 Packet Formation
	D.2.1.1 Data Packet
	D.2.1.2 Control Packet
	D.2.1.2.1 VSV_SET_MODEM_CTL Verb (0x01)
	D.2.1.2.2 VSV_MODEM_CTL_UPDATE Verb (0x02)
	D.2.1.2.3 VSV_RENEGOTIATE_CONNECTION Verb (0x03)

	D.2.1.3 Query Packet
	D.2.1.3.1 VSV_SEND_VERSION_NUMBER Verb (0x01)
	D.2.1.3.2 VSV_SEND_MODEM_CTL_STATUS Verb (0x02)

	D.2.1.4 Query Response Packet

	D.2.2 Verb Formation
	D.2.3 Sequence Numbers
	D.2.4 Flow Control
	D.2.5 Packet Type and Verb Summary

	D.3 Connection Negotiation

	E A Protocol for VSCSI Communications
	E.1 Introduction
	E.2 SCSI Remote DMA Protocol (SRP)
	E.3 Connection Establishment
	E.4 Connection Termination
	E.5 Client Migration
	E.6 VSCSI Message Formats
	E.7 CRQ Message formats
	E.8 CRQ VSCSI Client Message Format
	E.9 CRQ VSCSI VIOS Message Format
	E.10 Transport Events
	E.11 Messages in CRQs
	E.12 VSCSI Management Datagrams (MADs)
	E.12.1 #define MAD_EMPTY_IU 0x01
	E.12.2 #define MAD_ERROR_LOGGING_REQUEST 0x02
	E.12.3 #define MAD_ADAPTER_INFO_REQUEST 0x03
	E.12.4 #define MAD_CAPABILITIES_EXCHANGE 0x05
	E.12.5 #define MAD_PHYS_ADAP_INFO_REQUEST 0x06
	E.12.6 #define MAD_TAPE_PASSTHROUGH_REQUEST 0x07
	E.12.7 #define MAD_ENABLE_FAST_FAIL 0x08

	F A Protocol for VMC Communications
	F.1 Overview
	F.1.1 Logical Partition Manager
	F.1.2 Virtual Management Channel (VMC)

	F.2 VMC CRQ Message Definition
	F.2.1 Administrative Messages
	F.2.1.1 VMC Capabilities
	F.2.1.2 VMC Capabilities Response

	F.2.2 HMC Interface Buffers
	F.2.3 HMC Interface Messages
	F.2.3.1 Interface Open
	F.2.3.2 Interface Open Response
	F.2.3.3 Interface Close
	F.2.3.4 Interface Close Response
	F.2.3.5 Add Buffer
	F.2.3.6 Add Buffer Response
	F.2.3.7 Remove Buffer
	F.2.3.8 Remove Buffer Response
	F.2.3.9 Signal Message

	F.3 Example Management Partition VMC Driver Interface
	F.3.1 VMC Interface Initialization
	F.3.2 VMC Interface Open
	F.3.3 VMC Interface Runtime
	F.3.4 VMC Interface Close

	G Firmware Assisted Dump Data Format
	G.1 Register Save Area
	G.2 Hardware Page Table Entry Save Area

	H EEH Error Processing
	H.1 General Scenarios
	H.2 More Detail on the Most General Approach
	H.2.1 Error Logging
	H.2.2 PE Recovery

	I CMO Characteristics Definitions
	I.1 CMO Terms
	I.2 Key Words And Values

	J Platform Dependent hcall()s
	J.1 hcall()s Supported by Firmware Release & Hardware Platform
	J.2 Supported hcall()s
	J.2.1 H_GetPerformanceCounterInfo (0xF080)

	K A Protocol for VNIC Communications
	K.1 Introduction
	K.2 VNIC Adapter
	K.3 Zero Copy DMA Models
	K.4 Protocol Overview
	K.5 Typical VNIC Protocol Flows
	K.5.1 Boot Flow
	K.5.2 Adapter reboot
	K.5.3 Partition Mobility
	K.5.4 Dump
	K.5.5 Frame Transmission
	K.5.6 Frame Reception

	K.6 VNIC Commands
	K.6.1 Version Exchange
	K.6.2 VNIC Capabilities
	K.6.3 Login Support
	K.6.4 Physical Port Parameters
	K.6.5 Logical Link State
	K.6.6 TCP, UDP, and IP Offload Support
	K.6.7 Dump Support
	K.6.8 Reliability, Availability, and Service (RAS) Support
	K.6.9 Statistics Support
	K.6.10 Error Reporting Support
	K.6.11 Link State Change
	K.6.12 Change MAC Address
	K.6.13 Multicast Support
	K.6.14 VPD Support
	K.6.15 Access Control Support
	K.6.16 Debugging Support

	K.7 Subordinate CRQ Definitions
	K.7.1 Frame Transmission
	K.7.2 Frame Reception

	L When to use: Fault vs. Error Log Indicators (Lightpath Mode)
	Bibliography
	Glossary
	End of LoPAPR Document

