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Overview

• Problem Statement

• RT Linux – expectations.

• Generic tweaking options in RT Linux.

• SPI Client support and Challenges.

• Subsystem-level tweaking options for the predictability.

• Profiling and improving device drivers.

– Case study: SPI + DMA

• Results and best practices.
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Problem Statement | SPI
• DRA821 is a heterogenous multicore application 

processor from Texas Instruments with Dual Arm 

Cortex-A72 and quad Cortex-R5F.

• DRA821 consists of 11 instances of MCSPI (Multi-

channel Serial Peripheral Interface), MCSPI can 

operate in:

– Full duplex Host mode, Target mode.

– DMA mode (system DMA).
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Problem: 
• MCSPI in Target mode on RT-Linux in DMA mode provides unreliable 

performance and observed packet loss issues (800 ms/128-Byte full duplex).

• MCSPI in Host mode on RT-Linux in DMA mode results in non-deterministic 

performance/ latency spikes (5 ms).



RT Linux | User Expectations

• RT Linux is increasingly becoming popular for real-time embedded applications 

due to the:

– Versatility and flexibility provided by the High-Level OS.

– Real-time capabilities and deterministic performance.

• Demand deterministic performance, when interfacing with external peripherals.

• Predictable performance is critical in cases where the RT Linux host is acting in 

target mode and an external device initiates and controls the communication.

• CAN, SPI, and UART are popular media communication media with RT 

requirements
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Practical usage | Host and Target

• Industrial robotic application | SPI Host

– LIDAR sensors that can be interfaced to host through 

SPI, in such use-cases deterministic capture of sensor 

data for critical for the system

– Robotic motor control (non-safety critical)

• Device management interface | SPI target

– External supervisor interaction.

– Control, monitor, and power state.

– Firmware management.

– Watchdog-like ping-pong.
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RT Linux tuning | Where to start

• cyclictest

– measure a thread's intended wake-up time and the time at which it actually wakes up

– Provides overheads to take into account for full RT stack

– More at 

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
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cyclictest --mlockall --smp --priority=99 --interval=200 –loops=100000000

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start


RT Linux tuning | cyclictest
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https://www.osadl.org/Latency-plot-of-system-in-rack-e-slot.qa-latencyplot-res6.0.html?shadow=1

HW:

TI AM625 SoC

https://www.osadl.org/Latency-plot-of-system-in-rack-e-slot.qa-latencyplot-res6.0.html?shadow=1


RT Linux | Tools

• lmbench – DDR bandwidth and latency analysis

– Provides bounds on HW capability and any bottlenecks in HW leading latency 

excursions.

• Tracing tools: ftrace, perf
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/start

• rtla-timerlat

– https://docs.kernel.org/tools/rtla/rtla-timerlat.html
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https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/start
https://docs.kernel.org/tools/rtla/rtla-timerlat.html


RT Linux | System Tuning

• RT Linux offers multiple tuning knobs:
– Kernel config options (PM, CPUFREQ, CONFIG_DEBUG*, 
and any unneeded configs)

– Real-time policies (SCHED_FIFO etc)

– Real-time kernel thread priorities

– Task partitioning (isolcpus, taskset, IRQ affinity, load balancing)

– Modifying real-time priority of application programs .etc. (nice, chrt)

– Latency optimizations: 
https://wiki.linuxfoundation.org/realtime/documentation/howto/debugging/start

• Even with all the tweaking options available:
– device drivers need optimization for deterministic performance, to benefit from the RT 

Linux kernel.

– Debugging real-time issues with device drivers can be complex especially when multiple 
subsystems interact. (E.g. SPI + DMA  + user application)
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https://wiki.linuxfoundation.org/realtime/documentation/howto/debugging/start


SPI Host / Target | Linux Support
• SPI is a full-duplex synchronous serial communications module. SPI provides a cost-

effective way to interface serially with external peripherals.

• SPI operates in either Host mode or Target mode.

– In host mode, the SPI controller generates the synchronous communication clock(SCLK) and 

initiates the transaction.

– In target mode, the controller receives the SCLK as input and completes the transaction initiated by 

the external host, the client has no control over the transaction start, speed, etc.

• SPI Target mode support is available in the Linux kernel SPI subsystem from v4.13 

onwards and 6 SPI controller drivers support Target mode as of v6.4.
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Host Target



SPI Target mode | Challenges

• Full duplex: simultaneous transmit and receive.

• Host has control: target implementation demands hard real-time.

• Target must have prepared the TX transaction before the Host starts the transfer.

• Target response cannot depend on the Host request in the same message.

• Lack of standard HW flow control mechanism.
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UART Flow control I2C Clock stretching

Courtesy: Linux as an SPI Target, Geert Uytterhoeven

https://archive.fosdem.org/2018/schedule/event/hwenablement_linux_as_spi_slave/attachments/slides/2355/export/events/attachments/hwenablement_linux_as_spi_slave/slides/2355/Linux_as_an_SPI_Slave_Handouts.pdf


Analyzing subsystem | SPI framework

SPI Thread (spi_pump_message())

spi_message 1 spi_message 2 spi_message 3 spi_message 4 spi_message 5
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Full call stack | SPI and DMA interaction
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Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE 

IOCTL
spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

dmaengine_config()

dmaengine_submit()

dmaengine_async 

issue_pending()

udma_push_to_ring

udma_check_tx

completion

SPI_IOC_MESSAGE 

IOCTL Complete

Controller 

Setup

Shift out TX, 

Shift in RX.

Trigger DMA 

Event

omap2_mcspi_setup()

Call Stack for SPI with DMA on DRA8x



Kernelshark Traces | Actual trace screenshots

RX callback

within 2ms 

TX callback

takes 850ms

SPI in Target mode 

with DMA



Stack Latency | Trace summary
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Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE 

IOCTL

spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

dmaengine_config()

dmaengine_submit()

dmaengine_async 

issue_pending()

udma_push_to_ring

udma_check_tx

completion

SPI_IOC_MESSAGE 

IOCTL Complete

Controller 

Setup

Shift out TX, 

Shift in RX.

Trigger DMA 

Read Event

omap2_mcspi_setup()

800 ms

200 us

800 ms

350 us

800 ms



Tweaking options | SPI subsytem
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• SPI Controller configuration can indicate 

if this controller should run the message 

pump thread with high (real-time) priority.

• SPI devices can also request real-time 

priority during transaction setup which will 

modify the controller message pump 

thread to real-time priority.

• This tweaking option might also not help 

in cases where the controller driver is not 

optimized.



SPI Controller driver | Analysis
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spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

• In the MCSPI controller driver, with DMA enabled, we 

perform the SPI controller setup, queue the TX and 

RX DMA operations once the message is transferred, 

and wait for DMA completion.

Observations

• First transaction initiated from userspace never 

has data mismatch/latency issues in client mode.

• When multiple transactions are queued from 

userspace if the delay between each transaction 

is small(<100 ms), client packets RX and TX are 

corrupted in client mode.

• In target mode



DMA driver analysis | Finding Bottlenecks

• Typical Driver design to Queue DMA transfers
– Submit xfer(): dmaengine_submit(), dmaengine_async_issue_pending()
– wait_for_completion() : Wait for transfer->callback() ->

dmaengine completion callback

• Tasklet calls driver’s completion callback
– Per channel tasklet scheduled on completion

– Multiple tasklets (depending on channel usage) can end up with similar priorities

– Callback function needs to be light-weight for better response

– Sched priority of each tasklets needs to be tuned

• DMA Subsystem on DRA8x/K3 SoCs have a Network on Chip arch
– Centralized DMA talks to mini DMAs closer to peripherals (k3-udma.c)

– Deferred workqueue handler (udma_check_tx_completion()) checks the remote DMA 
states to ensure the pipe is flushed before calling driver callbacks

• Above tasklet and deferred workqueue causes all the jitter in the SPI transfer RT 
path
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Bottleneck | Analysis and Fixes

• Latency graphs indicated 3 issues

– spi_pump_message

– DMA tasklet for signaling completion

– DMA completion / threaded IRQ handler inside DMA driver 

(udma_check_tx_completion())

• Solution

– Setup spi_pump_message as RT (spi_controller->rt = true)

– Set DMA tasklet as realtime and higher priority relative to other task pool

– Convert workqeueue within DMA driver to be RT priority

• This reduces the jitter and brings in determinism

– Did not meet overall latency goal as even with tasklets, there was enough contention 

for large excursions. 
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Driver updates | Eliminate DMA tasklets from RT path

• McSPI controller provides a word count interrupt (End of Word), end of transfer

• Use McSPI to packetize transfers: provides interrupt after programmed number of 
words are clocked in/out.

• Use the same for continuing to the next transaction to avoid delays in the tasklets.

• Can be used if host and target use fixed-size packets and negotiated  in advance.

• Multiple packets are needed in case of variable size.
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Enhancements | GPIO-based flow control
• Bounded latency possible with RT Linux

– During high IRQ and RT load conditions, the performance of the SPI client deteriorates

– For non-RT systems, implement GPIO-based flow control

– Single RDY GPIO was implemented to achieve reliability requirements

24RDY GPIO based Flow Control Mechanism

userspace initiates/queues transaction

MCSPI driver performs transaction setup 

and queues DMA request and then signals 

RDY

Primary SPI controller waits for the rising 

edge of the RDY signal

Client de-asserts RDY at the end of the 

transaction



After optimization | kernel shark trace
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completion

within 2.9 ms 



Solution
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The following flow diagram shows the complete flow of operations and optimizations made with 

GPIO-based flow control for a full duplex transfer:

Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE 

IOCTL
spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one

()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(EOW)

dmaengine_config()

dmaengine_submit()

dmaengine_async 

issue_pending()

udma_push_to_ring

udma_check_tx

completion

IRQENABLE 

(EOW)

Set WCNT 

bytes 

transferred

Raise EOW 

event

SPI_IOC_MESSAGE 

IOCTL Complete

In the previous flow, the 

UDMA driver would perform 

the byte count calculation in 

deferred to understand the 

completion.

In the previous flow, the MCSPI 

driver would wait for a callback from 

UDMA to proceed further.

Round trip delay 

with 

improvements = 

800us
(earlier ~850 ms)

RDY 

GPIO 

Asserted

RDY 

GPIO De 

asserted



Results before and after 
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Transaction Type After Optimization Before Optimization

128 byte (full duplex) 800 us per transaction 800 ms per transaction

160 byte (full duplex) 800 us per transaction 800 ms per transaction

128 byte (full duplex) with flow control 

under 99% CPU load stress

2 ms per transaction 800 ms per transaction

640 Byte (full duplex) with flow control 2 ms per transaction 800 ms per transaction

Target Mode

Transaction Type After Optimization Before Optimization

160 byte (full duplex) Peak latency 400 us Peak latency as high as 5 ms.

Host Mode



Best practices | Driver design

• Tune the system level latency first

– cyclictest, rtla-timerlat, lmbench with the minimal system (no drivers, 

features, etc).

• Keep the IRQ-off state to a minimum.

• Beware of priority inversion-like situations.

– RT task depending on low priority workqueues, threads to proceed further.

– Multi-level workqueues may kill the determinism. 

• Complex SW state machines make it harder to avoid latency

– Rely on HW state as much as possible.

– Feed back to HW designers if such support is missing.
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Q&A
• Contact Information:
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