
Tweaking Device Drivers for Achieving
Real-time Performance in Embedded
Systems Using RT Linux

2023-06-29, Prague

Vaishnav Achath

Vignesh Raghavendra

Keerthy J

About us | TI Processors and Open source

2

Speakers | Intro

3

Vignesh Raghavendra, Software Engineer at Texas Instruments

India. Vignesh co-maintains the TI's arm64 SoCs in mainline along

with a few drivers. He has been contributing to Linux Kernel and U-

Boot since 2014 as part of Texas Instruments' Linux development

team

Vaishnav Achath, Software Engineer at Texas Instruments India.

Vaishnav works on Linux Kernel and U-Boot as part of the Texas

Instruments Linux development team. Vaishnav is also a maintainer

for TI platforms in Zephyr RTOS.

Keerthy J, is a SW Application Engineer with Texas Instruments Inc.,

as part of this role he primarily interacts with customers regarding

their use cases in automotive and industrial applications.

Overview

• Problem Statement

• RT Linux – expectations.

• Generic tweaking options in RT Linux.

• SPI Client support and Challenges.

• Subsystem-level tweaking options for the predictability.

• Profiling and improving device drivers.

– Case study: SPI + DMA

• Results and best practices.

4

Problem Statement | SPI
• DRA821 is a heterogenous multicore application

processor from Texas Instruments with Dual Arm

Cortex-A72 and quad Cortex-R5F.

• DRA821 consists of 11 instances of MCSPI (Multi-

channel Serial Peripheral Interface), MCSPI can

operate in:

– Full duplex Host mode, Target mode.

– DMA mode (system DMA).

5

Problem:
• MCSPI in Target mode on RT-Linux in DMA mode provides unreliable

performance and observed packet loss issues (800 ms/128-Byte full duplex).

• MCSPI in Host mode on RT-Linux in DMA mode results in non-deterministic

performance/ latency spikes (5 ms).

RT Linux | User Expectations

• RT Linux is increasingly becoming popular for real-time embedded applications

due to the:

– Versatility and flexibility provided by the High-Level OS.

– Real-time capabilities and deterministic performance.

• Demand deterministic performance, when interfacing with external peripherals.

• Predictable performance is critical in cases where the RT Linux host is acting in

target mode and an external device initiates and controls the communication.

• CAN, SPI, and UART are popular media communication media with RT

requirements

6

RT Linux Host External SPI

Controller
SPI Target

SCLK

MISO

CS

MOSI

Practical usage | Host and Target

• Industrial robotic application | SPI Host

– LIDAR sensors that can be interfaced to host through

SPI, in such use-cases deterministic capture of sensor

data for critical for the system

– Robotic motor control (non-safety critical)

• Device management interface | SPI target

– External supervisor interaction.

– Control, monitor, and power state.

– Firmware management.

– Watchdog-like ping-pong.

7

DRA8x
External

Supervisor
SPI

SPI
DRA8x

TI DRA8x SoC in Host Mode

TI DRA8x SoC in Target Mode

RT Linux tuning | Where to start

• cyclictest

– measure a thread's intended wake-up time and the time at which it actually wakes up

– Provides overheads to take into account for full RT stack

– More at

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

8

cyclictest --mlockall --smp --priority=99 --interval=200 –loops=100000000

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

RT Linux tuning | cyclictest

9

https://www.osadl.org/Latency-plot-of-system-in-rack-e-slot.qa-latencyplot-res6.0.html?shadow=1

HW:

TI AM625 SoC

https://www.osadl.org/Latency-plot-of-system-in-rack-e-slot.qa-latencyplot-res6.0.html?shadow=1

RT Linux | Tools

• lmbench – DDR bandwidth and latency analysis

– Provides bounds on HW capability and any bottlenecks in HW leading latency

excursions.

• Tracing tools: ftrace, perf
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/start

• rtla-timerlat

– https://docs.kernel.org/tools/rtla/rtla-timerlat.html

10

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/start
https://docs.kernel.org/tools/rtla/rtla-timerlat.html

RT Linux | System Tuning

• RT Linux offers multiple tuning knobs:
– Kernel config options (PM, CPUFREQ, CONFIG_DEBUG*,
and any unneeded configs)

– Real-time policies (SCHED_FIFO etc)

– Real-time kernel thread priorities

– Task partitioning (isolcpus, taskset, IRQ affinity, load balancing)

– Modifying real-time priority of application programs .etc. (nice, chrt)

– Latency optimizations:
https://wiki.linuxfoundation.org/realtime/documentation/howto/debugging/start

• Even with all the tweaking options available:
– device drivers need optimization for deterministic performance, to benefit from the RT

Linux kernel.

– Debugging real-time issues with device drivers can be complex especially when multiple
subsystems interact. (E.g. SPI + DMA + user application)

11

https://wiki.linuxfoundation.org/realtime/documentation/howto/debugging/start

SPI Host / Target | Linux Support
• SPI is a full-duplex synchronous serial communications module. SPI provides a cost-

effective way to interface serially with external peripherals.

• SPI operates in either Host mode or Target mode.

– In host mode, the SPI controller generates the synchronous communication clock(SCLK) and

initiates the transaction.

– In target mode, the controller receives the SCLK as input and completes the transaction initiated by

the external host, the client has no control over the transaction start, speed, etc.

• SPI Target mode support is available in the Linux kernel SPI subsystem from v4.13

onwards and 6 SPI controller drivers support Target mode as of v6.4.
12

Host Target

SPI Target mode | Challenges

• Full duplex: simultaneous transmit and receive.

• Host has control: target implementation demands hard real-time.

• Target must have prepared the TX transaction before the Host starts the transfer.

• Target response cannot depend on the Host request in the same message.

• Lack of standard HW flow control mechanism.

13

UART Flow control I2C Clock stretching

Courtesy: Linux as an SPI Target, Geert Uytterhoeven

https://archive.fosdem.org/2018/schedule/event/hwenablement_linux_as_spi_slave/attachments/slides/2355/export/events/attachments/hwenablement_linux_as_spi_slave/slides/2355/Linux_as_an_SPI_Slave_Handouts.pdf

Analyzing subsystem | SPI framework

SPI Thread (spi_pump_message())

spi_message 1 spi_message 2 spi_message 3 spi_message 4 spi_message 5

14

spidev / client driver

SPI driver IRQ / Completion

SPI Controller Hardware

Workqueue

/ Thread

DMA Queues

(driver specific)

IRQ / bottom half /

DMA completion

queues

Full call stack | SPI and DMA interaction

15

Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE

IOCTL
spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

dmaengine_config()

dmaengine_submit()

dmaengine_async

issue_pending()

udma_push_to_ring

udma_check_tx

completion

SPI_IOC_MESSAGE

IOCTL Complete

Controller

Setup

Shift out TX,

Shift in RX.

Trigger DMA

Event

omap2_mcspi_setup()

Call Stack for SPI with DMA on DRA8x

Kernelshark Traces | Actual trace screenshots

RX callback

within 2ms

TX callback

takes 850ms

SPI in Target mode

with DMA

Stack Latency | Trace summary

17

Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE

IOCTL

spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

dmaengine_config()

dmaengine_submit()

dmaengine_async

issue_pending()

udma_push_to_ring

udma_check_tx

completion

SPI_IOC_MESSAGE

IOCTL Complete

Controller

Setup

Shift out TX,

Shift in RX.

Trigger DMA

Read Event

omap2_mcspi_setup()

800 ms

200 us

800 ms

350 us

800 ms

Tweaking options | SPI subsytem

18

• SPI Controller configuration can indicate

if this controller should run the message

pump thread with high (real-time) priority.

• SPI devices can also request real-time

priority during transaction setup which will

modify the controller message pump

thread to real-time priority.

• This tweaking option might also not help

in cases where the controller driver is not

optimized.

SPI Controller driver | Analysis

19

spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(DMA)

• In the MCSPI controller driver, with DMA enabled, we

perform the SPI controller setup, queue the TX and

RX DMA operations once the message is transferred,

and wait for DMA completion.

Observations

• First transaction initiated from userspace never

has data mismatch/latency issues in client mode.

• When multiple transactions are queued from

userspace if the delay between each transaction

is small(<100 ms), client packets RX and TX are

corrupted in client mode.

• In target mode

DMA driver analysis | Finding Bottlenecks

• Typical Driver design to Queue DMA transfers
– Submit xfer(): dmaengine_submit(), dmaengine_async_issue_pending()
– wait_for_completion() : Wait for transfer->callback() ->

dmaengine completion callback

• Tasklet calls driver’s completion callback
– Per channel tasklet scheduled on completion

– Multiple tasklets (depending on channel usage) can end up with similar priorities

– Callback function needs to be light-weight for better response

– Sched priority of each tasklets needs to be tuned

• DMA Subsystem on DRA8x/K3 SoCs have a Network on Chip arch
– Centralized DMA talks to mini DMAs closer to peripherals (k3-udma.c)

– Deferred workqueue handler (udma_check_tx_completion()) checks the remote DMA
states to ensure the pipe is flushed before calling driver callbacks

• Above tasklet and deferred workqueue causes all the jitter in the SPI transfer RT
path

20

Bottleneck | Analysis and Fixes

• Latency graphs indicated 3 issues

– spi_pump_message

– DMA tasklet for signaling completion

– DMA completion / threaded IRQ handler inside DMA driver

(udma_check_tx_completion())

• Solution

– Setup spi_pump_message as RT (spi_controller->rt = true)

– Set DMA tasklet as realtime and higher priority relative to other task pool

– Convert workqeueue within DMA driver to be RT priority

• This reduces the jitter and brings in determinism

– Did not meet overall latency goal as even with tasklets, there was enough contention

for large excursions.

21

Driver updates | Eliminate DMA tasklets from RT path

• McSPI controller provides a word count interrupt (End of Word), end of transfer

• Use McSPI to packetize transfers: provides interrupt after programmed number of
words are clocked in/out.

• Use the same for continuing to the next transaction to avoid delays in the tasklets.

• Can be used if host and target use fixed-size packets and negotiated in advance.

• Multiple packets are needed in case of variable size.

23

Enhancements | GPIO-based flow control
• Bounded latency possible with RT Linux

– During high IRQ and RT load conditions, the performance of the SPI client deteriorates

– For non-RT systems, implement GPIO-based flow control

– Single RDY GPIO was implemented to achieve reliability requirements

24RDY GPIO based Flow Control Mechanism

userspace initiates/queues transaction

MCSPI driver performs transaction setup

and queues DMA request and then signals

RDY

Primary SPI controller waits for the rising

edge of the RDY signal

Client de-asserts RDY at the end of the

transaction

After optimization | kernel shark trace

25

completion

within 2.9 ms

Solution

26

The following flow diagram shows the complete flow of operations and optimizations made with

GPIO-based flow control for a full duplex transfer:

Userspace Linux Kernel SPI Linux Kernel DMAENGINE MCSPI Controller

SPI_IOC_MESSAGE

IOCTL
spidev_ioctl()

spi_transfer_one_message()

omap2_mcspi_transfer_one

()

omap2_mcspi_tx_dma()

omap2_mcspi_rx_dma()

mcspi_wait_for_completion

(EOW)

dmaengine_config()

dmaengine_submit()

dmaengine_async

issue_pending()

udma_push_to_ring

udma_check_tx

completion

IRQENABLE

(EOW)

Set WCNT

bytes

transferred

Raise EOW

event

SPI_IOC_MESSAGE

IOCTL Complete

In the previous flow, the

UDMA driver would perform

the byte count calculation in

deferred to understand the

completion.

In the previous flow, the MCSPI

driver would wait for a callback from

UDMA to proceed further.

Round trip delay

with

improvements =

800us
(earlier ~850 ms)

RDY

GPIO

Asserted

RDY

GPIO De

asserted

Results before and after

27

Transaction Type After Optimization Before Optimization

128 byte (full duplex) 800 us per transaction 800 ms per transaction

160 byte (full duplex) 800 us per transaction 800 ms per transaction

128 byte (full duplex) with flow control

under 99% CPU load stress

2 ms per transaction 800 ms per transaction

640 Byte (full duplex) with flow control 2 ms per transaction 800 ms per transaction

Target Mode

Transaction Type After Optimization Before Optimization

160 byte (full duplex) Peak latency 400 us Peak latency as high as 5 ms.

Host Mode

Best practices | Driver design

• Tune the system level latency first

– cyclictest, rtla-timerlat, lmbench with the minimal system (no drivers,

features, etc).

• Keep the IRQ-off state to a minimum.

• Beware of priority inversion-like situations.

– RT task depending on low priority workqueues, threads to proceed further.

– Multi-level workqueues may kill the determinism.

• Complex SW state machines make it harder to avoid latency

– Rely on HW state as much as possible.

– Feed back to HW designers if such support is missing.

28

References

• Linux as an SPI Target, Geert Uytterhoeven, FOSSDEM 2018.

• Adventures In Real-Time Performance Tuning, Frank Rowand.

• https://www.linkedin.com/pulse/checklist-real-time-applications-linux-linutronix/

– Linuxtronix,

• DRA821 Product details, https://www.ti.com/product/DRA821U

• Details and Instructions:

– https://github.com/vaishnavachath/elc-eoss23-rtlinux

29

https://archive.fosdem.org/2018/schedule/event/hwenablement_linux_as_spi_slave/attachments/slides/2355/export/events/attachments/hwenablement_linux_as_spi_slave/slides/2355/Linux_as_an_SPI_Slave_Handouts.pdf
https://elinux.org/images/9/99/Mips_real_time.pdf
https://www.linkedin.com/pulse/checklist-real-time-applications-linux-linutronix/
https://www.ti.com/product/DRA821U
https://github.com/vaishnavachath/elc-eoss23-rtlinux

Credits and Acknowledgement

• Texas Instruments Inc.

• The Linux Foundation.

30

Q&A
• Contact Information:

– Vaishnav Achath <vaishnav.a@ti.com>

– Vignesh Raghavendra <vigneshr@ti.com>

– Keerthy J <keerthy@ti.com>

• Also on IRC @ libera.chat #linux-ti

31

Learn more about TI products

‒ https://www.ti.com/linux

‒ http://opensource.ti.com/

‒ https://www.ti.com/processors

‒ https://www.ti.com/edgeai

mailto:vaishnav.a@ti.com
mailto:vigneshr@ti.com
mailto:keerthy@ti.com
https://www.ti.com/microcontrollers-mcus-processors/overview.html
http://opensource.ti.com/
https://www.ti.com/processors
https://www.ti.com/edgeai

