Linux Power!

(From the perspective of a PMIC vendor)

Matti Vaittinen
Jan 10 2023

ROHM Semiconductor



Topics

What and Why is a PMIC?

PMIC drivers Goal
MFD and sub-devices oa
What is PMIC
Regulators

o .\ Regulator errors and
Monitoring for abnormal conditions &

Severity levels and limit values G e

Regulator errors and notifications Fumeilione|-seitziy Relpeis 1t

|
Helpers and examples regulator subsystem

Wrap it up

1/32



About Me

Matti Vaittinen

Kernel /Driver developer at ROHM
Semiconductor

Worked at Nokia BTS projects (networking,
clock & sync) 2006 — 2018

Currently mainly developing/maintaining
upstream Linux device drivers for ROHM ICs

2/32



What and Why is a PMIC?



Powering a processor

e Processor and peripherals need power

e Can be as simple as a dummy DC power source with correct voltage

DC-source

+5V

SOC

3/32



Powering a modern SOC 1/2

NVCC-SNVS
[ LDO11.8V J—————0
( LDO2 0.8V }
[ RTCCLK f——cF
["BUCK1 0.8V < VDD-SOC-VDDA-PHY l
= ——/DD-GPU-VPU-VRAN
( BUCK5 0.9V |
Modern SOCs can [ LDO4 0.9V } \\//DDE'::'\YA
_ _ BUCK2 0.9V | - SOC
)
require multiple [ LDO3 1.8V {VDDA-DRAM-VDDA
specific voltages [ BUCK? i.8V j NVCC
% BUCKS 1.1V q eI
BUCK6 3.3V }
(LDO6 12V v
00533V VDD-PHY-1V2
' y LDO5-OUT
(MUX 1.83.3V } 4/32

SD-CARD




Powering a modern SOC 2/2

Ponse sl

vevs

(i remay
01 (1.8v)
(WCCSVE)

oz pay)
oD siwvs)

ATG aiex
(M amal)

AT RESET B
P

And specific

Bucki pav)
(VDD_S0CDDA OVB.PHY. VE)

BuCKks 051
VDD_GPUNDD_VPUYED_ORAN)
104 03 v)
(voD_PHY_ovs)

Buck2 05 )

oD ARss)

wos 18y
(VDDA 18 VDDA DRAN)
Buckr 18

e, ve)

BucKs 11
(NVGC_DRAM)

BuCKs 33 Y)

e svs)

1005 (12v)

oD Py 1v2)

o

D03 s tumed on by Selware

Figure 3-21. Power ON Sequence

5/32



More control...

Power savings by:
e Shutting down not needed devices
e Stand-by state(s)
e DVS (Dynamic Voltage Scaling)

6/32



More control...

Power savings by:
e Shutting down not needed devices
e Stand-by state(s)
e DVS (Dynamic Voltage Scaling)

Powering-on a system at given time / by
an event.

e RTC
e HALL sensor, ...

6/32



More control...

Power savings by:
e Shutting down not needed devices
e Stand-by state(s)
e DVS (Dynamic Voltage Scaling)

Powering-on a system at given time / by
an event.

e RTC
e HALL sensor, ...

More functionality
e Battery / charger
e Watchdog

e Functional-safety

e Voltage monitoring
e Current monitoring
e Temperature monitoring

6/32



PMICs

PMIC - Power Management Integrated Circuit

e Multiple DC sources with specific start-up / shut-down sequence

e Voltage control

e Functional-safety

e Auxiliary blocks to support various needs

Regulators/Monitoring

PMIC

Battery/Charger

Watchdogl RTC I CLK I GPIO

7/32



PMIC drivers



Multi Function Devices

Why? (I have 1 reason on mind, may be more)

Often MFD drivers

e Regulator

e RTC

e Power supply

e Watchdog

e GPIO

e CLK ...

8/32



Multi Function Devices

Allows re-use

Often MFD drivers
e Regulator
e RTC
e Power supply
e Watchdog
e GPIO
e CLK ...

8/32



Regulator (provider) and consumer

e Provider is driver interfacing the hardware. Eg, sits “below” the regulator
framework. Between regulator framework and HW

e Consumer is driver who wishes to control the regulator using the regulator
framework. Eg, sits “on top of" the regulator framework

e PMIC driver is the provider driver (usually just referred as a regulator driver)

regulator_register() regulator_enable()

Power on

9/32



Regulator driver ops

Regulator driver relies on callbacks

Regulator (provider) registers callbacks to regulator framework. Framework handles
regulators using these ops.

include/linux/regulator/driver.h

struct regulator_ops {
// snip
int (xenable) (struct regulator_dev x);
int (xdisable) (struct regulator_dev x);
int (xis_enabled) (struct regulator_dev x);
int (xset_voltage_sel) (struct regulator_dev %, unsigned selector);
int (xget_voltage_sel) (struct regulator_dev =x);

// snip

10/32



Regulator descriptor

include/linux/regulator/driver.h

struct regulator_desc {
/* Plenty of regulator properties x/
/* Also information for the helpers x*/
/* Finally the ops x/
const struct regulator_ops x*ops;

11/32



Regulator descriptor

include/linux/regulator/driver.h

struct regulator_desc {
/* Plenty of regulator properties x/
/* Also information for the helpers x*/
/* Finally the ops x/
const struct regulator_ops x*ops;

struct regulator_dev x

regulator_register(struct device xdev,
const struct regulator_desc xregulator_desc ,
const struct regulator_config x*cfg)

11/32



Regulator constraints

Regulators can have constraints.

Not to be mixed with limits discussed at the end of the presentation.

e struct regulation_constraints

include/linux/regulator/machine.h
e hard limits forced by the regulator framework.
e can be given by driver in dynamic init data
e can be given via device-tree

e voltage / current range, prevent disabling, step size ...

Image: Peggy und
Marco Lachmann-Anke,
Pixabay 12/32



Monitoring for abnormal conditions

Image: Gerhard, Pixabay



Detecting unexpected

Linux has 3 severity categories
The categories - PROTECTION, ERROR, WARNING - inform the hardware state.

13/32



Detecting unexpected

Linux has 3 severity categories
The categories - PROTECTION, ERROR, WARNING - inform the hardware state.

PROTECTION

e Unconditional shutdown by HW

13/32



Detecting unexpected

Linux has 3 severity categories
The categories - PROTECTION, ERROR, WARNING - inform the hardware state.

ERROR

e |rrecoverable error, system not expected to be usable. Error handling by software.

13/32



Detecting unexpected

Linux has 3 severity categories
The categories - PROTECTION, ERROR, WARNING - inform the hardware state.

WARNING - NEW(ish)

e Something is off-limit, system still usable but a recovery action should be taken to

prevent escalation to errors

13/32



Safety limits, device-tree

Property format:

e regulator-<event >-<severity >-<unit >= value

Over current:

e regulator-oc-protection-microamp
e regulator-oc-error-microamp
e regulator-oc-warn-microamp

Similar for over voltage (ov), under voltage (uv) and temperature (temp)

14/32



Safety limits, device-tree

Property format:

e regulator-<event >-<severity >-<unit >= value

Over current:

e regulator-oc-protection-microamp
e regulator-oc-error-microamp
e regulator-oc-warn-microamp

Similar for over voltage (ov), under voltage (uv) and temperature (temp)

e 0 =>disable
e 1 =>enable

e other =>Ilimit value
14/32



Safety limits, device-tree

What if hardware does not support given limit?

e ;

Image: Pete Linforth, Pixabay
14/32



Callbacks for configuring the limits

include/linux/regulator/driver.h

struct

regulator_ops {

// snip

int (xset_over_current_protection)(struct regulator_dev =,
int lim_uA, int severity , bool enable);

int (xset_over_voltage_protection)(struct regulator_dev =,
int lim_uV, int severity , bool enable);

int (xset_under_voltage_protection)(struct regulator_dev x,
int lim_uV, int severity , bool enable);

int (xset_-thermal_protection)(struct regulator_dev =,
int lim, int severity, bool enable);

15/32



Callbacks for configuring the limits

include/linux/regulator/driver.h

struct regulator_ops {
// snip
int (xset_over_current_protection)(struct regulator_dev =,
int lim_uA, int severity , bool enable);
int (xset_over_voltage_protection)(struct regulator_dev =
int lim_uV, int severity , bool enable);

int (xset_under_voltage_protection)(struct regulator_dev x,
int lim_uV, int severity , bool enable);

int (xset_-thermal_protection)(struct regulator_dev =,
int lim, int severity, bool enable);

b
struct regulator_desc {};

struct regulator_dev x[devm_]regulator_register (...

const struct regulator_desc xregulator_desc, ...);

15/32



Callbacks for configuring the limits

include/linux/regulator/driver.h

struct regulator_ops {
// snip
int (xset_over_current_protection)(struct regulator_dev =,
int lim_uA, int severity , bool enable);
int (xset_over_voltage_protection)(struct regulator_dev =
int lim_uV, int severity , bool enable);

int (xset_under_voltage_protection)(struct regulator_dev x,
int lim_uV, int severity , bool enable);

int (xset_-thermal_protection)(struct regulator_dev =,
int lim, int severity, bool enable);

b
struct regulator_desc {};

struct regulator_dev x[devm_]regulator_register (...

const struct regulator_desc xregulator_desc, ...);

15/32



Simplified example

drivers/regulator/bd9576-regulator.c

static int bd9576_set_ocp(struct regulator_dev x*rdev, int lim_uA,
int severity , bool enable)

{
/* Return —EINVAL for unsupported configurations x/
if ((lim_uA && lenable) || (!lim_uA && enable))
return —EINVAL;
/x Select the correct register and appropriate register—value conversion
x for given severity and limit.. %/
if (severity = REGULATOR.SEVERITY_PROT) {
} else {
}
/* Write configuration to registers x/
return bd9576_set_limit(range, num_ranges, d—>regmap,
reg, mask, Vfet);
}

16/32



Informing the unexpected

Two types of information
e ERRORs
e NOTIFICATIONSs

17/32



Informing the unexpected

Two types of information
e ERRORs
e NOTIFICATIONSs

ERROR
e set by provider

e queried (polled) by
consumer

e regulator_get_error_flags()

17/32



Informing the unexpected

Two types of information
e ERRORs
e NOTIFICATIONSs

ERROR
e set by provider

e queried (polled) by
consumer

e regulator_get_error_flags()

NOTIFICATION

provider invokes consumer callback (blocking
notifier call-chain)

no polling needed
in some cases IRQ is held active
regulator_register_notifier()

can send also other (non error) events

17/32



Regulator error flags

include/linux/regulator/consumer.h

#define
#define
#define
#define
#define
#define
#define
#define
#define

REGULATOR_ERROR_UNDER_VOLTAGE
REGULATOR_ERROR_.OVER_CURRENT
REGULATOR_ERROR_REGULATION_OUT
REGULATOR_ERROR_FAIL
REGULATOR_ERROR_OVER_TEMP
REGULATOR_ERROR_UNDER_VOLTAGE WARN
REGULATOR_ERROR_OVER_CURRENT_WARN
REGULATOR_ERROR_OVER VOLTAGE _WARN
REGULATOR_ERROR_OVER_TEMP_WARN

18/32



Regulator notifications

include/linux/regulator/consumer.h

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

REGULATOR_EVENT_UNDER_VOLTAGE
REGULATOR_EVENT_OVER_CURRENT
REGULATOR_EVENT_REGULATION_OUT
REGULATOR_EVENT_FAIL
REGULATOR_EVENT_OVER_TEMP

REGULATOR_EVENT_UNDER_VOLTAGE_-WARN
REGULATOR_EVENT_OVER_CURRENT_WARN
REGULATOR_EVENT_OVER_VOLTAGE_WARN
REGULATOR_EVENT_OVER_TEMP_WARN
REGULATOR_EVENT _WARN_MASK

19/32



Event IRQ helper

A helper provided for IRQ handling and sending the notification
e Supports keeping IRQ disabled for a period of time
e Supports forcibly shutting down the system if accesing the PMIC fails

void *regulator_irq_helper(struct device xdev,
const struct regulator_irq_desc x*d, int irq,
int irq_flags, int common_errs,
int xper_rdev_errs, struct regulator_dev x*xrdev,
int rdev_amount);

20/32



Helper break-out

events helper action driver

21/32



Helper break-out

events helper action driver

21/32



Helper break-out

events helper action driver

What happened?

21/32



Helper break-out

events

helper

action

driver

What happened?

Fatal and die()

populated
0]

W o

21/32



Helper break-out

events

helper action

driver

What happened?

Fatal and die()

populated
0]

21/32



Helper break-out

events

helper action

driver

What happened?

Fatal and die()

populated
0]

Try re-enable
o =

21/32



Helper break-out

events helper action driver

What happened?

Fatal and die()

populated
(1]

Try re-enable

n o el

21/32



Helper configuration

include/linux/regulator/driver.h

struct regulator_irq_-desc {
const char xname;
int fatal_cnt;
int reread_ms;
int irg_off_ms;
bool skip_-off;
bool high_prio;

22/32



Helper configuration

include/linux/regulator/driver.h

struct regulator_irq_-desc {
const char xname;
int fatal_cnt;
int reread_ms;
int irg_off_ms;
bool skip_-off;
bool high_prio;

void xdata;

int (xdie)(struct regulator_irq_data *rid);

int (*xmap_event)(int irq, struct regulator_irq_-data =xrid,
unsigned long xdev_mask);

int (xrenable)(struct regulator_irq_-data xrid);

22/32



Helper Registration

e |IRQ information
e Array of regulators

e Events/Errors this IRQ can inform

include/linux/regulator/driver.h

void *regulator_irq_-helper(struct device x*dev,
const struct regulator_irg_desc x*d,
int irq, int irq_flags, int common_errs,
int xper_rdev_errs ,
struct regulator_dev =xxrdev,
int rdev_amount);

(or a devm-variant)

23/32



Event mapping

include/linux/regulator/driver.h

int (*xmap_event)(int irq, struct regulator_irq_data =xrid,
unsigned long xdev_mask);

24/32



Event mapping

include/linux/regulator/driver.h

int (*xmap_event)(int irq, struct regulator_irq_data =xrid,
unsigned long xdev_mask);

struct regulator_irq-data {
struct regulator_err_state xstates;
int num_states;
void xdata;
long opaque;

24/32



Event mapping

include/linux/regulator/driver.h

int (*xmap_event)(int irq, struct regulator_irq_data =xrid,
unsigned long xdev_mask);

struct regulator_irq-data {
struct regulator_err_state xstates;
int num_states;
void xdata;
long opaque;

b

struct regulator_err_state {
struct regulator_dev xrdev;
unsigned long notifs;
unsigned long errors;
int possible_errs;

24/32



Event mapping

include/linux/regulator/driver.h

int (*xmap_event)(int irq, struct regulator_irq_data =xrid,
unsigned long xdev_mask);

struct regulator_irq-data {
struct regulator_err_state xstates;
int num_states;
void xdata;
long opaque;

b

struct regulator_err_state {
struct regulator_dev xrdev;
unsigned long notifs;
unsigned long errors;
int possible_errs;

24/32



Re-enabling and simple mapping

Helper for simple IRQs
include/linux/regulator/driver.h

int regulator_irqg_map_event_simple(int irq,
struct regulator_irqg_data =xrid,
unsigned long xdev_mask)

Optional re-enable:

int (*renable)(struct regulator_irq_data =xrid);

25/32



Event mapping example part |

drivers/regulator/bd9576-regulator.c

static int bd9576_ovd_handler(int irq, struct regulator_irq_data x*rid,
unsigned long xdev_mask)

ret = regmap_read(d—>regmap, BD957X_REG_INT_OVD_STAT, &val);
if (ret)
return REGULATOR_FAILED_RETRY;

26/32



Event mapping example part |

drivers/regulator/bd9576-regulator.c

static int bd9576_ovd_handler(int irq, struct regulator_irq_data x*rid,
unsigned long xdev_mask)

ret = regmap_read(d—>regmap, BD957X_REG_INT_OVD_STAT, &val);
if (ret)
return REGULATOR_FAILED_RETRY;

rid —>opaque

= val & OVD_IRQ_VALID_MASK;
xdev_mask = 0;

if (!(val & OVD_IRQ_VALID_MASK))
return O;

26/32



Event mapping example part Il

xdev_mask = val & BD9576 xVD_IRQ_.MASK_VOUT1TO4;

for_each_set_bit (i, dev_mask, 4) {

stat = &rid—>states[i];

stat—>notifs = rdata—>ovd_notif;

stat—>errors = rdata—>ovd_err;
return O0;

27/32



Helper registration 1/3

Fill the helper configuration

drivers/regulator/bd9576-regulator.c

static const struct regulator_irq_desc bd9576_notif_ovd = {
.name = " bd9576—ovd” ,
.irg_off_ms = 1000,
.map_event = bd9576_ovd_handler ,
.renable = bd9576_ovd_renable ,
.data = &bd957x_regulators ,

28/32



Helper registration 2/3

Create an array of regulators this IRQ may concern

drivers/regulator/bd9576-regulator.c

struct regulator_dev xovd_devs[BD9576_ NUM_OVD_REGULATORS];

for (i = 0; i < num_rdev; i++) {
struct bd957x_regulator_data *r = &ic_data—>regulator_data[i];
const struct regulator_desc xdesc = &r—>desc;
r—>rdev = devm_regulator_register(&pdev—>dev, desc, &config);
rdevs[i] = r—>rdev;

if (i < BD957X_VOUTS1)
ovd_devs[i] = r—>rdev;

29/32



Helper registration 3/3

Fill possible errors this IRQ may indicate and register the helper

drivers/regulator/bd9576-regulator.c

int ovd_errs = REGULATOR.ERROR.OVER_.VOLTAGE.-WARN |
REGULATOR_ERROR_REGULATION_OUT ;

ret = devm_regulator_irq_helper(&pdev—>dev, &bd9576_notif_ovd ,
irq, 0, ovd_errs, NULL,
&ovd_devs [0],
BD9576_.NUM_OVD_REGULATORS ) ;

30/32



Wrap it up




Summary

Powering up a modern SOC is not simple

PMIC is an IC trying to integrate powering related features into single chip

Many PMICs include functional-safety features

e There is some existing support for indicating abnormal events

31/32



No answers guaranteed

Questions?

32/32



No answers guaranteed

Thank You for listening!

(or time to wake up) :)

32/32



Extras

How to handle notifications?

typedef int (xnotifier_fn_t)(struct notifier_block xnb,
unsigned long action, void xdata);

struct notifier_block {
notifier_fn_t notifier_call;
struct notifier_block __rcu =*xnext;
int priority;

*

* regulator_register_notifier — register regulator event notifier
* Q@regulator: regulator source

* @Onb: notifier block
*
*

Register notifier block to receive regulator events.

int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb)



	What and Why is a PMIC?
	PMIC drivers
	MFD and sub-devices
	Regulators

	Monitoring for abnormal conditions
	Severity levels and limit values
	Regulator errors and notifications
	Helpers and examples

	Wrap it up

