

an embedded perspective on
linux power management

discussions on pm technology by
a guy who works for an

embedded Linux OS vendor

Todd Poynor
MontaVista Software

embedded pm today

increasing hardware pm complexity

uncertainty as to what saves power

ce focus on device pm not clock scaling

pm remains a top challenge for mobile devices

community and commerce

os product using non-mainline dvfs mechanism

advantages to sync up with a community solution

hoping summit sets direction for embedded dvfs

proposing concepts from dpm for upstream

osv adds value on standard framework

the powerop hardware layer

manages sets of arbitrary power parameters

just the dpm “ operating point” a bstraction

geared toward embedded hardware

dpm and cpufreq can share board-specific code

or maybe linux-pm has more ambitious plans

powerop illustrated

cpufreq dpm/embedded

register values
computed from
cpu speed

pass thru
parameters
for register

values

set/get hardware registers

powerop

 cpu speed

dpm maps states to operating points

policy P runs operating point O at state S

system states include idle, per-task states, sleep

conserve power during brief idle periods

apps can manage own custom state if desired

power state can be tied to scheduling priority

resolve clocking conflicts per policy

what to do when device D needs clock C rate R?

dpm makes system designer choose in advance

chooses a valid operating point from that set

driver model extended with clock constraints

device management is hot

formerly less complex, big savings

now multiple power and clock domains

with multiple power states and latencies

set policy via driver model or state->op style pm

platform bus probably needs extensions

more topics of interest

power event notification to userspace

reducing sources of unneeded idle ticks

assigning tasks to specific memory banks

 1

an embedded perspective on
linux power management

discussions on pm technology by
a guy who works for an

embedded Linux OS vendor

Todd Poynor
MontaVista Software

Presented at the CELF Embedded Systems
Conference 2006, and a portion at the 2006 Linux
PM Summit.

 2

embedded pm today

increasing hardware pm complexity

uncertainty as to what saves power

ce focus on device pm not clock scaling

pm remains a top challenge for mobile devices

Compare sizes of power/clocking chapter of an SoC
family technical reference manual: past version ~115
pages, recent ~285, upcoming >400 pages (thanks
R Woodruff).

h/w makers unsure how s/w will use features (“ how
should dpm be implemented on our new board?”).

s/w makers unsure how to best use h/w pm features
(“ how should we use dpmon the new board?”).

osv often the meeting point between the two.
a number of products only do device mgmt, no dvfs;

dvfs considered complicated, a source of instability
and less bang for buck.

Mark VandenBrink, Mot director of mobile devices s/w,
NewForge interview T Bird sent out – PM primary
challenge.

 3

community and commerce

os product using non-mainline dvfs mechanism

advantages to sync up with a community solution

hoping summit sets direction for embedded dvfs

proposing concepts from dpm for upstream

osv adds value on standard framework

These are a developer’ s recommendations on the
subject, not a statement of MontaVista Software.

DPM is the supported DVFS solution in the Mobilinux
product, which is not in kernel.org.

OSVs can add value around a standard framework;
adding an entire non-standard DVFS mechanism not
the best place to be.

The PowerOP proposal is a step in that direction.

Plenty of room for OSV value add: initial board
development, integrated offerings with preselected
power policies, add policy selection technologies
such as ARM IEM, etc.

 4

the powerop hardware layer

manages sets of arbitrary power parameters

just the dpm “ operating point” a bstraction

geared toward embedded hardware

dpm and cpufreq can share board-specific code

or maybe linux-pm has more ambitious plans

A proposed platform-specific API.

Suited for manipulating multiple power parameters
independently, such as for Xscale PXA2xx Wireless
Speedstep, OMAP, i.MX31...

Assumes we will continue to have cpufreq for
desktop/laptop systems managed primarily by cpu
speed (and often with ACPI, PM in BIOS) vs.
embedded frameworks such as DPM (that manage
more PM state in Linux). But it’ s not certain that the
two worlds cannot be merged into one set of s/w.

Could be subsumed by linux-pm directions toward a
full PM stack. Found interest in tackling these and
other topics when PowerOP discussed on list.

 5

powerop illustrated

cpufreq dpm/embedded

register values
computed from
cpu speed

pass thru
parameters
for register

values

set/get hardware registers

powerop

 cpu speed

Hardware registers might include:
● multipliers and dividers that produce clocks for core

PLL, bus, CPU, and peripheral-specific clocks such
as LCD pixel clock

● voltage regulator values to set core voltage
● and pseudo-registers that set other behavior not

easily described by a small set of hardware registers,
such as clock domain autogating policy or suspend
states

Valid combinations of these are an “ operating point” .
Where these come from, which ones available, etc.
are the upper layer’ s job.

 6

dpm maps states to operating points

policy P runs operating point O at state S

system states include idle, per-task states, sleep

conserve power during brief idle periods

apps can manage own custom state if desired

power state can be tied to scheduling priority

Much of the design from IBM Austin Research Lab,
prototyped on cutting edge low-power PDA reference
designs, heavily analyzed.

The system sets “ states” ; the “ policy” determines what
“ operating point” to activate for that state.

Idle hook assume system can conserve power by
modifying params during brief idle periods, as with
multimedia playback.

All policy management normally in userspace.
IBM mpeg4 decoding example, watches rt deadlines

and adjusts power/performance to meet.
Tying task power state to scheduler priority avoids PM

priority inversion.

 7

resolve clocking conflicts per policy

what to do when device D needs clock C rate R?

dpm makes system designer choose in advance

chooses a valid operating point from that set

driver model extended with clock constraints

Dpm doesn’ t try to resolve conflicts between device
needs and current operating point on its own.

System designer creates sets of operating points that
handle the possible device-constrained situations.

Add operating points that conserve more power when
devices don’ t need it, dpm chooses a valid operating
point at runtime.

struct device has new field for constraining ranges of
operating point power parameter values, identified by
symbols for the associated clock and a range of
values.

 8

device management is hot

formerly less complex, big savings

now multiple power and clock domains

with multiple power states and latencies

set policy via driver model or state->op style pm

platform bus probably needs extensions

Power/clock domains and management needed is now
making device pm at least as complicated as runtime
dvfs.

Different ways of setting policies for the states of these
being prototyped.

Tendency to move embedded devices to minimal
“ platform bus” and to move more processing into bus
code makes it harder to add these types of features.

 May need to extend platform bus with system-specific
handling of PM features, capture actual bus
topologies, etc.

 9

more topics of interest

power event notification to userspace

reducing sources of unneeded idle ticks

assigning tasks to specific memory banks

ACPI uses /proc interface specific to ACPI, embedded
can use something, should be kobject uevent / D-
Bus?

In additional to “ dynamic tick” / “ tickless idle” , VST
reduces periodic tasks when not needed, avoiding
need to wakeup at the request of subsystem that
does not need work to be done upon wakeup.

MTA Memory Type Allocation for assigning tasks to
specific memory banks. Can kill all tasks for a
specific bank and power down that bank. Based on
NUMA support.

CELF member companies have been involved in work
on some of these.

