NNNNNNNNNNNNNNNNNN e b dd d L'
Q3 open souRrcE sUMMIT ‘ @Cg‘néreﬁce e (

EEEEEE Europe

What The Clock !

Linux Clock subsystem internals

THE
1 I LINUX
FOUNDATION

Who ?

e 14y Kernel & Firmware Hacker
o Entirely Ported Linux on custom ARM SoCs
o Worked with SoC design team

e 5y Baylibre Engineer

o Writes support for Amlogic Mainline Linux & U-Boot

e 3y1/2 Amlogic Clock driver Conftributor/Co-Maintainer

What The Clock !

e Hardware
e Software

O

(@)
(@)
(@)

Clock in Linux

Clock framework is a library
Clock framework and drivers
Clock framework and device tree

e Clock framework limitations

&

D
A
N
R
<
T

Hardware

}(Clock Period)|

Falling edge
. . . (_
e Clock signal has a width, period => frequency
Clock width Rising edge
50% duty cycle
e Clock signal has a duty cycle 750 dty e
° y ey o e D i N
25% duty cycle
I‘I
e Clock signal has setup & hold times L

&

Hardwaore

e When mulifiple clocks, they can have different phases

e And lJitter ggg,i ‘
Reaj-m —>|-ﬂ”:- Jitter
/‘ Clock

EXPECTATION..

Clock seen in simulation or logic analyzer

| [clock = ‘

REALITY..

Clock seen on an oscilloscope

(40.0ns

MS
Arnpl

R

Hardwaore

In an electronic system, the clock is the heartbeat

Everything is synchronous toward a clock

System often takes an external clock as source

And generate a tree of clocks for all functions

&

Hardwaore

In order to generate and propagate clock into the system

Cristal é\

Oscillators -
PLLs

Dividers

Gates

Muxes

Clock synchronization

@

Hardwaore

In order to generate and propagate clock into the system

e PLLs

Voltage
Phase Loop Controlled
Comparator Filter Oscillator

?? N VCOTVO

https://en.wikipedia.org/wiki/Phase-locked loop

(5

https://en.wikipedia.org/wiki/Phase-locked_loop

Hardwaore

In order to generate and propagate clock into the system

e GCafte

Enable

Clock

Latch
CK

j‘ Gated clock

Hardwaore

In order to generate and propagate clock into the system

e Digital Glitch-free Mux

clk1 clkO

Toggle Mux change Toggle |
detect control detect |
— V

Hardware

Cristal/Oscillator

SoC Package

X

G —>1 Function

T~ Internal

g_' Function

T~] Internal

u _g_' Function
S|

— G | | Function

] G] Function

~—

\ [DDR Controller

Fast 1/O

HDMI, MMC, ...
@ Divider

I/O

I/0

UART
2C
SPI

PWM...

5

Gate

(M) ®E

“Composite Clock”

Clock in linux

Historically, Linux drivers only managed clocks by their frequency for:

e CPU speed
e External Bus speed (12C, SPI, UART, ...)
e Video pixel frequency

But each driver managed this on their side.

y’
&

Clock in linux

Started with arch/arm/mach-integrator/clock.h (Jun 18, 2004) :

struct clk {

struct list head node;
unsigned long rate;
struct module *owner;
const char *name;

const struct icst525 params *params;

void *data;

void (*setvco) (struct clk *, struct icst525 vco vco);
i
int clk register(struct clk *clk);

void clk unregister(struct clk *clk);

6

Clock in linux

And became linux/include/linux/clk.h (Jan 7, 2006):

/*
* struct clk - an machine class defined object / cookie.
*/
struct clk;
struct clk *clk get(struct device *dev, const char *id);
int clk enable(struct clk *clk);
void clk disable(struct clk *clk);
unsigned long clk get rate(struct clk *clk);
void clk put(struct clk *clk);
long clk round rate(struct clk *clk, unsigned long rate);
int clk set rate(struct clk *clk, unsigned long rate);
int clk set parent(struct clk *clk, struct clk *parent);
struct clk *clk get parent(struct clk *clk);

Clock in linux

Covered most of the clock management needs,

BUT, each platform needed to fill these function accordingly.
arch/arm/mach-aaec2000/clock.c
arch/arm/mach-integrator/clock.c
arch/arm/mach-omap1/clock.c

AND The platform’s driver used them according to the implementation.

arch/arm/mach-omap1/serial.c
drivers/i2c/busses/i2c-s3c2410.c

‘
&

Clock in linux

each platform needed to fill these function accordingly
.... Not equaly :
arch/arm/mach-integrator/clock.c

int clk enable (struct clk *clk)

{

return 0;

}
EXPORT SYMBOL (clk enable);

void clk disable (struct clk *clk)
{

}
EXPORT SYMBOL (clk disable);

&

Clock in linux

Some platform did a complete implementation (omap),

And even added some more platform specific functions (omap):

int clk use(struct clk *clk)

void clk unuse(struct clk *clk)

int clk get usecount (struct clk *clk)
void clk deny idle(struct clk *clk)
void clk allow idle(struct clk *clk)

&

Clock in linux

So there was often a clash for multi-platform drivers
like Generic IPs (network, i2c, ...):

Wrong APl usage/behavior

Usage of platform specific extensions, or custom implementation
Adding of fake clock to satisfy driver (Yeah | did it ©)

Duplication of clock logic
o Rate calculation
o Rate propagation
o Opftimal Parenting

y
&

Clock framework ic o library

To solve the inconsistency of clk.h implementation
Mike Turquette infroduced the Common Clock Framework (March 2012):

The common clock framework defines a common struct clk useful across most platforms as well as an implementation
of the clk api that drivers can use safely for managing clocks.

The net result is consolidation of many different struct clk definitions and platform-specific clock framework
implementations.

This patch introduces the common struct clk, struct clk ops and arimplementation of the well-known clock api
in include/clk/clk.h.

Platforms may define their own hardware-specific clock structure and their own clock operation callbacks, so
long as it wraps an instance of struct clk hw.

y’
&

Clock framework ic a. library

To solve the inconsistency of clk.h implementation
Mike Turquette infroduced the Common Clock Framework (March 2012):

TL:DR

Drivers are responsible for populating the framework with clock free topology
and plugging in the ops physically program the hardware.

/
&

Clock framework ic a. library

With the library, clock controller provides clk_ops for each clock with:

struct clk_ops {

int (*prepare) (struct clk_hw *hw);

void (*unprepare) (truct clk_hw *hw);

int (*enable) (struct clk_hw *hw);

void (*disable) (struct clk hw *hw);

int (*is_enabled) truct clk hw *hw);
(

unsigned long *recalc_rate) gtruct clk_hw *hw,
unsigned long parent_rate);
long (*round_rate) Gtruct clk_hw *hw, unsigned long,

unsigned long *);

int (*set_parent) truct clk_hw *hw, u8 index) ;

u8 (*get_parent) truct clk_hw *hw);

int (*set_rate) (struct clk hw *hw, unsigned long);
void (*init) (struct clk hw *hw);

Clock framework ic o library

Only necessary ops were passed 1o clk_register().

Gates: enable/disable/is_enabled

Dividers: recalc_rate/round_rate/set_rate

Muxes: set_parent/get_parent

PLLS: enable/disable/is_enabled/recalc_rate/round_rate/set_rate

And prepare/unprepare/init were mandatory.

y’
&

Clock framework ic o library

With all these ops provided, the framework:

Builds a clock tree with the parents list of each lock
o The current parent is cached
Calculates a rate per-clk by walking the tree
o The current rate is cached
On rate setting/calculation
o The free is walked recursively to closely match the request
o When possible rate is the closest, re-parenting is done
Enable/Disable propagates from leaf clock to root clocks
o Each clock has an internal clock enable/request counter

Clock framework ic o library

The Common Clock Framework has evolved over time, adding:

Clock notfifier

DT support

Clock accuracy support (in parts per billion)

Clock phase support (in degrees)

Clock duty cycle support (in numerator/denominator ratio)
Clock exclusivity (keep clock rate/... exclusive to a consumer)
set_rate variants (range, min, max)

Clock framework and device tree

In pre-DT times:

e device <-> clock mapping was fixed
e “/arch/*/mach-*" code statically linked devices and clocks.
e clocks were associated to the “device” structure.

Link between clock output to clock input between controllers and drivers
was blurry, often not described at all.

y’
&

Clock framework and device tree

DT provides a way fo link a clock output to a clock input.
The Common Clock Framework works across the system:

e Canlink clocks between clock controllers
e Can link clocks between devices
e Canlink clock between devices and clock controllers

All this was impossible/very complex before DT.

y’
&

Clock framework and device tree

With Device Tree, it's possible to:

e Declare multiple clock providers
Controllers

Simple clocks (cristal/oscillators)
Clocks provided by devices

Special clock (PWM clocks)

e Link clocks between devices

e Sef clock parenting/rate constraints from DT

o O O O

&

Clock framework and device tree

Example:

/* external oscillator */

osc: oscillator {
compatible = "fixed-clock";
#clock-cells = <0>;

/* UART, using the low frequency oscillator for the baud clock,
* and the high frequency switched PLL output for register
* clocking */
uart@afeo {
compatible = "vendor, some-uart";

reg = <0xabo0o 0x1000>;
clock-frequency = <32678>;—————————————————————____—_____—_‘—‘—————5E£EE£EE£§ = <83>;
N " clocks ="<&osc>, <&pll 1>;

clock-output-names = "osc";

b

/* phase-locked-{loop device, generates a higher frequency clock

* from the external oscillator reference */
pll: pll@4ceee {
compatible =| "vendor, some-pll-interface"
#clock-cellsy= <1>;
clocks = <&osc>;
clock-names = "ref";
reg = <0x4c000 0x1000>;
clock-output-names = "pll", "pll-switched";

clock-names “ ", "register";
b
<&pl 0>
pll ‘
<&DH 1>

<&O0sc>
uart >
32768Hz

osc <&osc>

https://elixir.bootlin.com/linux/v4.8/B/ident/fixed-clock

Clock Framework limitations

y

Clock controllers implementation is heterogenous
Clock tree walking is recursive
Doesn’t handle some now important properties:

o Jitter, PLL filters, ...

Firmware handled/needed clocks is badly handled
o No way to properly describe them

Clock handoff mechanism from firmware to device is missing
Dynamic clock path prioritization is missing

o Often HW engineers design specific clock paths for use-cases
o For example: HDMI 2.0 4ké0 clock needs a very clean clock path

Thanke !
Questione ?

