
Presented by

Date

Android and modern
toolchains - clang 3.6 and

gcc 5.0, binutils 2.25

Bernhard "Bero" Rosenkränzer

Android Builders Summit 2015

Toolchains currently used by AOSP

● AOSP (both current master branch
and the recent 5.1.0 release)
defaults to using slightly modified
versions of
○ gcc 4.8 for ARMv7, x86 and x86_64
○ gcc 4.9 for ARMv8 and MIPS

● binutils is 2.23.2 for gcc 4.8, 2.24
for gcc 4.9.

binutils 2.25

● Dropping in binutils 2.25 is painless
- only change required: Make sure
Nexus 10 blobs don’t try to strip
files that aren’t target CPU binaries
(should be fixed in the first place)

● Interesting addition in 2.25: gold
linker for aarch64

Status of CLANG support

After having submitted 117 related
patches, AOSP master can be built
with clang unmodified.
Set
USE_CLANG_PLATFORM_BUILD=true
on the make command line to use it.

Status of CLANG support

The supported version of clang
comes with AOSP - it is a slightly
modified version of a snapshot taken
from svn shortly before the 3.6
release.

Status of CLANG support

AOSP 5.1.0 can almost be built with
clang - it is missing 2 patches in
Bionic, both oneliners.

Backported patches are available.

Status of CLANG support

Clang based builds currently fall back
to using gcc to build some
subprojects:
● perf

○ compile failure, real fix available

Status of CLANG support

Clang based builds currently fall back
to using gcc to build some
subprojects:
● elfutils

○ compile failures due to heavy use of
nested functions, fix available, but will
never be accepted upstream

Status of CLANG support

Clang based builds currently fall back
to using gcc to build some
subprojects:
● bionic linker

○ reasoning unknown, it can be built with
clang

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● parts of external/chromium_org

○ probably to reduce the potential for
surprise -- Chromium uses clang for
desktop OS builds too.
gcc can build it.

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● libpng

○ AOSP’s libpng makes use of clang’s -
ftrapv option to catch integer overflow
errors

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● llvm, compiler-rt, libcxx-abi, libcxx,

mclinker
○ likely because they’re clang sibling

projects

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● scrypt
● srec
● libexif
● openssl

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● vixl
● gtest
● conscrypt

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● libnativehelper
● libc_cxa in Bionic
● libnativebridge
● net
● dalvikvm
● LatinIME

Status of CLANG support

Some other subprojects are always
built with clang, even in gcc builds:
● slang
● libbcc
● surfaceflinger
● renderscript
● libcore

Status of gcc 5.0 support

● AOSP master can be built with gcc
5.0 snapshots with a few problems
- most annoyingly, an
autogenerated file in Chromium
isn’t compatible with it

Status of gcc 5.0 support

● The resulting system boots and
works for the most part, but the
browser is unstable if built with gcc
5

Stability

Both gcc and clang based builds run well and
can pass the CTS (Compatibility Test Suite).

gcc 5.0 snapshot builds generally work fine, but
have problems with the browser - this causes
CTS failures as well.

Tests with gcc 5.0 snapshots were done in late
January, the situation may have improved with
newer builds.

Code size

● On ARMv7, clang generates
slightly larger binaries than gcc.

● On ARMv8, clang generates
slightly smaller binaries than gcc.

● In both cases, the difference in
code size is negligible (less than
2.5%)

Code size

● The difference in code size
between different current gcc
versions (4.8 from AOSP, Linaro
4.9, 5.0 snapshot) is even smaller.

Benchmark results

There is no clear winner. In most benchmarks,
gcc is slightly ahead, in some, clang wins. gcc
is generally better at multithreaded code.

Detailed results are on the Linaro wiki:
https://wiki.linaro.
org/Platform/Android/GccClangBenchmark-
2014-12
https://wiki.linaro.
org/Platform/Android/GccClangBenchmark-
2015-01

https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2014-12
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2014-12
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2014-12
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2014-12
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2015-01
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2015-01
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2015-01
https://wiki.linaro.org/Platform/Android/GccClangBenchmark-2015-01

Benchmark results

Since most common benchmarks are not Open
Source and have not been updated with proper
Aarch64 builds, some benchmark results from
64bit devices are actually in 32bit code -- not
measuring the performance of the code
generated by the 64bit compilers appropriately.

Benchmark results

Proper 64 bit benchmarks will likely shift the
results a little in Clang’s favor - its 64bit code
tends to be better than its 32bit code.

Also, tweaking compiler flags for clang builds
may help -- people have had much more time
to figure out the best flags for gcc than for
clang.

Benchmark results

AOSP currently makes some incorrect
assumptions about clang -- e.g. “-mcpu=cortex-
a15 has to be stripped from compiler flags” --
this used to be true, but clang added A15
support in 3.6. Clang has been updated, but
the Makefiles adjusting compiler flags have not.

Getting a second opinion...

... is not just for medicine anymore -- asking
another compiler for its opinion on code can
turn up interesting bugs.

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}
size of a pointer - not quite 30

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

always true -- address of an array. This
should have been a[i]

Things to avoid for compatibility

● Variable length arrays in structs
● Variable length arrays of non-POD types
● Empty structs
● Array subscripts of type “char” (value

[‘0’]=0;)
● asm(“add w0, w0, #-1”);

(converted to sub w0, w0, #1 by gas,
but not by clang)

Things to avoid for compatibility

● Undefined internal functions and variables --
even if they aren’t used:

static void a();

void b() {

 if (false)

 a();

}

Questions? Comments?

