Graphics Subsystem in an Embedded World Integrating DirectFB into a UHAPI platform

Denis Oliver Kropp, DirectFB Bas Engel, Philips Semiconductors

April 12 2006

Contents

- Changing perspectives
 - Graphics and digital services in an embedded world
 - DirectFB and UHAPI
 - System partitioning
- Integrating DirectFB and UHAPI
 - FrameBuffer vs non FrameBuffer
 - Input handling
 - HW acceleration
- Summary and Q&A

Graphics in an Embedded World

- With trend to digital content more emphasis on
 - The viewing experience
 - New services (VOD, content management, etc)
- Ease of use
 - Key factor in offering new services
- Increasing demand for high quality graphics
 - True Color with alpha channel (32 bit)
 - Slick animations and other eye-candy
 - HD resolutions
- Differentiation and scalability key aspect in future
 - Low end systems can have lower end graphics
 - CE companies require a versatile solution

Ongoing trend: more features, more SW

Increasing amount of digital services in future CE products

Consequently, we have an increasing amount of software in CE products

Integration and validation play a key role in fast TTM, so standardized APIs and building blocks are needed

- It's a subsystem that provides
 - Accelerated graphics operations (blitting, scaling)
 - Multiple graphics and video layers
 - Input devices (remote control, local keyboard, etc)
 - Fast anti-aliased text rendering
 - Many pixel formats (ARGB, YUV+Planar)
 - Video memory management (on/off-screen)
- Established technology for embedded appliances
- Scalability allows state of the art desktop and embedded environments
- Adoption of OpenGL makes it competitive to the 3D market
- See www.directfb.org

UHAPI uhapi

- It's an API specification for controlling for example
 - Tuner
 - Transport Stream Demultiplexer
 - ATSC Decoder
 - Video Mixer
 - PVR

- Hardware and implementation technology independent
- For home based media appliances

- Increasing industry adoption
- The (proposed) CELF AVG specification includes UHAPI
- See www.uhapi.org

Why DirectFB and UHAPI

- Use the best of both worlds
 - UHAPI focus: Audio/Video control
 - DirectFB focus: Graphics control
- UHAPI and DirectFB are complementary
 - Except where AV streaming "meets" graphics
 - e.g. both have support for layer mixing and scaling
 - Roles have been defined and discussed at CELF June 2005 Yokohoma
- Optimize system
 - Performance
 - Proper APIs leverage hardware capabilities
 - Portability
 - Due to widely accepted standard interfaces
 - Simplicity in design

Integrating DirectFB and UHAPI

Main challenges

- Writing DirectFB "system module"
- Implementing layer driver on top of uhlVmixLayer
- Allocating and accessing graphics memory
- Adding the accelerated driver

Put another layer in between?

Frame Buffer Device System Module

UHAPI System Module

Advantages of UHAPI System Module

Simplified architecture and implementation

- Avoids going through very limited FBDev API layer
 - Full feature set of DirectFB and HW without private extensions
- Flexible resource management
 - Easy match with the memory model of UHAPI and DirectFB
- Much improved interoperability
 - No kernel in between, notifications easily usable
- Modular approach
 - Different subsystems can be exchanged by others

Accelerated Graphics Driver

- DirectFB focusses on hardware acceleration
 - However, optional due to software fallbacks
- Good reasons for acceleration
 - Performance boost
 - Parallel rendering and code execution
 - Keep CPU resources free for other work
 - Reduce latencies, e.g. in the user interface
 - Enable high end user interfaces
- Independent and reusable component
 - Could be tied to a system module though
- Well defined APIs for modules and drivers
 - Freedom of implementation
 - Can reuse existing driver libraries

HW acceleration on embedded systems

- Most PC based DirectFB drivers have
 - Direct register programming via MMIO
 - Busy loop polling the state (FIFO, Idle)
- Embedded hardware
 - Busy loop requires too many cycles
 - Use IRQs to signal finished HW operations
 - Command buffer mechanism
 - User space puts packets into the ring buffer
 - Kernel driver does the actual programming
 - ISR processes next command packet
 - Trigger execution of first packet via ioctl when the hardware is idle
 - Idle wait in user space when buffer is full
 - Can wait for finishing commands using ioctl and serial number of packet

Benchmarking

- Application benchmark
 - Realistic values for specific application scenarios, e.g. sprite animation
- Synthetic benchmark
 - Raw numbers, e.g. reflecting memory bandwidth or other bottle necks

Input handling

Summary

- DirectFB and UHAPI are a powerful combination
 - To leverage the value of state of the art digital processing and new viewing experiences
- Not restricted by existing solutions
 - Simplified architecture and implementation
- Modular approach
 - Solution not specific to DirectFB and UHAPI
- Improved application integration
 - Due to standard infrastructure and proper hardware abstraction

Any questions

