
Lollipop MR1 Verified Boot
Andrew Boie

Open Source Technology Center
Intel Corporation

Agenda
• What is Verified Boot?
• Description of Verified Boot Components
• Q&A

What Is Verified Boot?
• Verified Boot establishes a chain of trust from the bootloader to the system image
• Components verified:

• Boot / Recovery images
• Each containing kernel w/command line, ramdisk, optional 2nd-stage bootloader
• Signature block appended to the end of the boot image
• Verified by the bootloader using a keystore

• OEM-signed keystore ships with device
• User-supplied keystore may be enrolled via Fastboot if device is unlocked first

• System image (and also Vendor image if present)
• Protected by Linux dm-verity
• Signing key stored in boot ramdisk
• Incremental updates re-implemented to work on a per-block level

• The end user is empowered to unlock the device and flash boot/system/recovery images
signed and verified with their own generated key

• Terminology used is sometimes inconsistent, "verified boot" or "verity" in the code can
variously apply to verification of boot images, system images, or both

• The integrity of the bootloader itself is out of scope

Signed Boot Images
• Boot images created by mkbootimg in the Android build

• system/core/mkbootimg
• Concatenates a header, bzimage, ramdisk, optional 2nd-stage

loader image into a single binary blob
• Small C program
• Header contains total size of boot image (without signature data),

sizes/offsets of sub-components

• New tool in the build system: boot_signer
• Code is in system/extras/verity/
• Run by the build system immediately after running mkbootimg

• Appends signature to the boot image
• Default key used is “verity” key under build/target/product/security
• See sign_target_files_apks section for details on production re-signing

• Implemented in Java using BouncyCastle APIs

• Boot images are written as raw data to dedicated partitions
• "boot" for main Android Boot Image
• "recovery" for OTA Recovery Console

Boot Image Header

bzImage

Root Filesystem
Ramdisk

Optional 2nd Stage
Loader

Signature

mkbootimg

boot_signer

Boot Signature Format
• DER Encoded ASN.1 message data appended to the end of the boot

image
• No way to tell from the boot image header whether the image is

signed or not
• In our loader, we read 4096 bytes of additional data beyond the size of

the boot image as reported by the header
• Extra data passed to OpenSSL ASN.1 decoding routines
• Header changes likely due to backward compatibility before signing was

introduced -- has implications for incremental OTA updates

• Signature is computed by hashing two components
• The boot image itself
• The authenticatedAttributes ASN.1 data (in DER form) inside the

AndroidVerifiedBootSignature message
• target - Boot image type (either "boot" or "recovery")
• length - Boot image size, should match the header

• algorithmIdentifier block indicates how to hash/verify images
• boot_signer currently only supports SHA1 or SHA256 with RSA Encryption

• X509 Certificate used to sign the boot image included
• Included certificate for reference only
• In production, the public key in the certificate must be contained in the

keystore managed by the bootloader

 AndroidVerifiedBootSignature DEFINITIONS ::=
 BEGIN
 formatVersion ::= INTEGER
 certificate ::= Certificate
 algorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
 }
 authenticatedAttributes ::= SEQUENCE {
 target CHARACTER STRING,
 length INTEGER
 }
 signature ::= OCTET STRING
 END

Keystores
• A keystore is a signed collection of RSA

key objects, each with an associated
AlgorithmIdentifier

• The FormatVersion and KeyBag fields
are collectively referred to as the
“inner keystore”

• Inner Keystore data signed with an
AndroidVerifiedBootSignature

• Given a full DER keystore message,
some adjustments must be made to the
enclosing SEQUENCE data to create a
valid Inner Keystore message

 AndroidVerifiedBootKeystore DEFINITIONS ::=
 BEGIN
 FormatVersion ::= INTEGER
 KeyBag ::= SEQUENCE {
 Key ::= SEQUENCE {
 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
 }
 KeyMaterial ::= RSAPublicKey

 }
 }
 Signature ::= AndroidVerifiedBootSignature

 END

Inner Keystore

Keystores (Continued)
• Verified boot devices ship with an “OEM Keystore” which is built into the system and

signed by a key managed by the OEM
• keystore_signer tool in system/extras/verity creates keystore binaries

• Implemented with Java BouncyCastle APIs

• On an unlocked device, the end user may enroll their own keystore binary via the
“fastboot flash keystore” command
• Typical scenario: user unlocks device, enrolls new keystore, flashes custom boot/recovery

images, sets bootloader to locked or verified state
• More detail on bootloader states later

• Upon boot, the loader checks if a user keystore is present and will attempt to verify
it using the OEM key if the loader isn’t unlocked
• If the keystore signature doesn’t verify, the user will be may be warned boot before

proceeding to use that keystore to verify images

• Regardless of whether the OEM keystore or the user-supplied keystore used, the
selected keystore is used to verify the boot or recovery images

Fastboot
• Despite its name, simple protocol for communicating with the

device over USB
• Implemented in the bootloader on the device
• Client:
• system/core/fastboot

• Allows issuing commands, flashing images
• Not really any facilities for getting data off the device other

than simple text strings

Bootloader Lock States
• A verified boot capable loader has 3 different security states

• Locked, Verified, Unlocked

• State transitions done via Fastboot commands
• Any state transition should erase all user data

• Defense against attackers with physical access to the device, so that they cannot flash a hacked boot image and
access userdata contents

• /data partition zeroed out; on next boot, fs_mgr will see this and initiate reboot into Recovery to create a
filesystem

• Any state transition should require the user to physically confirm with the device’s buttons that the
state transition is actually desired
• Defense against malware which could otherwise surreptitiously issue ADB and Fastboot commands to unlock the

device without user’s knowledge

• Setting device to “unlocked” state requires option change in Settings app Developer Options
• Not enabled by default, user with proximate access must get past the lock screen to change this
• More details later under Persistent Data Block slides

• Specific commands may vary across implementations
• In Kernelflinger: “fastboot oem {lock|unlock|verified}”

Bootloader States (Continued)
• “Locked” state

• Devices ship to the end user in this state
• No images may be flashed or erased with Fastboot
• Boot/Recovery images verified by the bootloader using enrolled keystore

• “Verified” state
• A subset of targets/partitions may be flashed or erased with Fastboot

• bootloader, boot, system, oem, vendor, recovery, cache, userdata
• Boot/Recovery images verified by the bootloader using enrolled keystore
• Good state for running user-built Android images or third-party images like Cyanogenmod

• Device is still secure, may have to deal with a prompt at boot if keystore isn’t signed by OEM

• “Unlocked” state
• Device may not be unlocked if flag in Persistent Data Block is not set via Settings app
• All Fastboot commands available
• User keystore may be enrolled or erased

• Erasing keystore causes loader to fall back to OEM Keystore for image verification
• “fastboot flash keystore <path to keystore binary>” or “fastboot erase keystore”

• Unlocked devices do not verify boot or recovery images
• User may be warned at boot that the device is unlocked and requires physical interaction to proceed

Bootloader Boot States
• Device's security level expressed as colors

• GREEN - Device is locked or verified, keystore verified by OEM key, selected
boot image verified by the keystore

• YELLOW - Device is locked or verified, keystore NOT verified by OEM key, but
selected boot image verified by the keystore

• ORANGE - Device is unlocked, boot image signature not checked
• RED - Device is locked or verified, boot image NOT able to be verified, boot

cannot continue
• Affects boot policy in Kernelflinger

• The end user is presented with a warning UI and must acknowledge with a
button press for YELLOW or ORANGE state to continue to boot

• RED state cannot boot the device, only option is to halt or enter Fastboot
• Reported in Fastboot UI and also Android property in Kernelflinger

Persistent Data Block (PDB)
• Implemented as a small “persistent” partition in the fstab

• Raw data, does not contain a filesystem
• The very last byte in the partition stores whether unlocking is enabled

• Must contain value 0x01 or unlocking is forbidden

• Not all methods of doing a Master Clear are the same
• A Master Clear initiated by the Settings app will zero the persistent partition along with user data

• Considered trusted as user would have to get past lock screen to do this
• Erasing userdata from Recovery Console or Fastboot in “verified” state does not allow this

• Relevant code
• frameworks/base/services/core/java/com/android/server/PersistentDataBlockService.java
• packages/apps/Settings/src/com/android/settings/MasterClearConfirm.java
• packages/apps/Settings/src/com/android/settings/Utils.java

• Devices with Google Mobile Services store additional user data in the PDB
• Untrusted resets will require Google account sign-in of an account that has been already used by the device,

before the device can be used again
• Discourages thieves

• All bets are off if the device can be rooted

dm-verity
• Linux kernel feature

• http://lwn.net/Articles/459420/
• https://code.google.com/p/cryptsetup/wiki/DMVerity
• https://www.kernel.org/doc/Documentation/device-mapper/verity.txt

• Only supported in Android for ext4 filesystems
• Enforces a specific binary state of the /system and /vendor partitions

• Uses a cryptographic hash tree
• Leaf Nodes: every 4K block in the partition has a SHA256 hash of all the data in it
• Intermediate Nodes: Contains hash of leaf nodes below it
• At the top there is a root hash node which represents the entire disk
• On-demand verification of hashes during disk access, verified up to the root node of the tree

• Root hash is signed with a certificate stored in the boot image ramdisk
• We trust this certificate since it is verified by the bootloader

• Done entirely in software, no hardware support needed

 [root]
 / . . . \
 [entry_0] [entry_1]
 / . . . \ . . . \
 [entry_0_0] . . . [entry_0_127] [entry_1_127]
 / ... \ / . . . \ / \
 blk_0 ... blk_127 blk_16256 blk_16383 blk_32640 . . . blk_32767

http://lwn.net/Articles/459420/
http://lwn.net/Articles/459420/
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://www.kernel.org/doc/Documentation/device-mapper/verity.txt
https://www.kernel.org/doc/Documentation/device-mapper/verity.txt

dm-verity (continued)
• Creation and signing of hashes handled by Android Build System

• Defaults to “verity” key in build/target/product/security
• See section on sign_target_files_apks for details on production re-signing
• Everything you need is provided by AOSP

• Implications
• If enabled, dm-verity enforced for user & userdebug builds
• Significant changes made to the OTA system to support incremental updates

• Now done at a block level instead of per-file basis
• Details about this in my other presentation

• System/Vendor partitions can never be changed or mounted read-write
• Simply mounting changes the superblock!

• Userdebug builds support “adb disable-verity” command to allow for system image
modification
• ‘adb sync’, etc
• Breaks incremental OTA updates from currently installed software, device must be re-flashed

or use full image update before they will work again

dm-verity Metadata & Hash Trees
• Metadata

• Magic number (0xb001b001) (or 0x46464f56 if "adb disable-verity" run)
• Version (0)
• Verity Table signature
• Verity Table length
• Verity Table passed to DM_TABLE_LOAD ioctl()

• Contains block device, block sizes, number of data blocks, root hash, salt, device and
offset of verity hash tree -- see kernel verity.txt for more information

• Signature verified by fs_mgr before passing to the kernel using certificate in ramdisk

• Verity Hash Tree
• Contains all the leaf node and intermediate node hashes
• Used directly by dm-verity code in the kernel, location passed in via Verity

Table

• Relevant code
• build/tools/releasetools/build_image.py now handles overall creation of

dm-verity signed filesystem images
• Composed of the filesystem itself + metadata blob + verity hash tree

• system/extras/verity/build_verity_metadata.py creates metadata blob
• system/extras/verity/build_verity_tree.cpp creates verity hash tree and

computes root hash & salt

Ext4 Filesystem

Metadata (32K)

Hash Tree

Ext4 Superblock

Production Re-signing Process
• By default, all APKs, OTA packages, boot and filesystem images produced by the build

are signed with testing keys
• CTS test exists to check and fail if these test keys are in use
• build/target/product/security

• OTA updates and factory provisioning images are created using a Target Files Package
(TFP)
• ZIP file containing all elements of the build

• sign_target_files_apks tool re-signs everything in the TFP with production keys
supplied by the user
• Regenerate boot images
• Regenerate signed filesystem images
• Replace on-device keys in various locations

• dm-verity key located in root ramdisk
• Bootloader OEM keystore out of scope of this mechanism 16

Bootloader Implementation Considerations
• Need to implement confirmation UX with physical key input for various scenarios

• Improperly signed boot or recovery images
• Improperly signed User keystore
• Device in unlocked state
• Confirm changing device state between locked, unlocked, verified

• Need crypto code which can parse DER ASN.1 messages, DER X.509 certs, SHA256 hashing, RSA
verification
• Don't write your own crypto code
• For EFI Kernelflinger we used EFI-built OpenSSL library from UEFI Shim Project

• Need nonvolatile place to store Fastboot state information
• Ideally store Fastboot lock state, user keystore in area not accessible to running OS
• For EFI devices that can do Fastboot in Boot Services context, we use EFI variables with Boot Services access only

• We relax some security policies in eng/userdebug loaders to make life less annoying for development
• Persistent Data Block ignored, device always unlockable
• State transition UX skipped to assist with automation
• Verity key used to verify boot images is the default AOSP verity key
• All security turned off in Eng builds, loader always acts like it is unlocked with no UX
• Some policies needs to be bypassed in a trusted way during initial device provisioning steps and also RMA process

Configuration Prerequisites for Verified Boot 

• Write a bootloader!
• 01.org distributes Kernelflinger which implements Verified Boot for EFI devices

• Product Makefile:
• $(call inherit-product,build/target/product/verity.mk)

• Enables additional steps in build system to sign boot images, etc
• Set PRODUCT_SYSTEM_VERITY_PARTITION (and also

PRODUCT_VENDOR_VERITY_PARTITION if used) to the device nodes corresponding to
these partitions
• Needed by build_image.py tool

• PRODUCT_COPY_FILES += frameworks/native/data/etc/
android.software.verified_boot.xml:system/etc/permissions/
android.software.verified_boot.xml
• Tells PackageManager that the system supports Verified Boot, which may be required for some

apps to be allowed on the device

• fstab
• Add “verify” to the options for the /system (and also /vendor if applicable) line(s)

Q&A?

