
LibºƎÄCA:
Non-InƓƫusƈƕƞ PoưƄr &
PerƅƎƫmƚƍƜe DƄbƮƆƠinƆ Ưƈƚ J»AÈ
ELCE 2018 - Alexandre Bailon & Patrick Titiano



DemƎ



MotƈƕƚƭiƎnƒ



Map Ǝƅ ƭhƞ PƑoƛlƄƌƚƭic

● Power and Performance debugging requires
○ Non-intrusive ‘access’ to the target, to avoid altering

■ CPU execution flow
■ CPU/Peripherals/Platform power states

○ Realtime monitoring of the target
■ Dynamic view of a use-case for profiling purposes

○ Multi OS / Arch support
○ Open Source

● Can anyone name one such tool?
○ Most tools available today run on target, target a single OS, and share data with host 

via UART/USB/Ethernet/…, and are not applicable during low-power transitions
■ Ftrace, perf, powertop, (h)top, DDMS (Android), Snapdragon Profiler (Android, 

Qualcomm), ...



WhaƓ ƜƎƮlƃ ƛe ƈmƏƫƨveƃ?

● Running on host instead of on target
○ Non-intrusive
○ No code to rebuild/reflash/...

● Use common libraries
○ To enable modular / scalable debug applications

● Define standard way to describe SoC
○ To enable generic (multi-arch) debugging/profiling tools
○ E.g. as Device Tree helped Linux Kernel scales with exploding arch/variants

●



liƁSƎªÄA
(Soª ÄƎnƓƢƧuƎƮs AƍaƥyƙƄƫ)



● Non-intrusive SoC register accesses via JTAG debugger

● Abstracts architectures leveraging SVD files

● OS-agnostic

● Pure python host application

● Sources:
○ https://gitlab.com/socca/lib/libsocca.git
○ https://gitlab.com/socca/apps/pmugraph.git

● Documentation:
○ https://gitlab.com/socca/lib/libsocca/wikis/home

Maƈn ­ƞaƓƔƫƞs

https://gitlab.com/socca/lib/libsocca.git
https://gitlab.com/socca/apps/pmugraph.git
https://gitlab.com/socca/lib/libsocca/wikis/home


WhƘ ±ÕAG?

● Allow non-intrusive R/W accesses to SoC internal registers

● Support (HW) Breakpoint / Watchpoint

● Supported by most SoC / boards

● Manageable via generic OpenOCD SW library



S½Å FilƄƒ?

● Stands for “System View Description”

● Describes SoC registers (address, bitfields, description)

● XML-based

● Conceptually similar to Linux Kernel Device Tree source files



S½Å FilƄƒ

Sample description of a 
device (SoC) in SVD 

format



S½Å FilƄƒ

Sample description of a 
peripheral in SVD format



S½Å FilƄƒ

Sample description of a 
register in SVD format



liƁSƎªÄA ¨rƂơitƄƂƭƮre



LibºƎƂƜƚ ArƂơitƄƂƭƮre



LibºƎƂƜƚ ArƂơitƄƂƭƮre



LibºƎƂƜƚ ArƂơitƄƂƭƮre



LibºƎƂƜƚ ArƂơitƄƂƭƮre



LibºƎƂƜƚ ArƂơitƄƂƭƮre



AlƑeƀƝy AƕƚiƥƀbƋƞ iƧ LƈbºƨÄCA

● Subsystems
○ Clock
○ PMU

● Architecture support
○ ARMv7 & ARMv8
○ AMLogic S905X
○ NXP iMX7ULP
○ STM32F4



PotƄƍƭƢal AƏƩliƂƀƭƢonƒ EƱƀmƏƥƞs
(buƓ ƧƎt ƋƢƦitƄƃ ƭƨ!)



ApƏƥicƀƓƢoƧs

● PMUGraph
○ Realtime plotting of CPU busy cycles (‘CPU Load’), memory access (‘Memory Load’)
○ Collect data from generic ARM Performance Monitoring Unit (PMU)

● Generated overhead on target:
○ CPU: 0 (CPU cores not halted, no code executed) memory
○ Interconnect: 480 Bytes/sec @ 10Hz, 4.8 KBytes/sec @ 100Hz (ARM PMU register reads)

■ Negligible compared to standard interconnect bus speeds (400 MBytes/sec and 
more)

■ Negligible compared to standard JTAG speed (500K Bytes/sec and more)

● Available on gitlab and demo’ed at ELC-E 2018



ApƏƥicƀƓƢoƧs

● Memtool
○ Read / write memory
○ Read / Write registers (using theirs name)
○ Support of registers fields
○ Monitor memory / register accesses using watchpoints / breakpoints

● Available on gitlab
○ Development ongoing, only basic features implemented.



ApƏƥicƀƓƢoƧs

● Clock tool
○ Clock status snapshots (status, speed, statistics, …)
○ Clock changes monitoring / triggering using watchpoints / breakpoints
○ Realtime Clock Tree visualization
○ Runtime clock control (enable / disable clocks on the fly)

● Development not yet started



ApƏƥicƀƓƢoƧs

● Realtime Power & Performance Profiling Tool
○ Realtime collection of SoC data (clocks, PMU, CPU cores/cluster states, GenPD, …)
○ Realtime SoC power measurement (e.g using BayLibre’s ACME)
○ Realtime plotting of all collected data, incl. features like 

■ Start/stop/freeze/resume trace collection, 
■ Trace zoom in/out,
■ Save/load/export trace,
■ Command-line interface to enable further (CI) integration

● Development not yet started.



How EƀƒƲ WrƢƓiƧg ƋƈƛSƨªÄA ¨pƏƬ Ês



How EƀƒƲ WrƢƓiƧg ƋƈƛSƨªÄA ¨pƏƬ Ês



War ºƓƎƫƢes



MajƎƑ «ƢƟfiƂƔƥtƢeƒ FƀƜƞd (1)

● JTAG / ARM Coresight
○ Poor documentation when dealing with connecting to JTAG TAP(s) other than the 

CPU one
○ Debugging capabilities different from one SoC to another

● SVD Files
○ Limited number of platforms providing SVD files
○ Do not include ARM Clusters description (whereas generic)

■ Had to generate it ourselves
○ Does not support file inclusion (‘#include ….’)

■ Developed a tool to ‘append’ SVD files together



MajƎƑ «ƢƟfiƂƔƥtƢeƒ FƀƜƞd (2)

● OpenOCD (Server part)
○ Tricky to get working

■ ARM v7 / v8 changes poorly documented, leading to many crashes will trying to 
set it up for S905X

■ Warnings messages mixed up with command responses causing OpenOCD lib 
unpredictable behaviour

● OpenOCD python library
○ Has a non-friendly way of handling watchpoints or breakpoints

■ Designed for polling on data, not waiting on events
● Perf./stability issues (e.g. asynchronous events may be lost or cause an error 

if received while processing another event)
■ Considering writing a new lib using OpenOCD server API instead



WhaƓ’s NeƗƭ?



WhaƓ’s ƍeƱt?

● Enable watchpoint / breakpoint
○ Avoid data polling for profiling apps

● Integrate CI frameworks
○ Enable regression-testing of use-case KPI / golden settings

● Make LibSoCCA reentrant to enable concurrent use

● Start writing libSoCCA documentation ;-) 

● Support more SoC / Subsystems / IPs

● Develop more libSoCCA apps
○ Runtime Clock Tree Visualizer, KPI Checker, Power Profiler, Power Estimation tool based 

on real data (and not educated guess), ...



CloƒƈƧg



TakƄƚƖaƲs

● JTAG offers a unique solution for non-intrusive real-time monitoring tools

● Similarly to device tree for the Linux Kernel, SVD files helps handling 
multiple architectures and variants

● libSoCCA is an innovative SW framework which helps developing 
generic debugging/profiling tools combining use of JTAG and SVD files

● PMUGraph is just a first basic illustration of libSoCCA potential

● libSoCCA counts on you to create the smartest apps on top of it!



ThaƍƤ yƎƮ!


