It

Using Interrupt Threads F
to Prioritize Interrupts

Aren’t Interrupts the Highest
Priority Already?

Mike Anderson
Chief Scientist
The PTR Group, Inc.

mailto: mike@theptrgroup.com

Coppioht 02010, The
http:/ /www.the ptrgroup.com FiRCroup, .

What We Will Talk About

#What is latency?
#Sources of latency in real-time systems

#Misconceptions about interrupt service
routines

#Executing interrupt code in a thread
context

$Interrupt threads in Linux
#Some notional performance comparisons
#Summary

B —— M.E‘EE

A Definition of Latency

$#Latency can best be described as the
difference in time between when an event
is signaled and when code starts to run
#Operating systems have:
» Scheduling latency
» Interrupt latency
» And more...
#Because we deal with the real world, we
must deal with latency

» The real world is not a very deterministic
place

Inheasscer 5703 Coprge (2010, T PTRG I

/T

Scheduling Latency

#Scheduling latency is the amount of time
between when a high-priority thread
becomes ready to run and when it gets
the CPU
#Affected by:
» Disabling the scheduler

e E.g., the BKL in Linux or taskLock() in VxWorks™
» Non-preemptible system calls

hesdsCl 504 Comrt (200, T PTG, M.E‘EE

Interrupt Latency

#The amount of time between when an
interrupt is signaled and when the ISR
begins to execute

#Affected by:

» Long-duration ISRs
» Disabling interrupts
» The order of interrupt arrival

- T

Taxonomy

Deterministic execution
» This means that code takes the same amount of time
to run every time >
© The holy grail of real-time systems
#Real-time computing
» Computing with a deadline
#Soft real time
» Deadlines are squishy
* Executing after the deadline has diminishing value
$Hard real time
» If you miss the deadline, people get hurt or data is
lost permanently

hesdsCE 506 Comrt (200, T PTG, M.E‘EE

Real-time isn’t Fair

#Embedded RTOS developers know that real-
time applications are decidedly unfair
» Time slicing may or may not exist in your RTOS
#In fact, many RTOSes don’t support round-
robin scheduling very well

» Preemptive, priority-based is the scheduler of choice
® That's SCHED_FIFO to us Linux folks

#This unfairness requires a different mindset
from traditional desktop development
» Can take some getting used to

- T

Preemption in the O/S Kernel

st Ideally, an embedded O/S kernel should be fully
preemptible
» Being fully preemptible enables the most
responsiveness to high-priority code
© Unfortunately, it may also reduce throughput
#Not all kernels are fully preemptible
» Early Linux was a good example of this
#Nearly all kernels have some regions of non
preemptibility
» Semaphore operations, memory allocation, ISR
dispatch, etc.
» The number and duration of these regions will
impact responsiveness

T —— M.E‘EE

Kernel Preemption w/ Low-Latency Desktop

MP3 without Preemption MP3 with Preemption

Selecting Preemption Models in Linux

o

Preemption Latency is Key

#S0, why the emphasis on task preemption
latency?
» If we run our ISRs in threads, we need to
know how long before they can run
#The more responsive the kernel, the more
responsive our interrupt threads
#Long duration, non-preemptible system
calls will kill our performance with the
techniques we’ll discuss

Inheacscetr 55011 Coprge (2010, T PTRG I T

Prioritizing Interrupts

$#For most of us, ISRs represent the highest
priority entity in our system
#The venerable VMEbus supported an interrupt
hierarchy
» Int 5 could preempt Int 4 but not Int 6
s#Unfortunately, PCI bus doesn’t support interrupt
priorities
» Any interrupt can preempt any other interrupt
» Interrupt sharing can make interrupt chains
incredibly long running
#We'd like to be able to prioritize PCl interrupts
as well

IiTheadsCEF S012 oyt (02010, The PTG I M.E‘EE

Notional Linux IRQ Action Table

n
o)
5
v O
EE
5%
B
g3 5
=g 4
g 3
2
1
0
Shared Interrupt Chain
INTheAECEES0.13 Coyrt (9200, T PG I ~2T=

Breaking Training

#We've been trained to think that
interrupt code must be:
» Fast
» Atomic
» Run in a special context
$#But, what processor instructions
must be run in interrupt context?
» Return from interrupt
o E.g., PPC RFl or x86 IRET
» That’s about it

0K, what about fast and atomic?

ITheadsCBF SR04 oyt (02010, The PTG I M.E‘EE

How Fast is Fast Enough?

3 Well, it depends...

» Do we have a buffer that will be overrun?
» When does the hardware interrupt get re—
enabled?

3 Examples such as the Linux kernel NAPI
interface shows us that we can reduce the
number of interrupts and still have
excellent service

» Buffering may be automatic and in hardware

3 If we have to re-arm the interrupt in our
ISR, then it’s likely that the re-arm can
wait until we get to it

» Will data be lost? Is it important?

Inheacscetr 57015 Coprge (2010, T PTRG I T

OK, How about Atomic?

3 Many O/Ses support the concept of nested
interrupts

» E.g., interrupts masked at the PIC rather than at
the CPU itself

» Our interrupt stack must handle worst case
nesting
3 By their nature, nested interrupts are not
atomic
» | could be in the middle of an ISR and get
interrupted by another interrupt
3 It’s likely important to prioritize interrupts

» We may want highest priority interrupt to run to
completion

» Especially true for mission-critical systems

ITheadsCEF §10.16 oyt (02010, The PTG I &ﬂﬁ

ISR Latency Sources

#The most significant ISR latencies come
from two sources
» Disabling interrupts in driver or user code
o E.g., local_irq_disable()/local_irg_enable() in Linux

» Performing non-deterministic operations in
the ISR itself

o E.g., copying packets from network hardware
during the ISR

#A common technique is to separate the
code which must be done immediately
from the code that is non-deterministic

» Known as top-half/bottom-half approach

e — A

Top vs. Bottom Half

#The goal of this approach is to make
the top half deterministic
» Maybe just acknowledge the IRQ and

then schedule post-interrupt work w
® E.g., Atasklet in Linux
» The bottom half runs in a different S
context

» The interrupts are re-enabled
» Lengthy copy operations are moved here
» Rearming the IRQ is the last thing you do
#The bottom half is usually dispatched
as a software ISR
» Little or no ability to prioritize

ITheadsCEF §1018 oyt 0201, The PTG I M.E‘EE

Interrupt Latency Reduction

#We've learned to use bottom halves to
reduce interrupt latency

» Lengthy copy operations can be moved to
SoftlRQ/tasklet/work queue to re-enable
interrupts while the copy proceeds

#Work queues are kernel threads

» They're scheduled, have priorities and can
sleep

#The ISR top half can be a single
schedule_work() call
» This makes the top half deterministic

heacsCEF 55019 o

- T

Scheduling Work

3 The Linux scheduler is O(1)
» Deterministic dispatch time
3 This means that the work queue will be
scheduled in constant time
3 Since the work queue is a thread, it can
run as long as needed (SCHED_FIFO)
» Highest priority wins with the scheduler
3 This means we can use R-T priorities to
prioritize execution of bottom half

» This is something we didn’t have with
tasklets/softIRQs

ThesdsCE 5020 Comrt (200, T PTG, M.E‘EE

10

R-T Patch to the Rescue

#What the R-T patch does is to
institutionalize the work queue
idea

» All hardIRQs and softIRQs execute in
high-priority kernel threads

#Highest priority wins

#Threaded hard and soft IRQs can
be disabled via kernel command
line or in /proc

» hardirg-preempt=0/1
» /proc/sys/kernel/hardirq_preemption
» Similar options for softIRQs

heacsCeF S5021 Coprge (2010, T PTRG I T

Threads are Created Automatically

#You don’t have to do anything special to
run your code in a thread
» request_irq() call creates the thread and
includes your function
if (!(new->flags & IRQF_NODELAY))
if (start_irq_thread(irg, desc))
return -ENOMEM;
#This code will pass your ISR to the
start_irq_thread function
» Creates a kernel thread that calls your ISR
code

mescscar 022 oy (20, PG, . N =T~

1"

The start_irq_thread Call

static int start_irq thread(int irq, struct irq desc *desc)
i
if (desc->thread || lok_to_create_irq_threads)
return 0;

desc->thread = kthread_create(do_irqd, desc, "IRQ-3d", irq):

if (ldesc->thread) (
printk (KERN_ERR "irqd: could not create IRQ thread %d!\n", irq):
return -ENOMEM;

)

/e
* An interrupt may have come in before the thread pointer was

* stored in desc->thread; make sure the thread gets woken up in
* such a case:

*/

smp_mb () ;

wake_up_process (desc->thread) ;

return 0;

)

Inheacscer 5023 ot 0200, T

PrRGrap T

Prioritizing Interrupts w/ Interrupt
Threads

+# We associate each ISR with a unique thread
» Each thread has its own priority
» Threads of the same priority will run back-to-
back in the order they were scheduled
By keeping the ISR short (just schedule the
thread), we make ISR top halves deterministic
» The deterministic scheduler then schedules the
highest priority thread
o Hardware IRQ prioritization is a side effect
+# This means that interrupt thread dispatch is
deterministic
» What you do in the thread doesn’t have to be
Only another ISR or higher priority thread will
preempt you
» This is what we want anyway

[E—

Inheacscetr 57024

12

Reduction of Jitter due to Latency

$#Hereisan =
example of
latency reduction
due to the use of
interrupt threads

#Difference
between the
green and blue
lines is the use of
ISR threads

Inheacscetr 570,25 Coprge (2010, T PTRG I T

View of Threaded IRQs in Linux

3 With the RT patch set enabled, the hard/softIRQs are
automatically run in kernel threads
» Kernel threads use the kernel’s APl and share the address space
with drivers, the kernel etc.

PID TID CLS RTPRIO NI PRI PSR %CPU STAT COMMAND
11T - 0 19 0 0.055 init
2 21s - 5 24 0.05< kthreadd
3 e 9 139 0 0.0S< migration/o
4 s 99 - 139 0 0.0S< posix cpu_timer
5 SFF 50 % © 0.05< softirg-high/e
6 GEF 50 9% 6 0.5S< softirg-timer/o
7 T s0 9% 0 0.0S< softirg-net-tx/
8 BFF 50 - 9 0 0.05< softirg-net-rx/
o oFF 56 9% 6 0.05< softirg-block/e
1 10 FF s0 9% 0 0.0S< softirg-tasklet
e 50 - 9 0 0.05< softirg-sched/0
12 1 56 - 9 0 0.05< softirg-hrtiner
13 13 50 - 9 0 0.0S< softirg-rcu/0
56 56 FF 50 - 9% 0 0.05< IRQ-9
884 884 FF 56 - 9 0 0.05< IRQ-8
022 022 FF 56 - 9 0 0.05< IRQ-12
023 923 FF 50 - 9 0 0.05< IRQ-1

B —— M_E'EE

13

Not Every ISR Should be Threaded

3 You do not have to thread all your ISRs
» Just because you can doesn’t mean you should
3 There are some classes of ISRs where this
approach doesn’t make sense
» Timer ISRs
» ISRs that are already deterministic like receiving
on a serial port

® The overhead of scheduling exceeds their nominal
run time

3 Just try to make sure that everything is as
deterministic as possible

» Make sure that you measure it afterwards to
verify you actually improved responsiveness

Inheacscetr 5027 Coprge (2010, T PTRG I T

Deterministic may not be Faster

$#Because of the issues of preemption and the
overhead of running the scheduler, interrupt
threads may not be faster than the old approach
» It’s deterministic, but not faster
#A good trade for some applications
» A bad one for others
#That’s why you need to use interrupt threads
only where they make sense
3 Interrupt reduction techniques may also be
important
» Eolrfft immediately re-enable the IRQ in the bottom
al

e Poll the device instead to avoid overhead of servicing IRQ
and rescheduling

B —— M.E‘EE

14

Summary

#Real-time means being fast enough
» Determinism is nice to have when you can get it

* Some applications, like audio, require it

#The use of interrupt threads enables developers
to prioritize interrupts and make interrupt
servicing more deterministic

» Jitter goes way down
» May require some system redesign to take full
advantage of threading

#Use interrupt threads judiciously

» Not every ISR needs this approach

Inheacscetr 5029 Coprge (2010, T PTRG I

/T

15

