
Beaglebone – Hands on Tutorial 2-20-13

 Embedded Linux Conference 2013

Sponsors

Speaker

Jayneil Dalal is a FOSS advocate who
loves to explore different open
source technologies and has been a
key member of the PandaBoard.org
project at Texas Instruments. He has
previously presented at Linuxcon
North America 2012, Drodicon 2012
in Berlin, Southeast Linuxfest 2012,
Indiana Linuxfest 2012, Northwest
Linuxfest 2012, Scipy 2011 and
Opensource bridge 2012.

Agenda
● Beaglebone Overview

● Tutorial -1
Blinking the user LED on the Beaglebone

● Tutorial -2
GPIO Programming on the Beaglebone

● Tutorial -3
Physical computing on the Beaglebone

● Q&A

Tutorial Resources
Please download the tutorial guides from the link below:

http://elinux.org/Beaglebone_Guides

Please download the Beaglebone System Reference Manual from the link
below:

 http://beagleboard.org/static/BONESRM_latest.pdf

 Please download the AM335x Technical Reference Manual from the link
 below:

 http://www.ti.com/lit/ug/spruh73g/spruh73g.pdf

http://elinux.org/Beaglebone_Guides
http://beagleboard.org/static/BONESRM_latest.pdf
http://www.ti.com/lit/ug/spruh73g/spruh73g.pdf

Beaglebone Overview

About me
● Who am I?

I am a low-cost credit-card-sized Linux computer
that connects with the Internet and runs software
such as Android and Ubuntu

● How much do I cost?
I cost $89

● Where to buy me?
http://beagleboard.org/buy

● Want to contact me?
#beagle [IRC]
groups.google.com/group/beagleboard

http://beagleboard.org/buy

I am so ripped!
Processor

● 720MHz super-scalar ARM Cortex-A8 (armv7a)
● 3D graphics accelerator ARM Cortex-M3 for power

management
● 2x Programmable Realtime Unit 32-bit RISC CPUs

Connectivity
● USB client: power, debug and device
● USB host
● Ethernet
● 2x 46 pin headers 2x I2C, 5x UART, I2S, SPI, CAN, 66x 3.3V

GPIO, 7x ADC

Software
● 4GB microSD card with Angstrom Distribution
● Cloud9 IDE on Node.JS with Bonescript library

Capes

Box Contents
● Beaglebone
● 4GB sdcard
● USB Cable

Tutorial Accessories
● Breadboard(x1)
● Hookupwires(x4)
● LED(x1)
● Resistor(x1)
● Pushbutton(x1)

Tutorial – 1: Blinking user LED

Preparing the sd card(optional)
The Beaglebone already comes with an sd card that is preloaded with a working
Angstrom image. In any case should you want a newer image or want to program the sd
card again, this section covers it all.

● First download the latest Angstrom image for Beaglebone from the link below:
http://downloads.angstrom-distribution.org/demo/beaglebone/

● At the time of making these slides, the latest image available for download was
'Angstrom-Cloud9-IDE-GNOME-eglibc-ipk-v2012.05-beaglebone-2012.11.22.img.xz'

● Now, identify the correct raw device name (like /dev/sde - not /dev/sde1) for the sd
card

● Now unpack the image to the sd card by writing the following command in the
terminal:

 $ xz -dkc Angstrom-Cloud9-IDE-GNOME-eglibc-ipk-v2012.05-beaglebone-2012.11.22.img.xz > /dev/sdX

● Here 'sdX' stands for the device id of the sd card.

http://downloads.angstrom-distribution.org/demo/beaglebone/

Powering up the Beaglebone
● To power up the Beaglebone, connect it to the

computer via the usb cable.

● Eject the Beaglebone. Upon every boot, the
Beaglebone is the “storage mode” by default. Hence,
this step is done to switch it to “network mode”.

● Access the beaglebone via the terminal:

$ screen /dev/ttyUSB1 115200
Note:- You can also use minicom. But this is just much
easier! Also in most cases the virtual USB serial port is
ttyUSB1. If it does not work, try ttyUSB0 .

● You should be greeted by an Angstrom login. The
username for the same is 'root' and for password, just
press 'ENTER'. You should see the following prompt:

root@beaglebone:~#

GPIO support in the kernel
The kernel in the stock Angstrom image on the sd card has GPIO support.
But in any case to check, follow the steps below:

$ grep GPIOLIB /boot/config-`uname -r`

The output after running the above command should be as shown below:
CONFIG_ARCH_REQUIRE_GPIOLIB=y

Now run the following command in the terminal:
$ grep GPIO_SYSFS /boot/config-`uname -r`

The output after running the above command should be as shown below:
CONFIG_GPIO_SYSFS=y

User LED(s)
There are four user LED(s) on the Beaglebone. The user LED(s) are
accessible from user space on the file system at this location:

/sys/class/leds/

There is one directory per user LED, named as shown below:

/sys/class/leds/beaglebone::usr0/
/sys/class/leds/beaglebone::usr1/
/sys/class/leds/beaglebone::usr2/
/sys/class/leds/beaglebone::usr3/

Inside each one of those directories, there is a file named "brightness". If
you write a "1" or a "0" to this file, then you can control the status of that
led, i.e. , toggle it ON or OFF respectively.

Note:- Since, User LED 0 is already in use to indicate Ethernet activity, you
should use the remaining LED(s) for your projects.

Lets Blink that LED!
Write the following commands in your terminal(First
one is for turning ON and latter for OFF):

echo 1 > /sys/class/leds/beaglebone::usr3/brightness
echo 0 > /sys/class/leds/beaglebone::usr3/brightness

LED OFF

Tutorial – 2: GPIO Programming

Expansion headers
The expansion headers on the beaglebone are
comprised of two 46 pin connectors which are P8 and
P9. All signals on the expansion headers are 3.3V
unless otherwise indicated.

To make sure that you do not damage the GPIO pins
on the Beaglebone, please use a LED whose rating
should not exceed 3.3V/6mA:

GPIO
The pins on the expansion header have multiple functions. To find out what is the default function of a pin, refer the
beaglebone reference manual which can be downloaded from the link below:

http://beagleboard.org/static/BONESRM_latest.pdf

For example, Table-8 on page - 54 describes the default function of each pin on P8 expansion header under the 'SIGNAL
NAME' column. The 'CONN' column describes the actual pin number as seen on the physical board. Tables-9,10 list the other
possible functions of a particular pin on the P8 expansion header.

Once you have identified the pin number which you would like to use as a GPIO, you need to find out its corresponding
reference number in the kernel. For example, if you would like to use pin 23 on P8 expansion header, then find out its default
function as mentioned earlier. Note down the entire signal name. In this case, pin 23 is GPIO1_4. So any GPIO you come
across would be referenced as GPIOM_N. Identify M,N. Use the formula below to find the corresponding reference number in
the kernel:

Reference number = Mx32 + Y

Hence, pin 23 would be referenced as gpio 36 in the kernel.

Now, to change the function of a pin using the kernel you need to access the /sys/kernel/debug/omap_mux directory via the
terminal on the beaglebone. Here your pin will be referenced by the name it is assigned in its mode 0. So, in table - 9, pin 23 is
referenced as gpmc_ad4 in mode 0. Then, identify the mode in which the pin can be used as GPIO. For pin 23, the mode is 7.

http://beagleboard.org/static/BONESRM_latest.pdf

Connection Diagram
Only the pins on the P8 expansion header are used in this case.
Connect the anode of the LED to the 110 ohms resistor
which in turn is connected to pin 23(GPIO) and connect the
cathode of the LED to pin 2(GND) .

Light up the LED
Make sure that the pin you are using is configured to be in the gpio mode. So, run the following command in the
terminal:

echo 7 > /sys/kernel/debug/omap_mux/gpmc_ad4

Export the pin

echo 36 > /sys/class/gpio/export

Since its a GPIO, we need to configure it in the output mode. Write the following commands in your terminal

echo out > /sys/class/gpio/gpio32/direction

Now, let us toggle the LED by typing the following commands in terminal (First one is for turning ON and latter for OFF):

echo 1 > /sys/class/gpio/gpio32/value
echo 0 > /sys/class/gpio/gpio32/value

Unexport the pin once finished

echo 36 > /sys/class/gpio/unexport

Output

Tutorial – 3: Physical Computing

Pullup Resistors

Circuit with
no pullup
resistor

Circuit with
pullup
resistor

Pulldown Resistors

Circuit with
no pulldown

resistor

Circuit with
pulldown
resistor

Push button

Pin Mux Register

Changing mode of the pin
Bits 0-2 are used to change the mode of a pin. Bit-3 is used to enable or disable a pullup/pulldown resistor. Bit-4 will
decide whether that particular pin will use pullup or pulldown resistor. Once you have the beaglebone up and running,
execute the following command in its terminal

$cat /sys/kernel/debug/omap_mux/gpmc_ad4

You will get an output similar to the one shown belowname:
gpmc_ad4.gpio1_4 (0x44e10810/0x810 = 0x0027), b NA, t NA
mode: OMAP_PIN_INPUT_PULLDOWN | OMAP_MUX_MODE7
signals: gpmc_ad4 | mmc1_dat4 | NA | NA | NA | NA | NA | gpio1_4

The mode field tells whether the pin is being used as input or output, whether it is using pullup or pulldown resistor as
well as what is the current mode in which the pin is being used. The signal field tells what are the different possible
functions that this pin can have. Now, in the name field pay close attention to '0x0027'. The number is in hexadecimal
and it indicates the current mux settings for the pin. So, to convert it to binary, just split the two digits and convert them
individually. So, '2' in binary is 10 and '7' in binary is '111'. So '0x0027' in binary would be 10111 where the 1 on the
left most side is the Most Significant Bit(M.S.B.) and the 1 on the right most side is Least Significant Bit(L.S.B.) . In the
pin register, Bit -0 is the L.S.B and Bit - 6 is the M.S.B as the bits above it are all reserved. So, '10111' means the Bits
0-2 have value 1, Bit-3 has a value 0, Bit-4 has a value 0, Bit-5 has a value 1 and rest of the bits are zero padded(set
to zero). This means that this particular pin has been configured to be used in mode-7 which is GPIO mode. Also, the
pin is configured to use pull down resistors but is not using them currently.

Mode-1: Using pullup resistor
Only the pins from P8 expansion
header are being used in this case.

● Connect the GND from pin-1 on the
beaglebone to a leg-1 of the push
button.

● Connect pin-25 on the beaglebone
to leg-2(which is not connected to
the previous leg-1) of the push
button. Connect the cathode of the
LED to leg-4(which is connected by
default to leg-2) of the push button.

● Connect the anode of the LED to a
110 ohm resistor and the other end
of the resistor to pin-29 on the
beaglebone.

Code
#!/bin/bash
#Open the GPIO port
#Pin no. 23 aka input pin
echo 17 > /sys/kernel/debug/omap_mux/gpmc_ad4
echo 36 > /sys/class/gpio/export
echo "in" > /sys/class/gpio/gpio36/direction
#Pin no. 29 aka output pin
echo 7 > /sys/kernel/debug/omap_mux/lcd_hysnc
echo 87 > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio87/direction
Read forever
while :
do
Read value of the GPIO pin
THIS_VALUE=`cat /sys/class/gpio/gpio36/value`
if ["$THIS_VALUE" = "0"]
then
echo 1 > /sys/class/gpio/gpio87/value
else
echo 0 > /sys/class/gpio/gpio87/value
fi
done

In the script, '#' is used for
comments(except for first line). Write the
above script in your favorite text editor, save
it(make sure to add the '.sh' extension at the
end) and place it in on the sd card before
you boot the beaglebone. Or you can use a
text editor like 'nano' on the beaglebone and
write the above script. In any case make
sure the script is executable by typing the
following command in the terminal:

$ chmod a+x <script_name>

Output

Mode-2: Using pulldown resistor
● Connect the pin-4(VDD or 3.3V) on P9

expansion header to leg-1 of the push
button switch.

● Connect pin-25 on P8 expansion
header to leg-2(which is not connected
by default to leg-1) of the push button
via a 1000 ohms resistor. The value of
resistor chosen here is high as we
want to restrict high amount of current
flowing to the gpio pin and damaging
it. So, in this case,the current will be
reduced to 3.3mA which is below the
general 8mA rating of the beaglebone.

● Connect pin-29 on P8 expansion
header to the cathode of the LED.

● Connect the leg-4(which is connected
to leg-2 by default) of the push button
to the anode of the LED via a 110
ohms resistor.

Code
#!/bin/bash
#Open the GPIO port
#Pin no. 23 aka input pin
echo 7 > /sys/kernel/debug/omap_mux/gpmc_ad4
echo 36 > /sys/class/gpio/export
echo "in" > /sys/class/gpio/gpio36/direction
#Pin no. 29 aka output pin
echo 7 > /sys/kernel/debug/omap_mux/lcd_hysnc
echo 87 > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio87/direction
Read forever
while :
do
Read value of the GPIO pin
THIS_VALUE=`cat /sys/class/gpio/gpio36/value`
if ["$THIS_VALUE" = "1"]
then
echo 0 > /sys/class/gpio/gpio87/value
fi
done

In the script, '#' is used for
comments(except for first line). Write the
above script in your favorite text editor, save
it(make sure to add the '.sh' extension at the
end) and place it in on the sd card before
you boot the beaglebone. Or you can use a
text editor like 'nano' on the beaglebone and
write the above script. In any case make
sure the script is executable by typing the
following command in the terminal:

$ chmod a+x <script_name>

Output

Acknowledgements

I would like to thank the following people for their help and support:

● David Anders
● Jason Kridner
● Nishanth Menon

Contact

jayneil.dalal@gmail.com

http://elinux.org/Jayneil_Dalal

mailto:Jayneil.dalal@gmail.com
http://elinux.org/Jayneil_Dalal

How many Beagle(s) are there in the presentation???TRIVIA:

	Widescreen Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

