
Extending the swsusp Hibernation
Framework to ARM

Russell Dill

1

Introduction

• Russ Dill of Texas Instruments

• swsusp/hibernation on ARM
– Overview

– Challenges

– Implementation

– Remaining work

– Debugging

• swsusp restore from U-Boot

• Code at:

– https://github.com/russdill/linux/commits/arm-hibernation-am33xx

– https://github.com/russdill/commits/hibernation

● eLinux.org page: http://elinux.org/ARM_Hibernation

2

https://github.com/russdill/linux/commits/arm-hibernation-am33xx
https://github.com/russdill/commits/hibernation

Motivation

• Hibernation provides zero power consumption sleep

• Allows for snapshot boot

• Shares requirements with self-refresh only sleep modes
– RTC-Only+DDR self-refresh

swsusp

• Mainline hibernation implementation since 2.6.0
– TuxOnIce (Suspend2)

• Uses swap device to store image

• Requires 1/2 of system RAM to be free

• Can be used with uswsusp to support additional features

– Encryption

– Limitless storage options

– Graphical progress

swsusp

swsusp

OMAP PM

• Clocks
– Clock gating

– Clock domains

– Clock scaling

• Power

– Power domains

● Logic
● Retention

– Voltage scaling

• PRCM Controls these features

AM33xx PM Overview

• MPU, PER, and GFX power domains

can be turned off during suspend

• Current OMAP PM core assumes

WKUP domain will always have

power

WKUP Context

• Used for:
– Power, reset, and clock management (PRCM)

– Pin mux configuration

– modules that wake up the processor from suspend

● Such as UART0, GPIO0

– modules that should continue running when processor is in
suspend

● Such as DMTIMER0

• After hibernation, we need to restore this state
– Many critical portions of kernel code depend on devices within the

WKUP domain

● sched_timeout

PRCM – Power Domains

• Represented by arch/arm/mach-omap2/powerdomain.c
– Power state configuration

PRCM – Reset State/Module State

• Represented by omap_hwmod, leverage it

PRCM – Clock Domains

• Represented by arch/arm/mach-omap2/clockdomain.c

PRCM - Clocks

• Leverage the clock tree by adding context save/restore callbacks

pinctrl

• Controls how internal signals are routed to external pins

• Contains memory map of register area, but no complete description of
registers

• AM335X errata complicates the situation, certain registers lose context
when the PER domain powers during suspend

• The pinctrl subsystem needs knowledge of which registers are
available, and which domain they are in.

pinctrl

• Temporary measure, list each power domain register set as a pinconf
function

pinctrl

• Code added to pinctrl to save/restore a pinctrl function group

pinctrl

• Current solution is a bit of a hack and likely not upstreamable.

• Possible solution?
– New type of pinctrl register grouping

– Would contain reference to power domain register group is
contained in

– Code could use syscore suspend/resume callbacks to save and
restore context

• Problem

– omap2+ power domains are currently arch specific

clocksource/clockevent

• clockevent is already handled properly, disabling on suspend and
reprogramming on resume

– Located in PER power domain

• clocksource is assumed to be always running and within a domain that
does not lose power

• clocksource is also required for many kernel delay calculations. Must
be restored before most other kernel code

SRAM

• Internal memory on many OMAP processors used to run suspend
resume code or code that modifies memory controller registers or
clocking

• Currently restored only for OMAP3, but in an OMAP3 specific way –
Make it more general instead

Other Devices

• Many drivers just need to know that their power domain lost context

• Teach arch/arm/mach-omap2/powerdomain.c about hibernation
induced off modes.

Other Devices

• Many drivers that depend on a context loss count function pointer do
not get that pointer under DT based systems

– gpio-omap

– omap_hsmmc

– omap-serial

• Currently a hack fix with a pointer to
omap_pm_get_dev_context_loss_count

– [HACK]: Crosses arch/arm/mach-omap2, drivers/ boundary

• There is a need for a generic framework to inform drivers when their
device has lost power

Other Devices

● Some drivers are misconfigured in such a way to prevent
suspend/resume callbacks during
hibernation

● When not using dev_pm_ops, the
platform_driver .suspend/.resume
callbacks are used for hibernation
thaw/freeze/restore/poweroff
functionality

● However, when using dev_pm_ops
these must be filled in. The helper
macro, SET_SYSTEM_SLEEP_PM_OPS should be used to fill in the
thaw/freeze/restore/poweroff callbacks (unless special
thaw/freeze/restore/poweroff behavior is required).

Other Devices

• Some drivers *do* need special hibernation callbacks

• The omap watchdog requires special handling because the state of the
watchdog under the boot kernel is not known

Saving/Restoring WKUP Domain

• Putting it all together in pm33xx.c

Generic ARM Hibernation Support

25

Hibernation support for ARM
• Minimum implementation

– swsusp_arch_suspend

● Save current cpu state
● Call swsusp_save to snapshot memory
● Return control to swsusp_arch_suspend caller

– swsusp_arch_resume

● Perform page copies of pages in the restore_pbelist

– Copies pages from their restored location to their original location
● Restore cpu state from swsusp_arch_suspend
● Return control to swsusp_arch_suspend caller

– pfn_is_no_save

● Return true if this pfn is not to be saved in the hibernation image

– save_processor_state (Called just before swsusp_arch_suspend)

● Save any extra processor state (fp registers, etc)

– restore_processor_state (Called just after swsusp_arch_suspend)

● Restore extra processor state

• Based on a patchset from Frank Hofmann

Hibernation support - arch_suspend

• swsusp_arch_suspend
– Utilizes cpu_suspend to save current cpu state

– Second argument of cpu_suspend is called after state is saved
– Calling cpu_resume

causes execution to
return to cpu_suspend
caller

– Utilizing soft_restart
disables MMU as
cpu_resume expects

Hibernation support - arch_resume

• swsusp_arch_resume
– Uses stack allocated in

nosave region to prevent
ourselves from
overwriting our stack

– We will overwrite our
code, but with the same
bytes

– Uses cpu_resume to
restore cpu state and
return to cpu_suspend
caller
(swsusp_arch_suspend)

AM33xx Hibernation Support

• With prep work done, adding hibernation support to AM33xx is actually
fairly straightforward

• begin/end wrap all hibernation code

• We use disable/enable_hlt to prevent

pm_idle from being called

• The enter call back just powers down

the machine

• These calls make sure that the

hardware is in the same state before

running the restored image as when it

was made

AM33xx Hibernation Support

● pre_snapshot saves all our state registers and prepares the GPIOs
for power loss

● leave is called after restoring an image. We inform the power
domains that they have lost power and we restore our wkup context

● finish is called both after
restoring an image (after leave)
and after snapshotting the
system. We continue our
context restore and also undo
the actions in pre_snapshot

Debugging Methods

• Debugging can be difficult as the hardware is usually in some unknown state.

• Debugging using GPIOs
– GPIOs are usually pretty easy to configure clocks for and enable with just a

few register writes, even from assembly

– Binary search of where the code is failing can be performed by moving the
GPIO enable around

• printk

– The kernel logging facility is useful so long as you are getting to a point where
serial output is enabled

• openocd
– Usually PC is down in the weeds

– openocd+gdb?

• Register map comparisons
– Utilizing devmem2 to snapshot register values before and after a hibernation file

is useful to track down missed registers or buggy restore code

Restore from U-Boot

32

swsusp and U-Boot

• Restoring from hibernation just involves copying pages from disk into
memory and jumping to an address

– Thats what U-Boot does!

• Restoring from U-Boot can be faster than booting a kernel just to copy
pages

• Issues

– U-Boot has no idea what address
to jump to

– U-Boot doesn’t know the
contents or even location
of the nosave pages

Kernel Modifications – nosave section

• U-Boot doesn’t know about
nosave pages or their address

• We instead save and restore
them from the kernel

• Backup nosave pages are
saved at boot

• Special version of cpu_resume
is provided that restores
nosave pages before calling
the real cpu_resume

Kernel Modifications - cpu_resume

• Need to pass address of cpu_resume function to U-Boot
– Store in swsusp_info page

– Add arch callback for storing that data in the swsusp_info page

• Just stores the physical address of the new version of cpu_resume that
first copies the nosave pages

swsusp Image Layout

● Each metadata entry is associated with the same numbered data
page

● Each data page is to be loaded into memory at the pfn indicated by
its metadata pfn
entry

U-Boot modifications

• Provide cmd_swsusp
– No-op if S1SUSPEND sig

does not exist
– Rewrites sig with orig_sig to prevent boot loop on bad image

● Snapshot booting can populate orig_sig with S1SUSPEND

– Reads in metadata pages with pfn mappings

● Also populates bitmap of used pages for easy access to free pages

– Copy each data page to memory

● Original location if it is free

● Other wise copy to first available free page and update remap list

– Copy finish function and cpu_resume address to free data page

– Run finish function from free data page (use stack contained in free page)

● Copies remapped pages to their correct location

● Jumps to cpu_resume function

U-Boot Memory Mapping

• The U-Boot memory mapping makes it very easy to see if
we can load a page directly into its original location

• If not, we load it into a location not used by U-Boot or the
final location of any of the swsusp pages

Loading pfn and Free Page Mapping

• We utilize malloc’d pages to store the pfn index

• Mark used pages as we go

Loading swsusp Pages Into Memory

• Utilize free pages to store remapping lists, malloc’d data will be
overwritten

• min_page is first free page in U-Boot memory map

• max_page is last free page in U-Boot memory map (well before stack
pointer)

• If a page is to be copied into
U-Boot’s memory space, it is
instead copied into an unused
free page

Prepare to Copy Remapped Pages

• Final copy must happen from memory unused by swsusp or U-Boot
– remap_orig/remap_temp already exist in free page

– Utilize free page for final copy of remapped pages

● Copy swsusp_finish into page
● Copy context

information into page
● Setup stack pointer at

end of page

Copy Remaining Pages

• Moved remapped pages into their originally intended location

• Call cpu_resume (actually cpu_resume_copy_nosave)

Lessons Learned/Open Issues

• Save/Restore context function
– Bit of a hack, better to keep context as we go and look at context

loss count

● /dev/mem bitbangers?
● Registers that are initialized at boot and never read by the

driver?

• Over zealous restore
– Don’t restore context of clocks who’s parents are disabled

● Check to make sure clock drivers are programming
appropriate registers on resume

• Setup debug framework early

• pinctrl
– Properly integrate with system

Questions?

Introducing:
 The Next-Gen BeagleBone

An introduction worthy of a black tie affair.

• New color for Spring
• New and improved features
• Bold move to more performance

 for lower cost

Want a sneak peek and information on
advanced ordering options?

Make an impression. Register your interest today.
beagleboard.org/unzipped

