

System-wide Memory Management
for Linux Embedded Systems

Revision 1.0

Presented by:
Howard Cochran
cochran@lexmark.com
Lexmark International

at:
Embedded Linux Conference
February, 2013

Embedded Linux Conference 2013 2

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

We're publishing these
as Free (Libre) Software!

Embedded Linux Conference 2013 3

Memory Use – No memory pressure

Locked in RAM - Unevictable Kernel RAM

Locked in RAM - Anonymous RAM

(Evictable) Kernel slab cache

(Evictable) Mapped Page Cache

(Evictable) Unmapped Page Cache & Buffers

Unused

Locked in RAM

Embedded Linux Conference 2013 4

Memory Use – Light Pressure

Locked in RAM - Unevictable Kernel RAM

Locked in RAM - Anonymous RAM

(Evictable) Kernel slab cache

(Evictable) Mapped Page Cache

(Evictable) Unmapped Page Cache & Buffers

Unused

Locked in RAM

Embedded Linux Conference 2013 5

Memory Use – Anonymous Growing

Locked in RAM - Unevictable Kernel RAM

Locked in RAM - Anonymous RAM

(Evictable) Kernel slab cache

(Evictable) Mapped Page Cache

(Evictable) Unmapped Page Cache & Buffers

Unused

Locked in RAM

Embedded Linux Conference 2013 6

Heavy Pressure – Thrashing

Locked in RAM - Unevictable Kernel RAM

Locked in RAM - Anonymous RAM

(Evictable) Kernel slab cache

(Evictable) Mapped Page Cache

(Evictable) Unmapped Page Cache & Buffers

Unused

Locked in RAM

Embedded Linux Conference 2013 7

Extreme Pressure – Crash!

Locked in RAM - Unevictable Kernel RAM

Locked in RAM - Anonymous RAM

(Evictable) Kernel slab cache

(Evictable) Mapped Page Cache

(Evictable) Unmapped Page Cache & Buffers

Unused

Locked in RAM

Embedded Linux Conference 2013 8

Linux without swap
● The ramp-up from "memory pressure" to "hard crash"

is steep.
● out_of_memory killer - Kills an arbitrary process

– There are /proc tunables to influence who OOM killer
chooses

– For embedded, ANY invocation of OOM killer could be fatal

Embedded Linux Conference 2013 9

Anonymous Memory
● Locked into RAM (unless you have swap)
● Are the majority, in my experience

– Often 80+%
● Workstations use swap to provide virtually endless

supply of anonymous pages.
● Developers get lazy - no one expects malloc() to fail

Embedded Linux Conference 2013 10

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 11

My problem space:

Embedded Linux Conference 2013 12

My problem space
● A few “large” processes for core functionality:

– Many threads.
– Some threads are REALTIME ~10ms deadlines
– Non-RT threads use lots of anonymous RAM
– “GiveBack”: A malloc() can stall while other subsystems

free caches or wait for previous processing to complete.
– All allocations can fail.

● Many smaller processes in system
– Typically off-the-shelf, built on glibc malloc
– Some are long-running services
– Occasional spikes in memory usage.
– Code usually cannot tolerate malloc returning NULL.

Embedded Linux Conference 2013 13

Themes
● Return pages to kernel when possible
● Coordinate anonymous memory between processes
● Avoid Real-time failures related to mmap_sem

Embedded Linux Conference 2013 14

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 15

glibc heap

heap mmap

Program break

Unmapped address space

Allocated objects

Mapped, non-resident pages

Embedded Linux Conference 2013 16

glibc heap - allocating

heap mmap

Program break

Unmapped address space

Program allocating
new objects

Embedded Linux Conference 2013 17

glibc heap – allocating

heap mmap

Program break

Unmapped address space

Program allocating
new objects

Embedded Linux Conference 2013 18

glibc heap – allocating

heap mmap

Program break

Unmapped address space

Program allocating
new objects

Embedded Linux Conference 2013 19

glibc heap – grows heap via brk()

heap mmap

Program break

Unmapped
address space

Program allocating
new objects

brk()

Embedded Linux Conference 2013 20

brk() is bad for other realtime threads

heap mmap

Program break

Unmapped
address space

Program allocating
new objects

brk()

brk() modifies a kernel vma.
down_write(current->mm->mmap_sem)
In-process Realtime threads fail deadlines!

Embedded Linux Conference 2013 21

mmap_sem
● Is a read/write semaphore in the kernel

– Can have many concurrent readers
– Can have only one writer.
– When writer has a lock, must be no readers
– If a writer is waiting to acquire lock, new attempts to get

read lock will block, even if reader is realtime.
● It is per thread group (i.e. per-mm)
● No priority inheritance – causes priority inversion
● Need write-lock to modify process's mmap

Embedded Linux Conference 2013 22

mmap_sem (continued)
● Realtime threads often need read-lock

– Minor page faults
– do_cache_op()
– get_user_pages()
– copy_to_user – some implementations
– signal delivery

Embedded Linux Conference 2013 23

glibc heap – allocating

heap mmap

Program break

Unmapped
address space

Program allocating
new objects

Embedded Linux Conference 2013 24

glibc heap – allocating

heap mmap

Program break

Unmapped
address space

Program allocating
new objects

Embedded Linux Conference 2013 25

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 26

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 27

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 28

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 29

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 30

glibc heap – freeing

heap mmap

Program break

Unmapped
address space

Freeing objects

Embedded Linux Conference 2013 31

glibc heap – freed pages still pinned!

heap mmap

Program break

Unmapped
address space

“Freed” pages still mapped;
Without swap, still pinned in RAM!

Embedded Linux Conference 2013 32

glibc heap – cannot shrink heap

heap mmap

Program break

Unmapped
address space

“Freed” pages still mapped;
Without swap, still pinned in RAM!

Glibc cannot shrink heap until

highest allocated object is freed

Embedded Linux Conference 2013 33

glibc heap – concurrent allocation

heap mmap

Program break

Thread A:
allocating

Unmapped
address space

Embedded Linux Conference 2013 34

glibc heap – concurrent allocation

heap mmap

Program break

Thread A:
allocating

Thread B:
allocating

concurrently

Glibc creates new arena:
Thread-local mmap

Embedded Linux Conference 2013 35

glibc heap – alloc from arena

heap mmap

Program break

Thread B's next allocation comes from this arena,
even when not concurrent.

Dirties even more pages unnecessarily!

arena mmap

Embedded Linux Conference 2013 36

glibc heap – alloc from arena

heap mmap

Program break

arena mmap

Embedded Linux Conference 2013 37

glibc heap – free within arena

heap mmap

Program break

arena mmap

Freed objects
still pinned in RAM

Embedded Linux Conference 2013 38

glibc heap – free within arena (pinned!)

heap mmap

Program break

arena mmap

Freed objects
still pinned in RAM

Embedded Linux Conference 2013 39

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 40

membroker
● Service from which apps can cooperatively negotiate

memory "quota" system-wide.
● Does not physically manage memory

– kernel does that.
● Reads from .conf file, which sets limit

– For Lexmark, the .conf file is generated by a script, based
on static tuning and amount of installed RAM.

Membroker is published under LGPL 2.1
https://github.com/lxkiwatkins/membroker.git

Embedded Linux Conference 2013 41

membroker – components
● mbserver – long-running service
● Clients communicate via socket – simple protocol
● libmbclient.so – Client library handles communication

– libmbclient does no memory allocations

Embedded Linux Conference 2013 42

membroker - interactions
● Membroker maintains:

– Global “available quota”
– A list of currently connected clients
– How much quota is owned by each client

● Client asks for quota
– Membroker decrements available quota and gives to client
– If quota not available:

● Ask other clients if they can give back quota
● Can stall client request until gets enough or gives up and rejects

Embedded Linux Conference 2013 43

membroker – two types of clients
● Simple client

– Only client can initiate a membroker transaction
– Two kinds of transactions:

● Ask for quota
● Return quota when no longer needed

● Bidirectional client
– Can also receive a request from membroker to “give back”
– Give back request can normal or urgent.
– Client may free caches, do a garbage collection, wait for

some operation to finish, etc.

Embedded Linux Conference 2013 44

membroker in action

membroker service

quota

Simple Client

Request Quota

Bidi Client

Bidi Client

Embedded Linux Conference 2013 45

membroker in action

membroker service

quota

Simple Client

Request Quota

Bidi Client

Bidi Client

decrement

Embedded Linux Conference 2013 46

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

increment

decrement

Return Quota

Embedded Linux Conference 2013 47

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Embedded Linux Conference 2013 48

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Request Quota

insufficient

Embedded Linux Conference 2013 49

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Request Quota

G
iveback?

Giveback?

Embedded Linux Conference 2013 50

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Request Quota

G
iveback?

Giveback?

Embedded Linux Conference 2013 51

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Request Quota

G
iveback?

Giveback?

Embedded Linux Conference 2013 52

membroker in action

membroker service

quota

Simple Client Bidi Client

Bidi Client

Request Quota

Embedded Linux Conference 2013 53

membroker – two levels of urgency
Low urgency (aka “REQUEST”)
● May block while membroker sends Low-urgency

giveback request to bidi clients.
● Does not wait indefinitely.
● May return fewer pages than requested.

High urgency (aka “RESERVE”)
● May block indefinitely.
● Will send giveback “RESERVE” message to bidi

clients.
● Only fails if all bidi clients refuse giveback.
● Returns either all of requested quota or none of it.

Embedded Linux Conference 2013 54

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 55

Acknowledgement
membroker and anrmalloc written by:

Ian Watkins
iwatkins@lexmark.com

Embedded Linux Conference 2013 56

ANR malloc - A new allocator
Crucial "embedded-friendly" features:
● Return unused pages to system when possible

– madvise(MADV_DONTNEED)
● Avoid changes to process's memory map

– i.e. Friendly to real-time threads in same process
● Client can set limit on memory use.

anrmalloc is published under LGPL 2.1
https://github.com/lxkiwatkins/anrmalloc.git

Embedded Linux Conference 2013 57

ANR malloc – Why the name “ANR”?
Author, Ian Watkins, didn't want to call it “iwmalloc”,
so...

The three letters most commonly occurring in the last
names of its designers are A, N, and R...

● Ian Watkins

● Scott Arrington

● Steven Walter

● Howard Cochran

Embedded Linux Conference 2013 58

ANR malloc - Additional Features
Good space efficiency
● Small allocations use slabs

– avg 2-3 bits overhead
● Larger allocations use DL-malloc-like algorithm

– ~1 word overhead
● Slab sizes are controlled by a .conf file

Good speed
● In malloc-heavy real app tests, indistinguishable from

glibc.
● In synthetic, pure malloc test, noticeably slower

Optional mark & sweep garbage collection

Embedded Linux Conference 2013 59

ANR malloc – Debug Features
● All of these are optional and run-time configurable:
● “Flight Data Recorder” - last N client operations
● Guard word at top and bottom of each object to

detect overruns
● Store N levels of call stack with each allocation
● Allow client code to stuff additional debug info in

each allocated object.
● Debug socket to dump debug data
● Compatible with valgrind on x86
● Fill-with-trash on free

Embedded Linux Conference 2013 60

ANR malloc - Returns RAM to linux
● Maintains a bitmap of which pages in its mapping are

in use.
● During free:

– If possible, combine with adjacent free area
– Mark in bitmap any pages newly made unused.
– When a threshold of freeable pages reached:

● Use madvise(MADV_DONTNEED) to return them to the kernel
● Hysteresis avoids thrashing madvise + page fault

● Volatile Ranges?
– anrmalloc might become a basis for taking advantage of

upcoming Volatile Range kernel support.
– See http://lwn.net/Articles/518130/

Embedded Linux Conference 2013 61

ANR malloc

ANR malloc's really large mmap

Allocated objects

Embedded Linux Conference 2013 62

ANR malloc

ANR malloc's really large mmap

Freeing Object –
pages returned to

kernel

Embedded Linux Conference 2013 63

ANR malloc

ANR malloc's really large mmap

Freeing Object –
pages returned to

kernel

Embedded Linux Conference 2013 64

ANR malloc

ANR malloc's really large mmap

Freeing Object –
pages returned to

kernel

Embedded Linux Conference 2013 65

ANR malloc - Antifeature!
Access is serialized via mutex.
● Why? To avoid having to dynamically create "arena"

mapping when concurrent allocation occurs
– Would cause RT misses in other threads

● free() will not block
– If lock held, actual free is deferred.

● It is still thread-safe.

Embedded Linux Conference 2013 66

ANR Malloc - Two APIs
gmalloc
● A transparent replacement for glibc malloc

anr_malloc
● "Full featured" API for clients who need everything.

anr_core
● "Base class" for both of the above.

Embedded Linux Conference 2013 67

gmalloc - Replace glibc malloc
● Use dynamic linker to override glibc functions

– malloc, free, calloc, realloc, posix_memalign
– Can use LD_PRELOAD to affect unmodified app
– Reads configuration from .conf file or the environment

● What you get:
– Gives freed pages back to kernel
– Never modifies process's memory map behind your back

(for Realtime safety)
– Automatic membroker integration (Optional)

● Block malloc while ask membroker for quota.
● Returns unused quota to membroker (w/ hysteresis)

Embedded Linux Conference 2013 68

gmalloc
● Configurable fixed max limit

– Will not exceed, even if membroker could provide quota.
● Can force abort when app exceeds limit.

– Or just return NULL
● Can enable call-stack debug data per allocation

Embedded Linux Conference 2013 69

gmalloc – What you don't get
● Does not allow membroker to ask it to “give back”

– i.e. not a “bidi” client
● Does not provide garbage collection support
● App cannot make allocations with different level of

urgency

Embedded Linux Conference 2013 70

anr_malloc interface (1/3)
● Much more control; must customize app
● App must call anr_* functions instead of malloc, free.
● Optional support for mark & sweep Garbage

Collection:
– App initiates G.C. when desired.
– All subsystems that use anr_malloc register for a “mark

your stuff” callback
– During G.C., anr_malloc calls all registered marking

functions.
– When done, any objects not marked are garbage:

● Optionally, it can free free them.
● Optionally generate a “leak report”

Embedded Linux Conference 2013 71

anr_malloc interface (2/3)
● Register for “need more memory” callback

– This callback may do any of these:
● Free cached objects.
● Initiate an ANR garbage collection.
● Ask membroker for quota

– OK to stall indefinitely.

Embedded Linux Conference 2013 72

anr_malloc interface (3/3)
● Variations of malloc:

– anr_malloc() – normal.
● May call “need more memory” callback.
● May block indefinitely.
● If fails, returns NULL.

– anr_malloc_if_available() –
● Succeeds if quota readily available, or fails fast.
● Not allowed to call “need more memory” callback.

Embedded Linux Conference 2013 73

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 74

track_fs – membroker aware tmpfs
● FUSE filesystem
● Layers on top of tmpfs
● During write, compares quota with what devstat says
● If needed, requests more quota from membroker
● Returns ENOSPC if membroker cannot give quota
● Very simple – file ops serialized via mutex
● During unlink, gives quota back to membroker
● Modularized – could membroker interaction is in

separate shared object easily replaced.
● Does not support mmap.

track_fs is published under GPLv2
https://github.com/...

Embedded Linux Conference 2013 75

Agenda
● The Problem:

– How Linux kernel manages memory
– Memory challenges in Lexmark devices
– Limitations of glibc malloc for embedded

● Our Solution:
– membroker service
– ANR malloc & gmalloc
– track_fs
– Configuration

● Q&A

Embedded Linux Conference 2013 76

Typical Configuration
● Make mapping for anr_malloc or gmalloc be twice as

large as the most quota that you expect to have.
– Internal limit (quota) can change, but can keep mapping

the same.
– Reduces fragmentation.
– Extra large mapping is almost free due to madvise().
– .conf file or app controls mapping size.

Embedded Linux Conference 2013 77

Typical Configuration – membroker
● Set membroker's quota to most of RAM

– Exclude page cache working set, kernel pages, DMA
buffers, thread stacks.

– Tune this limit by trial and error
● Stress test device
● Watch /proc/meminfo, /proc/vmstat – pgmajfault for signs of heavy

memory pressure
● Slowly give membroker more quota until see pressure, then back

off a bit.

Embedded Linux Conference 2013 78

Thank You!
● Acknowledgements:

– Ian Watkins, iwatkins@lexmark.com
● Author, anrmalloc & membroker

– Scott Arrington, Steven Walter – design
– Randy Witt – author, track_fs.

● Contact:
– Howard Cochran cochran@lexmark.com

● Source Code:
– https://github.com/lxkiwatkins/membroker.git
– https://github.com/lxkiwatkins/anrmalloc.git
– https://github.com/zedian/track_fs

mailto:iwatkins@lexmark.com
mailto:cochran@lexmark.com
https://github.com/lxkiwatkins/membroker.git
https://github.com/lxkiwatkins/anrmalloc.git
https://github.com/zedian/track_fs

Embedded Linux Conference 2013 79

Bonus Slides...

Embedded Linux Conference 2013 80

Future Work
● membroker:

– Different classes of clients with independent quotas
– Utilize low-memory notification from kernel

● anr_core
– Support 64-bit architecture
– Optional “arena” concurrency for apps with no RT code

● Other
– Provide library to add membroker integration for anrmalloc

client.
● track_fs

– Add concurrency
– Support mmap
– Optional “non-urgent”-only membroker integration.

Embedded Linux Conference 2013 81

Alternative – RT safety only
● glibc malloc doesn't call brk() directly, but a

__morecore() function that your app can override.
– App can make a large brk() call at startup, and never grow

it.
● Avoid arena creation

– Use dynamic linker to override all glibc malloc functions
– Simpler wrapper
– Lock a mutex, then call the real glibc function, then unlock.
– Use mallopt(M_MMAP_MAX, 0) to prevent separate mmap

for large allocations.

Embedded Linux Conference 2013 82

Alternative – Tracking without gmalloc
● What if?:

– You want to use glibc malloc, not a custom allocator.
– You only need to roughly track memory usage
– You don't care about returning unused pages to linux

● Override glibc's __morecore
– Normally __morecore is sbrk()
– Your __morecore could:

● Request or return quota from membroker
● Call sbrk()

● Use techniques on previous slide to prevent mmap or
arena creation in glibc malloc.

Embedded Linux Conference 2013 83

Handling OOM Crash
● Out of Memory failures are hard to debug

– For our devices, any actual OOM task kill is a crash.
● We must reboot

– Generally, shell is unresponsive.
– Cannot fork() tools to read information from /proc, etc.

Embedded Linux Conference 2013 84

Handling OOM – Kernel Hack Method
● Hack out_of_memory():

– Make out_of_memory() simply return unless it has been
called many times in short period (i.e. “try harder).

– Make it panic instead of kill a process
– Make panic path to dump some info to flash storage:

● /proc/meminfo
● For all /proc/pid/smaps, dump sums of writable private dirty (i.e.

unevectable) pages
● Dump maps for the “largest” process in the system

● Disadvantages:
– Hacky, maintenance burden
– limited to only what you chose ahead of time to collect

Embedded Linux Conference 2013 85

Handling OOM – Sacrificial Lamb Method
● Force kernel to select a specific process to kill

– Use /proc/pid/oom* nodes to accomplish this
● Parent is debug monitor – receives SIGCHLD

– Parent can use freezer control groups to halt most activity
– Let parent be SCHED_FIFO
– Parent may collect more debug data
– May allow debug shell to operate for leisurely debug

Embedded Linux Conference 2013 86

Memory Control Groups, oom_notify
● Put most processes in a large memory control group
● Have debug processes live in a smaller control group
● A debug process can listen for oom_notify event

– Kernel will suspend allocations from main group for you
– Debug process can leisurely collect debug data
– Might could even implement a non-fatal recovery strategy

● We have not tried memory controllers yet:
– The code appears fairly heavy-weight
– It broke the “lumpy reclaim” algorithm on ARM

● Lumpy reclaim was crucial for us
● No longer an issue since Mel Gorman replaced lumpy reclaim with

page COMPACTION.

Embedded Linux Conference 2013 87

Recap: Problems with glibc malloc
● Uses sbrk() to increase size of heap mapping
● The only way it can return heap to kernel is by

shrinking the heap mapping via sbrk().
– Even one extant allocation near end of mapping prevents

shrinking.
– Cannot return unused pages in middle of heap

● Achieves thread concurrency by creating a new
mapping for second thread (arena).
– These are sticky; may never unmap these

● Not Realtime-safe: Use of mmap, sbrk will break any
RT threads within the process!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

