GENERIC PHY FRAMEWORK

Kishon Vijay Abraham |

About Me

I'm Kishon Vijay Abraham
 Signed-off-by: Kishon Vijay Abraham | <kishon@ti.com>
Working in Texas Instruments since 2007
Contributing to linux kernel for the past four years
Develop and Maintain PHY Subsystem (drivers/phy)
Develop and Maintain PCle glue for DRA7xx
USB DWC3 driver support in u-boot

Presented a paper on “USB Debugging and Profiling Techniques” in
ELCE 2012 and “Generic PHY Framework: An Overview” in ELCE
2014

2

i3 TEXAS
INSTRUMENTS

Agenda

* Introduction

* Building blocks of PHY

* PHY Integration

* Existing Mechanisms

* Introduction to Generic PHY Framework
* Using Generic PHY Framework

* Generic PHY Framework Internals

* Upcoming

3

i3 TEXAS
INSTRUMENTS

Introduction

* PHY is an abbreviation for physical layer
* Responsible for transmitting data over a physical medium
* PHY connects the device controller with the physical medium
— USB
— SATA
- PCIE
— ETHERNET

4

i3 TEXAS
INSTRUMENTS

BUILDING BLOCKS

CLOCKS &
POWER CONTROL

ENCODER/
DECODER

ERROR CORRECTION/
COLLISION DETECTION

SERIALIZER/
DE-SERIALIZER

SCRAMBLER/
DE-SCRAMBLER

PLL CLOCK
SYTHESIZER

13 TeExas
INSTRUMENTS

PHY INTEGRATION

* PHY integrated within the controller
* PHY integrated within the SoC

e PHY external to the SoC

6

i3 TEXAS
INSTRUMENTS

PHY WITHIN THE CONTROLLER

* Shares the same address space with the controller

* No separate PHY driver is required

7

13 TEXAS
INSTRUMENTS

PHY WITHIN THE SoC

* Connected to the controller using UTMI, PIPES3 interface specification

* Should have a separate PHY driver

8

13 TEXAS
INSTRUMENTS

PHY EXTERNAL TO THE SOC

* Connected to the controller using ULPI etc..

* Should have a separate PHY driver

9

13 TEXAS
INSTRUMENTS

Existing Mechanisms

* USB: USB PHY library
— Comprehensive library with dt and non-dt support
— Can be used only with USB PHYs

* PHYs are programmed in the controller driver itself

— PHY and controller are tightly bound. Changing the PHY IP will
break compatibility.

. . . Lin olatf I |
- ot it o

10

i3 TEXAS
INSTRUMENTS

Generic PHY Framework

PHYs integrated outside the controller

Allows the PHY to be controlled from the controller driver

Derived from USB PHY Framework

Used across different subsystems USB, SATA, PCle

Supports dt and non-dt boot

Invokes pm_runtime_(*) APIs

11

i3 TEXAS
INSTRUMENTS

Generic PHY Framework

CONTROLLER
DRIVERS
(drivers/usb/
musb/

dwc3/)

Controller Driver interface

PHY CORE
(drivers/phy/
phy-core.c)

PHY Driver interface

PHY DRIVERS
(drivers/phy/)

12

i3 TEXAS
INSTRUMENTS

Using Generic PHY Framework

* Bind the controller device and PHY device
— Device tree
— Non device tree
* PHY drivers
— should implement phy_ops (init, exit, power_on, power_off)
— Register with the PHY Framework
* Controller drivers
— Get a reference to the PHY

— Invoke PHY framework APIs (phy_Init, phy exit, phy power_on,
phy power_off)

13

i3 TEXAS
INSTRUMENTS

Device Tree

* PHY device node

— #phy-cells: Number of cells in the PHY specifier
* Controller device node

— phys: list of phandles to the PHY device

— phy-names: the names of the PHY corresponding to the phandle
present in the in the phys property

* Device tree binding documentation

Documentation/devicetree/bindings/phy/phy-bindings.txt

14

i3 TEXAS
INSTRUMENTS

Device Tree: Example 1

phy {
compatible = “phy*;

#phy-cells = <0>;
}

controller {
compatible = “controller”;

phys = <&phy>;
phy-names = “phy”;

15

i3 TEXAS
INSTRUMENTS

Device Tree: Example 2

phyl {
compatible = “phyl“;

#phy-cells = <0>;

}
{
compatible = “phy2“;
#phy-cells = <1>;
}
controller {
compatible = “controller”;
phys = <&phyl> < PHY TYPE>;

phy-names = “phyl”, “phy2”;

16

i3 TEXAS
INSTRUMENTS

Device Tree: Example 3

{
compatible = “phy provider”;
/* implement multiple PHYs: PHY_TYPEl and PHY_TYPE2 */
#phy-cells = <1>;

}
controller {
compatible = “controller”;
phys = < PHY TYPE1> < PHY TYPE2>;

phy-names = “phyl”, “phy2”;

18

i3 TEXAS
INSTRUMENTS

Non Device Tree

* Mapping should be created at runtime by using the following API

int phy create lookup(struct phy *phy, const char *con id,
const char *dev_id)

 Should have a reference to the PHY and the device name of the
controller device.

* Used only in two places
— dwc3 host
— twl4030 USB PHY

19

i3 TEXAS
INSTRUMENTS

Sample PHY driver

drivers/phy/phy-sample.c

static int sample phy init(struct phy *phy) {
/* Initialize Sample PHY */

static int sample phy power on(struct phy *phy) {
/* Enable clocks and
power on Sample PHY */
}

static int sample phy power off(struct phy *phy) {
/* Disable clocks and
power off Sample PHY */
}

static int sample phy exit(struct phy *phy) {
/* Sample PHY cleanup */

20

i3 TEXAS
INSTRUMENTS

Sample PHY driver

struct phy ops sample phy ops ({
.init = sample phy init,
.power on = sample phy power on,
.power off = sample phy power off,
.exit = sample phy exit,

}i

/* Sample PHY specific implementation of of xlate.
* sets the PHY to the mode obtained from of phandle args.
* If the PHY provider implements multiple PHYs, then this of xlate should
* find the correct PHY from the np present in of phandle args and return it
*/
static struct phy *sample phy xlate(struct device *dev,
struct of phandle args *args) ({
sample->mode = args->args[0];
return sample->phy;

21

i3 TEXAS
INSTRUMENTS

Sample PHY driver

static int sample phy probe(struct platform device *pdev) {

phy = devm phy create(dev, dev->of node, &sample phy ops);

if (dev->of node) {
/* use default implementation of of xlate if the device tree node
* represents a single PHY and if the PHY driver does not want to
* receive any arguments that's added along with the phandle

*/
// phy provider = devm of phy provider register(phy->dev,
// of phy simple xlate);

phy provider = devm of phy provider register (phy->dev,
sample phy xlate);
} else {
phy create lookup(phy, “phy”, “sample-controller”);

22

i3 TEXAS
INSTRUMENTS

Sample Controller driver

drivers/<controller>/controller-sample.c

static int sample controller probe(struct platform device *pdev) ({
phy = devm phy get(dev, “sample-phy”);

}

int sample controller init() {
/* controller initialization goes here */
phy_init(phy);

}

int sample controller start transfer() ({
phy power on(phy);
/* program the controller to start transfer */

}

int sample controller complete transfer() ({
/* free buffer etc */
phy power off(phy);

}) 23

i3 TEXAS
INSTRUMENTS

Sequence Diagram

2 phy create()
47 ,,,,,,,,,,,,,,,,,,,
phy provider register(

2

3
phy_get() =~ EEEEEEES -~ —>of xIate()
3 B 6
phy init() ->init()

7
phy power on()

->power_on()

phy pm runtime* ()

10 11
phy power off(—>power off ()
12 13
phy_exit() —>exit()

14

phy destroy()

24

13 TEXAS
INSTRUMENTS

Phy-core Internals

PHY PROVIDER (dt boot)

struct phy* (*of xlate)(struct device*,
struct of phandle args*)

of phy simple xlate => default
implementation

PHY_ OPS

PHY
o OpP
1..%* 1..%*
1..%*

(*init) (struct phy*)
(*power on) (struct phy ¥*)
(*power off) (struct phy *)
(*exit) (struct phy*)

PHY LOOKUP (binding)

const char* dev_name
const char* port name
struct phy*

25

13 TEXAS
INSTRUMENTS

PHY DEVICE MODEL

Created by
* of platform populate (dt boot)
* platform device add (non-dt boot)

4

PHY PLATFORM DEVICE

Parent

Child 1 Child 2 Child 3

Child n

PHY1 PHY2 PHY3

v

Created during phy create

26

i3 TEXAS
INSTRUMENTS

Upcoming

 ULPI PHY support

* Handling USB specific PHY functionality

27

i3 TEXAS
INSTRUMENTS

PHY
Kona PHY
Berlin PHY
Exynos PHY
HIX5HD2 SATA PHY
MIPHY365

MVEBU PHY

OMAP USB2 PHY
APQ8064 PHY

IPQ806X PHY

S5PV210 PHY
SPEAR1310/1340 MIPHY
SUN4I USB PHY

TI PIPE3

X-GENE PHY

Upstreamed PHY drivers (4.0)

Domain
USB2
SATA
USB2, SATA, DISPLAY,
SATA
SATA, PCIE

SATA

USB2

SATA

SATA

USB2

SATA, PCIE

USB

SATA, PCIE, USB3

SATA

Vendor

Broadcom

Marvell

Samsung

Hisilicon
STMicroelectronics
Marvell

Texas Instruments
Qualcom

Qualcom

Samsung
STMicroelectronics
Allwinner

Texas Instruments

Applied Micro

28

i3 TEXAS
INSTRUMENTS

Upstreamed PHY drivers (4.0) con.

PHY
Armada375 PHY
KONA PHY
Rockchip PHY
RCAR PHY

QOCOM UFS PHY

USB2
USB2
USB2
USB
UF'S

Domain

Vendor
Marvell
Broadcom
Rockchip
Renesas

Qualcom

29

i3 TEXAS
INSTRUMENTS

Acknowledgements

* Felipe Balbi
* Greg KH

* Linux Community

30

i3 TEXAS
INSTRUMENTS

References

* drivers/phy/
* Documentation/phy.txt
* Documentation/devicetree/bindings/phy/phy-bindings.txt

* PIPE3 specification:
http://www.intel.in/content/dam/www/public/us/en/documents/white-pape
rs/phy-interface-pci-express-sata-usb30-architectures.pdf

* Device tree specification:
https://www.power.org/documentation/epapr-version-1-1/

* Device tree for Dummies:
https://www.youtube.com/watch?v=m_NyYEBxfn8

31

i3 TEXAS
INSTRUMENTS

THANK YOU

For ri nd F k

kishon@ti.com, kishonvijayabraham@gmail.com

32

i3 TEXAS
INSTRUMENTS

http://www.intel.in/content/dam/www/public/us/en/documents/white-papers/phy-interface-pci-express-sata-usb30-architectures.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/white-papers/phy-interface-pci-express-sata-usb30-architectures.pdf
https://www.power.org/documentation/epapr-version-1-1/
https://www.youtube.com/watch?v=m_NyYEBxfn8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

