
BoF: Early Platform
Drivers in Linux Kernel
Bartosz Golaszewski
ELCE 2018
Edinburgh

About us
● Embedded Linux Engineering Firm
● ~30 senior engineers, coming from the semiconductor world
● HW and SW products: from concept to manufacturing
● Upstream Linux kernel development and maintenance
● Founding developers of kernelCI.org project

About me
● 9 years experience
● Kernel and user-space developer
● Maintainer of libgpiod

2

Platform drivers
● Platform drivers are great for separation of code and resources

Platform driver

Device Tree

ACPI

Board file code
(generic device properties,

platform data)

Register ranges,
interrupts,
GPIOs, PHYs
etc. etc.

3

Platform drivers
● Connected via a virtual platform bus
● Populated from:

○ Device tree:
■ of_platform_default_populate_init() as arch_initcall_sync()

○ Board files:
■ usually registered from within init_machine() callback from

arch_initcall(customize_machine)
○ ACPI:

■ ????

4

Problem: some platform
devices need to be available
early in the boot process

5

Early devices

Clocksource (Certain) clocks IRQ chips

TIMER_OF_DECLARE() CLK_OF_DECLARE() IRQCHIP_DECLARE()

6

Early devices - OF_DECLARE()
● generalized OF_DECLARE() mechanism
● Not real devices (as in: no struct device is being created) :(
● No devres
● No device properties
● No resource setup

7

Example: TI DaVinci clock driver
commit 043eaa70ad736380a631e820e32ad9176b020887
Author: David Lechner <david@lechnology.com>
Date: Fri May 25 13:11:49 2018 -0500

 clk: davinci: psc: allow for dev == NULL

 On some davinci SoCs, we need to register the PSC clocks during early
 boot because they are needed for clocksource/clockevent. These changes
 allow for dev == NULL because in this case, we won't have a platform
 device for the clocks.

 Signed-off-by: David Lechner <david@lechnology.com>
 Reviewed-by: Sekhar Nori <nsekhar@ti.com>
 Signed-off-by: Michael Turquette <mturquette@baylibre.com>
 Link: lkml.kernel.org/r/20180525181150.17873-9-david@lechnology.com

8

Early platform drivers AD 2009
● Commit 13977091a988 (“Driver Core: early platform driver”)
● Based on early_param()
● Mostly specific to SuperH arch
● Cumbersome
● Not real platform drivers/devices

○ Not part of the linux kernel device model
○ Uses devres_head to link devices (!)

9

New idea for early platform drivers
● [PATCH 00/12] introduce support for early platform drivers

○ https://lkml.org/lkml/2018/5/11/488

struct early_platform_device

struct platform_device

struct early_platform_driver

+ int (*early_probe)(struct platform_device *)

struct platform_driver

10

https://lkml.org/lkml/2018/5/11/488

New idea for early platform drivers
● early_platform_start() called by architecture code
● early_platform_finalize() called from postcore_initcall()

seamlessly converts early platform drivers into regular platform drivers
● device resource management available
● device resources and properties
● device logging
● code unification
● deferred probe

11

Example: dummy early
platform driver

12

● “I skimmed through this and it doesn't look horrible [...]” - Rob Herring
● Good fit for a device driver that generally manages memory-mapped

system resources that are part of the system glue and not really tied to
a specific bus. - Mike Turquette

● “Clockevents and interrupt controllers can have a module clock.
All three can be part of a PM Domain, which requires a struct device to
be handled properly.” - Geert Uytterhoeven

New idea for early platform drivers - feedback

13

New idea for early platform drivers - feedback
● “They can't be modules. They can't be hotplugged. Can they be

runtime-pm enabled?” - Rob Herring
● “Doing things earlier is not the only way to solve the problems.

Perhaps we need to figure out how to start things later.” - Rob Herring

14

New idea for early platform drivers - feedback
● “You may want to split it because of dependencies. OF_DECLARE

doesn't handle EPROBE_DEFER, while some critical parts may be
needed early.” - Geert Uytterhoeven

● “The fixed probe order imposed by OF_DECLARE() limits this: if your
OF_DECLARE() driver depends on something else, the latter must
become an early device. If all subsystems would use real devices,
EPROBE_DEFER would handle most of it automatically.” - Geert
Uytterhoeven

15

Questions:
● should we proceed with implementing

support for early platform drivers?
● is the example implementation any

good?

16

