BoF': Early Platform
Drivers in Linux Kernel

Bartosz Golaszewski
ELCE 2018
Edinburgh

About us

Embedded Linux Engineering Firm

~30 senior engineers, coming from the semiconductor world
HW and SW products: from concept to manufacturing
Upstream Linux kernel development and maintenance
Founding developers of kernelCl.org project

About me

e 9 years experience
e Kernel and user-space developer
e Maintainer of libgpiod

y’
&

Platform drivers

e Platform drivers are great for separation of code and resources

[Device Tree a ~
Register ranges,
ACPI interrupts, ; _
[GPIOs, PHYs | Platform driver
etc. etc.

Board file code
(generic device properties,

platform data)
y
g‘

Platform drivers

e Connected via a virtual platform bus

e Populated from:
o Device tree:
m of platform default populate init() QSarch initcall sync()
o Board files:
m usuadlly registered from within init machine () callback from

arch initcall (customize machine)

o ACPI:
m 2°2¢2¢

&

Problem: some platform
devices need to be avallable
early in the boot process

&

Early devices

Clocksource

A

A

TIMER OF DECLARE ()

(Certain) clocks

A A

CLK_OF DECLARE ()

IRQ chips

A A

TRQCHIP DECLARE ()

Early devices - OF DECLARE ()

generadlized OF DECLARE () mechanism

Not real devices (asin: no struct device is being created) |
No devres

No device properties

No resource setup

Example: Tl DaVinci clock driver

commit 043eaa70ad736380a631e820e32ad9176b020887
Author: David Lechner <david@lechnology.com>
Date: Fri May 25 13:11:49 2018 -0500

clk: davinci: psc: allow for dev == NULL

On some davinci SoCs, we need to register the PSC clocks during early
boot because they are needed for clocksource/clockevent. These changes
allow for dev == NULL because in this case, we won't have a platform
device for the clocks.

Signed-off-by: David Lechner <david@lechnology.com>

Reviewed-by: Sekhar Nori <nsekhar@ti.com>

Signed-off-by: Michael Turquette <mturquette@baylibre.com>

Link: lkml.kernel.org/r/20180525181150.17873-9-david@lechnology.com

Early platform drivers AD 2009

Commit 139770910988 (“Driver Core: early platform driver”)
Based on early_param()

Mostly specific to SuperH arch

Cumbersome

Not real platform drivers/devices
o Noft part of the linux kernel device model
o Uses devres_head to link devices (!)

&

New idea for early platform drivers

e [PATCH 00/12] infroduce support for early platform drivers
o https://lkml.org/lkml/2018/5/11/488

/ struct early_platform_device \ / struct early_platform_driver \

struct platform_device struct platform_driver

\ + int (*early_probe)(struct platform_device *)/

https://lkml.org/lkml/2018/5/11/488

New idea for early platform drivers

e carly platform start () called by architecture code

early platform finalize () called from postcore initcall ()
seamlessly converts early platform drivers into regular platform drivers
device resource management available

device resources and properties

device logging

code unification

deferred probe

11

Example: dummy early
platform driver

&

New idea for early platform drivers - feedback

e “/skimmed through this and it doesn't look horrible [...]" - Rob Herring

e Good fit for a device driver that generally manages memory-mapped
system resources that are part of the system glue and not really tied to
a specific bus. - Mike Turquette

e “Clockevents and interrupt controllers can have a module clock.
All three can be part of a PM Domain, which requires a struct device to
be handled properly.” - Geert Uytterhoeven

13

New idea for early platform drivers - feedback

“They can't be modules. They can't be hotplugged. Can they be

runtime-pm enabled?¢” - Rob Herring
“Doing things earlier is not the only way to solve the problems.
Perhaps we need to figure out how to start things later.” - Rob Herring

14

New idea for early platform drivers - feedback

“You may want to split it because of dependencies. OF _DECLARE
doesn't handle EPROBE_DEFER, while some critical parts may be
needed early.” - Geert Uytterhoeven

“The fixed probe order imposed by OF _DECLARE() limits this: if your
OF_DECLARE() driver depends on something else, the latter must
become an early device. If all subsystems would use real devices,
EPROBE_DEFER would handle most of it automatically.” - Geert
Uytterhoeven

15

Questions:

e should we proceed with implementing
support for early platform drivers?

e is the example implementation any
good?

&

