
Extending Android's Platform
Toolsuite
Embedded Linux Conference Europe 2015

Karim Yaghmour
@karimyaghmour / +karimyaghmour
karim.yaghmour@opersys.com

 2 2

These slides are made available to you under a Creative Commons Share-Alike 3.0 license.
The full terms of this license are here: https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc., PLEASE READ:
● This slide must remain as-is in this specific location (slide #2), everything else you are free

to change; including the logo :-)
● Use of figures in other documents must feature the below “Originals at” URL immediately

under that figure and the below copyright notice where appropriate.
● You are free to fill in the “Delivered and/or customized by” space on the right as you see fit.
● You are FORBIDEN from using the default “About” slide as-is or any of its contents.
● You are FORBIDEN from using any content provided by 3rd parties without the EXPLICIT

consent from those parties.

(C) Copyright 2015, Opersys inc.

These slides created by: Karim Yaghmour

Originals at: www.opersys.com/community/docs

 Delivered and/or customized by

 3 3

About

● Author of:

● Introduced Linux Trace Toolkit in 1999
● Originated Adeos and relayfs (kernel/relay.c)
● Ara Android Arch Oversight
● Training, Custom Dev, Consulting, ...

4 4

Agenda

● What's out there?
● What's the problem?
● Our Objectives
● Discovering System Service Interfaces
● Architecture for Creating Monitoring Tools
● Process Monitoring
● Filesystem Monitoring/Browsing
● Understanding Binder Relationships
● Boot Animation
● The Road Ahead

5 5

1. What's Out There Now?

● Official App Dev Tools
● Official Platform Dev Tools
● 3rd Party Power User Tools
● 3rd Party App Dev Tools
● 3rd Party Platform Dev Tools

6 6

1.1. Official App Dev tools

● Android Studio (IntelliJ)
● Android Monitor (formerly DDMS)
● Several tools built into Studio for performance analysis:

– Rendering

– Memory

– CPU usage

– Battery

● Plenty of documentation

7 7

1.2. Official Platform Dev Tools

● Tools on the previous pages
● gdb / gdbserver
● ftrace, systrace, atrace
● perf

8 8

1.3. 3rd Party Power User Tools

● Google Play has a ton of apps for:
– Process monitoring

– File management

– System information

– etc.

● They all assume that the device's screen is for output
● Useless if you're trying to use the tool while doing something

else on screen.

9 9

1.4. 3rd Party App Dev Tools

● CrossWalk / Cordova
● Delphi
● Xamarin Android
● etc.

10 10

1.5. 3rd Party Platform Dev Tools

● Qualcomm tools
● Intel tools, Nvidia tools, etc
● ARM Tools – DS-5
● JTAG -- Lauterbach

11 11

2. What's The Problem?

● Google obviously catering to app developers
– App dev tools have nice finish

– Platform dev tools ... not so much

● Official tools heavily tied to app dev IDE
– Requires IDE-specific knowledge to extend/customize
– Assumes official IDE is being used and/or is present
– Assume the developer is developing an app and is trying to fix his app's problems

● Platform is huge
● Documentation is often spartan
● Existing platform dev tools assume internals understanding

– Do you truly know how to use “dumpsys procstats”, “dumpsys meminfo” or “vdc”?

● Most platform tools can only be used on the command line
● Most 3rd party tools assume on-screen rendering of information

12 12

3. Our Objectives

● Reduce barrier to entry for platform development
● Address unmet patform developer needs
● Easy to use platform dev tools
● Build on lightweight/mainstream technologies:

– No IDE-specific tie-in
– Extensible language
– Large ecosystem of reusable packages/add-ons

● Avoid monopolizing device screen

13 13

4. Discovering System Service Interfaces

● Question: What is service X's AIDL interface?
● find -name “*File.aidl”
● godir
● Android documentation

– Focused on app developers

– Doesn't cover everything

14 14

4.1. Raidl - Features

● Returns the AIDL interface of a service
– AIDL based service

– Best effort for other services (Activity service)

– No interface for C++ service

– No parameters names

15 15

4.2. Example Output
root@generic:/data/local/tmp # ./raidl iface ­n power
// Service: power, Interface: android.os.IPowerManager
package android.os;

interface IPowerManager {
 void acquireWakeLock(IBinder p1, int n2, String s3, String s4, WorkSource p5, String s6); // 1
 void acquireWakeLockWithUid(IBinder p1, int n2, String s3, String s4, int n5); // 2
 void releaseWakeLock(IBinder p1, int n2); // 3
 void updateWakeLockUids(IBinder p1, int[] p2); // 4
 void powerHint(int n1, int n2); // 5
 void updateWakeLockWorkSource(IBinder p1, WorkSource p2, String s3); // 6
 boolean isWakeLockLevelSupported(int n1); // 7
 void userActivity(long n1, int n2, int n3); // 8
 void wakeUp(long n1); // 9
 void goToSleep(long n1, int n2, int n3); // 10
 void nap(long n1); // 11
 boolean isInteractive(); // 12
 boolean isPowerSaveMode(); // 13
 boolean setPowerSaveMode(boolean p1); // 14
 void reboot(boolean p1, String s2, boolean p3); // 15
 void shutdown(boolean p1, boolean p2); // 16
 void crash(String s1); // 17
 void setStayOnSetting(int n1); // 18
 void setMaximumScreenOffTimeoutFromDeviceAdmin(int n1); // 19
 void setTemporaryScreenBrightnessSettingOverride(int n1); // 20
 void setTemporaryScreenAutoBrightnessAdjustmentSettingOverride(float p1); // 21
 void setAttentionLight(boolean p1, int n2); // 22
}

16 16

4.3. Raidl - Demo

17 17

4.4. Raidl – How Does It Work?

ServiceStubClass = Raidl.class.getClassLoader()
 .loadClass(serviceClass.getCanonicalName()+"$Stub");

for (Field serviceField : serviceStubClass.getDeclaredFields()) {
 // Get the fields that look like transaction code.
}

for (Method serviceMethod : serviceClass.getMethods())
 serviceMethods.put(serviceMethod.getName(), serviceMethod);

for (Integer serviceCode : serviceCodesMethods.keySet()) {
 // ...

 if (serviceMethod != null && isRemoteMethod(serviceMethod))
 aidlService.addMethod(serviceCode, serviceMethod);
}

18 18

4.5. Raidl - AOSP integration
LOCAL_PATH:= $(call my­dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES := $(call all­java­files­under, src)
LOCAL_PACKAGE_NAME := raidl
LOCAL_MODULE_TAGS := optional
LOCAL_PROGUARD_ENABLED := disabled

include $(BUILD_PACKAGE)

include $(CLEAR_VARS)

LOCAL_SRC_FILES := raidl
LOCAL_MODULE_PATH := $(TARGET_OUT)/bin
LOCAL_MODULE_CLASS := EXECUTABLES
LOCAL_MODULE := raidl
LOCAL_MODULE_TAGS := optional
include $(BUILD_PREBUILT)

19 19

4.6. Raidl - Running an .apk

● .apk == .jar (with some DEX code)
● DexClassLoader:“A class loader that loads classes from .jar

and .apk files [...]”
● Ergo:

export CLASSPATH=/system/app/raidl.apk:/system/app/raidl/raidl.apk
exec app_process /system/app com.opersys.raidl.Raidl "$@"

20 20

5. Architecture for Creating Monitoring Tools

21 21

5.1. Tool architecture

● Backend: Node.js + Express
● Frontend: Backbone.js + w2ui
● AJAX communication
● Websocket or Server-Sent events

22 22

5.2. Node.js in Android – Why?

● One language to rule them all: Javascript
● 132 510 Node.js packages
● Ease of use
● Web 2.0 support (SSE, WebSockets)
● Speed

– V8
– Binary modules

● Runtime independence
● Few actual alternatives: Go, C/C++, Python, etc.

23 23

5.3. Node.js – It's easy!

var express = require('express');
var app = express();

app.get('/home', function(req, res) {
 res.send('Hello World');
});

app.listen(process.env.PORT || 8080);

24 24

5.4. Node.js in Android – Why not?

● Still pretty slow
● Runtime independence

– Node is within its Linux bottle

● Difficult to package in Android
● It's Javascript

– WAT! https://www.destroyallsoftware.com/talks/wat

25 25

5.5. How to use Node.js on Android

● Older versions (0.8), binaries available
– Too old for comfort

● Development version (0.11, now 0.12) was patched with Android
support

● Backported to 0.10
● V0.10 Binaries are avaible!
● Io.js and Node v0.12: TBD.
● https://github.com/opersys/node

26 26

5.6. Distribution

● Extracted in local files
● Multiple binary packages

– ARM, ARM + PIE, ia32, ia32 + PIE

● Started by a simple Android application
● Able to start as root

27 27

6. Process Monitoring

● ps / top
● htop (Cyanogenmod)
● Studio/Eclipse/DDMS/Monitor integrated
● On the Play Store...

– ... hundreds of candidates

– Few are aimed at developers

28 28

6.1. Process Explorer

● Browser based process manager
● Displays logcat (live!)
● Process statistics

– /proc based

● Needs root access for better function
● Works on Chrome and Firefox

29 29

6.2. Process Explorer - Demo

30 30

7. Filesystem Monitoring/Browsing

● ls, find
● adb push/pull
● On the Play Store...

– ... hundreds of candidates

– Few are aimed at developers

31 31

7.1. File Explorer

● Browser based file manager for Android systems
● File upload/download
● File updates (live!)
● Needs root access for better function

32 32

7.2. File Explorer - Demo

33 33

8. Understanding Binder Relationships

● Binder is essentially Android's core
● Binder enables us to have an Object Oriented OS on top of a

General Purpose OS
● Problem: there is no way to understand which components talk

to each other.

 34 34

35 35

8.1. Binder Explorer

● In development...
● Analyzes the links between Binder Services and Android

applications
● Uses data from /sys/kernel/debug/binder
● Pushing further: JSLibBinder

36 36

8.2. Binder Explorer - Demo

37 37

8.3. Reaching Inside Android

● JSLibBinder – libbinder for Android

var Binder = require("jslibbinder"),
var sm = new Binder.ServiceManager();
var services = sm.list();
var i = 0;

console.log("Found " + services.length + " services:");
services.forEach(function (s) {
 console.log((i++) + "\t" + s
 + ": [" + sm.getService(s).getInterface() + "]");
});

38 38

9. Boot Animation
If Android fails to boot, you see this:

... forever ...

39 39

9.1. What do people do today?

● Wait for it to boot ... until it's abnormally long ...
● Manual poking:

– Shell into device
– Check processes (ps)

– Check service (service list)

– Check logs (logcat)

– Check kernel logs (dmesg)

● Essentially ... It sucks

40 40

9.2. What do we want?

● Foremost: know that boot is failing
● Would be nice to also know:

– What is failing

– When it's failing (i.e. as soon as it fails)

– Why it's failing

41 41

9.3. What do we have?

● SurfaceFlinger is one of the very first processes to start
● If SF failing = No boot animation

– i.e. you know what your problem is already

● If SF comes up, it starts the default boot animation:
– frameworks/base/cmds/bootanimation/

● Default boot animation has 2 modes of operation:
– Built-in GL rendering of fixed images
– Rendering of sequence of static images in ZIP file

● In short: the default boot animation is of no use to us
● Need custom boot animation that reports issues on screen
● Main issues:

– Surfaces provided by SF are too low level
– All rendering toolkits assume you've got a fully booted Android

42 42

9.4. What did we do?

● Looked for a toolkit that was:
– Light weight

– Properly licensed

– Easily fixable to run on a standalone SF

● Custom version of gameplay3d:
– Make if work on vanilla SF without the fully-booted framework

● Built different UIs on top of this framework:
– On-screen split dmesg/logcat

– On-screen boot progress

● Other UIs could be implemented
● Tangent: gameplay3d can now be used without Android

43 43

9.5. Boot Animation - Demo

44 44

10. The Road Ahead

● New Features
● New Tools
● Integration:

– Across our tools

– With existing tools

● We've got our ideas ;D
● We'd like to hear from you:

– What are you looking for?

 45 45

Thank you ...

karim.yaghmour@opersys.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

