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About

● Author of:

● Introduced Linux Trace Toolkit in 1999
● Originated Adeos and relayfs (kernel/relay.c)
● Ara Android Arch Oversight
● Training, Custom Dev, Consulting, ...
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Agenda

● What's out there?
● What's the problem?
● Our Objectives
● Discovering System Service Interfaces
● Architecture for Creating Monitoring Tools
● Process Monitoring
● Filesystem Monitoring/Browsing
● Understanding Binder Relationships
● Boot Animation
● The Road Ahead
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1. What's Out There Now?

● Official App Dev Tools
● Official Platform Dev Tools
● 3rd Party Power User Tools
● 3rd Party App Dev Tools
● 3rd Party Platform Dev Tools
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1.1. Official App Dev tools

● Android Studio (IntelliJ)
● Android Monitor (formerly DDMS)
● Several tools built into Studio for performance analysis:

– Rendering

– Memory

– CPU usage

– Battery

● Plenty of documentation
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1.2. Official Platform Dev Tools

● Tools on the previous pages
● gdb / gdbserver
● ftrace, systrace, atrace
● perf
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1.3. 3rd Party Power User Tools

● Google Play has a ton of apps for:
– Process monitoring

– File management

– System information

– etc.

● They all assume that the device's screen is for output
● Useless if you're trying to use the tool while doing something 

else on screen.
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1.4. 3rd Party App Dev Tools

● CrossWalk / Cordova
● Delphi
● Xamarin Android
● etc.
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1.5. 3rd Party Platform Dev Tools

● Qualcomm tools
● Intel tools, Nvidia tools, etc
● ARM Tools – DS-5
● JTAG -- Lauterbach
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2. What's The Problem?

● Google obviously catering to app developers
– App dev tools have nice finish

– Platform dev tools ... not so much

● Official tools heavily tied to app dev IDE
– Requires IDE-specific knowledge to extend/customize
– Assumes official IDE is being used and/or is present
– Assume the developer is developing an app and is trying to fix his app's problems

● Platform is huge
● Documentation is often spartan
● Existing platform dev tools assume internals understanding

– Do you truly know how to use “dumpsys procstats”, “dumpsys meminfo” or “vdc”?

● Most platform tools can only be used on the command line
● Most 3rd party tools assume on-screen rendering of information
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3. Our Objectives

● Reduce barrier to entry for platform development
● Address unmet patform developer needs
● Easy to use platform dev tools
● Build on lightweight/mainstream technologies:

– No IDE-specific tie-in
– Extensible language
– Large ecosystem of reusable packages/add-ons

● Avoid monopolizing device screen
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4. Discovering System Service Interfaces

● Question: What is service X's AIDL interface?
● find -name “*File.aidl”
● godir
● Android documentation

– Focused on app developers

– Doesn't cover everything
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4.1. Raidl - Features

● Returns the AIDL interface of a service
– AIDL based service

– Best effort for other services (Activity service)

– No interface for C++ service

– No parameters names
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4.2. Example Output
root@generic:/data/local/tmp # ./raidl iface ­n power                          
// Service: power, Interface: android.os.IPowerManager
package android.os;

interface IPowerManager {
    void acquireWakeLock(IBinder p1, int n2, String s3, String s4, WorkSource p5, String s6); // 1
    void acquireWakeLockWithUid(IBinder p1, int n2, String s3, String s4, int n5); // 2
    void releaseWakeLock(IBinder p1, int n2); // 3
    void updateWakeLockUids(IBinder p1, int[] p2); // 4
    void powerHint(int n1, int n2); // 5
    void updateWakeLockWorkSource(IBinder p1, WorkSource p2, String s3); // 6
    boolean isWakeLockLevelSupported(int n1); // 7
    void userActivity(long n1, int n2, int n3); // 8
    void wakeUp(long n1); // 9
    void goToSleep(long n1, int n2, int n3); // 10
    void nap(long n1); // 11
    boolean isInteractive(); // 12
    boolean isPowerSaveMode(); // 13
    boolean setPowerSaveMode(boolean p1); // 14
    void reboot(boolean p1, String s2, boolean p3); // 15
    void shutdown(boolean p1, boolean p2); // 16
    void crash(String s1); // 17
    void setStayOnSetting(int n1); // 18
    void setMaximumScreenOffTimeoutFromDeviceAdmin(int n1); // 19
    void setTemporaryScreenBrightnessSettingOverride(int n1); // 20
    void setTemporaryScreenAutoBrightnessAdjustmentSettingOverride(float p1); // 21
    void setAttentionLight(boolean p1, int n2); // 22
}
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4.3. Raidl - Demo
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4.4. Raidl – How Does It Work?

ServiceStubClass = Raidl.class.getClassLoader()
                              .loadClass(serviceClass.getCanonicalName()+"$Stub");

for (Field serviceField : serviceStubClass.getDeclaredFields()) {
    // Get the fields that look like transaction code. 
}

for (Method serviceMethod : serviceClass.getMethods())
    serviceMethods.put(serviceMethod.getName(), serviceMethod);

for (Integer serviceCode : serviceCodesMethods.keySet()) {
    // ...

    if (serviceMethod != null && isRemoteMethod(serviceMethod))
        aidlService.addMethod(serviceCode, serviceMethod);
}
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4.5. Raidl - AOSP integration
LOCAL_PATH:= $(call my­dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES := $(call all­java­files­under, src)
LOCAL_PACKAGE_NAME := raidl
LOCAL_MODULE_TAGS := optional
LOCAL_PROGUARD_ENABLED := disabled

include $(BUILD_PACKAGE)

include $(CLEAR_VARS)

LOCAL_SRC_FILES := raidl
LOCAL_MODULE_PATH := $(TARGET_OUT)/bin
LOCAL_MODULE_CLASS := EXECUTABLES
LOCAL_MODULE := raidl
LOCAL_MODULE_TAGS := optional
include $(BUILD_PREBUILT)
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4.6. Raidl - Running an .apk

● .apk == .jar (with some DEX code)
● DexClassLoader:“A class loader that loads classes from .jar 

and .apk files [...]”
● Ergo:

export CLASSPATH=/system/app/raidl.apk:/system/app/raidl/raidl.apk
exec app_process /system/app com.opersys.raidl.Raidl "$@"
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5. Architecture for Creating Monitoring Tools
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5.1. Tool architecture

● Backend: Node.js + Express
● Frontend: Backbone.js + w2ui
● AJAX communication
● Websocket or Server-Sent events
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5.2. Node.js in Android – Why?

● One language to rule them all: Javascript
● 132 510 Node.js packages
● Ease of use
● Web 2.0 support (SSE, WebSockets)
● Speed

– V8
– Binary modules

● Runtime independence
● Few actual alternatives: Go, C/C++, Python, etc.
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5.3. Node.js – It's easy!

var express = require('express');
var app = express();

app.get('/home', function(req, res) {
 res.send('Hello World');
});

app.listen(process.env.PORT || 8080);
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5.4. Node.js in Android – Why not?

● Still pretty slow
● Runtime independence

– Node is within its Linux bottle

● Difficult to package in Android
● It's Javascript

– WAT! https://www.destroyallsoftware.com/talks/wat
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5.5. How to use Node.js on Android

● Older versions (0.8), binaries available
– Too old for comfort

● Development version (0.11, now 0.12) was patched with Android 
support

● Backported to 0.10
● V0.10 Binaries are avaible!
● Io.js and Node v0.12: TBD.
● https://github.com/opersys/node
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5.6. Distribution

● Extracted in local files
● Multiple binary packages

– ARM, ARM + PIE, ia32, ia32 + PIE

● Started by a simple Android application
● Able to start as root
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6. Process Monitoring

● ps / top
● htop (Cyanogenmod)
● Studio/Eclipse/DDMS/Monitor integrated
● On the Play Store...

– ... hundreds of candidates

– Few are aimed at developers
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6.1. Process Explorer

● Browser based process manager
● Displays logcat (live!)
● Process statistics

– /proc based

● Needs root access for better function
● Works on Chrome and Firefox
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6.2. Process Explorer - Demo
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7. Filesystem Monitoring/Browsing

● ls, find
● adb push/pull
● On the Play Store...

– ... hundreds of candidates

– Few are aimed at developers
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7.1. File Explorer

● Browser based file manager for Android systems
● File upload/download
● File updates (live!)
● Needs root access for better function
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7.2. File Explorer - Demo
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8. Understanding Binder Relationships

● Binder is essentially Android's core
● Binder enables us to have an Object Oriented OS on top of a 

General Purpose OS
● Problem: there is no way to understand which components talk 

to each other.
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8.1. Binder Explorer

● In development...
● Analyzes the links between Binder Services and Android 

applications
● Uses data from /sys/kernel/debug/binder
● Pushing further: JSLibBinder
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8.2. Binder Explorer - Demo
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8.3. Reaching Inside Android

● JSLibBinder – libbinder for Android

var Binder = require("jslibbinder"), 
var sm = new Binder.ServiceManager();
var services = sm.list();
var i = 0;

console.log("Found " + services.length + " services:");
services.forEach(function (s) {
    console.log((i++) + "\t" + s 
                + ": [" + sm.getService(s).getInterface() + "]");
});
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9. Boot Animation
If Android fails to boot, you see this:

... forever ...
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9.1. What do people do today?

● Wait for it to boot ... until it's abnormally long ...
● Manual poking:

– Shell into device
– Check processes (ps)

– Check service (service list)

– Check logs (logcat)

– Check kernel logs (dmesg)

● Essentially ... It sucks
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9.2. What do we want?

● Foremost: know that boot is failing
● Would be nice to also know:

– What is failing

– When it's failing (i.e. as soon as it fails)

– Why it's failing
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9.3. What do we have?

● SurfaceFlinger is one of the very first processes to start
● If SF failing = No boot animation

– i.e. you know what your problem is already

● If SF comes up, it starts the default boot animation:
– frameworks/base/cmds/bootanimation/

● Default boot animation has 2 modes of operation:
– Built-in GL rendering of fixed  images
– Rendering of sequence of static images in ZIP file

● In short: the default boot animation is of no use to us
● Need custom boot animation that reports issues on screen
● Main issues:

– Surfaces provided by SF are too low level
– All rendering toolkits assume you've got a fully booted Android
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9.4. What did we do?

● Looked for a toolkit that was:
– Light weight

– Properly licensed

– Easily fixable to run on a standalone SF

● Custom version of gameplay3d:
– Make if work on vanilla SF without the fully-booted framework

● Built different UIs on top of this framework:
– On-screen split dmesg/logcat

– On-screen boot progress

● Other UIs could be implemented
● Tangent: gameplay3d can now be used without Android
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9.5. Boot Animation - Demo
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10. The Road Ahead

● New Features
● New Tools
● Integration:

– Across our tools

– With existing tools

● We've got our ideas ;D
● We'd like to hear from you:

– What are you looking for?
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Thank you ...

karim.yaghmour@opersys.com
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