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Introduction
● Krzysztof Kozlowski
● I work for Linaro in Qualcomm Landing Team / Linaro Developer Services

○ Upstreaming Qualcomm ARM/ARM64 SoCs
● I maintain few Linux kernel pieces (DT bindings, Samsung SoC, NFC and more)

● What this talk will not be about
○ What is Real-Time and RTOS
○ PREEMPT_RT patchset

● What this talk will be about
○ Building and configuring a Real-Time Linux kernel
○ What to expect during testing and debugging
○ Basics of tuning the system for Real-Time
○ Evaluation and stress testing on embedded ARM64 robotics platform
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Test platform - RB5
● The work I am describing was done on v6.1,

but everything applies also to current v6.3
● Qualcomm RB5 Robotics platform

○ ARM64, 8-core SoC QRB5165 (SM8250)
○ 8 GB LPDDR 5 RAM
○ 128 GB UFS storage
○ WiFi, Bluetooth, and so on
○ Compliant with the 96Board

Image source: https://developer.qualcomm.com/qualcomm-robotics-rb5-kit
©2023 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

https://developer.qualcomm.com/qualcomm-robotics-rb5-kit
https://developer.qualcomm.com/qualcomm-robotics-rb5-kit


First steps
● PREEMPT_RT is a patchset aiming to improve Real-Time aspects of the Linux 

kernel
● Most of it was already merged into mainline, but there are still some tasks to do

○ Still ~80 patches in PREEMPT_RT patchset
○ One can get the PREEMPT_RT from Git repo or as patchset for git-am

■ Remember to get Sebastian Andrzej Siewior’s key from kernel.org keyring
■ pgpkeys/keys/7B96E8162A8CF5D1.asc

● See https://wiki.linuxfoundation.org/realtime/ for details

https://wiki.linuxfoundation.org/realtime/


Kernel build configuration
● CONFIG_PREEMPT_RT=y

○ Fully Preemptible Kernel (Real-Time)
○ $ cat /sys/kernel/realtime

● CONFIG_NO_HZ_FULL=y
○ Which will behave as NO_HZ_IDLE by default

● CONFIG_HZ_1000=y
● CONFIG_CPUSETS=y

○ For isolating CPUs for Real-Time workloads
● CONFIG_BLK_CGROUP_IOLATENCY=y

Most likely you will also want for evaluation and debugging latency issues:
● CONFIG_LATENCYTOP=y
● CONFIG_SCHED_TRACER=y
● CONFIG_TIMERLAT_TRACER=y
● CONFIG_HWLAT_TRACER=y



I boot therefore I am (correct)
● That was easy, right? Kernel boots so job is done!
● Nope
● PREEMPT_RT will likely exercise a bit different driver paths in regard of 

concurrency
● Thus new race conditions are possible due to:

○ Missing synchronization
○ Different code-flow, e.g. order of driver callbacks between devices
○ Issues might not be visible during most of system boots

● Build a test kernel with:
○ CONFIG_KASAN=y
○ CONFIG_DEBUG_SHIRQ=y
○ CONFIG_SOFTLOCKUP_DETECTOR=y
○ CONFIG_DETECT_HUNG_TASK=y
○ CONFIG_WQ_WATCHDOG=y
○ CONFIG_DEBUG_PREEMPT=y
○ CONFIG_DEBUG_IRQFLAGS=y



Checking locking correctness
● PREEMPT_RT change semantics of few kernel locks
● Build a test kernel with LOCKDEP:

○ CONFIG_PROVE_LOCKING=y
■ Lock debugging: prove locking correctness

○ CONFIG_PROVE_RAW_LOCK_NESTING=y
■ Enable raw_spinlock - spinlock nesting checks

○ CONFIG_DEBUG_ATOMIC_SLEEP=y
■ Sleep inside atomic section checking

BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 298, name: systemd-udevd
preempt_count: 0, expected: 0

BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 291, name: systemd-udevd
preempt_count: 1, expected: 0



Checking locking correctness
● This is quite expected problem and it is a direct result of PREEMPT_RT:

spinlock and few more locks are now sleeping primitives
● For example the spinlock should not be used within atomic sections:

○ Disabled interrupts
○ Disabled preemption
○ Instead one could use raw_spinlock
○ It is even trickier with local_lock(), but that’s not a typical case, so out of scope

https://docs.kernel.org/locking/locktypes.html#sleeping-locks
https://docs.kernel.org/locking/locktypes.html#local-lock-on-rt


What can go wrong - disabled IRQs
● Look for:

○ BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 298, name: systemd-udevd
preempt_count: 0, expected: 0

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct (example approach):

local_irq_disable();
...
  spin_lock_irqsave(&l, flags);
  ...
  spin_unlock_irqrestore(&l, flags);
...
local_irq_enable();

local_irq_disable();
...
  raw_spin_lock_irqsave(&l, flags);
  ...
  raw_spin_unlock_irqrestore(&l, flags);
...
local_irq_enable();

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)



What can go wrong - disabled preemption
● Look for:

○ BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 291, name: systemd-udevd
preempt_count: 1, expected: 0

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct:

● These are simple cases. Much more complex is runtime PM which uses spinlock. 
Most of the drivers using pm_runtime_get_sync() is not expecting it to sleep.

preempt_disable();
...
  spin_lock_irqsave(&l, flags);
  ...
  spin_ublock_irqrestore(&l, flags);
...
preempt_enable();

preempt_disable();
...
  raw_spin_lock_irqsave(&l, flags);
  ...
  raw_spin_unlock_irqrestore(&l, flags);
...
preempt_enable();

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)



What can go wrong - memory allocation
● Memory allocator is now fully preemptible, also for GFP_ATOMIC
● Look for:

○ BUG: sleeping function called from invalid context 

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct:

● … or move the allocation out of critical section

raw_spin_lock(&l);
p = kmalloc(sizeof(*p), GFP_ATOMIC);
...
raw_spin_unlock(&l);

spin_lock(&l);
p = kmalloc(sizeof(*p), GFP_ATOMIC);
...
spin_unlock(&l);

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)



System Evaluation and Tuning



Evaluation of the system
● $ cat /sys/kernel/realtime returns 1, so are we done?
● Let’s check how the system behaves
● Real-Time use case requires application to respond to event within some deadline
● Time between event and actual response => latency
● For your workload, real or simulated, you might need to know what is the 

maximum experienced latency
● Why maximum matters?

○ Consider time between hitting brakes pedal in the car and reaction of the brakes
○ Or between critical pressure in some pipe in industrial setup and system reaction
○ It does not matter that on average brakes or system reacts within microseconds
○ It matters that it never reacts too late - over some threshold, defined by your system 

requirements



Evaluation of the system - tools
● The typical tools for this are cyclictest and stress-ng

○ cyclictest - application measuring latencies in real-time systems caused by the 
hardware, the firmware, and the operating system.

○ stress-ng - stressor of various parts of system, includes also cyclic functionality
○ rtla timerlat - cyclictest on steroids, using kernel tracers

● E.g. make your RT CPUs busy at 60% and measure latencies with cyclictest

cgexec -g cpuset:rt stress-ng --cpu 6 --cpu-load 60
cgexec -g cpuset:rt cyclictest -m --affinity 7 --threads 1 -p 95 -h 150 \
    --mainaffinity=2 --policy fifo



● Qualcomm RB5 Robotics platform example latencies
○ ARM64, 8-core SoC QRB5165 (SM8250)
○ Three clusters

■ 4x Cortex-A55
■ 3x Cortex-A77
■ 1x Cortex-A77 (Prime)

● Kernels compared:
○ Vanilla: v6.1.7 stable kernel
○ RT: v6.1.7-rt5, Qualcomm Landing Team kernel

■ v6.1 kernel with PREEMPT_RT patches
■ With some hardware enablement patches being upstreamed
■ With Real-Time fixes developed during entire process

● Already upstreamed or in process
● Issue found using tools described at the end of the talk

■ Should be without differences against current mainline (-PREEMPT_RT)

Evaluation of the system

https://developer.qualcomm.com/qualcomm-robotics-rb5-kit


Measurements - try 1 - idle
● No load, idle system, cyclictest on CPU0-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3 5, 6, 7 7   0,   1,   2,   3  5,   6,  7  7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

● On average system behaves nice…
● But maximum latencies are in both cases very high



Measurements - try 1 - busy 60%
● System busy with ~60% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3  5, 6, 7 7   0,   1,   2,   3  5,  6,  7  7

Van-#1 5, 5, 5, 5 2, 2, 2 2 16, 16, 16, 18 14, 4, 6 4 307, 343, 558, 210 21, 98, 60 28

RT-#1 5, 5, 5, 5 2, 2, 2 2 21, 20, 17, 19 8, 6, 6 7 212, 547, 921, 653 61, 69, 72 43

● Similarly to idle case - maximum latencies are in both cases very high
● The results are not good - something is missing



Tuning the system
● Kernel with PREEMPT_RT is not enough
● Several regular kernel activities (housekeeping tasks) can interrupt Real-Time 

application adding unexpected latencies
○ RCU callbacks
○ Periodic timer ticks
○ Interrupts
○ Workqueues

● Also Real-Time application should not fight with other processes for CPU time
● Usually some CPUs are assigned to housekeeping tasks and some to Real-Time

○ E.g. CPU 0-1 for housekeeping, rest (CPU 2-7) for RT



Tuning the system - command line
● Offload RCU callbacks from RT CPUs:

○ rcu_nocbs=2-7 rcu_nocb_poll
● Default IRQ affinity to housekeeping CPUs:

○ irqaffinity=0-1
● Mitigate for xtime_lock contention:

○ skew_tick=1
● Disable lockup detectors:

○ nosoftlockup nowatchdog
● For specific workloads (one thread per CPU core) disable tick on RT CPUs:

○ nohz_full=2-7 
○ Long latency penalty during context switches, thus it must match specific workload



Tuning the system - runtime
● Keep IRQs on housekeeping CPUs:

○ systemctl disable irqbalance
○ Or use IRQBALANCE_BANNED_CPUS so they will be balanced between housekeeping 

CPUs (e.g. to still distribute busy UFS and USB/Ethernet interrupts among two CPUs)
● Move workqueues to housekeeping CPUs:

○ echo 03 > /sys/devices/virtual/workqueue/blkcg_punt_bio/cpumask
echo 03 > /sys/devices/virtual/workqueue/scsi_tmf_0/cpumask
echo 03 > /sys/devices/virtual/workqueue/writeback/cpumask

○ And possibly other…
● Disable CPU frequency scaling

○ cpupower frequency-set -g performance
● Disable deeper CPU idle states

○ cpupower idle-set -d 1
● Allowing RT application up to 100% of CPU time (optional)

○ /proc/sys/kernel/sched_rt_runtime_us
○ Other tasks can starve



Measurements - try 2 - idle - basic tuning
● No load, idle system, cyclictest on CPU0-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3 5, 6, 7 7   0,   1,   2,   3  5,   6,  7  7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

RT-#2 5, 5, 4, 5 1, 1, 2 1  6,  6, 5, 5 2, 2, 2 2  99,  80,  21,  44 86,  33, 15 84

● A bit better, specially for slower cluster, but still too high



Tuning the system - cpusets
● Older kernels used “isolcpus” command line argument
● Since some time, cgroups/cpusets should be used

○ For instructions see: https://docs.kernel.org/admin-guide/cgroup-v2.html#cpuset
● All further tests will exclude housekeeping/bulk CPUs from measurement

cd /sys/fs/cgroup/
echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree_control

# Create housekeeping cpuset for CPU 0-1:
mkdir /sys/fs/cgroup/bulk
echo "+cpuset" >> bulk/cgroup.subtree_control
echo 0-1 >> bulk/cpuset.cpus
ps -eLo lwp | while read thread; do echo $thread > bulk/cgroup.procs ; done

https://docs.kernel.org/admin-guide/cgroup-v2.html#cpuset


Tuning the system - cpusets (continued)
● Now the Real-Time group:

mkdir /sys/fs/cgroup/rt
# Consider "isolated" partition, but then tasks won't be balanced
# echo isolated > rt/cpuset.cpus.partition
echo root > rt/cpuset.cpus.partition
echo "+cpuset" >> rt/cgroup.subtree_control
echo "2-7" >> rt/cpuset.cpus

# Test if group has correct (not invalid) configuration
cat rt/cpuset.cpus.partition
-> expected: root

# Run your app with:
cgexec -g cpuset:rt ..........



Measurements - try 3 - idle - full tuning
● No load, idle system, cyclictest on CPU2-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3 5, 6, 7 7   0,   1,   2,   3  5,   6,  7  7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

RT-#2 5, 5, 4, 5 1, 1, 2 1  6,  6, 5, 5 2, 2, 2 2  99,  80,  21,  44 86,  33, 15 84

Van-#3       3, 5 1, 1, 1 1         6, 5 2, 2, 2 2            13,  11  5,   5,  4  4

RT-#3       4, 5 1, 2, 2 1         6, 6 2, 2, 2 2            19,  11  3,   5,  5  4



Measurements - try 3 - busy 60% - full tuning
● System busy with ~60% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3 5, 6, 7 7   0,   1,   2,   3  5,   6,  7  7

Van-#1 5, 5, 5, 5 2, 2, 2 2 16, 16, 16, 18 14, 4, 6 4 307, 343, 558, 210 21, 98, 60 28

RT-#1 5, 5, 5, 5 2, 2, 2 2 21, 20, 17, 19 8, 6, 6 7 212, 547, 921, 653 61, 69, 72 43

Van-#3       4, 4 2, 2, 2 2         7, 7 3, 5, 5 5            19,  18 15,  14, 14 38

RT-#3       5, 5 2, 2, 2 1         6, 6 2, 2, 2 2            14,  10   8,  4,  4  4



Measurements - try 3 - busy 100% - full tuning
● System busy with ~100% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7  0,  1,  2,  3 5, 6, 7 7   0,   1,   2,   3  5,   6,  7  7

Van-#3       4, 4 3, 3, 3 2         5, 6 4, 4, 4 4            36,  18  9,  10, 11 36

RT-#3       5, 5 3, 3, 3 2         6, 8 4, 5, 5 4            22,  18  7,  15, 10  8



Results
● Heterogeneous systems will have different latency results on different cores
● With a properly tuned system, is the PREEMPT_RT even needed?
● The mainline kernel almost does not differ from PREEMPT_RT in results

○ The mainline kernel already introduces Real-Time scheduler: SCHED_FIFO and 
SCHED_RR

● Let’s just use mainline and ditch PREEMPT_RT?
● No, we can’t

○ Well, this was just a test executed for some minutes, not a real product running for days
○ Just because test does not hit some case with high latency, it’s not a proof it is not there 

waiting to bit you
○ Mainline does not guarantee these latencies
○ It does not come with mechanisms solving for example priority inversion problem in 

scheduling



Useful tools



Latency spikes - hwlatdetect
● What if the average latency is low, but the maximum is high?
● Check latencies introduced by hardware or firmware with hwlatdetect

○ On RT/isolated CPUs

hwlatdetect  --duration=600s --cpu-list=2-7 --threshold=5
   parameters:
        CPU list:          2-7
        Latency threshold: 5us
        Sample window:     1000000us
        Sample width:      500000us
     Non-sampling period:  500000us
        Output File:       None
Max Latency: Below threshold
Samples recorded: 0
Samples exceeding threshold: 0



Latency spikes - tracing
● Cyclictest can help trace the cause of the latency

○ First set up your tracing
○ Then cyclictest with “-b XX --tracemark” argument

cd /sys/kernel/tracing/
echo function > current_tracer
echo 1 > tracing_on
cgexec -g cpuset:rt cyclictest -m --affinity 7 --threads 1 -p 95 -h 150 \
    --mainaffinity=2 --policy fifo -b 25 --tracemark

less trace # look for tracing_mark_write



Latency spikes - rtla osnoise
● Look for OS noise with rtla

○ apt-get install rtla
○ Or build it from linux/tools/tracing/rtla

● rtla osnoise gives answers about noise caused by the system
● How much of time is taken from RT application, e.g. by IRQs or preemption?
● Look for noise on isolated CPUs
● Refer to RTLA: Real-time Linux Analysis Toolset - Daniel Bristot De Oliveira, Red Hat for 

tutorial/howto (or Daniel’s session also today)

$ rtla osnoise top --stop 10 --threshold 5 --cpus 2-7 --trace
CPU Period       Runtime        Noise  % CPU Aval   Max Noise   Max Single   
  2 #4           4000000         6664    99.83340        2075           67
  3 #4           4000000          472    99.98820         263           19
  4 #4           4000000            0   100.00000           0            0
  5 #4           4000000         6542    99.83645        2170          147
  6 #4           4000000          155    99.99612          54           54
  7 #4           4000000           15    99.99962          15           15

https://youtu.be/-hJ558URAP4
https://sched.co/1OBtv


Latency spikes - rtla timerlat
● rtla timerlat is a cyclictest on steroids

○ Refer to RTLA: Real-time Linux Analysis Toolset or Daniel’s session also today

rtla timerlat top --cpus 2-7 --auto 25
## CPU 2 hit stop tracing, analyzing it ##
  IRQ handler delay:                      1.23 us (4.85 %)
  IRQ latency:      5.24 us
  Timerlat IRQ duration:     10.47 us (41.31 %)
  Blocking thread:      6.62 us (26.10 %)

               swapper/2:0             6.62 us
    Blocking thread stack trace

-> timerlat_irq
-> __hrtimer_run_queues
-> hrtimer_interrupt
-> arch_timer_handler_virt
-> handle_percpu_devid_irq

https://youtu.be/-hJ558URAP4
https://sched.co/1OBtv


Resources and references
● cylictest
● Optimizing RHEL 8 for Real Time for low latency operation
● RTLA: Real-time Linux Analysis Toolset - Daniel Bristot De Oliveira, Red Hat

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/optimizing_rhel_8_for_real_time_for_low_latency_operation/index
https://youtu.be/-hJ558URAP4


Introducing Linaro

Linaro collaborates with 
businesses and open 

source communities to:

● Consolidate the Arm code 
base & develop common, 
low-level functionality

● Create open source 
reference implementations 
& standards

● Upstream products and 
platforms on Arm

Why do we do this?

● To make it easier for 
businesses to build and 
deploy high quality and 
secure Arm-based products 

● To make it easier for 
engineers to develop on 
Arm

Two ways to collaborate 
with Linaro:

● Join as a member and work 
with Linaro and collaborate 
with other industry leaders 

● Work with Linaro Developer 
Services on a one-to-one 
basis on a project 

1

2

For more information go to: www.linaro.org 

http://www.linaro.org


Linaro membership collaboration



Thank you


