
Preparing Linux Real-Time
Kernel and Tuning Robotics
Platform with
a Modern ARM64 SoC

Krzysztof Kozlowski
Qualcomm Landing Team, Linaro
krzysztof.kozlowski@linaro.org

https://www.linaro.org/

Introduction
● Krzysztof Kozlowski
● I work for Linaro in Qualcomm Landing Team / Linaro Developer Services

○ Upstreaming Qualcomm ARM/ARM64 SoCs
● I maintain few Linux kernel pieces (DT bindings, Samsung SoC, NFC and more)

● What this talk will not be about
○ What is Real-Time and RTOS
○ PREEMPT_RT patchset

● What this talk will be about
○ Building and configuring a Real-Time Linux kernel
○ What to expect during testing and debugging
○ Basics of tuning the system for Real-Time
○ Evaluation and stress testing on embedded ARM64 robotics platform

Build, Test and
deploy faster

Arm Software
expertise

Specialists in
TEE on Arm

Continuous Integration
through LAVA

We support every aspect of
product delivery, from building
secure board support
packages (BSPs), product
validation and long-term
maintenance.

As part of Linaro, Developer
Services has some of the
world’s leading Arm
Software experts.

We offer continuous
integration (CI) and
automated validation through
LAVA (Linaro’s Automation &
Validation Architecture)

We specialize in security and
Trusted Execution
Environment (TEE) on Arm.

Linaro Developer Services
Linaro Developer Services helps companies build, deploy and maintain products on Arm

For more information go to: https://www.linaro.org/services/

https://www.linaro.org/services/

Test platform - RB5
● The work I am describing was done on v6.1,

but everything applies also to current v6.3
● Qualcomm RB5 Robotics platform

○ ARM64, 8-core SoC QRB5165 (SM8250)
○ 8 GB LPDDR 5 RAM
○ 128 GB UFS storage
○ WiFi, Bluetooth, and so on
○ Compliant with the 96Board

Image source: https://developer.qualcomm.com/qualcomm-robotics-rb5-kit
©2023 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

https://developer.qualcomm.com/qualcomm-robotics-rb5-kit
https://developer.qualcomm.com/qualcomm-robotics-rb5-kit

First steps
● PREEMPT_RT is a patchset aiming to improve Real-Time aspects of the Linux

kernel
● Most of it was already merged into mainline, but there are still some tasks to do

○ Still ~80 patches in PREEMPT_RT patchset
○ One can get the PREEMPT_RT from Git repo or as patchset for git-am

■ Remember to get Sebastian Andrzej Siewior’s key from kernel.org keyring
■ pgpkeys/keys/7B96E8162A8CF5D1.asc

● See https://wiki.linuxfoundation.org/realtime/ for details

https://wiki.linuxfoundation.org/realtime/

Kernel build configuration
● CONFIG_PREEMPT_RT=y

○ Fully Preemptible Kernel (Real-Time)
○ $ cat /sys/kernel/realtime

● CONFIG_NO_HZ_FULL=y
○ Which will behave as NO_HZ_IDLE by default

● CONFIG_HZ_1000=y
● CONFIG_CPUSETS=y

○ For isolating CPUs for Real-Time workloads
● CONFIG_BLK_CGROUP_IOLATENCY=y

Most likely you will also want for evaluation and debugging latency issues:
● CONFIG_LATENCYTOP=y
● CONFIG_SCHED_TRACER=y
● CONFIG_TIMERLAT_TRACER=y
● CONFIG_HWLAT_TRACER=y

I boot therefore I am (correct)
● That was easy, right? Kernel boots so job is done!
● Nope
● PREEMPT_RT will likely exercise a bit different driver paths in regard of

concurrency
● Thus new race conditions are possible due to:

○ Missing synchronization
○ Different code-flow, e.g. order of driver callbacks between devices
○ Issues might not be visible during most of system boots

● Build a test kernel with:
○ CONFIG_KASAN=y
○ CONFIG_DEBUG_SHIRQ=y
○ CONFIG_SOFTLOCKUP_DETECTOR=y
○ CONFIG_DETECT_HUNG_TASK=y
○ CONFIG_WQ_WATCHDOG=y
○ CONFIG_DEBUG_PREEMPT=y
○ CONFIG_DEBUG_IRQFLAGS=y

Checking locking correctness
● PREEMPT_RT change semantics of few kernel locks
● Build a test kernel with LOCKDEP:

○ CONFIG_PROVE_LOCKING=y
■ Lock debugging: prove locking correctness

○ CONFIG_PROVE_RAW_LOCK_NESTING=y
■ Enable raw_spinlock - spinlock nesting checks

○ CONFIG_DEBUG_ATOMIC_SLEEP=y
■ Sleep inside atomic section checking

BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 298, name: systemd-udevd
preempt_count: 0, expected: 0

BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 291, name: systemd-udevd
preempt_count: 1, expected: 0

Checking locking correctness
● This is quite expected problem and it is a direct result of PREEMPT_RT:

spinlock and few more locks are now sleeping primitives
● For example the spinlock should not be used within atomic sections:

○ Disabled interrupts
○ Disabled preemption
○ Instead one could use raw_spinlock
○ It is even trickier with local_lock(), but that’s not a typical case, so out of scope

https://docs.kernel.org/locking/locktypes.html#sleeping-locks
https://docs.kernel.org/locking/locktypes.html#local-lock-on-rt

What can go wrong - disabled IRQs
● Look for:

○ BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 298, name: systemd-udevd
preempt_count: 0, expected: 0

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct (example approach):

local_irq_disable();
...
 spin_lock_irqsave(&l, flags);
 ...
 spin_unlock_irqrestore(&l, flags);
...
local_irq_enable();

local_irq_disable();
...
 raw_spin_lock_irqsave(&l, flags);
 ...
 raw_spin_unlock_irqrestore(&l, flags);
...
local_irq_enable();

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

What can go wrong - disabled preemption
● Look for:

○ BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 291, name: systemd-udevd
preempt_count: 1, expected: 0

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct:

● These are simple cases. Much more complex is runtime PM which uses spinlock.
Most of the drivers using pm_runtime_get_sync() is not expecting it to sleep.

preempt_disable();
...
 spin_lock_irqsave(&l, flags);
 ...
 spin_ublock_irqrestore(&l, flags);
...
preempt_enable();

preempt_disable();
...
 raw_spin_lock_irqsave(&l, flags);
 ...
 raw_spin_unlock_irqrestore(&l, flags);
...
preempt_enable();

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

What can go wrong - memory allocation
● Memory allocator is now fully preemptible, also for GFP_ATOMIC
● Look for:

○ BUG: sleeping function called from invalid context

● Non-PREEMPT_RT correct but
PREEMPT_RT incorrect: Both correct:

● … or move the allocation out of critical section

raw_spin_lock(&l);
p = kmalloc(sizeof(*p), GFP_ATOMIC);
...
raw_spin_unlock(&l);

spin_lock(&l);
p = kmalloc(sizeof(*p), GFP_ATOMIC);
...
spin_unlock(&l);

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

System Evaluation and Tuning

Evaluation of the system
● $ cat /sys/kernel/realtime returns 1, so are we done?
● Let’s check how the system behaves
● Real-Time use case requires application to respond to event within some deadline
● Time between event and actual response => latency
● For your workload, real or simulated, you might need to know what is the

maximum experienced latency
● Why maximum matters?

○ Consider time between hitting brakes pedal in the car and reaction of the brakes
○ Or between critical pressure in some pipe in industrial setup and system reaction
○ It does not matter that on average brakes or system reacts within microseconds
○ It matters that it never reacts too late - over some threshold, defined by your system

requirements

Evaluation of the system - tools
● The typical tools for this are cyclictest and stress-ng

○ cyclictest - application measuring latencies in real-time systems caused by the
hardware, the firmware, and the operating system.

○ stress-ng - stressor of various parts of system, includes also cyclic functionality
○ rtla timerlat - cyclictest on steroids, using kernel tracers

● E.g. make your RT CPUs busy at 60% and measure latencies with cyclictest

cgexec -g cpuset:rt stress-ng --cpu 6 --cpu-load 60
cgexec -g cpuset:rt cyclictest -m --affinity 7 --threads 1 -p 95 -h 150 \
 --mainaffinity=2 --policy fifo

● Qualcomm RB5 Robotics platform example latencies
○ ARM64, 8-core SoC QRB5165 (SM8250)
○ Three clusters

■ 4x Cortex-A55
■ 3x Cortex-A77
■ 1x Cortex-A77 (Prime)

● Kernels compared:
○ Vanilla: v6.1.7 stable kernel
○ RT: v6.1.7-rt5, Qualcomm Landing Team kernel

■ v6.1 kernel with PREEMPT_RT patches
■ With some hardware enablement patches being upstreamed
■ With Real-Time fixes developed during entire process

● Already upstreamed or in process
● Issue found using tools described at the end of the talk

■ Should be without differences against current mainline (-PREEMPT_RT)

Evaluation of the system

https://developer.qualcomm.com/qualcomm-robotics-rb5-kit

Measurements - try 1 - idle
● No load, idle system, cyclictest on CPU0-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

● On average system behaves nice…
● But maximum latencies are in both cases very high

Measurements - try 1 - busy 60%
● System busy with ~60% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#1 5, 5, 5, 5 2, 2, 2 2 16, 16, 16, 18 14, 4, 6 4 307, 343, 558, 210 21, 98, 60 28

RT-#1 5, 5, 5, 5 2, 2, 2 2 21, 20, 17, 19 8, 6, 6 7 212, 547, 921, 653 61, 69, 72 43

● Similarly to idle case - maximum latencies are in both cases very high
● The results are not good - something is missing

Tuning the system
● Kernel with PREEMPT_RT is not enough
● Several regular kernel activities (housekeeping tasks) can interrupt Real-Time

application adding unexpected latencies
○ RCU callbacks
○ Periodic timer ticks
○ Interrupts
○ Workqueues

● Also Real-Time application should not fight with other processes for CPU time
● Usually some CPUs are assigned to housekeeping tasks and some to Real-Time

○ E.g. CPU 0-1 for housekeeping, rest (CPU 2-7) for RT

Tuning the system - command line
● Offload RCU callbacks from RT CPUs:

○ rcu_nocbs=2-7 rcu_nocb_poll
● Default IRQ affinity to housekeeping CPUs:

○ irqaffinity=0-1
● Mitigate for xtime_lock contention:

○ skew_tick=1
● Disable lockup detectors:

○ nosoftlockup nowatchdog
● For specific workloads (one thread per CPU core) disable tick on RT CPUs:

○ nohz_full=2-7
○ Long latency penalty during context switches, thus it must match specific workload

Tuning the system - runtime
● Keep IRQs on housekeeping CPUs:

○ systemctl disable irqbalance
○ Or use IRQBALANCE_BANNED_CPUS so they will be balanced between housekeeping

CPUs (e.g. to still distribute busy UFS and USB/Ethernet interrupts among two CPUs)
● Move workqueues to housekeeping CPUs:

○ echo 03 > /sys/devices/virtual/workqueue/blkcg_punt_bio/cpumask
echo 03 > /sys/devices/virtual/workqueue/scsi_tmf_0/cpumask
echo 03 > /sys/devices/virtual/workqueue/writeback/cpumask

○ And possibly other…
● Disable CPU frequency scaling

○ cpupower frequency-set -g performance
● Disable deeper CPU idle states

○ cpupower idle-set -d 1
● Allowing RT application up to 100% of CPU time (optional)

○ /proc/sys/kernel/sched_rt_runtime_us
○ Other tasks can starve

Measurements - try 2 - idle - basic tuning
● No load, idle system, cyclictest on CPU0-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

RT-#2 5, 5, 4, 5 1, 1, 2 1 6, 6, 5, 5 2, 2, 2 2 99, 80, 21, 44 86, 33, 15 84

● A bit better, specially for slower cluster, but still too high

Tuning the system - cpusets
● Older kernels used “isolcpus” command line argument
● Since some time, cgroups/cpusets should be used

○ For instructions see: https://docs.kernel.org/admin-guide/cgroup-v2.html#cpuset
● All further tests will exclude housekeeping/bulk CPUs from measurement

cd /sys/fs/cgroup/
echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree_control

Create housekeeping cpuset for CPU 0-1:
mkdir /sys/fs/cgroup/bulk
echo "+cpuset" >> bulk/cgroup.subtree_control
echo 0-1 >> bulk/cpuset.cpus
ps -eLo lwp | while read thread; do echo $thread > bulk/cgroup.procs ; done

https://docs.kernel.org/admin-guide/cgroup-v2.html#cpuset

Tuning the system - cpusets (continued)
● Now the Real-Time group:

mkdir /sys/fs/cgroup/rt
Consider "isolated" partition, but then tasks won't be balanced
echo isolated > rt/cpuset.cpus.partition
echo root > rt/cpuset.cpus.partition
echo "+cpuset" >> rt/cgroup.subtree_control
echo "2-7" >> rt/cpuset.cpus

Test if group has correct (not invalid) configuration
cat rt/cpuset.cpus.partition
-> expected: root

Run your app with:
cgexec -g cpuset:rt

Measurements - try 3 - idle - full tuning
● No load, idle system, cyclictest on CPU2-7

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#1 5, 5, 5, 5 2, 2, 2 2 18, 17, 15, 18 6, 6, 5 5 729, 861, 167, 353 92, 100, 97 94

RT-#1 5, 5, 5, 5 2, 2, 2 2 20, 20, 17, 18 6, 7, 7 6 164, 169, 230, 612 51, 317, 67 73

RT-#2 5, 5, 4, 5 1, 1, 2 1 6, 6, 5, 5 2, 2, 2 2 99, 80, 21, 44 86, 33, 15 84

Van-#3 3, 5 1, 1, 1 1 6, 5 2, 2, 2 2 13, 11 5, 5, 4 4

RT-#3 4, 5 1, 2, 2 1 6, 6 2, 2, 2 2 19, 11 3, 5, 5 4

Measurements - try 3 - busy 60% - full tuning
● System busy with ~60% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#1 5, 5, 5, 5 2, 2, 2 2 16, 16, 16, 18 14, 4, 6 4 307, 343, 558, 210 21, 98, 60 28

RT-#1 5, 5, 5, 5 2, 2, 2 2 21, 20, 17, 19 8, 6, 6 7 212, 547, 921, 653 61, 69, 72 43

Van-#3 4, 4 2, 2, 2 2 7, 7 3, 5, 5 5 19, 18 15, 14, 14 38

RT-#3 5, 5 2, 2, 2 1 6, 6 2, 2, 2 2 14, 10 8, 4, 4 4

Measurements - try 3 - busy 100% - full tuning
● System busy with ~100% load

Min latency [us] Average lat. [us] Max latency [us]

Cluster 4xA55 3xA77 A77 4xA55 3xA77 A77 4xA55 3xA77 A77

CPU 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7 0, 1, 2, 3 5, 6, 7 7

Van-#3 4, 4 3, 3, 3 2 5, 6 4, 4, 4 4 36, 18 9, 10, 11 36

RT-#3 5, 5 3, 3, 3 2 6, 8 4, 5, 5 4 22, 18 7, 15, 10 8

Results
● Heterogeneous systems will have different latency results on different cores
● With a properly tuned system, is the PREEMPT_RT even needed?
● The mainline kernel almost does not differ from PREEMPT_RT in results

○ The mainline kernel already introduces Real-Time scheduler: SCHED_FIFO and
SCHED_RR

● Let’s just use mainline and ditch PREEMPT_RT?
● No, we can’t

○ Well, this was just a test executed for some minutes, not a real product running for days
○ Just because test does not hit some case with high latency, it’s not a proof it is not there

waiting to bit you
○ Mainline does not guarantee these latencies
○ It does not come with mechanisms solving for example priority inversion problem in

scheduling

Useful tools

Latency spikes - hwlatdetect
● What if the average latency is low, but the maximum is high?
● Check latencies introduced by hardware or firmware with hwlatdetect

○ On RT/isolated CPUs

hwlatdetect --duration=600s --cpu-list=2-7 --threshold=5
 parameters:
 CPU list: 2-7
 Latency threshold: 5us
 Sample window: 1000000us
 Sample width: 500000us
 Non-sampling period: 500000us
 Output File: None
Max Latency: Below threshold
Samples recorded: 0
Samples exceeding threshold: 0

Latency spikes - tracing
● Cyclictest can help trace the cause of the latency

○ First set up your tracing
○ Then cyclictest with “-b XX --tracemark” argument

cd /sys/kernel/tracing/
echo function > current_tracer
echo 1 > tracing_on
cgexec -g cpuset:rt cyclictest -m --affinity 7 --threads 1 -p 95 -h 150 \
 --mainaffinity=2 --policy fifo -b 25 --tracemark

less trace # look for tracing_mark_write

Latency spikes - rtla osnoise
● Look for OS noise with rtla

○ apt-get install rtla
○ Or build it from linux/tools/tracing/rtla

● rtla osnoise gives answers about noise caused by the system
● How much of time is taken from RT application, e.g. by IRQs or preemption?
● Look for noise on isolated CPUs
● Refer to RTLA: Real-time Linux Analysis Toolset - Daniel Bristot De Oliveira, Red Hat for

tutorial/howto (or Daniel’s session also today)

$ rtla osnoise top --stop 10 --threshold 5 --cpus 2-7 --trace
CPU Period Runtime Noise % CPU Aval Max Noise Max Single
 2 #4 4000000 6664 99.83340 2075 67
 3 #4 4000000 472 99.98820 263 19
 4 #4 4000000 0 100.00000 0 0
 5 #4 4000000 6542 99.83645 2170 147
 6 #4 4000000 155 99.99612 54 54
 7 #4 4000000 15 99.99962 15 15

https://youtu.be/-hJ558URAP4
https://sched.co/1OBtv

Latency spikes - rtla timerlat
● rtla timerlat is a cyclictest on steroids

○ Refer to RTLA: Real-time Linux Analysis Toolset or Daniel’s session also today

rtla timerlat top --cpus 2-7 --auto 25
CPU 2 hit stop tracing, analyzing it
 IRQ handler delay: 1.23 us (4.85 %)
 IRQ latency: 5.24 us
 Timerlat IRQ duration: 10.47 us (41.31 %)
 Blocking thread: 6.62 us (26.10 %)

 swapper/2:0 6.62 us
 Blocking thread stack trace

-> timerlat_irq
-> __hrtimer_run_queues
-> hrtimer_interrupt
-> arch_timer_handler_virt
-> handle_percpu_devid_irq

https://youtu.be/-hJ558URAP4
https://sched.co/1OBtv

Resources and references
● cylictest
● Optimizing RHEL 8 for Real Time for low latency operation
● RTLA: Real-time Linux Analysis Toolset - Daniel Bristot De Oliveira, Red Hat

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/optimizing_rhel_8_for_real_time_for_low_latency_operation/index
https://youtu.be/-hJ558URAP4

Introducing Linaro

Linaro collaborates with
businesses and open

source communities to:

● Consolidate the Arm code
base & develop common,
low-level functionality

● Create open source
reference implementations
& standards

● Upstream products and
platforms on Arm

Why do we do this?

● To make it easier for
businesses to build and
deploy high quality and
secure Arm-based products

● To make it easier for
engineers to develop on
Arm

Two ways to collaborate
with Linaro:

● Join as a member and work
with Linaro and collaborate
with other industry leaders

● Work with Linaro Developer
Services on a one-to-one
basis on a project

1

2

For more information go to: www.linaro.org

http://www.linaro.org

Linaro membership collaboration

Thank you

