Open Source | Open Possibilities

SPMI:
System Power
Management Interface

Presented by: Josh Cartwright
Presentation Date: 4/30/14

L QUALCOMM INNOVATION CENTER, INC.



Open Source | Open Possibilities

What is SPMI?

" QUALCOMM INNOVATION CENTER, INC.

PAGE 2



Agenda

Architectural Overview
= Components
= Addressing
= Sequences and Arbitration
= Command set
Linux Kernel API

Real World Example

PAGE 3 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Open Source | Open Possibilities

Architecture

" QUALCOMM INNOVATION CENTER, INC.

PAGE 4



Components

Master
= At least one master, up to four masters
= One Master designated Bus Owner Master (BOM)
= All Masters can initiate Requests
Slave
= Up to 16 slaves
= Slaves can optionally be Request Capable (RCS)

PAGE 5 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



PAGE 6 Open Source | Open Possibilities %UIC

QUALCOMM INNOVATION CENTER, INC.




Addressing

Master Identifier (MID) — 2-bits
Unigue Slave Identifier (USID) — 4-bits
Group Slave Identifier (GSID) — 4-bits

SN Open Source | Open Possibilities l ulC
DU LCOM



Enumeration

= Addressing scheme designed by “System Integrator”

PAGE 8 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Sequences

Bus Arbitration
Start condition

One or more Frames
= Command Frame
= Data Frame
= No response frame

Bus Park Cycle

PAGE 9 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Bus Arbitration

Responsibility of the current Bus Owner Master (BOM)

Sequences prioritized in the following levels:
= Priority Request Capable Slave initiated
= Priority Master initiated
= Secondary Request Capable Slave initiated
= Secondary Master initiated

Within each level:
= Slaves are prioritized based on Unique Slave Identifier (USID)

= Masters are prioritized using round robin scheme
— Also results in transition of BOM

PAGE 10 Open Source | Open Possibilities l%ulc
QUALCOMM INNOQVATION CENTER, INC.



Command Set

= 17 defined Commands
= State Management

= Master register access
= Slave register access

PAGE 11 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Slave State Machine

STARTUP

= Entered on reset

= Regulators must be off
ACTIVE

= Normal operating state

» Regulator state user/manufacturer defined
SLEEP

= Lower power state

= Regulator state user/manufacturer defined
SHUTDOWN

= Entered via command

= Regulators must be off

PAGE 12 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Command Set : State Management

Reset
= Puts slave into STARTUP state

Sleep

= Puts slave into SLEEP state
Shutdown

= Puts slave into SHUTDOWN state

Wakeup
= Takes slave out of SLEEP into ACTIVE state

PAGE 13 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Command Set : Register Access

Register Read/Write
= 5-bit address, 8-bit data

Register 0 Write
= 8-bit data (address assumed 0)

Extended Register Read/Write
= 8-bit address, 16 bytes data

Extended Register Read/Write Long
= 16-bit address, 8 bytes data

PAGE 14 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Command Set : Register Access (Master)

= Master Read/Write
= 8-bit address, 8-hit data

PAGE 15 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Open Source | Open Possibilities

Linux Kernel API

" QUALCOMM INNOVATION CENTER, INC.

PAGE 17



Tree layout

drivers/spmi/*

= Contains SPMI “core” (spmi.c)

= Contains SPMI controller implementations
Include/linux/spmi.h

= Contains SPMI data structure definitions/function prototypes
drivers/base/regmap/regmap-spmi.c

= Regmap implementation for SPMI devices
Documentation/devicetree/bindings/spmi/*

= Generic SPMI device tree binding documentation

= SPMI controller-specific device tree binding

(Landed in v3.15 merge window)

PAGE 18 Open Source | Open Possibilities lQUIC
QUALCOMM INNOQVATION CENTER, INC.



Data Structures

struct spmi_controller;

= Represents a hardware block capable of acting as a Master on an SPMI bus
struct spmi_device;

= Represents an individual unique slave on the SPMI bus
struct spmi_driver,

= May be attached to one or more spmi_device objects, implements slave-
specific logic

PAGE 19 Open Source | Open Possibilities l%ulc
QUALCOMM INNOVATION CENTER, INC.



struct spmi_controller

struct spmi_controller {
struct device dev;
unsigned int nr;
int (*cmd) (struct spmi_controller *ctrl, u8 opcode, u8 sid);
int (*read_cmd) (struct spmi_controller *ctrl, u8 opcode,
u8 sid, ulé addr, u8 *buf, size_t len);
int (*write_cmd) (struct spmi_controller *ctrl, u8 opcode,
u8 sid, ulé addr, const u8 *buf, size_t len);

}s

= First two fields are managed by the SPMI core
— ‘deVv’ hooks the controller into the kernels’ device model
— ‘nr’ is a unique controller number allocated by the core

= Last three members are called by the SPMI core when software wants to issue
a Sequence on the bus

= spmi_controller get drvdata() for controller private data

PAGE 20 Open Source | Open Possibilities lQUIC
QUALCOMM INNOQVATION CENTER, INC.



struct spmi_controller by example

static int my_probe(struct parent_bus_type *pdev)

{

struct spmi_controller *ctrl;
struct my_data *my_data;

int err;

ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*my_data));
if (!ctrl)
/* bail */;

my_data = spmi_controller_get_drvdata(ctrl);
/* initialize private my_data */

ctrl->cmd = my_cmd;
ctrl->read_cmd = my_read_cmd;

ctrl->write_cmd = my_write_cmd;

err = spmi_controller_add(ctrl);
if (err)
/* bail, but don't forget to spmi_controller_put()! */;

PAGE 21 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



struct spmi_controller::read _cmd

int (*read_cmd) (struct spmi_controller *ctrl, u8 opcode,

u8 sid, ulé addr, u8 *buf, size_t len);

ctrl: driver’s controller object

opcode: one of the following (defined in include/linux/spmi.h)
— SPMI_CMD_READ
— SPMI_CMD_READL
— SPMI_CMD_EXT_READL

sid: Slave Identififer (SID)

addr: register address

= puf: buffer to read into
= len: length of buffer

PAGE 22 Open Source | Open Possibilities l%ulc

QUALCOMM INNOVATION CENTER, INC.



struct spmi_driver

struct spmi_driver {
struct device_driver driver;
int (*probe) (struct spmi_device *sdev);
void (*remove) (struct spmi_device *sdev);

}s
= Simple device driver object
= probe() Isissued when the SPMI core wishes to attach the driver to a slave
= remove() isissued when the SPMI device is to be removed

PAGE 23 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



struct spmi_driver by example

static const struct of_device_id my_of_table = {
{ .compatible = “acme,my_device” },

{}
}s
MODULE_DEVICE_TABLE(of, my_of_table);

static struct spmi_driver my_spmi_driver = {
.driver = {
.hame = “my_spmi_driver”,
.of_match_table = my_of_table,

}s
.probe = my_spmi_probe,
.remove = my_spmi_remove,

}s

module_spmi_driver(my_spmi_driver);

PAGE 24 Open Source | Open Possibilities l%

ulC

QUALCOMM INNOVATION CENTER, INC.



struct spmi_device

struct spmi_device {
struct device dev;
struct spmi_controller *ctrl;
u8 usid;

}s

= spmi_device objects managed by the SPMI core

PAGE 25 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



struct spmi_device API

int spmi_register_read(struct spmi_device *sdev, u8 addr, u8 *buf);
int spmi_ext_register_read(struct spmi_device *sdev, u8 addr, u8 *buf,
size_t len);
int spmi_ext_register_readl(struct spmi_device *sdev, ul6é addr, u8 *buf,
size_t len);
int spmi_register_write(struct spmi_device *sdev, u8 addr, u8 data);
int spmi_register_zero_write(struct spmi_device *sdev, u8 data);
int spmi_ext_register_write(struct spmi_device *sdev, u8 addr,
const u8 *buf, size_t len);
int spmi_ext_register_writel(struct spmi_device *sdev, ul6é addr,
const u8 *buf, size_t len);
int spmi_command_reset(struct spmi_device *sdev);
int spmi_command_sleep(struct spmi_device *sdev);
int spmi_command_wakeup(struct spmi_device *sdev);
int spmi_command_shutdown(struct spmi_device *sdev);

PAGE 26 Open Source | Open Possibilities l%ulc
QUALCOMM INNOQVATION CENTER, INC.



Device Tree Bindings

spmi@.. {
compatible = "...";
reg = <...>;
#address-cells = <2>;
#size-cells <0>;
child@o {
compatible = "...";
reg = <@ SPMI_USID>;
}s
child@7 {
compatible = "...";
reg = <7 SPMI_USID
3 SPMI_GSID>;
}s
}s

PAGE 28 Open Source | Open Possibilities l%u'C
QUALCOMM INNOVATION CENTER, INC.



Open Source | Open Possibilities

Real World
Implementation

" QUALCOMM INNOVATION CENTER, INC.

PAGE 29



SPMI in the wild

MSM8974
= Member of Qualcomm Snapdragon 800 Series SoCs
= Quad-core Krait, Adreno 330 GPU, ...
PM8841 & PM8941
= Pair of PMICs housing regulators used to power the SoC and peripherals
= Also responsible for battery management/charging
= Various misc. functionality, too (GPIOs, RTC, ...)

Communication between SoC and PMIC implemented over SPMI

PAGE 30 Open Source | Open Possibilities l%ulc
QUALCOMM INNOVATION CENTER, INC.




PM8841

MSM8974

On-chip —
Masters

PM8941

PAGE 31 Open Source | Open Possibilities l%UIC
QUALCOMM INNOVATION CENTER, INC.




Open Source | Open Possibilities

Questions?

" QUALCOMM INNOVATION CENTER, INC.

PAGE 32



