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What is SPMI? 
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Agenda 

 Architectural Overview 

 Components 

 Addressing 

 Sequences and Arbitration 

 Command set 

 Linux Kernel API 

 Real World Example 
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Architecture 
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Components 

 Master 

 At least one master, up to four masters 

 One Master designated Bus Owner Master (BOM) 

 All Masters can initiate Requests 

 Slave 

 Up to 16 slaves 

 Slaves can optionally be Request Capable (RCS) 
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Master 

Slave 

Master 

Slave 

Slave 

Slave 
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Addressing 

 Master Identifier (MID) – 2-bits 

 Unique Slave Identifier (USID) – 4-bits 

 Group Slave Identifier (GSID) – 4-bits 
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Enumeration 

 Addressing scheme designed by “System Integrator” 
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Sequences 

 Bus Arbitration 

 Start condition 

 One or more Frames 

 Command Frame 

 Data Frame 

 No response frame 

 Bus Park Cycle 
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Bus Arbitration 

 Responsibility of the current Bus Owner Master (BOM) 

 Sequences prioritized in the following levels: 

 Priority Request Capable Slave initiated 

 Priority Master initiated 

 Secondary Request Capable Slave initiated 

 Secondary Master initiated 

 Within each level: 

 Slaves are prioritized based on Unique Slave Identifier (USID) 

 Masters are prioritized using round robin scheme 

– Also results in transition of BOM 
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Command Set 

 17 defined Commands 

 State Management 

 Master register access 

 Slave register access 
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Slave State Machine 

 STARTUP 

 Entered on reset 

 Regulators must be off 

 ACTIVE 

 Normal operating state 

 Regulator state user/manufacturer defined 

 SLEEP 

 Lower power state 

 Regulator state user/manufacturer defined 

 SHUTDOWN 

 Entered via command 

 Regulators must be off 
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Command Set : State Management 

 Reset 

 Puts slave into STARTUP state 

 Sleep 

 Puts slave into SLEEP state 

 Shutdown 

 Puts slave into SHUTDOWN state 

 Wakeup 

 Takes slave out of SLEEP into ACTIVE state 
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Command Set : Register Access 

 Register Read/Write 

 5-bit address, 8-bit data 

 Register 0 Write 

 8-bit data (address assumed 0) 

 Extended Register Read/Write 

 8-bit address, 16 bytes data 

 Extended Register Read/Write Long 

 16-bit address, 8 bytes data 
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Command Set : Register Access (Master) 

 Master Read/Write 

 8-bit address, 8-bit data 
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Linux Kernel API 
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Tree layout 

 drivers/spmi/* 

 Contains SPMI “core” (spmi.c) 

 Contains SPMI controller implementations 

 Include/linux/spmi.h 

 Contains SPMI data structure definitions/function prototypes 

 drivers/base/regmap/regmap-spmi.c 

 Regmap implementation for SPMI devices 

 Documentation/devicetree/bindings/spmi/* 

 Generic SPMI device tree binding documentation 

 SPMI controller-specific device tree binding 

 (Landed in v3.15 merge window) 
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Data Structures 

 struct spmi_controller; 

 Represents a hardware block capable of acting as a Master on an SPMI bus 

 struct spmi_device; 

 Represents an individual unique slave on the SPMI bus 

 struct spmi_driver; 

 May be attached to one or more spmi_device objects, implements slave-
specific logic 
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struct spmi_controller 

 struct spmi_controller { 

  struct device  dev; 

  unsigned int  nr; 

  int (*cmd)(struct spmi_controller *ctrl, u8 opcode, u8 sid); 

  int (*read_cmd)(struct spmi_controller *ctrl, u8 opcode, 

        u8 sid, u16 addr, u8 *buf, size_t len); 

  int (*write_cmd)(struct spmi_controller *ctrl, u8 opcode, 

         u8 sid, u16 addr, const u8 *buf, size_t len); 

 }; 

 

 First two fields are managed by the SPMI core 

– ‘dev’ hooks the controller into the kernels’ device model 

– ‘nr’ is a unique controller number allocated by the core 

 Last three members are called by the SPMI core when software wants to issue 
a Sequence on the bus 

 spmi_controller_get_drvdata() for controller private data 
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struct spmi_controller by example 

 static int my_probe(struct parent_bus_type *pdev) 

 { 

  struct spmi_controller *ctrl; 

  struct my_data *my_data; 

  int err; 

 

  ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*my_data)); 

  if (!ctrl) 

   /* bail */; 

 

  my_data = spmi_controller_get_drvdata(ctrl); 

  /* initialize private my_data */ 

 

  ctrl->cmd = my_cmd; 

  ctrl->read_cmd = my_read_cmd; 

  ctrl->write_cmd = my_write_cmd; 

 

  err = spmi_controller_add(ctrl); 

  if (err) 

   /* bail, but don't forget to spmi_controller_put()! */; 

 } 
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struct spmi_controller::read_cmd 

int (*read_cmd)(struct spmi_controller *ctrl, u8 opcode, 

      u8 sid, u16 addr, u8 *buf, size_t len); 

 

 
 ctrl: driver’s controller object 

 opcode: one of the following (defined in include/linux/spmi.h) 

– SPMI_CMD_READ 

– SPMI_CMD_READL 

– SPMI_CMD_EXT_READL 

 sid: Slave Identififer (SID) 

 addr: register address 

 buf: buffer to read into 

 len: length of buffer 
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struct spmi_driver 

 struct spmi_driver { 

  struct device_driver driver; 

  int (*probe)(struct spmi_device *sdev); 

  void (*remove)(struct spmi_device *sdev); 

 }; 

 

 
 Simple device driver object 

 probe() is issued when the SPMI core wishes to attach the driver to a slave 

 remove() is issued when the SPMI device is to be removed 
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struct spmi_driver by example 

 static const struct of_device_id my_of_table = { 

  { .compatible = “acme,my_device” }, 
  { }, 

 }; 

 MODULE_DEVICE_TABLE(of, my_of_table); 

 

 static struct spmi_driver my_spmi_driver = { 

  .driver = { 

   .name = “my_spmi_driver”, 

   .of_match_table = my_of_table, 

  }, 

  .probe = my_spmi_probe, 

  .remove = my_spmi_remove, 

 }; 

 module_spmi_driver(my_spmi_driver); 
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struct spmi_device 

 struct spmi_device { 

  struct device dev; 

  struct spmi_controller *ctrl; 

  u8 usid; 

 }; 

 

 
 spmi_device objects managed by the SPMI core 
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struct spmi_device API 

int spmi_register_read(struct spmi_device *sdev, u8 addr, u8 *buf); 

int spmi_ext_register_read(struct spmi_device *sdev, u8 addr, u8 *buf, 

      size_t len); 

int spmi_ext_register_readl(struct spmi_device *sdev, u16 addr, u8 *buf, 

       size_t len); 

int spmi_register_write(struct spmi_device *sdev, u8 addr, u8 data); 

int spmi_register_zero_write(struct spmi_device *sdev, u8 data); 

int spmi_ext_register_write(struct spmi_device *sdev, u8 addr, 

       const u8 *buf, size_t len); 

int spmi_ext_register_writel(struct spmi_device *sdev, u16 addr, 

        const u8 *buf, size_t len); 

int spmi_command_reset(struct spmi_device *sdev); 

int spmi_command_sleep(struct spmi_device *sdev); 

int spmi_command_wakeup(struct spmi_device *sdev); 

int spmi_command_shutdown(struct spmi_device *sdev); 
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Device Tree Bindings 

 spmi@.. { 

  compatible = "..."; 

  reg = <...>; 

 

  #address-cells = <2>; 

  #size-cells <0>; 

 

  child@0 { 

   compatible = "..."; 

   reg = <0 SPMI_USID>; 

  }; 

 

  child@7 { 

   compatible = "..."; 

   reg = <7 SPMI_USID 

          3 SPMI_GSID>; 

  }; 

 }; 
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Real World 
Implementation 
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SPMI in the wild 

 MSM8974 

 Member of Qualcomm Snapdragon 800 Series SoCs 

 Quad-core Krait, Adreno 330 GPU, … 

 PM8841 & PM8941 

 Pair of PMICs housing regulators used to power the SoC and peripherals 

 Also responsible for battery management/charging 

 Various misc. functionality, too (GPIOs, RTC, …) 

 Communication between SoC and PMIC implemented over SPMI 
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SPMI PMIC 

Arbiter 

MSM8974 
PM8841 

SPMI Slave 

USID 0x4 

SPMI Slave 

USID 0x5 

Regulators Regulators Regulators 

PM8941 

SPMI Slave 

USID 0x0 

SPMI Slave 

USID 0x1 

Regulators Regulators Regulators 

On-chip 

Masters 



PAGE  32 

Open Source   Open Possibilities 

Questions? 

 


