
PAGE 1 Open Source Open Possibilities

Open Source Open Possibilities

SPMI:
System Power
Management Interface
Presented by: Josh Cartwright
Presentation Date: 4/30/14

PAGE 2

Open Source Open Possibilities

What is SPMI?

PAGE 3 Open Source Open Possibilities

Agenda

 Architectural Overview

 Components

 Addressing

 Sequences and Arbitration

 Command set

 Linux Kernel API

 Real World Example

PAGE 4

Open Source Open Possibilities

Architecture

PAGE 5 Open Source Open Possibilities

Components

 Master

 At least one master, up to four masters

 One Master designated Bus Owner Master (BOM)

 All Masters can initiate Requests

 Slave

 Up to 16 slaves

 Slaves can optionally be Request Capable (RCS)

PAGE 6 Open Source Open Possibilities

Master

Slave

Master

Slave

Slave

Slave

PAGE 7 Open Source Open Possibilities

Addressing

 Master Identifier (MID) – 2-bits

 Unique Slave Identifier (USID) – 4-bits

 Group Slave Identifier (GSID) – 4-bits

PAGE 8 Open Source Open Possibilities

Enumeration

 Addressing scheme designed by “System Integrator”

PAGE 9 Open Source Open Possibilities

Sequences

 Bus Arbitration

 Start condition

 One or more Frames

 Command Frame

 Data Frame

 No response frame

 Bus Park Cycle

PAGE 10 Open Source Open Possibilities

Bus Arbitration

 Responsibility of the current Bus Owner Master (BOM)

 Sequences prioritized in the following levels:

 Priority Request Capable Slave initiated

 Priority Master initiated

 Secondary Request Capable Slave initiated

 Secondary Master initiated

 Within each level:

 Slaves are prioritized based on Unique Slave Identifier (USID)

 Masters are prioritized using round robin scheme

– Also results in transition of BOM

PAGE 11 Open Source Open Possibilities

Command Set

 17 defined Commands

 State Management

 Master register access

 Slave register access

PAGE 12 Open Source Open Possibilities

Slave State Machine

 STARTUP

 Entered on reset

 Regulators must be off

 ACTIVE

 Normal operating state

 Regulator state user/manufacturer defined

 SLEEP

 Lower power state

 Regulator state user/manufacturer defined

 SHUTDOWN

 Entered via command

 Regulators must be off

PAGE 13 Open Source Open Possibilities

Command Set : State Management

 Reset

 Puts slave into STARTUP state

 Sleep

 Puts slave into SLEEP state

 Shutdown

 Puts slave into SHUTDOWN state

 Wakeup

 Takes slave out of SLEEP into ACTIVE state

PAGE 14 Open Source Open Possibilities

Command Set : Register Access

 Register Read/Write

 5-bit address, 8-bit data

 Register 0 Write

 8-bit data (address assumed 0)

 Extended Register Read/Write

 8-bit address, 16 bytes data

 Extended Register Read/Write Long

 16-bit address, 8 bytes data

PAGE 15 Open Source Open Possibilities

Command Set : Register Access (Master)

 Master Read/Write

 8-bit address, 8-bit data

PAGE 17

Open Source Open Possibilities

Linux Kernel API

PAGE 18 Open Source Open Possibilities

Tree layout

 drivers/spmi/*

 Contains SPMI “core” (spmi.c)

 Contains SPMI controller implementations

 Include/linux/spmi.h

 Contains SPMI data structure definitions/function prototypes

 drivers/base/regmap/regmap-spmi.c

 Regmap implementation for SPMI devices

 Documentation/devicetree/bindings/spmi/*

 Generic SPMI device tree binding documentation

 SPMI controller-specific device tree binding

 (Landed in v3.15 merge window)

PAGE 19 Open Source Open Possibilities

Data Structures

 struct spmi_controller;

 Represents a hardware block capable of acting as a Master on an SPMI bus

 struct spmi_device;

 Represents an individual unique slave on the SPMI bus

 struct spmi_driver;

 May be attached to one or more spmi_device objects, implements slave-
specific logic

PAGE 20 Open Source Open Possibilities

struct spmi_controller

 struct spmi_controller {

 struct device dev;

 unsigned int nr;

 int (*cmd)(struct spmi_controller *ctrl, u8 opcode, u8 sid);

 int (*read_cmd)(struct spmi_controller *ctrl, u8 opcode,

 u8 sid, u16 addr, u8 *buf, size_t len);

 int (*write_cmd)(struct spmi_controller *ctrl, u8 opcode,

 u8 sid, u16 addr, const u8 *buf, size_t len);

 };

 First two fields are managed by the SPMI core

– ‘dev’ hooks the controller into the kernels’ device model

– ‘nr’ is a unique controller number allocated by the core

 Last three members are called by the SPMI core when software wants to issue
a Sequence on the bus

 spmi_controller_get_drvdata() for controller private data

PAGE 21 Open Source Open Possibilities

struct spmi_controller by example

 static int my_probe(struct parent_bus_type *pdev)

 {

 struct spmi_controller *ctrl;

 struct my_data *my_data;

 int err;

 ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*my_data));

 if (!ctrl)

 /* bail */;

 my_data = spmi_controller_get_drvdata(ctrl);

 /* initialize private my_data */

 ctrl->cmd = my_cmd;

 ctrl->read_cmd = my_read_cmd;

 ctrl->write_cmd = my_write_cmd;

 err = spmi_controller_add(ctrl);

 if (err)

 /* bail, but don't forget to spmi_controller_put()! */;

 }

PAGE 22 Open Source Open Possibilities

struct spmi_controller::read_cmd

int (*read_cmd)(struct spmi_controller *ctrl, u8 opcode,

 u8 sid, u16 addr, u8 *buf, size_t len);

 ctrl: driver’s controller object

 opcode: one of the following (defined in include/linux/spmi.h)

– SPMI_CMD_READ

– SPMI_CMD_READL

– SPMI_CMD_EXT_READL

 sid: Slave Identififer (SID)

 addr: register address

 buf: buffer to read into

 len: length of buffer

PAGE 23 Open Source Open Possibilities

struct spmi_driver

 struct spmi_driver {

 struct device_driver driver;

 int (*probe)(struct spmi_device *sdev);

 void (*remove)(struct spmi_device *sdev);

 };

 Simple device driver object

 probe() is issued when the SPMI core wishes to attach the driver to a slave

 remove() is issued when the SPMI device is to be removed

PAGE 24 Open Source Open Possibilities

struct spmi_driver by example

 static const struct of_device_id my_of_table = {

 { .compatible = “acme,my_device” },
 { },

 };

 MODULE_DEVICE_TABLE(of, my_of_table);

 static struct spmi_driver my_spmi_driver = {

 .driver = {

 .name = “my_spmi_driver”,

 .of_match_table = my_of_table,

 },

 .probe = my_spmi_probe,

 .remove = my_spmi_remove,

 };

 module_spmi_driver(my_spmi_driver);

PAGE 25 Open Source Open Possibilities

struct spmi_device

 struct spmi_device {

 struct device dev;

 struct spmi_controller *ctrl;

 u8 usid;

 };

 spmi_device objects managed by the SPMI core

PAGE 26 Open Source Open Possibilities

struct spmi_device API

int spmi_register_read(struct spmi_device *sdev, u8 addr, u8 *buf);

int spmi_ext_register_read(struct spmi_device *sdev, u8 addr, u8 *buf,

 size_t len);

int spmi_ext_register_readl(struct spmi_device *sdev, u16 addr, u8 *buf,

 size_t len);

int spmi_register_write(struct spmi_device *sdev, u8 addr, u8 data);

int spmi_register_zero_write(struct spmi_device *sdev, u8 data);

int spmi_ext_register_write(struct spmi_device *sdev, u8 addr,

 const u8 *buf, size_t len);

int spmi_ext_register_writel(struct spmi_device *sdev, u16 addr,

 const u8 *buf, size_t len);

int spmi_command_reset(struct spmi_device *sdev);

int spmi_command_sleep(struct spmi_device *sdev);

int spmi_command_wakeup(struct spmi_device *sdev);

int spmi_command_shutdown(struct spmi_device *sdev);

PAGE 28 Open Source Open Possibilities

Device Tree Bindings

 spmi@.. {

 compatible = "...";

 reg = <...>;

 #address-cells = <2>;

 #size-cells <0>;

 child@0 {

 compatible = "...";

 reg = <0 SPMI_USID>;

 };

 child@7 {

 compatible = "...";

 reg = <7 SPMI_USID

 3 SPMI_GSID>;

 };

 };

PAGE 29

Open Source Open Possibilities

Real World
Implementation

PAGE 30 Open Source Open Possibilities

SPMI in the wild

 MSM8974

 Member of Qualcomm Snapdragon 800 Series SoCs

 Quad-core Krait, Adreno 330 GPU, …

 PM8841 & PM8941

 Pair of PMICs housing regulators used to power the SoC and peripherals

 Also responsible for battery management/charging

 Various misc. functionality, too (GPIOs, RTC, …)

 Communication between SoC and PMIC implemented over SPMI

PAGE 31 Open Source Open Possibilities

SPMI PMIC

Arbiter

MSM8974
PM8841

SPMI Slave

USID 0x4

SPMI Slave

USID 0x5

Regulators Regulators Regulators

PM8941

SPMI Slave

USID 0x0

SPMI Slave

USID 0x1

Regulators Regulators Regulators

On-chip

Masters

PAGE 32

Open Source Open Possibilities

Questions?

