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• Joined Toradex 2011

• Spearheaded Embedded Linux Adoption

• Introduced Upstream First Policy

• Top 10 U-Boot Contributor

• Top 10 Linux Kernel Arm SoC Contributor

• Industrial Embedded Linux Platform Torizon
Fully Based on Mainline Technology

 Mainline U-Boot with Distroboot

 KMS/DRM Graphics with Etnaviv & Nouveau

 OTA with OSTree

 Docker resp. Podman



WHAT WE’LL
COVER TODAY…

• Introduction to the USB Specification

• USB in Embedded Systems

• USB Recovery Mode

• USB in U-Boot

• USB in the Linux Kernel

• USB from Userspace

• USB Tooling

• USB Role Switching

• USB Debugging

• Live Demonstration
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Introduction to the USB Specification
• Connectors

 USB-A: USB 2.0 and 3.0 variants

 USB-B: Fullsize, mini, micro and USB 3.0 variants

 USB-C: One size fits all, right?

• USB transfer speed

 Low-speed: up to 1.5 Mbps

 Since USB 1.0

 Full-speed: up to 12 Mbps

 Since USB 1.1

 High-speed: up to 480 Mbps

 Since USB 2.0

 SuperSpeed: up to 5 Gbps

 Since USB 3.0

 ...



Introduction to the USB Specification
(cont.)

• USB protocol

 Device: Entity connected to the bus

 Configuration: State of a device

 Initialisation, standby, active

 Bundles a bunch of interfaces

 Interface: Logical device

 Each interface encapsulates a single high-level function (e.g. webcam: video stream, audio stream, buttons)

 One driver is needed for each interface!

 Alternate settings: Each USB interface may have different parameter settings (e.g. for different bandwidth)

 The initial state is always in the first setting (number 0)

 Alternate settings often used for isochronous endpoints (endpoints use different amounts of reserved bandwidth)



Introduction to the USB Specification
(cont.)

• Endpoint: Unidirectional communication pipe

 Control endpoints

 For configuration, get information, send commands, and retrieve status information

 Simple, small data transfers

 Every device has a control endpoint (endpoint 0)

 USB protocol guarantees corresponding data transfers will always have enough (reserved) bandwidth

 Interrupt endpoints

 Transfer small amounts of data at a fixed rate

 Guaranteed, reserved bandwidth

 For devices requiring guaranteed response time, such as USB human interface devices (HID) e.g. mice and 
keyboards

 Note: Different from hardware interrupts, really requires constant polling from the host



Introduction to the USB Specification
(cont.)
• Endpoints: Unidirectional communication pipes (cont.)

 Bulk endpoints

 Large sporadic data transfers

 Using all remaining available bandwidth

 However, no guarantee on bandwidth or latency

 Only guarantee that no data is lost

 Typically used when there is no quality of service requirement (Network, printer, storage devices et al.)

 Isochronous endpoints

 Also for large amounts of data

 Guaranteed speed (often but not necessarily as fast as possible).

 No guarantee that all data makes it through

 Used by real-time data transfers (typically for audio and video devices with quality of service requirements)



Introduction to the USB Specification
(cont.)
• USB request blocks (URBs)

 Communication between host and device done asynchronously using URBs

 Similar to packets in network communication

 Every endpoint can handle a queue of URBs

 Every URB has a completion handler

 A driver may allocate many URBs for a single endpoint or reuse same URB for different endpoints

 See Documentation/usb/URB.txt in kernel sources

• URB scheduling interval

 For interrupt and isochronous transfers

 Low-speed and full-speed devices: The interval unit is frames (ms)

 Hi-speed devices: The interval unit is microframes (1/8 ms)



USB in Embedded Systems
• Most modern SoCs feature at least one USB port often with accompanying PHY

• Dedicated differential signals

 D+/D- for up to USB 2.0 low/full/high-speed

 SSRX+/SSRX- and SSTX+/SSTX- for SuperSpeed beginning with USB 3.0

• Supporting signals

 May be dedicated or realised by regular GPIOs

 ID: usually low for host and not connected (pulled-up) for device

 OverCurrent: device draws too much VBUS current (output from USB power switch chips)

 VBUS

 Input in device role

 May influence connection/suspend state

 Often not 5 volt tolerant requiring a voltage divider

 VBUS enable

 Output in host role (enable for USB power switch chips)



USB in Embedded Systems (cont.)

• External hub and/or PHY chips

• Designed-in chips

 USB-to-Ethernet bridges

 USB-to-serial adapters

 ...

• USB-C

 Special companion chips taking care of signalling details

 Either compatible to legacy signalling (e.g. ID and VBUS)

 Or using out-of-band signalling
(e.g. I2C or SPI) mandating special driver

 May further take care of power delivery requirements

 Blog posts and webinars from Toradex about the topic (see references)



USB in Embedded Systems (cont.)



USB in Embedded Systems (cont.)



USB Recovery Mode

• Most modern SoCs allow multiple so-called “boot modes”

• Selected by either strapping pins or fusing (done during production)

• Functionality of the Boot ROM aka initial program loader (IPL)

• Once initial “stage” is loaded/executed other mechanisms may be used to 
load/execute later “stages”

• NXP i.MX 6/7/8 and Vybrid support USB serial download protocol (SDP)

 Basically former serial aka UART download protocol encapsulated in USB

 Two implementations thereof exist:

 imx_loader aka imx_usb

 mfgtools 3.0 aka universal update utility (uuu)



USB Recovery Mode (cont.)

• TI AM62x Sitara support USB device firmware upgrade (DFU)

 Official USB device class

 Relatively low transfer speed for large files

 Imposed utilization of only EP0 for transfer

 Host side implementation: dfu-util

• For convenience further configuration/scripting may be required

 What USB vendor/product ID to act upon

 What binaries to use for what “stages”

• Toradex easy installer uses those mechanisms to allow loading
full fledged Linux/Qt based installer



USB in U-Boot
• Device side aka gadget

 Manually start one functionality at a time: DFU, Fastboot, UMS

 Device Firmware Upgrade (DFU)

 CONFIG_DFU and CONFIG_CMD_DFU plus at least one backend like CONFIG_DFU_RAM

 Environment variable
dfu_alt_info_ram=tispl.bin ram 0x80080000 0x200000;u-boot.img ram 0x81000000 0x400000;loadaddr ram 
0x88200000 0x80000;scriptaddr ram 0x90280000 0x80000;ramdisk_addr_r ram 0x90300000 0x8000000

 dfu <USB_controller> [<interface> <dev>] [<timeout>]

 Android Fastboot

 CONFIG_USB_FUNCTION_FASTBOOT depends on CONFIG_USB_GADGET_DOWNLOAD, 
CONFIG_USB_GADGET_VENDOR_NUM, CONFIG_USB_GADGET_PRODUCT_NUM and 
CONFIG_USB_GADGET_MANUFACTURER

 Requires large memory buffer via CONFIG_FASTBOOT_BUF_ADDR and CONFIG_FASTBOOT_BUF_SIZE

 Further configuration like partition aliases, raw partition descriptors and variable overrides possible

 fastboot usb 0



USB in U-Boot (cont.)
• Device side aka gadget (cont.)

 USB mass storage class (ums): shares a U-Boot block device via USB

 CONFIG_CMD_USB_MASS_STORAGE depends on CONFIG_USB_USB_GADGET and CONFIG_BLK

 ums <dev> [<interface>] <devnum[:partnum]>

 Where <dev> is the USB gadget device number (usually zero unless multiple device controller instances)

 Further arguments are specific to the block device

• Host side

 CONFIG_CMD_USB depends on a low-level host controller driver

 USB is NOT automatically started during start-up due to potential interference with OS e.g. Linux kernel boot

 Therefore requires manually starting it with “usb start” and stopping with “usb stop”

 Enumeration is also rather slow due to timeouts

 “usb tree” shows all USB devices in a tree like display

 Supports keyboards, storage as well as USB-to-Ethernet adapters (with their resp. configs)



USB in the Linux Kernel
• USB core: Implements the USB bus specification

 Architecture independent kernel subsystem

• USB host controller drivers

 Architecture and platform dependent

 Different driver depending on USB host controller hardware
(OHCI/UHCI, EHCI, xHCI et al.)

• USB device drivers

 Platform independent

 Drivers for specific peripheral on the USB bus

• USB device controller (UDC) drivers

 Architecture and platform dependent

 Different driver depending on USB device controller hardware

• USB gadget drivers

 Platform independent

 Different driver depending on peripheral functionality to provide (Ethernet, serial, storage et al.)



USB from Userspace

• /proc/bus/usb/devices

• usbutils: Utilities for inspecting devices connected to a USB bus

 lsusb: List USB devices, tree like view with -t resp. --tree

 usb-devices: Print USB device details

 usbhid-dump: Dump USB HID device report descriptors and streams

• usbview: Display information on USB devices

 GTK+ 3.x graphical application



USB from Userspace (cont.)

• libusb: A cross-platform user library to access USB devices

 C library providing generic access to USB devices

 Intended to be used by developers to facilitate the production of applications that 
communicate with USB hardware

 Portable: Using a single cross-platform API on Android, Linux, macOS, Windows, etc.

 User-mode: No special privilege or elevation is required for the application to 
communicate with a device

• uhubctl: USB hub per-port power control

 Utility to control USB power per-port on smart USB hubs

 Smart hub defined as one that implements per-port power switching



USB Tooling

• FTDI USB-to-serial aka UART adapters

• USB analyzer

 BEAGLE

 Cynthion (formerly Luna)

 A multi-tool for building, analyzing, and hacking USB devices

 Completely open source hardware and software

• USB CAN analyzer

• USB logic analyzer

 DreamSourceLab DSLogic

 Saleae Logic

• USB oscilloscope

 DreamSourceLab DSCope



USB Role Switching
• Device/host resp. on-the-go (OTG) or dual role device (DRD) switching

• Fixed in device tree

 dr_mode property

 May be host, otg (usually defaults to peripheral) or peripheral

• USB GPIO extcon device driver (e.g. as used on Colibri iMX6/7)

 Documentation/devicetree/bindings/extcon/extcon-usb-gpio.txt

 Virtual device used to generate USB cable states from USB ID pin 
connected to a GPIO pin (obsolete)

 CONFIG_EXTCON_USB_GPIO

 drivers/extcon/extcon-usb-gpio.c

 compatible = "linux,extcon-usb-gpio";

 id-gpio and/or vbus-gpio

 Reference it in actual USB node

 Here zero means no VBUS detection capability,
ID pin aka device/host only



USB Role Switching (cont.)
• USB connector subsystem (e.g. as used on Verdin iMX8M Plus)

• Documentation/devicetree/bindings/connector/usb-connector.yaml

• USB GPIO based connection detection driver

 CONFIG_USB_CONN_GPIO

 drivers/usb/common/usb-conn-gpio.c

• Simple GPIO VBUS sensing driver for B peripheral devices

 CONFIG_USB_GPIO_VBUS

 drivers/usb/phy/phy-gpio-vbus-usb.c

• compatible = "gpio-usb-b-connector", "usb-b-connector";

• label = "Type-C";

• type: mini/micro in case of non-fullsize connector

• self-powered and more optional power related properties

• id-gpio and/or vbus-gpio

• vbus-supply



USB Device Functionality

• USB gadget functions configurable through configfs



configfs

• Userspace-driven kernel object configuration

• Ram-based filesystem that provides the converse of sysfs's functionality

• Where sysfs is a filesystem-based view of kernel objects, configfs is a filesystem 
which allows userspace instantiation of kernel objects, or config_items

• Two types of configfs attributes

 Normal attributes: Small ASCII text files

 Binary attributes

• USB Gadget ConfigFS: Interface that allows definition of arbitrary functions and 
configurations to define an application specific USB composite device from userspace

 Create gadget device and bind to a UDC driver from userspace



configfs (cont.)

• First needs to be mounted

• If USB gadget configfs support enabled
usb_gadget subdirectory present

• By creating the g1 directory instantiated 
new gadget device filled by template

• Write our vendor/product IDs

• Instantiate English language strings



configfs (cont.)

• Write our manufacturer, product and 
serialnumber descriptor strings

• Create function instances

• Note: Multiple function instances of the 
same type must have a unique extension

• Create configuration instance

• Create English language strings and 
write description for this device 
configuration

• Bind each of our function instances to 
this configuration

• Check which UDC instances available

• Attach created gadget device to desired 
UDC



configfs (cont.)

• libusbgx

• Library providing C API to USB gadget configfs

• Basically programmatic way to go about creation and removal of gadgets



USB Host Functionality

• USB device class drivers



Debugging USB
• usbmon

 Linux kernel facility used to collect traces of I/O on the USB bus

 May be compiled as built-in or Linux kernel module requiring separate loading

 Analogous to packet socket used by network monitoring tools such as tcpdump

 As a matter of fact tcpdump comes with support for usbmon: tcpdump --list-interfaces

• Virtual USB Analyzer

 Tool for visualizing logs of USB packets from hardware or software USB sniffer tools

 Developed at VMware

 Python 2.7 PyGTK based

 Probably abandoned rather obsolete project

• Wireshark

 Has built-in USB analysis functionality

 But how to do that on an Embedded device?

 ssh <target> “tcpcump -i usbmon2 -U -w -” | flatpak run --filesystem=host --file-forwarding=host --share=network 
org.wireshark.Wireshark -k -i -



Debugging USB (cont.)



Live Demonstration
• Nothing fancy, just a regular Toradex board

in the wild running upstream Linux (;-p)



Q&A
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• USB Specification
https://www.usb.org/documents

• USB-C
https://www.toradex.com/blog/add-usb-c-to-your-next-carrier-board-design-1
https://www.toradex.com/blog/add-usb-c-to-your-next-carrier-board-design-2
https://www.toradex.com/webinars/add-usb-c-to-your-next-carrier-board-design
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https://dfu-util.sourceforge.net

• Toradex Easy Installer
https://www.toradex.com/tools-libraries/toradex-easy-installer

• usbview
http://www.kroah.com/linux-usb



References (cont.)

• libusb
https://libusb.info

• uhubctl
https://github.com/mvp/uhubctl

• Virtual USB Analyzer
https://vusb-analyzer.sourceforge.net

• Wireshark
https://wiki.wireshark.org/CaptureSetup/USB
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