
USB on Embedded
Linux Systems
Deep Dive

Presented by
Toradex

WITH YOU TODAY…

WE’RE LOCATED IN LUCERNE, SWITZERLAND

Marcel Ziswiler

Software Team Lead - Embedded Linux BSP

Toradex

• Joined Toradex 2011

• Spearheaded Embedded Linux Adoption

• Introduced Upstream First Policy

• Top 10 U-Boot Contributor

• Top 10 Linux Kernel Arm SoC Contributor

• Industrial Embedded Linux Platform Torizon
Fully Based on Mainline Technology

 Mainline U-Boot with Distroboot

 KMS/DRM Graphics with Etnaviv & Nouveau

 OTA with OSTree

 Docker resp. Podman

WHAT WE’LL
COVER TODAY…

• Introduction to the USB Specification

• USB in Embedded Systems

• USB Recovery Mode

• USB in U-Boot

• USB in the Linux Kernel

• USB from Userspace

• USB Tooling

• USB Role Switching

• USB Debugging

• Live Demonstration

AGENDA

Introduction to the USB Specification
• Connectors

 USB-A: USB 2.0 and 3.0 variants

 USB-B: Fullsize, mini, micro and USB 3.0 variants

 USB-C: One size fits all, right?

• USB transfer speed

 Low-speed: up to 1.5 Mbps

 Since USB 1.0

 Full-speed: up to 12 Mbps

 Since USB 1.1

 High-speed: up to 480 Mbps

 Since USB 2.0

 SuperSpeed: up to 5 Gbps

 Since USB 3.0

 ...

Introduction to the USB Specification
(cont.)

• USB protocol

 Device: Entity connected to the bus

 Configuration: State of a device

 Initialisation, standby, active

 Bundles a bunch of interfaces

 Interface: Logical device

 Each interface encapsulates a single high-level function (e.g. webcam: video stream, audio stream, buttons)

 One driver is needed for each interface!

 Alternate settings: Each USB interface may have different parameter settings (e.g. for different bandwidth)

 The initial state is always in the first setting (number 0)

 Alternate settings often used for isochronous endpoints (endpoints use different amounts of reserved bandwidth)

Introduction to the USB Specification
(cont.)

• Endpoint: Unidirectional communication pipe

 Control endpoints

 For configuration, get information, send commands, and retrieve status information

 Simple, small data transfers

 Every device has a control endpoint (endpoint 0)

 USB protocol guarantees corresponding data transfers will always have enough (reserved) bandwidth

 Interrupt endpoints

 Transfer small amounts of data at a fixed rate

 Guaranteed, reserved bandwidth

 For devices requiring guaranteed response time, such as USB human interface devices (HID) e.g. mice and
keyboards

 Note: Different from hardware interrupts, really requires constant polling from the host

Introduction to the USB Specification
(cont.)
• Endpoints: Unidirectional communication pipes (cont.)

 Bulk endpoints

 Large sporadic data transfers

 Using all remaining available bandwidth

 However, no guarantee on bandwidth or latency

 Only guarantee that no data is lost

 Typically used when there is no quality of service requirement (Network, printer, storage devices et al.)

 Isochronous endpoints

 Also for large amounts of data

 Guaranteed speed (often but not necessarily as fast as possible).

 No guarantee that all data makes it through

 Used by real-time data transfers (typically for audio and video devices with quality of service requirements)

Introduction to the USB Specification
(cont.)
• USB request blocks (URBs)

 Communication between host and device done asynchronously using URBs

 Similar to packets in network communication

 Every endpoint can handle a queue of URBs

 Every URB has a completion handler

 A driver may allocate many URBs for a single endpoint or reuse same URB for different endpoints

 See Documentation/usb/URB.txt in kernel sources

• URB scheduling interval

 For interrupt and isochronous transfers

 Low-speed and full-speed devices: The interval unit is frames (ms)

 Hi-speed devices: The interval unit is microframes (1/8 ms)

USB in Embedded Systems
• Most modern SoCs feature at least one USB port often with accompanying PHY

• Dedicated differential signals

 D+/D- for up to USB 2.0 low/full/high-speed

 SSRX+/SSRX- and SSTX+/SSTX- for SuperSpeed beginning with USB 3.0

• Supporting signals

 May be dedicated or realised by regular GPIOs

 ID: usually low for host and not connected (pulled-up) for device

 OverCurrent: device draws too much VBUS current (output from USB power switch chips)

 VBUS

 Input in device role

 May influence connection/suspend state

 Often not 5 volt tolerant requiring a voltage divider

 VBUS enable

 Output in host role (enable for USB power switch chips)

USB in Embedded Systems (cont.)

• External hub and/or PHY chips

• Designed-in chips

 USB-to-Ethernet bridges

 USB-to-serial adapters

 ...

• USB-C

 Special companion chips taking care of signalling details

 Either compatible to legacy signalling (e.g. ID and VBUS)

 Or using out-of-band signalling
(e.g. I2C or SPI) mandating special driver

 May further take care of power delivery requirements

 Blog posts and webinars from Toradex about the topic (see references)

USB in Embedded Systems (cont.)

USB in Embedded Systems (cont.)

USB Recovery Mode

• Most modern SoCs allow multiple so-called “boot modes”

• Selected by either strapping pins or fusing (done during production)

• Functionality of the Boot ROM aka initial program loader (IPL)

• Once initial “stage” is loaded/executed other mechanisms may be used to
load/execute later “stages”

• NXP i.MX 6/7/8 and Vybrid support USB serial download protocol (SDP)

 Basically former serial aka UART download protocol encapsulated in USB

 Two implementations thereof exist:

 imx_loader aka imx_usb

 mfgtools 3.0 aka universal update utility (uuu)

USB Recovery Mode (cont.)

• TI AM62x Sitara support USB device firmware upgrade (DFU)

 Official USB device class

 Relatively low transfer speed for large files

 Imposed utilization of only EP0 for transfer

 Host side implementation: dfu-util

• For convenience further configuration/scripting may be required

 What USB vendor/product ID to act upon

 What binaries to use for what “stages”

• Toradex easy installer uses those mechanisms to allow loading
full fledged Linux/Qt based installer

USB in U-Boot
• Device side aka gadget

 Manually start one functionality at a time: DFU, Fastboot, UMS

 Device Firmware Upgrade (DFU)

 CONFIG_DFU and CONFIG_CMD_DFU plus at least one backend like CONFIG_DFU_RAM

 Environment variable
dfu_alt_info_ram=tispl.bin ram 0x80080000 0x200000;u-boot.img ram 0x81000000 0x400000;loadaddr ram
0x88200000 0x80000;scriptaddr ram 0x90280000 0x80000;ramdisk_addr_r ram 0x90300000 0x8000000

 dfu <USB_controller> [<interface> <dev>] [<timeout>]

 Android Fastboot

 CONFIG_USB_FUNCTION_FASTBOOT depends on CONFIG_USB_GADGET_DOWNLOAD,
CONFIG_USB_GADGET_VENDOR_NUM, CONFIG_USB_GADGET_PRODUCT_NUM and
CONFIG_USB_GADGET_MANUFACTURER

 Requires large memory buffer via CONFIG_FASTBOOT_BUF_ADDR and CONFIG_FASTBOOT_BUF_SIZE

 Further configuration like partition aliases, raw partition descriptors and variable overrides possible

 fastboot usb 0

USB in U-Boot (cont.)
• Device side aka gadget (cont.)

 USB mass storage class (ums): shares a U-Boot block device via USB

 CONFIG_CMD_USB_MASS_STORAGE depends on CONFIG_USB_USB_GADGET and CONFIG_BLK

 ums <dev> [<interface>] <devnum[:partnum]>

 Where <dev> is the USB gadget device number (usually zero unless multiple device controller instances)

 Further arguments are specific to the block device

• Host side

 CONFIG_CMD_USB depends on a low-level host controller driver

 USB is NOT automatically started during start-up due to potential interference with OS e.g. Linux kernel boot

 Therefore requires manually starting it with “usb start” and stopping with “usb stop”

 Enumeration is also rather slow due to timeouts

 “usb tree” shows all USB devices in a tree like display

 Supports keyboards, storage as well as USB-to-Ethernet adapters (with their resp. configs)

USB in the Linux Kernel
• USB core: Implements the USB bus specification

 Architecture independent kernel subsystem

• USB host controller drivers

 Architecture and platform dependent

 Different driver depending on USB host controller hardware
(OHCI/UHCI, EHCI, xHCI et al.)

• USB device drivers

 Platform independent

 Drivers for specific peripheral on the USB bus

• USB device controller (UDC) drivers

 Architecture and platform dependent

 Different driver depending on USB device controller hardware

• USB gadget drivers

 Platform independent

 Different driver depending on peripheral functionality to provide (Ethernet, serial, storage et al.)

USB from Userspace

• /proc/bus/usb/devices

• usbutils: Utilities for inspecting devices connected to a USB bus

 lsusb: List USB devices, tree like view with -t resp. --tree

 usb-devices: Print USB device details

 usbhid-dump: Dump USB HID device report descriptors and streams

• usbview: Display information on USB devices

 GTK+ 3.x graphical application

USB from Userspace (cont.)

• libusb: A cross-platform user library to access USB devices

 C library providing generic access to USB devices

 Intended to be used by developers to facilitate the production of applications that
communicate with USB hardware

 Portable: Using a single cross-platform API on Android, Linux, macOS, Windows, etc.

 User-mode: No special privilege or elevation is required for the application to
communicate with a device

• uhubctl: USB hub per-port power control

 Utility to control USB power per-port on smart USB hubs

 Smart hub defined as one that implements per-port power switching

USB Tooling

• FTDI USB-to-serial aka UART adapters

• USB analyzer

 BEAGLE

 Cynthion (formerly Luna)

 A multi-tool for building, analyzing, and hacking USB devices

 Completely open source hardware and software

• USB CAN analyzer

• USB logic analyzer

 DreamSourceLab DSLogic

 Saleae Logic

• USB oscilloscope

 DreamSourceLab DSCope

USB Role Switching
• Device/host resp. on-the-go (OTG) or dual role device (DRD) switching

• Fixed in device tree

 dr_mode property

 May be host, otg (usually defaults to peripheral) or peripheral

• USB GPIO extcon device driver (e.g. as used on Colibri iMX6/7)

 Documentation/devicetree/bindings/extcon/extcon-usb-gpio.txt

 Virtual device used to generate USB cable states from USB ID pin
connected to a GPIO pin (obsolete)

 CONFIG_EXTCON_USB_GPIO

 drivers/extcon/extcon-usb-gpio.c

 compatible = "linux,extcon-usb-gpio";

 id-gpio and/or vbus-gpio

 Reference it in actual USB node

 Here zero means no VBUS detection capability,
ID pin aka device/host only

USB Role Switching (cont.)
• USB connector subsystem (e.g. as used on Verdin iMX8M Plus)

• Documentation/devicetree/bindings/connector/usb-connector.yaml

• USB GPIO based connection detection driver

 CONFIG_USB_CONN_GPIO

 drivers/usb/common/usb-conn-gpio.c

• Simple GPIO VBUS sensing driver for B peripheral devices

 CONFIG_USB_GPIO_VBUS

 drivers/usb/phy/phy-gpio-vbus-usb.c

• compatible = "gpio-usb-b-connector", "usb-b-connector";

• label = "Type-C";

• type: mini/micro in case of non-fullsize connector

• self-powered and more optional power related properties

• id-gpio and/or vbus-gpio

• vbus-supply

USB Device Functionality

• USB gadget functions configurable through configfs

configfs

• Userspace-driven kernel object configuration

• Ram-based filesystem that provides the converse of sysfs's functionality

• Where sysfs is a filesystem-based view of kernel objects, configfs is a filesystem
which allows userspace instantiation of kernel objects, or config_items

• Two types of configfs attributes

 Normal attributes: Small ASCII text files

 Binary attributes

• USB Gadget ConfigFS: Interface that allows definition of arbitrary functions and
configurations to define an application specific USB composite device from userspace

 Create gadget device and bind to a UDC driver from userspace

configfs (cont.)

• First needs to be mounted

• If USB gadget configfs support enabled
usb_gadget subdirectory present

• By creating the g1 directory instantiated
new gadget device filled by template

• Write our vendor/product IDs

• Instantiate English language strings

configfs (cont.)

• Write our manufacturer, product and
serialnumber descriptor strings

• Create function instances

• Note: Multiple function instances of the
same type must have a unique extension

• Create configuration instance

• Create English language strings and
write description for this device
configuration

• Bind each of our function instances to
this configuration

• Check which UDC instances available

• Attach created gadget device to desired
UDC

configfs (cont.)

• libusbgx

• Library providing C API to USB gadget configfs

• Basically programmatic way to go about creation and removal of gadgets

USB Host Functionality

• USB device class drivers

Debugging USB
• usbmon

 Linux kernel facility used to collect traces of I/O on the USB bus

 May be compiled as built-in or Linux kernel module requiring separate loading

 Analogous to packet socket used by network monitoring tools such as tcpdump

 As a matter of fact tcpdump comes with support for usbmon: tcpdump --list-interfaces

• Virtual USB Analyzer

 Tool for visualizing logs of USB packets from hardware or software USB sniffer tools

 Developed at VMware

 Python 2.7 PyGTK based

 Probably abandoned rather obsolete project

• Wireshark

 Has built-in USB analysis functionality

 But how to do that on an Embedded device?

 ssh <target> “tcpcump -i usbmon2 -U -w -” | flatpak run --filesystem=host --file-forwarding=host --share=network
org.wireshark.Wireshark -k -i -

Debugging USB (cont.)

Live Demonstration
• Nothing fancy, just a regular Toradex board

in the wild running upstream Linux (;-p)

Q&A

References

• USB Specification
https://www.usb.org/documents

• USB-C
https://www.toradex.com/blog/add-usb-c-to-your-next-carrier-board-design-1
https://www.toradex.com/blog/add-usb-c-to-your-next-carrier-board-design-2
https://www.toradex.com/webinars/add-usb-c-to-your-next-carrier-board-design

• imx_loader
https://github.com/boundarydevices/imx_usb_loader

• uuu
https://github.com/nxp-imx/mfgtools

• dfu-util
https://dfu-util.sourceforge.net

• Toradex Easy Installer
https://www.toradex.com/tools-libraries/toradex-easy-installer

• usbview
http://www.kroah.com/linux-usb

References (cont.)

• libusb
https://libusb.info

• uhubctl
https://github.com/mvp/uhubctl

• Virtual USB Analyzer
https://vusb-analyzer.sourceforge.net

• Wireshark
https://wiki.wireshark.org/CaptureSetup/USB

• usbmon
https://docs.kernel.org/usb/usbmon.html

THANK YOU
FOR YOUR INTEREST

www.toradex.com | www.torizon.io | developer.toradex.com
community.toradex.com | labs.toradex.com

	Slide 1
	WITH YOU TODAY…
	WHAT WE’LL COVER TODAY…
	Introduction to the USB Specification
	Introduction to the USB Specification (cont.)
	Introduction to the USB Specification (cont.) (2)
	Introduction to the USB Specification (cont.) (3)
	Introduction to the USB Specification (cont.) (4)
	USB in Embedded Systems
	USB in Embedded Systems (cont.)
	USB in Embedded Systems (cont.) (2)
	USB in Embedded Systems (cont.) (3)
	USB Recovery Mode
	USB Recovery Mode (cont.)
	USB in U-Boot
	USB in U-Boot (cont.)
	USB in the Linux Kernel
	USB from Userspace
	USB from Userspace (cont.)
	USB Tooling
	USB Role Switching
	USB Role Switching (cont.)
	USB Device Functionality
	configfs
	configfs (cont.)
	configfs (cont.) (2)
	configfs (cont.) (3)
	USB Host Functionality
	Debugging USB
	Debugging USB (cont.)
	Live Demonstration
	Slide 32
	References
	References (cont.)
	Slide 35

