

Multi-Persona Android

Oren Laadan

orenl@cellrox.com

Android Builders 2014

Mobile devices have multiple uses the device needs to reflect that.

Security Use Case

Personal Phone Business Phone

Do People Remember?

- Only download apps from trusted sources, such as reputable app markets. Remember to look at the developer name, reviews, and star ratings.
- Always check the permissions an app requests. Use common sense to ensure that the permissions an app requests match the features the app provides.
- Be alert for unusual behavior on your phone. Suspicious behavior could be a sign that your phone is infected. These behaviors may include unusual SMS or network activity.
- Install a mobile security app for your phone that scans every app you download to ensure it's safe.

No, They Don't!

More Use Cases

Personal Phone
Business Phone
Children Phone
Privacy Phone
Secure Phone

Even More Use Cases

Personal Phone **Business Phone** Children Phone **Privacy Phone** Secure Phone Social Phone **Guest Phone** Dev Phone

Multi-Persona for Mobile Devices

Trends in Personal Information Devices

Mobile Device Virtualization

Typical device

Linux kernel

Device hardware

Nobody Will Notice?

Performance Transparent Application Transparent Platform Transparent User Transparent

Hardware Virtualization

Typical device

Android applications **Android** environment

> Linux kernel

Device hardware

Virtual Phone

Android applications **Android** environment

Linux kernel

Hypervisor Type I

Device hardware

Virtual Phone

Android applications **Android** environment

> Linux kernel

Hardware Virtualization

Suitable for servers

- standard hardware
- slow server replace rate
- strong security model

Sub-optimal for mobile devices

- burden to support devices
- reduced performance / battery-life
- sub-optimal use of resources

Operating System Virtualization

Namespaces

provide a group of processes with the illusion that they are the only processes on the system.

Namespace (r)evolution

Kernel namespaces:

mount-ns: 2.4.19

• uts-ns: 2.6.19

• ipc-ns: 2.6.19

• pid-ns: 2.6.24

• net-ns: 2.6.24-2.6.29

• user-ns: 2.6.23-3.8

System calls: clone(), unshare(), setns()

Operating System Virtualization

Typical device

Android applications

Android environment

Linux kernel

Device hardware

Virtual Phone

Android applications

Android Android environment

Virtual Phone

Android applications

Android environment

Namespaces

Linux kernel

Device hardware

Device Diversity

A typical collection of peripherals available on a modern smartphone or tablet:

Headset	Microphone	Speakers	(Touch) Screen
Power	Buttons	Telephony	Bluetooth
GPS	WiFi	Framebuffer	GPU
Compass	Camera(s)	Accelerometer	RTC/Alarms

Device Interactivity

Users interact with a device one application at a time, expect consistent user experience:

Split the "attention" of resources between the multiple persona, depending on context.

Mobile Virtualization Challenges

Challenge 1: device diversity

- plethora of peripherals not virtualized
- key logical devices not virtualized
 - ⇒ virtualize physical & logical devices

Mobile Virtualization Challenges

Challenge 1: device diversity

- plethora of peripherals not virtualized
- key logical devices not virtualized
 - ⇒ virtualize physical & logical devices

Challenge 2: interactive usage

- users interact with one app at a time
- foreground vs. background apps
 - ⇒ multiplex access based on context

Device Namespaces

Device diversity: traditional virtualization

- create the illusion that processes interact exclusively with a set of devices
- hide the fact that other processes interact with the same set of devices
- Device major/minor (e.g. loop, dm), and device setup and internal state

Examples:

- alarm-dev
- binder
- logger
- wakelocks

•

Typical driver:

Virtualized driver?

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Typical driver:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

→ per-devns state

Typical driver:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

- per-devns state
- per open fd state points to per-devns state

Typical driver:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

- per-devns state
- per open fd state points to per-devns state
- obtain per-devns state and perform in context

Typical driver:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

- per-devns state
- per open fd state points to per-devns state
- obtain per-devns state and perform in context
- read/write/ioctl etc use per open fd state and per-devns state (and global state)

 \Rightarrow

 \Rightarrow

A peek at the code:

- alarm-dev
- binder

•

Device Namespaces

Interactivity: context-aware virtualization

- concept of an <u>active namespace</u>, with which the user actually interacts
- ability to <u>switch namespaces</u>, to allow interacting with multi-namespaces
- users really interact with one namespace at a time

Device Namespaces

Framebuffer?

Framebuffer: device namespaces

Framebuffer: device namespaces

Framebuffer: device namespaces

Input?

Input: device namespaces

Input: device namespaces

"Context-aware" virtualization

 \Rightarrow

 \Rightarrow

 \Rightarrow

Typical driver:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

- per-devns state
- per open fd state points to per-devns state
- obtain per-devns state and perform in context
- read/write/ioctl etc use per open fd state and per-devns state (and global state)

"Context-aware" virtualization

<u>Typical driver</u>:

- global driver state
- per open fd state
- open() is special
- read/write/ioctl etc use per open fd state (and global state)

Virtualized driver:

- per-devns state
- per open fd state points to per-devns state
- obtain per-devns state and perform in context
- read/write/ioctl etc use per open fd state and per-devns state (and global state)

per devns state:

active flag (foreground/background)

 \Rightarrow

 \Rightarrow

callbacks (create, destroy, switch)

"Context-aware" virtualization

A peek at the code:

- input layer
- backlight
- LED

•

Device namespaces in action

A quick hands on with the Android emulator

User-experience?

User-experience

Identity Awareness Switching Sharing

Experimental Benchmarks

- CPU (Linpack)
- Graphics (Neocore)
- Storage (Quadrant)
- Web browsing (SunSpider)
- Networking (custom)

Runtime Overhead (Idle)

Runtime Overhead (load)

Power Consumption Overhead

Summary

- Multi-persona Android
- Device namespaces (?!)

More info:

https://github.com/Cellrox/devns-patches/wiki

orenl@cellrox.com

