
© 2018 Toshiba Memory Corporation

How to reduce the write io to SD Card on Debian
2019/03/08

Toshiba Memory Corporation

Institute of Memory Technology Research & Development

System Technology Research & Development Center

Masahiro Yamada

© 2018 Toshiba Memory Corporation

01 Background

Today’s agenda

02 Problem

03 Approach

04 Evaluation

05 Conclusion and future work

© 2018 Toshiba Memory Corporation

Background

Many embedded boards uses SD card as Boot Device

Conventional embedded board

• e.g. : On Raspberry Pi, raspbian installed SD card is bootable

• There is a limitation about the number of write io on SD Card

• If there is only a SD card as Boot device and the limitation is

over, the board would not boot.

Linux Distribution like Debian

• There are many user unaware(unintended) write io

• If user don’t take care of it, the lifespan of SD Card is not so long

3

© 2018 Toshiba Memory Corporation

Background

The example of unintended write io

• While nginx.service is running, by the access to the web server

or by the error caused by web server, below 2 files are written

• (To be extreme) The lifespan of SD card is consumed by the

external access

4

$ tree /var/log/nginx

/var/log/nginx

├── access.log

└── error.log

0 directories, 2 files

© 2018 Toshiba Memory Corporation

Background

Reduce the unintended write io AMAP, extend the lifespan

Complete workaround (shut out all wirte ios to SD card) :

• Mount rootfs as read only, and not write anything to SD card

• By NFS mount, the all write ios go external storage

Flexible workaround (shut out a part of write ios to SD card) :

• Make write io volatile or disable write io, whose frequency is

high and the priority is low.

• After system reboot, it is acceptable precondition to disappear

the previous write

5

© 2018 Toshiba Memory Corporation

Background

Assumption of this presentation

• CPU is x86(64bit). Environment for evaluation is VM

• OS is Debian9.5, the kernel is v4.9

• RootFS is installed in SD card

• When system boot, sd card is mounted and is used as rootfs

• Use ext4 format as rootfs

• There are no external storages for writing

6

© 2018 Toshiba Memory Corporation

Problem

Categorize the cause of write, which can be likely shut out

• Problem 1 systemd service write log file periodically

• Problem 2 cache file

• Problem 3 the record of access time to file

• Problem 4 swap file

• Problem 5 find out unknown write process except problem 1-4

7

© 2018 Toshiba Memory Corporation

Problem

Problem 1 systemd service write log file periodically

• After system boot, many systemd services run at same time,

these continue to run. Among these services, by default setting,

many services, which user is not aware of, are active.

• You can check acive system service by below command

• Those includes some services, which write the log file under

/var/log.

8

$ systemctl list-unit-files | grep enabled

© 2018 Toshiba Memory Corporation

Problem

Problem 2 cache file

• To speed up some kind of process, there are some programs

which reserve cache file on disk (e.g. to reduce network access,

use previous cache file)

• File like cache tend to increase the size, so it would be the stress

of write to SD card

• Apt, package management system, is a conventional program

uses cache file. Deb files, which were installed in system before,

are stored under /var/cache/apt.

9

© 2018 Toshiba Memory Corporation

Problem

Problem 3 the record of access time to file

Ext4 has 3 meta data to each directories / files.

• Access time, Modify time, Change time

Access time is the last time to read/write the file.

The default mount option of ext4 is relatime

• Even if the access is read the file, if there is no access from 1 day

ago to now, the write io would happen to update the access

time.

10

© 2018 Toshiba Memory Corporation

Problem

Problem 4 swap file

• Swap is to increase free memory space by storing long-time

unused memory to disk, before system cannot run by the lack of

memory.

• Depending on memory size or application running on system,

many swap will be caused frequently, so it would be the stress of

SD card

• /etc/fstab includes swap setting, systemd-remount-fs.service

mount swap space according to the setting on boot time.

11

© 2018 Toshiba Memory Corporation

Problem

Problem 5 find out unknown write process except problem 1-4

Except Problem 1 ～ 4, there are some process which write

periodically or suddenly

• e.g. : timer process by cron or systemd

• e.g. : journal process for ext4 by kernel thread

Before you decide to disable these process, you need method that

you find “who” write “where”

12

© 2018 Toshiba Memory Corporation

Approach

3 types of approach

Approach 1 make directory and file volatile by tmpfs (problem1,2)

Approach 2 disable some functions (problem3,4)

Approach 3 detect ”who” writes “where” (problem 5)

13

© 2018 Toshiba Memory Corporation

Approach

Approach 1 make directory and file volatile by tmpfs (1)

Below 2 systemd services can be used

• To create tmpfs by systemd-remount-fs.service(fstab)

• To replace dir/file on disk as dir/file on tmpfs by systemd-

tmpfiles-setup.service

The target for volatile directories are various

• e.g. : /var/lock、/var/run、/var/tmp、/tmp、/run/systemd、…

But, to simplify this presentation, make /var/log and /var/cache/apt

volatile in this time

14

© 2018 Toshiba Memory Corporation

Approach

Approach 1 make directory and file volatile by tmpfs (2)

Mount tmpfs to /var/volatile by fstab

Make 2 directories volatile by systemd-tmpfiles-setup.service

15

$ cat /etc/fstab

#<file system> <mount point> <type> <options> <dump> <pass>

…

tmpfs /var/volatile tmpfs defaults 0 0

$ cat /etc/tmpfiles.d/00_core.conf

d /var/volatile/log 0755 root root -

L+ /var/log 0755 root root - /var/volatile/log

d /var/volatile/cache/apt 0755 root root -

L+ /var/cache/apt 0755 root root - /var/volatile/cache/apt

© 2018 Toshiba Memory Corporation

Approach

Approach 1 make directory and file volatile by tmpfs (3)

Issue caused by this approach

• Some packages cannot run by making /var/log volatile

• E.g. : nginx has a precondition that /var/log/nginx exists on boot

time, if it doesn’t exist, the boot would fail

16

Sep 15 00:58:17 debian09 systemd[1]: Starting A high performance web server and a reverse proxy server...

Sep 15 00:58:17 debian09 nginx[4161]: nginx: [alert] could not open error log file: open() "/var/log/nginx/error.log" failed

Sep 15 00:58:17 debian09 nginx[4161]: 2018/09/15 00:58:17 [emerg] 4161#4161: open() "/var/log/nginx/access.log" failed (2:

Sep 15 00:58:17 debian09 nginx[4161]: nginx: configuration file /etc/nginx/nginx.conf test failed

Sep 15 00:58:17 debian09 systemd[1]: nginx.service: Control process exited, code=exited status=1

Sep 15 00:58:17 debian09 systemd[1]: Failed to start A high performance web server and a reverse proxy server.

Sep 15 00:58:17 debian09 systemd[1]: nginx.service: Unit entered failed state.

Sep 15 00:58:17 debian09 systemd[1]: nginx.service: Failed with result 'exit-code'.

© 2018 Toshiba Memory Corporation

Approach

Approach 1 make directory and file volatile by tmpfs (4)

workaround

• Create /var/log/nginx on system boot time

There are a lot of packages like nginx, which cannot run by

approach1.

• See Appendix. A for reference to packages like that

17

$ cat /etc/tmpfiles.d/50_nginx.conf

d /var/log/nginx 0755 root adm - none

f /var/log/nginx/access.log 0640 www-data adm - none

f /var/log/nginx/error.log 0640 www-data adm - none

© 2018 Toshiba Memory Corporation

Approach

Approach 1 make directory and file volatile by tmpfs (5)

Important point by this approach

• Memory usage. The amount of writing log would be the amount

of memory used. Tmpfs can use memory until the limitation.

• Packages which write log need to be checked whether there is a

log rotate setting, or not. And check the frequency is enough.

18

size: The limit of allocated bytes for this tmpfs instance. The

default is half of your physical RAM without swap. If you

oversize your tmpfs instances the machine will deadlock

since the OOM handler will not be able to free that memory.

Quotation：https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

© 2018 Toshiba Memory Corporation

Approach

Approach 2 disable some functions (1)

Use noatime mount option by fstab

Important point by this apporach

• Some kind of packages suppose that atime is updated correctly

• E.g. : mutt (mailer software)

• Between power on and remount, it is likely atime is updated.

19

$ cat /etc/fstab

#<file system> <mount point> <type> <options> <dump> <pass>

…

/dev/root / ext4 rw,noatime,data=ordered 0 0

© 2018 Toshiba Memory Corporation

Approach

Approach 2 disable some functions (2)

Disable swap by fstab

Important point by this apporach

• Memory usage. With approach1, we have to consider the

maximum memory usage system uses in advance.

20

$ cat /etc/fstab

…

swap was on /dev/sda5 during installation

#UUID=7f126736-bc08-4569-a3d0-049e1f09ebd7 none swap sw 0 0

© 2018 Toshiba Memory Corporation

Approach

Approach 3 detect ”who” writes “where”

Use fanotify in this time

• Fanotify can monitor the event of filesystem

• By including <sys/fanotify.h>, each fanotify API can be used

• By using fanotify API, you can monitor all file operations under

some mount point, and you can know the process id.

• Example program : https://manpages.debian.org/stretch/manpages/fanotify.7.en.html

• Monitoring write op and output the pid by patch(Appendix. B)

(Reference) Bcc-tools also can be used as fanotify (Appendix. C)

21

© 2018 Toshiba Memory Corporation

Evaluation

How to evaluate the write access to disk

Read stat file in block device of sysfs subsystem, and check write io

• If /dev/sda is boot device

• The fifth parameter shows the number of write io

22

$ cat /sys/block/sda/stat

11976 2145 680990 12200 212 383 5320 340 0 4704 12532

Name units description

---- ----- -----------

read I/Os requests number of read I/Os processed

read merges requests number of read I/Os merged with in-queue I/O

read sectors sectors number of sectors read

read ticks milliseconds total wait time for read requests

write I/Os requests number of write I/Os processed

Quotation: https://www.kernel.org/doc/Documentation/block/stat.txt

© 2018 Toshiba Memory Corporation

Evaluation

The result of approach1 (volatile) evaluation for problem1 (/var/log)

Repeat below method 10 times

• Check the write io of stat file

• Access nginx by curl

• Do sync

• Check the write io of stat file

• Sleep 60 seconds

23

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

write IOs

default approach1

© 2018 Toshiba Memory Corporation

Evaluation

The result of approach1 (volatile) evaluation for problem2 (cache)

Run below method

• Check the write io of stat file

• Install vim by apt

• Do sync

• Check the write io of stat file

24

3520

3540

3560

3580

3600

3620

3640

3660

3680

default approach1

write IOs

© 2018 Toshiba Memory Corporation

Evaluation

The result of approach2 (disable) evaluation for problem3 (atime)

To remove the influence of system service

writing to /var/log, apply approach1(volatile).

Run below method

• Set system clock to tomorrow

• Do sync

• Run 60 times loop with below 3 methods

• Do sync

• Check the write io of stat file

• Sleep 1 minute

25

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56

write IOs

approach1 approach1 & approach2

© 2018 Toshiba Memory Corporation

Evaluation

The result of approach2 (disable) evaluation for problem4 (swap)

• Before

• After

26

cat /proc/swaps

Filename Type Size Used Priority

/dev/sda5 partition 2095100 0 -1

cat /proc/swaps

Filename Type Size Used Priority

© 2018 Toshiba Memory Corporation

Evaluation

The result of approach3 (monitoring) evaluation for problem5

• Monitoring root directory 1 hour by fanotify

• Apply approach1,2 to environment (not to detect known write)

• A part of result (See Appendix. D for mote details)

• PID 657 was the command by upower.service on my system

Consider approach1,2 can be applied to reduce more disk access

27

fanotify_example /

...

FAN_OPEN_PERM: File /var/lib/upower/history-time-empty-50.dat.VTEKPZ (657)

FAN_MODIFY: File /var/lib/upower/history-time-empty-50.dat.VTEKPZ (657)

FAN_CLOSE_WRITE: File /var/lib/upower/history-time-empty-50.dat (657)

...

© 2018 Toshiba Memory Corporation

Conclusion and future work

Conclusion and future work

Conclusion

• Reduce the write ios to SD card by making directory and file

volatile and by disabling some features.

• Detect the unintended write process by monitoring write op

Future work

• Make it easy to fix packages, which cannot run by volatile.

• About Kdump, /var/log on memory would be deleted after

panic, it is difficult to read the contents from the dump file.

28

TMC Confidential B****
© 2018 Toshiba Memory Corporation

Institute of Memory Technology Research & Development
29

TMC Confidential B****
© 2018 Toshiba Memory Corporation

Institute of Memory Technology Research & Development
30

Appendix

© 2018 Toshiba Memory Corporation

Appendix A. need to care packages when /var/log is tmpfs

31

Package / command Directory / file

openssh-server /var/run/sshd

nginx /var/log/nginx

/var/log/nginx/access.log

/var/log/nginx/error.log

Uwsgi /var/log/uwsgi

/var/log/uwsgi/app

/var/run/uwsgi

audit /var/log/audit

dpkg /var/log/dpkg

libvirt /var/log/libvirt/qemu

/var/log/libvirt/uml

/var/log/libvirt/lxc

apache2 /var/log/apache2

/var/run/apache2

sysstat /var/log/sa

Exim /var/log/exim4

© 2018 Toshiba Memory Corporation

Appendix B. patch to fanotify example

32

$ diff -up fanotify_example.c fanotify_example_write.c

--- fanotify_example.c 2018-09-20 07:21:17.000000000 +0900

+++ fanotify_example_write.c 2018-09-20 13:18:34.328000000 +0900

@@ -78,6 +78,9 @@ handle_events(int fd)

if (metadata->mask & FAN_CLOSE_WRITE)

printf("FAN_CLOSE_WRITE: ");

+ if (metadata->mask & FAN_MODIFY)

+ printf("FAN_MODIFY: ");

+

/* Retrieve and print pathname of the accessed file */

snprintf(procfd_path, sizeof(procfd_path),

@@ -90,7 +93,7 @@ handle_events(int fd)

}

path[path_len] = '¥0';

- printf("File %s¥n", path);

+ printf("File %s (%d)¥n", path, metadata->pid);

/* Close the file descriptor of the event */

@@ -136,7 +139,7 @@ main(int argc, char *argv[])

file descriptor */

if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,

- FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,

+ FAN_OPEN_PERM | FAN_CLOSE_WRITE | FAN_MODIFY, AT_FDCWD,

argv[1]) == -1) {

perror("fanotify_mark");

exit(EXIT_FAILURE);

© 2018 Toshiba Memory Corporation

Appendix C. example by using bcc-tools

Use biosnoop and filetop, which are examples attached Bcc-

tools(https://github.com/iovisor/bcc)

• bcc-toolsのbiosnoop

• bcc-toolsのfiletop

33

TIME(s) COMM PID DISK T SECTOR BYTES LAT(ms)

0.000000000 ? 0 R -1 8 0.49

2.015770000 ? 0 R -1 8 0.25

2.271162000 jbd2/sda1-8 152 sda W 80805472 16384 0.42

2.275804000 jbd2/sda1-8 152 sda W 80805504 4096 0.23

4.030423000 ? 0 R -1 8 0.17

6.048356000 ? 0 R -1 8 0.45

8.064035000 ? 0 R -1 8 0.23

8.158926000 kworker/u2:0 17059 sda W 2048 4096 0.22

8.159107000 kworker/u2:0 17059 sda W 2080 4096 0.35

03:46:23 loadavg: 0.17 0.10 0.16 2/321 19463

TID COMM READS WRITES R_Kb W_Kb T FILE

19463 clear 2 0 8 0 R xterm-256color

19452 python 2 0 2 0 R loadavg

19463 clear 1 0 0 0 R libtinfo.so.5.9

19463 clear 1 0 0 0 R libc-2.24.so

19463 python 3 0 0 0 R clear

19463 python 2 0 0 0 R ld-2.24.so

https://github.com/iovisor/bcc

© 2018 Toshiba Memory Corporation

Appendix D. Monitoring “/“ by fanotify_example

34

fanotify_example /

...

FAN_MODIFY: File /var/lib/upower/history-rate-50.dat.W2VKPZ (657)

FAN_CLOSE_WRITE: File /var/lib/upower/history-rate-50.dat (657)

FAN_OPEN_PERM: File /var/lib/upower/history-charge-50.dat.VUCKPZ (657)

FAN_MODIFY: File /var/lib/upower/history-charge-50.dat.VUCKPZ (657)

FAN_CLOSE_WRITE: File /var/lib/upower/history-charge-50.dat (657)

FAN_OPEN_PERM: File /var/lib/upower/history-time-full-50.dat.DDHKPZ (657)

FAN_MODIFY: File /var/lib/upower/history-time-full-50.dat.DDHKPZ (657)

FAN_CLOSE_WRITE: File /var/lib/upower/history-time-full-50.dat (657)

FAN_OPEN_PERM: File /var/lib/upower/history-time-empty-50.dat.VTEKPZ (657)

FAN_MODIFY: File /var/lib/upower/history-time-empty-50.dat.VTEKPZ (657)

FAN_CLOSE_WRITE: File /var/lib/upower/history-time-empty-50.dat (657)

...

FAN_OPEN_PERM: File /var/lib/systemd/timers/stamp-anacron.timer (1)

FAN_CLOSE_WRITE: File /var/lib/systemd/timers/stamp-anacron.timer (1)

...

FAN_OPEN_PERM: File /etc/anacrontab (1343)

FAN_OPEN_PERM: File /var/spool/anacron/cron.daily (1343)

FAN_CLOSE_WRITE: File /var/spool/anacron/cron.daily (1343)

FAN_OPEN_PERM: File /var/spool/anacron/cron.weekly (1343)

FAN_CLOSE_WRITE: File /var/spool/anacron/cron.weekly (1343)

FAN_OPEN_PERM: File /var/spool/anacron/cron.monthly (1343)

FAN_CLOSE_WRITE: File /var/spool/anacron/cron.monthly (1343)

...

FAN_CLOSE_WRITE: File /tmp/tmpfdrUyvr (deleted) (1356)

FAN_CLOSE_WRITE: File /tmp/tmpfdrUyvr (deleted) (1356)

...

© 2018 Toshiba Memory Corporation

Appendix E. Reference

• https://wiki.debian.org/SSDOptimization

• http://blog.nunosenica.com/reduce-write-operations-to-sd-card-with-raspbian/

• https://www.makeuseof.com/tag/extend-life-raspberry-pis-sd-card/

• https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

• https://www.kernel.org/doc/Documentation/block/stat.txt

• http://hallard.me/raspberry-pi-read-only/

35

http://blog.nunosenica.com/reduce-write-operations-to-sd-card-with-raspbian/
http://blog.nunosenica.com/reduce-write-operations-to-sd-card-with-raspbian/
https://www.makeuseof.com/tag/extend-life-raspberry-pis-sd-card/
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://hallard.me/raspberry-pi-read-only/

