

Copyright 2010 Sony Corporation

Android Systems Programming
Tips and Tricks

Tim Bird
Sony Network Entertainment, Inc

< tim.bird (at) am.sony.com >

Copyright 2010 Sony Corporation

Overview

• Intro to Android
• Working with source
• Interacting with the target
• Trace and debug tools
• Performance tools
• Random thoughts on Android
• Resources

Copyright 2010 Sony Corporation

Intro to Android

• Google runtime on top of Linux

Obligatory
Architecture
diagram:

Copyright 2010 Sony Corporation

Android device proliferation

Copyright 2010 Sony Corporation

Working with source

Copyright 2010 Sony Corporation

Working with source

• Git
• Repo
• Build system

– Building fast
– Adding a program to the build

Copyright 2010 Sony Corporation

Git

• Android open source project uses 'git‘
• You need to learn to use git well,… really

– Need to know how to do a 'git rebase‘
especially for kernel patches

– Use ‘git rebase –I’ for interactive rebase
• Lots of online resources

– Recommended online book:
http://progit.org/book/

Copyright 2010 Sony Corporation

Repo
• ‘export REPO_TRACE=1’ is handy to see

what git commands are called by repo
• Repo tricks

– Repo forall –c ‘git diff <remote_branch>’
– Repo forall –c ‘echo $REPO_PATH;git remote

–v’
• Use to see upstream remotes from which to

compare and merge with
– Repo manifest –r –o tag-date.xml

• Make a repository snapshot manifest

Copyright 2010 Sony Corporation

Build System
• Lots of interesting stuff in build/envsetup.sh

– help
– choosecombo/lunch
– jgrep/cgrep
– godir

• Interesting ‘make’ targets:
– showcommands – psuedo-target to show build

commands
– sdk – can build the SDK from scratch

Copyright 2010 Sony Corporation

Fast Building
• Parallel make threads

– ‘make –j6’
• Use 2 more than your number of CPUs (include

hyperthreaded CPUs)
• Compiled output cache

– ccache is in /prebuilt area
• ‘export USE_CACCHE=1’
• Great for rebuilds (21 minutes on my desktop)

• Make only a specific module
– mm – build only the module(s) in the current directory

(and below)
– I usually combine this with a custom install script,

which copies from out/target/product/<board>

Copyright 2010 Sony Corporation

Adding a program to the build
• Make a directory under ‘external’

– E.g. <android>/external/myprogram
• Create your C/cpp files
• Create Android.mk as a clone of

external/ping/Android.mk
– Change the names ‘ping.c’ and ‘ping’ to match your

C/cpp files and program name
• Add the directory name in

<android>/build/core/main.mk after external/zlib
as external/myprogram

• Make from the root of the source tree

Copyright 2010 Sony Corporation

Interacting with the target

Copyright 2010 Sony Corporation

Interacting with the target
• Android has some very nice integration

engineering
• Tools discussed:

– Fastboot
– ADB

• Useful development configurations

Copyright 2010 Sony Corporation

Fastboot

• “fastboot” is both a tool and a bootloader
protocol

• Required by Google for certified devices
• Would be really nice to adopt as an industry

standard
– e.g. maybe support fastboot in U-boot

• Fastboot operations
– Install kernel
– Install new flash image
– Boot directly from host

• Very useful for test automation

Copyright 2010 Sony Corporation

ADB

• Android Debug Bridge
• Tool for all kinds of target interactions
 (install, logging, remote shell, file copy)

– shell [<command>]
– push/pull
– logcat
– install/uninstall

• Print this and keep it under your pillow…
– http://developer.android.com/guide/developing/tools/adb.html

Copyright 2010 Sony Corporation

ADB (cont.)

• Can work over network, instead of USB
– Useful if you run build inside virtual machine on host

• e.g. I build on Ubuntu 8.04 KVM on Fedora 12 (64-bit) host
– It’s simple:

• export ADBHOST=192.168.2.1
– For some reason, I have to kill the server after

rebooting the target
• adb kill-server
• Calling ‘adb’ will respawn the server automatically

Copyright 2010 Sony Corporation

Useful development configurations

Network

Target
HostHost

USB

Serial

Power control

Network Target
Host

TFTP
NFS

Kernel

Root filesystem

Host

USB
Network

kernelroot fs data flash

Functionality
testing

Target

Integration and
Performance
testing

Copyright 2010 Sony Corporation

Trace and debug tools

Copyright 2010 Sony Corporation

Trace and debug tools
• Logging

– Kernel log (dmesg)
– Logcat
– Stdio redirection

• Strace
• Bootchart
• Dumpstate/dumpsys
• DDMS
• Gdb

Copyright 2010 Sony Corporation

Kernel log

• It’s there, use dmesg to access after boot
• Turn on PRINTK_TIMES for timestamps
• Increase buffer size:

CONFIG_LOG_BUF_SHIFT
• Can add message to log from user space

by writing to /dev/kmsg
– Very handy to synchronize with kernel

messages

Copyright 2010 Sony Corporation

Logcat
• Logging system in kernel

– Integrated throughout Android system (C+ and Java
access)

• Can Increase logging levels with setprop
– Flags to control logging level in code
– (DEBUG emits more??)

• Different logs (main, event, etc.)
– Event log buffer is funky, is encoded for size
– See jamboree presentation on log info

• http://blog.kmckk.com/archives/2936958.html
(Presentation by Tetsuyuki Kobayashi)

Copyright 2010 Sony Corporation

Logcat
• Use from host to redirect to a file
• To get main log info, use:

̵ e.g. adb logcat –v time –d *:V >test.log
• To get info from 'events' log, use -b:

̵ e.g. adb logcat –b events –v time –d | grep boot
• Filter using <tag>:<loglevel>

– Can use ANDROID_LOG_TAGS environment variable.

• I wrote my own logdelta tool, to see time
between events
– See http://elinux.org/Improving_Android_Boot_Time#logdelta

Copyright 2010 Sony Corporation

Overview of Android Logging System

*Shameless ripoff of Tesuyuki Kobayashi

Copyright 2010 Sony Corporation

Logcat output (events)
I/boot_progress_start(754): 12559
I/boot_progress_preload_start(754): 17879
I/boot_progress_preload_end(754): 28546
I/boot_progress_system_run(768): 29230
I/boot_progress_pms_start(768): 29697
I/boot_progress_pms_system_scan_start(768): 30117
I/boot_progress_pms_data_scan_start(768): 44171
I/boot_progress_pms_scan_end(768): 50006
I/boot_progress_pms_ready(768): 50505
I/boot_progress_ams_ready(768): 53166
I/boot_progress_enable_screen(768): 56793

Copyright 2010 Sony Corporation

Stdio redirection

• You can send stdout and stderr to the log:
• Redirecting Dalvik output:

• Redirecting C/cpp output:
– myprogram | xargs log

• Assumes you have busybox xargs installed

stop
setprop log.redirect-stdio true
start

Copyright 2010 Sony Corporation

Strace

• Shows system calls for a process (or set
of processes)

• Is part of AOSP since eclair
• Can add to init.rc to trace initialization.

– For example, to trace zygote startup, in /init.rc
change:

 to
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

service zygote /system/xbin/strace -tt -o/data/boot.strace /system/bin/app_process -Xzygote
 /system/bin --zygote --start-system-server

Copyright 2010 Sony Corporation

Bootchart
• 'init' gathers data on startup

̵ Must re-compile 'init' with support for
bootchart data collection

• A tool on the host produces a nice graphic
• See http://elinux.org/Bootchart and

http://elinux.org/Using_Bootchart_on_Android

Copyright 2010 Sony Corporation

Bootchart output

Copyright 2010 Sony Corporation

Dumpstate/dumpsys
• Dumps huge amounts of information about the

system, including status, counts and statistics
• Dumpstate reproduces lots of stuff from /proc

– Does a dumpsys as well
• Dumpsys show status information from Android

services
– e.g. dumpsys alarm

• First part of dump has list of services you can
dump

Copyright 2010 Sony Corporation

DDMS
• Dalvik Debug Monitor Service

– http://developer.android.com/guide/developin
g/tools/ddms.html

• Lots of features, controllable via eclipse
• To watch allocations in C/c++ code, try:

– Set “native=true” in ~/.android/ddms.cfg
– Use standalong ddms program
– On target do: # setprop libc.debug.malloc 1

stop
start

Copyright 2010 Sony Corporation

Gdb
• How to invoke:

• Note that gdbclient is a function in build/envsetup.sh
• Files are stripped in output dir

– Unstripped files are at:
./out/target/product/generic/obj/EXECUTABLES/<name of

module>_intermediates/LINKED/<name of the executable>

1. adb forward tcp:5039 tcp:5039
2. adb shell gdbserver :5039 <exename> <arguments if any>
3. In another shell, gdbclient <exename>
Or, manually: $ arm-eabi-gdb
…
file ./out/target/product/generic/symbols/system/bin/app_process
set solib-search-path ./out/target/product/generic/symbols/system/lib
target remote localhost:5039

Copyright 2010 Sony Corporation

More debug tips

• See
http://omappedia.org/wiki/Android_Debugging

• Tons of tips, including:
– How to debug a native program segfault
– How to use kernel profiler and oprofile
– How to use gdb and DDD

• Info is for Zoom2 board, but some things should
work on your board also

Copyright 2010 Sony Corporation

Performance tools

Copyright 2010 Sony Corporation

Performance Tools
• Smem
• Traceview
• 0xbench
• Perf??

Copyright 2010 Sony Corporation

Smem
• Tools for analyzing system-wide memory

usage
– Can slice, dice, and visualize memory info

snapshot
• Run smemcap on target, grab data with

adb, then analyze on host
• See http://elinux.org/Using_smem_on_Android

http://elinux.org/Using_smem_on_Android

Copyright 2010 Sony Corporation

Traceview

• Shows trace of Java methods
• Also shows profile information
• User can start and stop tracing either

using DDMS
• App can start and stop tracing

programmatically
• Google: “android traceview”

Copyright 2010 Sony Corporation

0xbench

• Has several built-in benchmarks, such as
Linpack, Scimark2, and LibMicro

• Project page at:
http://code.google.com/p/0xbench

• Is available in Android Market
• Some tests require root privileges

Copyright 2010 Sony Corporation

Perf

• Standard kernel tool for performance
analysis

• Now that Android is up to 2.6.35 kernel,
should be a breeze to use
– Have to admit I haven't done it yet – I’m stuck

on 2.6.29
• Anyone here done it?

Copyright 2010 Sony Corporation

Miscellaneous tools
• procrank
• setprop/getprop
• sqlite (command line)
• start/stop

– Can stop/start whole system

Copyright 2010 Sony Corporation

Procrank
• Shows a quick summary of processes,

sorted by VSS, RSS, PSS or USS
– See http://elinux.org/Android_Memory_Usage

• Output: # procrank
 PID Vss Rss Pss Uss cmdline
 1217 36848K 35648K 17983K 13956K system_server
 1276 32200K 32200K 14048K 10116K android.process.acore
 1189 26920K 26920K 9293K 5500K zygote
 1321 20328K 20328K 4743K 2344K android.process.media
 1356 20360K 20360K 4621K 2148K com.android.email
 1303 20184K 20184K 4381K 1724K com.android.settings
 1271 19888K 19888K 4297K 1764K com.android.inputmethod.latin
 1332 19560K 19560K 3993K 1620K com.android.alarmclock
 1187 5068K 5068K 2119K 1476K /system/bin/mediaserver
 1384 436K 436K 248K 236K procrank
 1 212K 212K 200K 200K /init
 753 572K 572K 171K 136K /system/bin/rild
 748 340K 340K 163K 152K /system/bin/sh
 751 388K 388K 156K 140K /system/bin/vold
 1215 148K 148K 136K 136K /sbin/adbd
 757 352K 352K 117K 92K /system/bin/dbus-daemon
 760 404K 404K 104K 80K /system/bin/keystore
 759 312K 312K 102K 88K /system/bin/installd
 749 288K 288K 96K 84K /system/bin/servicemanager
 752 244K 244K 71K 60K /system/bin/debuggerd

http://elinux.org/Android_Memory_Usage
http://elinux.org/Android_Memory_Usage

Copyright 2010 Sony Corporation

setprop/getprop
• Many services have debug elements controlled

by properties
• Many properties are set in /init.rc
• You can also query and set properties on the

command line
– Use 'getprop' (with no args) to see list of properties

• Have to examine source for properties with
special meanings (or see something on a
mailing list)

– Example: setting the DNS server address manually:
• setprop net.nds1 xx.yy.zz.aa

Copyright 2010 Sony Corporation

Sqlite

• You can inspect and modify sqlite data
directly from the command line
– Here's an example of setting the http_proxy

for a development board

• Most databases are under a directory
called 'databases', and end in '.db'

cd /data/data/com.android.providers.settings/databases
sqlite3 settings.db
SQLite version 3.5.9
Enter ".help" for instructions
sqlite> insert into system values(99,'http_proxy','192.168.1.1:80');
sqlite>.exit
#

Copyright 2010 Sony Corporation

Wrapup

Copyright 2010 Sony Corporation

Random thoughts on Android
• Throws POSIX out the window

– Hurray!... Darn...
• Lots of talk about Android fragmentation

– Fragmentation doesn't matter for custom
programming work

• If Android works for you, then use it
– Soon, vendors will have to ensure compatibility, rather

than app makers
• Seems destined to be a major embedded Linux

platform
– Only drawback(?) is non-native apps

• But even this has pros and cons

Copyright 2010 Sony Corporation

Resources
• eLinux wiki Android portal:

̵ http://elinux.org/Android_Portal
• Use android-porting, android-platform, and

android-kernel mailing lists, depending on
where your issue is
̵ See

http://elinux.org/Android_Web_Resources#Mailing_Lists

• My e-mail: tim.bird (at) am.sony.com

Copyright 2010 Sony Corporation

Thanks for your time

Questions and Answers

	Android Systems Programming Tips and Tricks
	Overview
	Intro to Android
	Android device proliferation
	Working with source
	Slide 6
	Git
	Repo
	Build System
	Fast Building
	Adding a program to the build
	Interacting with the target
	Slide 13
	Fastboot
	ADB
	ADB (cont.)
	Useful development configurations
	Trace and debug tools
	Slide 19
	Kernel log
	Logcat
	Slide 22
	Overview of Android Logging System
	Logcat output (events)
	Stdio redirection
	Strace
	Bootchart
	Bootchart output
	Dumpstate/dumpsys
	DDMS
	Gdb
	More debug tips
	Performance tools
	Performance Tools
	Smem
	Traceview
	0xbench
	Perf
	Miscellaneous tools
	Procrank
	setprop/getprop
	Sqlite
	Wrapup
	Random thoughts on Android
	Resources
	Thanks for your time

